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Fermi liquid theory is the basic paradigm within which we understand the normal behavior of interacting
electron systems, but quantitative values for the parameters that occur in this theory are currently unknown in
many important cases. One such case is the two-dimensional homogeneous electron gas (2D HEG), which is
realized in a wide variety of semiconductor devices. We have used quantum Monte Carlo (QMC) methods to
calculate the Landau interaction functions between pairs of quasiparticles. We use these to study the Fermi liquid
parameters, finding that finite-size effects represent a serious obstacle to the direct determination of Fermi liquid
parameters in QMC calculations. We have used QMC data in the literature for other properties of the 2D HEG
to assemble a set of “best available” values for the Fermi liquid parameters.
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I. INTRODUCTION

Many of the key theoretical developments in condensed
matter physics have been concerned with the exploration of
models that capture important aspects of the behavior of real
materials. One of the most fundamental and useful model
systems in the field is the homogeneous electron gas (HEG).1

The simplicity of the system (a gas of electrons moving in
a uniform, neutralizing background) is deceptive: The model
exhibits a rich range of physics and remains our basic starting
point for understanding the behavior of charge carriers in
metals and semiconductors.

The enormous theoretical challenge that must be overcome
when trying to provide an accurate description of the HEG
is that the electrons are strongly coupled by their mutual
Coulomb repulsion. Nevertheless, many thermal and transport
properties of the HEG can be described by ignoring electron-
electron interactions altogether, resulting in the free-electron-
gas model, in which each electron has its own well-defined
energy and momentum. This observation, which predates
quantum mechanics, was first explained within a general
theoretical framework by Landau through the development
of Fermi liquid theory.2 Although the existence of electron-
electron repulsion and hence correlation dramatically changes
the total energy of an electron gas, low-lying excitations have a
nonvanishing overlap with the corresponding excitations of the
noninteracting system, in which the single-particle orbitals are
plane-wave momentum eigenstates. Hence we may associate
each excited state of the interacting system with a particular
set of quasiparticle momentum occupation numbers.

Remarkably, although Fermi liquid theory is our basic
paradigm for the normal behavior of the fluid phase of
an electron gas, quantitative values for the parameters that
occur in this theory are essentially unknown. Armed with
knowledge of the Fermi liquid parameters, we would have
a complete parametrization of the low-energy excitations of
the fully interacting electron gas. This would in turn allow
nearly all thermodynamic, response, and transport properties

to be determined quantitatively,1 enabling us to understand the
precise role that correlation plays in the behavior of the HEG.

In this work we use quantum Monte Carlo (QMC)
calculations3,4 to determine the Fermi liquid parameters of the
two-dimensional (2D) HEG. Specifically, we have employed
the variational Monte Carlo (VMC) and diffusion Monte
Carlo (DMC) methods.4 VMC calculations involve taking the
expectation value of a many-electron Hamiltonian with respect
to a trial wave function that can be of arbitrary complexity. In
our work, the trial wave function was optimized by minimizing
first the variance of the energy,5,6 then the energy expectation
value7 with respect to wave-function parameters. In DMC3

we simulate a process governed by the Schrödinger equation
in imaginary time in order to project out the ground-state
component of an initial wave function. We use the fixed-node
approximation8 to impose fermionic antisymmetry. All our
QMC calculations were performed using the CASINO code.9

In Refs. 10 and 11 we presented DMC calculations of the 2D
HEG single-particle energy band E(k), enabling us to predict
the quasiparticle effective mass m∗. In the present work we
use DMC calculations to determine the Landau interaction
functions1 and hence Fermi liquid parameters. Our approach
is similar to that of the pioneering work of Kwon et al.,12 which
was undertaken eighteen years ago and is, to our knowledge,
the only previous attempt to calculate the Fermi liquid
parameters directly using QMC. Kwon et al. were unable to
obtain consistent quantitative results, primarily because of the
extremely small system sizes that they were forced to use at
that time. However, there have been enormous developments
in QMC methodology and computer power in the last two
decades, and the time has come to revisit this grand-challenge
problem. The major causes of computational expense in this
work are (i) the need to overcome the finite-size errors in the
Fermi liquid parameters by performing calculations at a range
of system sizes and (ii) the fact that even for small numbers of
electrons it is necessary to take the difference of very similar
total energies to obtain the interaction functions. Point (ii)
makes every aspect of this work computationally expensive:
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Not only does each QMC calculation have to be sufficiently
long that the statistical error bars are small compared with the
differences to be resolved, but it must be ensured that the trial
wave function is very highly optimized. These calculations
were only made possible by access to the Jaguar machine at
Oak Ridge Leadership Computing Facility.

The rest of this paper is structured as follows. In Sec. II
we give an overview of the relevant aspects of Fermi
liquid theory and describe our computational approach to
the problem. Our results are presented in Sec. III. Finally,
we draw our conclusions in Sec. IV. We use Hartree atomic
units, in which the Dirac constant, the electronic charge and
mass, and 4π times the permittivity of free space are unity
(h̄ = |e| = me = 4πε0 = 1), throughout.

II. EVALUATING THE LANDAU ENERGY FUNCTIONAL

A. Parametrization of excitation energies

The Landau energy functional1 is a parametrization of the
energies of the ground state and low-lying excited states of
the HEG:

E = E0 +
∑
k,σ

Eσ (k)δNk,σ

+1

2

∑
(k,σ )�=(k′,σ ′)

fσ,σ ′ (k,k′)δNk,σ δNk′,σ ′ , (1)

where δNk,σ is the change to the ground-state quasiparticle
occupation number for wave vector k and spin σ , and E0 is the
ground-state energy. Sufficiently close to the Fermi surface,
the energy band Eσ (k) is linear in k and hence we may write

Eσ (k) = EF + kF

m∗ (k − kF ), (2)

where EF is the Fermi energy, kF is the Fermi wave vector, and
m∗ is the quasiparticle effective mass. The Landau interaction
function fσ,σ ′(k,k′) describes energy contributions arising
from pairs of quasiparticles. Close to the Fermi surface we
may neglect the dependence of f on the magnitudes of
the wave vectors and write the Landau interaction functions
as fσσ ′(θkk′), where θkk′ is the angle between k and k′.
The lth Fermi liquid parameter of the paramagnetic HEG is
defined as1

F
s,a
l = AN∗

p(0)

4π

∫ 2π

0
[f↑↑(θkk′) ± f↑↓(θkk′ )] cos(lθ ) dθ, (3)

where A = πr2
s N is the area of the simulation cell, rs is the

radius of the circle that contains one electron on average, N

is the number of electrons in the simulation cell, and N∗
p(0) =

m∗/π is the quasiparticle density of states per unit area at
the Fermi surface. The suffixes s and a (for “symmetric” and
“antisymmetric”) correspond to addition and subtraction in the
integrand, respectively. For a fully ferromagnetic HEG, the lth
Fermi liquid parameter is defined as

Fl = AN∗
f (0)

2π

∫ 2π

0
f↑↑(θkk′) cos(lθ ) dθ, (4)

where the quasiparticle density of states per unit area is
N∗

f (0) = m∗/(2π ).

B. Hartree-Fock theory

The total energy of a finite HEG in Hartree-Fock theory can
be written as

EHF =
∑

σ

∑
k∈Occσ

k2

2
− 1

2

∑
σ

∑
k �=k′∈Occσ

2π

A|k − k′| + NvM

2
,

(5)

where vM is the Madelung constant, N is the number of
electrons, A is the area of the simulation cell, and Occσ is
the set of occupied states for spin σ . The Hartree-Fock energy
is already in the form of the Landau energy functional and
hence within Hartree-Fock theory the energy band is

Eσ (k) = k2

2
−

∑
k′∈GSσ

2π

A|k − k′| (6)

for ground-state unoccupied wave vectors, where GSσ is the
set of states occupied in the ground state, and

Eσ (k) = k2

2
−

∑
k′ �=k∈GSσ

2π

A|k − k′| (7)

for ground-state occupied wave vectors. It also follows
immediately from Eq. (5) that the Landau interaction functions
in Hartree-Fock theory are

fσσ (k,k′) = − 2π

A|k − k′|δσ,σ ′ . (8)

For excitations close to the Fermi surface, |k| ≈ |k′| ≈ kF ,
where kF is the Fermi wave vector. Let θkk′ be the angle
between k and k′. Then |k − k′|2 = 2k2

F [1 − cos(θkk′)]. A =
πr2

s N and, for a paramagnetic HEG, kF = √
2/rs , so

Nfσσ ′(k,k′) = −δσσ ′

rs

√
1 − cos(θkk′)

. (9)

For a ferromagnetic HEG, kF = 2/rs and so

Nf↑↑(k,k′) = −1

rs

√
2 − 2 cos(θkk′)

. (10)

C. QMC calculations

1. Evaluating the Landau interaction functions

By Eq. (1) we can evaluate the Landau interaction functions
at a discrete set of angles {θi} as

fσσ ′(θi) = −[Eσσ ′(ki ,k′
i) + E0 − E+(ki) − E−(k′

i)], (11)

where E0 is the ground-state energy, Eσσ ′(ki ,k′
i) is the total

energy of an excited state in which an electron is promoted
from k′

i near the Fermi surface to ki just above the Fermi
surface, θi is the angle between ki and k′

i , and σ and σ ′ are the
corresponding spins. E+(ki) and E−(k′

i) are the total energies
of the system with an electron added to ki and removed from
k′

i , respectively.

2. Finite-size errors

Our QMC calculations were performed for electron gases
in finite cells subject to periodic boundary conditions. The
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available wave vectors {k} are therefore the reciprocal lattice
points of the simulation cell. The use of a finite cell prevents the
description of long-range Coulomb and correlation effects,13,14

giving rise to finite-size errors in the Fermi liquid parameters.
We have calculated the Landau interaction functions via
total-energy differences in finite cells, used these to evaluate
the Fermi liquid parameters, then extrapolated the parameters
to the thermodynamic limit, where they should become
independent of the choice of simulation cell and the precise
excitations made to determine the interaction functions.

3. Simulation cell

In our calculations we have used square simulation
cells with simulation-cell Bloch vector15,16 ks = 0. There
exist quantities such as the ground-state total energy, pair-
correlation function, and static structure factor that can be twist
averaged17 in the conventional sense (i.e., one can evaluate
estimators for these quantities at different simulation-cell
Bloch vectors ks and then average the results). However,
there are other quantities such as the momentum density, the
energy band, and the Landau interaction functions for which
ks determines the set of wave vectors at which the quantities
are defined in a finite cell, so that by using different ks we
may obtain additional points on the quantity as a function
of wave vector. The computational effort required to obtain
excitation energies at different ks is essentially the same as
the computational effort required to obtain excitation energies
by considering completely different excitations. Since the
latter approach provides data that are in some sense more
independent, we concluded that our computational effort was
better invested in studying different excitations as opposed to
changing ks .

The number of electrons in the ground state was chosen
to be a “magic number,” corresponding to a closed-shell
configuration in each case. For ferromagnetic HEGs, our
calculations were performed with N = 29, 57, and 101
electrons in the ground state. For paramagnetic HEGs our
calculations were performed with N = 26, 50, 74, and 114
electrons in the ground state.

The simulation-cell area was held constant when electrons
were added to or removed from the ground-state configuration.
In the case of noninteracting electrons this gives the energy
band (k2/2) and Landau interaction functions (zero) exactly
without finite-size error. (Note that in the free-electron model
there are finite-size errors due to momentum quantization in the
total energy, but no finite-size errors in the excitation energies.)
For interacting electrons, the fact that the density changes when
electrons are added or subtracted may be a source of finite-size
error, but the error involved is certainly much smaller than the
error that would result from allowing the cell area to change.

4. Trial wave function

We used trial wave functions of Slater-Jastrow-backflow
form.18–20 More detailed information about our trial wave
functions can be found in Ref. 11. In Ref. 10 we argued that
our DMC calculations for the 2D HEG retrieve more than 99%
of the correlation energy.

The DMC time steps used in our calculations were 0.04, 0.2,
and 0.4 a.u. at rs = 1, 5, and 10, respectively, for paramagnetic

HEGs, and 0.01, 0.2, and 0.4 a.u. at rs = 1, 5, and 10,
respectively, for ferromagnetic HEGs.

At rs = 5 we find the VMC energy variance per electron
to be 1.48 × 10−4 and 2.44 × 10−5 a.u. for paramagnetic
and ferromagnetic HEGs, respectively. Thus our trial wave
functions are considerably more accurate for ferromagnetic
HEGs, in which exchange effects are dominant. This suggests
that it might be advantageous to use pairing (geminal) orbitals
for opposite-spin electrons in paramagnetic HEGs.21 Another
possibility for improving the trial wave function would be
to use different Jastrow factors22 and backflow functions for
each shell of plane-wave orbitals. However, given the expense
of our calculations, there is at present little scope for using
more sophisticated wave-function forms.

III. RESULTS

A. Landau interaction functions

The DMC Landau interaction functions at rs = 1, 5, and
10 are shown in Figs. 1, 2, and 3, respectively. The statistical
error bars are very much smaller for ferromagnetic HEGs than
for paramagnetic HEGs, reflecting the relative accuracy of the
trial wave functions in the two cases (see Sec. II C4). Note that
the data points are correlated, and so the error bars should
be interpreted with caution. The Hartree-Fock interaction
function (i.e., the exchange interaction; see Sec. II B) is
reasonably accurate at large θ , but the parallel-spin interaction
function is pathological as θ → 0 due to the lack of screening.

The differences between the Slater-Jastrow and Slater-
Jastrow-backflow DMC data are significant, confirming that
the former are insufficiently accurate, as argued in Ref. 12.
There is a significant difference between the Landau interac-
tion functions obtained from DMC calculations in which a
single electron is promoted and calculations in which pairs of
electrons are added or pairs of electrons are removed from the
ground-state configuration. Finite-size effects in promotion
energies are expected to be smaller because the density of
the HEG in a finite cell is unchanged by such excitations,
unlike double additions or subtractions. We have used only
promotions in our production calculations to determine the
Fermi liquid parameters.

B. Fermi liquid parameters

1. Numerical integration of the Landau interaction functions
to find the Fermi liquid parameters

By Eq. (3), the Fermi liquid parameters divided by the
effective mass m∗ for an N -electron paramagnetic HEG of
density parameter rs can be written as

F
s,a
l

m∗ = r2
s N

2π

∫ π

0
[f↑↑(θ ) ± f↑↓(θ )] cos(lθ ) dθ

= r2
s

4
[a↑↑

l ± a
↑↓
l ], (12)

where

aσσ ′
l = 2

π

∫ π

0
Nfσσ ′(θ ) cos(lθ ) dθ (13)

is the lth Fourier component of Nfσσ ′(θ ). To evaluate these
Fourier components we use Simpson’s rule (integration of
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FIG. 1. (Color online) Landau interaction functions fσσ ′ (k,k′)
for 2D HEGs of density parameter rs = 1, multiplied by system
size N . The parallel- and antiparallel-spin interaction functions in
a paramagnetic HEG are shown in panels (a) and (b), respectively,
while the interaction function in a fully ferromagnetic HEG is shown
in panel (c). All results were obtained with a Slater-Jastrow-backflow
trial wave function, except where labeled “SJ,” in which case a
Slater-Jastrow wave function was used. The results labeled “++”
were obtained in double-addition calculations, whereas those labeled
“−−” were obtained in double-subtraction calculations. All other
results were obtained by promoting a single electron, leaving a hole.
Note that the data points within each curve are correlated; for example,
the interaction-function values at a given system size all depend on the
DMC estimate of the ground-state energy. For comparison, we show
the Hartree-Fock (HF) “interaction functions” for infinite system size
[Eqs. (9) and (10)].

piecewise quadratic interpolants) generalized for the case of a
nonuniform integration grid. The set of angles {θi} at which
the integrand is available does not generally include the end
points of the integration region (0 and π ). Where necessary we
integrate a straight-line interpolation of the closest two data
points up to the end points of the integration region.

The Fourier coefficients {aσσ ′
l } are linear in E0, E+(ki),

E−(k′
i), and Eσσ ′(ki ,k′

i). We therefore gather the coefficients
of each of these in the expression for aσσ ′

l [Eqs. (13) and (11)].
Finally, we evaluate the coefficients of E0, E+(ki), E−(k′

i),
and Eσσ ′(ki ,k′

i) in the expression for F
s,a
l /m∗ using Eq. (12).

-0.15

-0.1

-0.05

0

N
f ↑↑

(k
,k

′) 
(a

.u
.)

HF
N = 26
N = 50
N = 74
N = 114

-0.1

-0.08

-0.06

-0.04

-0.02

0

N
f ↑↓

(k
,k

′) 
(a

.u
.)

HF
N = 26
N = 50
N = 74
N = 114

0 π/4 π/2 3π/4 π
θ

k,k′

-0.25

-0.2

-0.15

-0.1

-0.05

N
f ↑↑

(k
,k

′) 
(a

.u
.)

HF
N = 29
N = 57
N = 101

(a)

(b)

(c)

FIG. 2. (Color online) As Fig. 1, but for HEGs at rs = 5.

Since we have independent DMC estimates of E0, E+(ki),
E−(k′

i), and Eσσ ′(ki ,k′
i), we can evaluate both the expected

Fermi liquid parameters divided by effective mass and the
accompanying standard errors.

A systematic integration error arises from the use of nu-
merical quadrature with a finite set of angles. This integration
error is not included in our statistical error bars. We may
place an upper bound on the error by comparing the Fermi
liquid parameters obtained using (i) the generalized composite
Simpson’s rule and (ii) the generalized composite trapezoidal
rule to obtain aσσ ′

l . Results are given in Table I for HEGs
at rs = 5. It is clear that the integration error is negligible
compared with the random error for F0/m∗ and F1/m∗. For
F

s,a
2 /m∗ the effect of the choice of integration rule is more

significant, especially for smaller numbers of electrons, where
relatively few values of θ are available; however the error is
still small compared with the overall results.

The Fermi liquid parameters divided by the effective mass
for a ferromagnetic HEG can be written as

Fl

m∗ = r2
s N

2π

∫ π

0
f↑↑(θ ) cos(lθ ) dθ = r2

s

4
a

↑↑
l . (14)

Hence we can evaluate the Fermi liquid parameters divided by
the effective mass (with standard errors) for the ferromagnetic
case using the same approach as for the paramagnetic case.
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FIG. 3. (Color online) As Fig. 1, but for HEGs at rs = 10.

2. Finite-size extrapolation of the Fermi liquid parameters

We have calculated the Fermi liquid parameters divided by
the effective mass at three or more system sizes for each density
and magnetic state and we have extrapolated the parameters to
infinite system size by assuming the finite-size error falls off as
N−1/4. This was the scaling found for Fermi liquid properties
in Refs. 13 and 14. The finite-size errors in the Fermi liquid

TABLE I. Comparison of the first three Fermi liquid parameters
(FLPs) in a.u. for a 74-electron paramagnetic HEG at rs = 5 (F s

0 ,
F a

0 , F s
1 , F a

1 , F s
2 , and F a

2 ) and a 57-electron ferromagnetic HEG at
rs = 5 (F0, F1, and F2), derived from the Fourier components of
the Slater-Jastrow-backflow DMC Landau interaction functions by
numerical integration using the composite Simpson’s rule and the
composite trapezoidal rule.

FLP over eff. mass Simpson Trapezoidal

F s
0 /m∗ −1.78(4) −1.78(4)

F a
0 /m∗ 0.01(1) 0.01(1)

F s
1 /m∗ 0.18(1) 0.18(1)

F a
1 /m∗ −0.06(1) −0.06(1)

F s
2 /m∗ −0.18(1) −0.22(1)

F a
2 /m∗ 0.12(1) 0.12(1)

F0/m∗ −1.94(1) −1.94(1)
F1/m∗ −0.461(2) −0.466(3)
F2/m∗ −0.170(3) −0.193(3)
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FIG. 4. (Color online) Fermi liquid parameters divided by effec-
tive mass, (a) F0/m∗, (b) F1/m∗, and (c) F2/m∗, against system
size for paramagnetic HEGs (both symmetric and antisymmetric
parameters) and ferromagnetic HEGs of density parameter rs = 1.

parameters are determined by long-range correlation effects
and we have therefore used the same system-size scaling
for paramagnetic and ferromagnetic phases. The finite-size
extrapolations at rs = 1, 5, and 10 are shown in Figs. 4, 5,
and 6, respectively. The statistical error bars on the Fermi
liquid parameters divided by the effective mass are generally
much smaller than the apparent fluctuations as a function
of system size. These fluctuations are presumably finite-size
effects arising from the discrete nature of the lattice of wave
vectors. We have therefore decided not to weight the residuals
by the inverse of the error bars when performing the extrap-
olation to infinite system size. The quoted error bars on the
extrapolated Fermi liquid parameters divided by the effective
mass given in Tables II and III are obtained from an ordinary
least-squares fit.

There is no evidence for a systematic deviation of the Fermi
liquid parameters from the fitted curves at small system sizes
beyond the “noise” that obviously affects all the data points
shown in Figs. 4, 5, and 6. We have therefore included all
the data shown in these figures in our extrapolation to infinite
system size.

We have attempted to check the exponent used for
finite-size extrapolation of our Fermi liquid parameters by
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FIG. 5. (Color online) As Fig. 4 but for HEGs of density
parameter rs = 5.

simultaneously fitting the functions

Fi(N ) = ci + aiN
γ (15)

to all our DMC data using a χ2 fit. The values of the parameters
ci and ai differed for each Fermi liquid parameter at each
density, while the exponent γ was constrained to be the same in
all cases. We find the optimal exponent to be γ = −0.24(10),
which is superficially consistent with the exponent γ = −0.25
determined theoretically by Holzmann et al.13 However, this
is certainly not a conclusive numerical determination of the
exponent γ . The χ2 value per data point with the optimal
exponent of γ = −0.24 is 6.88. The fact that this is much
greater than 1 indicates that the fit is far from perfect. The
main reason is the finite-size “noise” due to shell-filling effects,
which is not included in the statistical error bars on the Fermi
liquid parameters over effective mass. (The error bars only
account for the random noise inherent in the QMC calculation.)
If, instead of performing a χ2 fit, one performs a simple least-
squares fit (i.e., each data point is weighted equally rather
than by the squared reciprocal of the nominal error bar), one
finds that the optimal exponent is γ = −1(2). Alternatively,
if one performs a χ2 fit with the exponent fixed at γ = −1,
the resulting χ2 value is 7.26 per data point, which is only
slightly larger than the χ2 obtained with the “optimal” value
of γ = −0.24.
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FIG. 6. (Color online) As Fig. 4 but for HEGs of density
parameter rs = 10.

In summary, we do not believe that we can meaningfully
determine the finite-size scaling exponent γ numerically, but
our results are consistent with the value γ = −0.25 determined
theoretically by Holzmann et al. We have therefore used this
value in our analysis.

3. DMC results for the Fermi liquid parameters

Our results for the first three Fermi liquid parameters
(symmetric and antisymmetric) of the paramagnetic HEG
divided by the effective mass are given in Table II, and
the analogous results for a ferromagnetic HEG are given in
Table III.

TABLE II. Fermi liquid parameters over effective mass in a.u. for
the paramagnetic 2D HEG, extrapolated to the thermodynamic limit.

rs F s
0 /m∗ F a

0 /m∗ F s
1 /m∗ F a

1 /m∗ F s
2 /m∗ F a

2 /m∗

1 −0.2(2) −0.17(8) −0.18(3) −0.18(4) −0.102(5) 0.00(2)
5 0.7(8) 2.0(7) −.03(2) −0.17(7) −0.2(1) 0.1(1)
10 −1(1) 3.1(7) −0.1(3) −0.3(1) −0.1(5) 0.1(4)
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TABLE III. Fermi liquid parameters over effective mass in a.u.
for the ferromagnetic 2D HEG, extrapolated to the thermodynamic
limit.

rs F0/m∗ F1/m∗ F2/m∗

1 −0.50(4) −0.22(3) −0.14(3)
5 −1.5(2) −0.61(6) −0.13(6)
10 −1.8(3) −1.03(3) 0.08(8)

C. Relationships between the Fermi liquid parameters
and other accessible quantities

1. Quasiparticle effective mass

By Eq. (2), the quasiparticle effective mass is

m∗ = kF

(dE/dk)kF

. (16)

However, by Galilean invariance,1 the Fermi liquid parameter
F s

1 is related to the effective mass of the paramagnetic HEG via
m∗ = 1 + F s

1 , and, for the ferromagnetic HEG, m∗ = 1 + F1.
Hence

m∗ = 1

1 − F s
1 /m∗ (17)

for paramagnetic HEGs and

m∗ = 1

1 − F1/m∗ (18)

for ferromagnetic HEGs, so we can immediately evaluate the
effective mass using the results in Tables II and III.

In order to test the validity of our results, we compare
the effective masses obtained using Eqs. (17) and (18) with
the effective masses extracted directly from the energy bands
(reported in Ref. 11) in Table IV. The two measures of the
effective mass disagree by a statistically significant margin
in half the cases. The enormous uncertainty in the finite-size
extrapolation of the Fermi liquid parameters is the most likely
reason for the disagreement. Direct calculation of the effective
mass using a fit to the energy band together with Eq. (16) is
likely to be more reliable, and we therefore suggest that the
values of F

a,s
l /m∗ given in Tables II and III be multiplied by

the effective mass m∗ reported in Ref. 11 to obtain the Fermi
liquid parameters.

TABLE IV. Quasiparticle effective masses in a.u. for different
density parameters rs and spin-polarization values ζ , obtained directly
from the energy band (Ref. 11) and from the F s

1 or F1 Fermi liquid
parameter [Eqs. (17) and (18)].

Effective mass m∗

rs ζ Ref. 11 Eqs. (17) and (18)

1 0 0.947(3) 0.85(2)
5 0 0.97(3) 0.97(2)
10 0 0.85(6) 0.9(2)
1 1 0.841(3) 0.82(2)
5 1 0.73(2) 0.62(2)
10 1 0.67(4) 0.493(7)

TABLE V. Modification to the isothermal compressibility and
spin susceptibility of a paramagnetic 2D HEG due to electron
interactions as calculated (i) from Eqs. (19) and (22) together with
parametrizations of the total energy per particle (Refs. 23,24) and (ii)
from Eqs. (20) and (23) together with the present calculation of the
Fermi liquid properties.

Compress. ratio κ/κ∗ Spin-suscept. ratio χ/χ∗

rs Tot. en. ap. Fermi liq. ap. Tot. en. ap. Fermi liq. ap.

1 0.533 0.9(2) 0.691 0.89(8)
5 −1.735 1.7(8) 0.296 3.0(7)
10 −4.989 0.2(2) 0.153 4.3(7)

2. Isothermal compressibility

The isothermal compressibility κ∗ of the interacting 2D
HEG at zero temperature satisfies

κ

κ∗ = r4
s

4(1 + ζ 2)

[
∂2

∂r2
s

− 1

rs

∂

∂rs

]
E(rs,ζ ), (19)

where E(rs,ζ ) is the total energy per electron as a function
of density parameter rs and spin polarization ζ , and κ is the
isothermal compressibility of the noninteracting system.1

A parametrization of the correlation energy per electron in
paramagnetic 2D electron gases is given in Ref. 23, so that we
may evaluate κ/κ∗ directly using Eq. (19). We refer to this as
the total-energy approach.

Within Fermi liquid theory we have1

κ

κ∗ = 1

m∗ + F s
0

m∗ (20)

for a paramagnetic HEG and

κ

κ∗ = 1

m∗ + F0

m∗ (21)

for a ferromagnetic HEG, giving us a second approach for
calculating the isothermal compressibility, which we refer to
as the Fermi liquid approach. The value of F s

0 /m∗ is taken
from Table II, while the value of m∗ is taken from Ref. 11.

A comparison of the isothermal compressibilities obtained
using these two different approaches is given in Table V.
Unfortunately the results are quite different. We verified that
the compressibility ratios evaluated using the total-energy
approach with two different parametrizations of the correlation
energy23,24 agree to at least three significant figures. We
therefore believe that the isothermal compressibilities obtained
from fits to ground-state DMC energy calculations are reliable.

TABLE VI. Modification to the isothermal compressibility of a
ferromagnetic 2D HEG due to electron interactions as calculated (i)
from Eq. (19) together with a parametrization of the total energy per
particle (Ref. 24) and (ii) from Eq. (21) together with the present
calculation of the Fermi liquid properties.

Compress. ratio κ/κ∗

rs Tot. en. ap. Fermi liq. ap.

1 0.680 0.69(4)
5 −0.636 −0.1(2)
10 −2.347 −0.3(3)
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TABLE VII. Best available Fermi liquid parameters of the
paramagnetic 2D HEG as inferred from QMC results in the literature
(see text).

rs F s
0 F a

0 F s
1

1 −0.495(2) −0.346(2) −0.053(3)
5 −2.68(5) −0.713(9) −0.03(3)
10 −5.2(3) −0.870(9) −0.15(6)

The values of F s
0 /m∗ implied by the ground-state total-

energy results of Ref. 23 together with the effective-mass data
reported in Ref. 11 are F s

0 /m∗ = κ/κ∗ − 1/m∗ = −0.523(2),
−2.77(2), and −6.17(4) at rs = 1, 5, and 10, respectively.
These are relatively close to the values of F s

0 /m∗ obtained at
finite system sizes (see Figs. 4, 5, and 6).

The analogous results for a ferromagnetic HEG are shown
in Table VI. Again we see a significant difference between the
compressibilities obtained directly from the total energy and
from the Fermi liquid parameters.

3. Isothermal spin susceptibility

The isothermal spin susceptibility χ∗ of a paramagnetic
HEG at zero temperature satisfies1

χ

χ∗ = r2
s

(
∂2E

∂ζ 2

)
ζ=0

, (22)

where χ is the (Pauli) spin susceptibility of a free electron
gas. Attaccalite et al.24 have reported a parametrization of the
correlation energy obtained in QMC calculations as a function
of both density parameter rs and spin polarization ζ . Hence
we can use Eq. (22) to evaluate χ/χ∗ using the total-energy
approach.

Within Fermi liquid theory the isothermal spin susceptibil-
ity χ∗ of an interacting electron system satisfies1

χ

χ∗ = 1

m∗ + Fa
0

m∗ . (23)

The value of Fa
0 /m∗ is taken from Table II, while the value of

m∗ is taken from Ref. 11.
We compare the isothermal spin susceptibilities obtained

using these two approaches in Table V. The results obtained
from a fit to the ground-state energy as a function of density
parameter and spin polarization are quite different to the results
obtained using our Fermi liquid parameters.

The values of Fa
0 /m∗ implied by the ground-state total-

energy results of Ref. 24 together with the effective-mass data
reported in Ref. 11 are Fa

0 /m∗ = χ/χ∗ − 1/m∗ = −0.365(2),

TABLE VIII. Best available Fermi liquid parameters of the
ferromagnetic 2D HEG as inferred from QMC results in the literature
(see text).

rs F0 F1

1 −0.428(2) −0.159(3)
5 −1.46(1) −0.27(2)
10 −2.57(9) −0.33(4)

−0.73(2), and −1.02(4) at rs = 1, 5, and 10, respectively.
These are relatively close to the results obtained at finite system
size shown in Figs. 4, 5, and 6. The finite-size extrapolation
appears to move the Fermi liquid parameters away from the
values suggested by the spin susceptibility.

Both the isothermal compressibility and spin susceptibility
results show that we are not able to extrapolate the Fermi
liquid parameters to the thermodynamic limit with quantitative
accuracy. There is no clear numerical evidence to support the
N−1/4 scaling, and in most cases any systematic finite-size
error appears to be swamped by oscillations due to shell-filling
effects in the Fermi liquid parameters as a function of system
size.

D. Summary of the “best available” Fermi liquid parameters

In Tables VII and VIII we summarize the Fermi liquid
parameters determined from QMC results reported in Refs. 11,
23,24. The values of F s

1 and F1 are determined using the
effective masses reported in Ref. 11, the values of F s

0 are
determined using the effective masses of Ref. 11 together with
the parametrization of the correlation energy given in Ref. 23,
and the values of F0 and Fa

0 are determined using the effective
masses together with the parametrization of the correlation
energy given in Ref. 24.

IV. CONCLUSIONS

We have used QMC methods to calculate the Fermi
liquid parameters of the 2D HEG. However, the results we
have obtained are inconsistent with more direct evaluations
of the isothermal compressibility and spin susceptibility.
Determining the Fermi liquid parameters therefore remains
a grand-challenge problem due to the enormous difficulty
in extrapolating the QMC data to the thermodynamic limit.
Nevertheless, we have been able to describe the difficulties
of determining the Fermi liquid parameters using QMC
techniques, and we have assembled a set of “best available”
values of some of the parameters. Our work demonstrates
considerable progress in determining accurate values for
the Fermi liquid parameters of the 2D HEG. Although the
quasiparticle effective masses deduced from our determination
of the Fermi liquid parameters are only in approximate
agreement with the values obtained directly from the energy
band,11 neither method shows mass enhancement at low
densities.
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