
Ann. Geophys., 25, 1215–1226, 2007
www.ann-geophys.net/25/1215/2007/
© European Geosciences Union 2007

Annales
Geophysicae

IMF dependence of the open-closed field line boundary in Saturn’s
ionosphere, and its relation to the UV auroral oval observed by the
Hubble Space Telescope

E. S. Belenkaya1, I. I. Alexeev1, M. S. Blokhina1, S. W. H. Cowley2, S. V. Badman2, V. V. Kalegaev1, and
M. S. Grigoryan1

1Institute of Nuclear Physics, Moscow State University, Vorob’evy Gory, 119992 Moscow, Russia
2Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, UK

Received: 27 December 2006 – Revised: 30 April 2007 – Accepted: 7 May 2007 – Published: 4 June 2007

Abstract. We study the dependence of Saturn’s magneto-
spheric magnetic field structure on the interplanetary mag-
netic field (IMF), together with the corresponding variations
of the open-closed field line boundary in the ionosphere.
Specifically we investigate the interval from 8 to 30 Jan-
uary 2004, when UV images of Saturn’s southern aurora
were obtained by the Hubble Space Telescope (HST), and
simultaneous interplanetary measurements were provided by
the Cassini spacecraft located near the ecliptic∼0.2 AU up-
stream of Saturn and∼0.5 AU off the planet-Sun line to-
wards dawn. Using the paraboloid model of Saturn’s mag-
netosphere, we calculate the magnetospheric magnetic field
structure for several values of the IMF vector representative
of interplanetary compression regions. Variations in the mag-
netic structure lead to different shapes and areas of the open
field line region in the ionosphere. Comparison with the HST
auroral images shows that the area of the computed open flux
region is generally comparable to that enclosed by the auro-
ral oval, and sometimes agrees in detail with its poleward
boundary, though more typically being displaced by a few
degrees in the tailward direction.

Keywords. Magnetospheric physics (auroral phenomena;
magnetospheric configuration and dynamics; planetary mag-
netospheres; solar wind-magnetosphere interactions)

1 Introduction

The first unambiguous detections of polar ultraviolet (UV)
auroras at Saturn were made by the Voyager spacecraft in
1980 and 1981 (e.g. Sandel and Broadfoot, 1981), and were
later followed by observations from the Hubble Space Tele-
scope (HST) (Ǵerard et al., 1995; Trauger et al., 1998). More
recent HST observations of higher spatial resolution have
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shown that they generally form a ring around each pole∼1◦–
3◦ thick, located between∼10◦–20◦ co-latitude (e.g. Cow-
ley et al., 2004a; Ǵerard et al., 2004; Badman et al., 2006).
Such auroral rings can generally be formed either by the so-
lar wind interaction, leading to emissions in the vicinity of
the boundary between open and closed field lines, or by the
current system associated with the maintenance of magneto-
spheric plasma corotation deeper within the magnetosphere
(e.g. Cowley and Bunce, 2001; Hill, 2001). From an anal-
ysis of the latter current system, Cowley and Bunce (2003)
concluded that the corotation-enforcement currents at Saturn
are too weak and occur at too low a latitude to explain the
observed UV auroras, and thus suggested that a solar wind-
related origin was the more likely. These results have subse-
quently been amplified by further modelling work presented
by Cowley et al. (2004b), and also by the statistical analy-
sis of the location of the UV auroras presented by Badman
et al. (2006), who showed that they occur well poleward of
the latitude where the magnetospheric plasma departs from
near-rigid corotation according to Voyager data.

Direct evidence of the strong connection between Saturn’s
UV auroras and the solar wind was first obtained during
the joint HST-Cassini campaign in January 2004, when the
Cassini spacecraft was upstream of the planet, en route to
Saturn orbit insertion (Clarke et al., 2005; Crary et al. 2005;
Bunce et al., 2006). Jackman et al. (2004) had shown that the
interplanetary medium at the time of the Cassini approach,
corresponding to the declining phase of the solar cycle, was
strongly structured by corotating interaction regions (CIRs)
into a recurrent pattern of high-field compression regions and
low-field rarefaction regions. During the few-day compres-
sion regions the interplanetary magnetic field (IMF) strength
was typically 0.5–2 nT, while during the several day rarefac-
tion intervals it was∼0.1 nT or less. This structuring is ev-
ident in Fig. 1, where we show the Cassini field and plasma
data covering the interval of the HST observations, taken
from Badman et al. (2005). The field data were obtained
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Fig. 1. Stacked plot of Cassini IMF and plasma data obtained dur-
ing the January 2004 Cassini-HST campaign. The first four panels
show the RTN magnetic field components (BR , BT , BN ), and the
magnetic field magnitude|B| in nT. The fifth to seventh panels show
the solar wind proton velocityvsw (km s−1), the solar wind den-
sity np (cm−3), and the dynamic pressurePsw (nPa), respectively.
The bottom panel shows the estimated magnetopause reconnection
voltageV (kV) using the algorithm of Jackman et al. (2004). The
dashed vertical lines indicate the corresponding times of the HST
images shown in Fig. 2, adjusted to take into account the solar wind
propagation delay and the Saturn-HST light propagation delay (fig-
ure adapted from Badman et al., 2005).

by the Cassini magnetic field investigation (Dougherty et
al., 2004), and are shown in RTN coordinates. RTN is a
right-handed spherical polar system referenced to the Sun’s
spin axis, withBR directed radially outward from the Sun,
BT azimuthal in the direction of planetary motion around the
Sun, andBN normal to the other two components, positive
northward from the equatorial plane. The plasma parameters
were derived from Cassini CAPS particle spectrometer data
(Young et al., 2004). The times of the HST imaging intervals
are shown by the vertical dashed lines, where account has
been taken of the∼17 h solar wind radial propagation delay
from Cassini to Saturn, and of the 68-min light travel time

from Saturn to the HST. The solar wind delay is uncertain
to within a few hours, however, due to possible non-radial
propagation effects and the difference in the heliocentric lon-
gitude of Cassini and Saturn (Crary et al., 2005). During this
interval Cassini was located near the ecliptic∼0.2 AU up-
stream of Saturn, and∼0.5 AU off the Sun-planet line toward
dawn.

It can be seen that the HST observations encompass
two rarefaction regions, the earlier one being somewhat
“deeper” than the later, together with two compression re-
gions bounded by interplanetary shocks. The first “minor”
compression onset occurred on 16 January, while the sec-
ond “major” compression onset occurred on 26 January. The
auroral observations themselves are shown in Fig. 2, letter
coded as in Fig. 1 (Clarke et al., 2005; Bunce et al., 2006).
These show the Southern Hemisphere of the planet with the
noon meridian toward the top of each image, dawn to the
left, and dusk to the right. It can be seen that the auroral
distributions observed after the compression onsets in im-
ages (f) and (k) (at intervals of∼40 and∼11 h after the ini-
tial shock, respectively) show contracted brightened ovals,
with the whole of the dawn-side polar cap being filled with
bright sun-aligned arcs in the latter case. Thus, although the
strength of the IMF at Saturn’s orbit is typically an order
of magnitude less than that at Earth, and the dynamic pres-
sure typically two orders of magnitude less, the interaction
with the interplanetary medium nevertheless remains impor-
tant for Saturn’s magnetosphere.

Badman et al. (2005) investigated the variations in the
amount of magnetic flux contained within the “dark” region
poleward of Saturn’s auroras in the January 2004 data shown
in Fig. 2, and found that it varied between∼15 to∼50 GWb,
with the smallest values being associated with the intervals
following compression onsets. On the assumption that the
poleward boundary of the auroras represents an approximate
proxy for the open-closed field line boundary, in accordance
with the above discussion, it was thus inferred that major
open flux closure events were triggered by these interplan-
etary events, with the open flux then increasing again in
the subsequent few-day high-field intervals. Belenkaya et
al. (2006a) have also studied these data, and in addition to the
compression-induced flux closure just mentioned, have also
discussed the role of a three-dimensional current system in
the auroral dynamics, arising from the solar wind interaction.
This current system includes Region 1 field-aligned currents
(FACs) concentrated at the open-closed field line boundary,
“SBZ” FACs distributed over the polar cap near the cusp for
southward IMF (the kronian counterpart of “NBZ” currents
at Earth arising under northward IMF conditions), together
with the Pedersen currents on open field lines in the iono-
sphere which close both these systems. The Region 1 cur-
rents are added to the ring of upward FAC of comparable
magnitude at the boundary of open field lines which is as-
sociated with differential plasma rotation between open and
closed field lines, such that the overall current system for the
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Fig. 2. UV images of Saturn’s southern aurora obtained by HST-STIS on 8, 10, 12, 14, 16, 18, 20, 21, 23, 24, 26, 28, and 30 January 2004
(panelsa to m, respectively). The panels have been generated by combining individual images obtained on a given HST orbit (Clarke et
al., 2005; Bunce et al., 2006). The noon meridian is at the centre top of each plot, with dawn to the left (figure from Bunce et al., 2006).

January 2004 events takes the form of strong upward FAC on
the dawn side, with corresponding bright aurora, and weaker
upward (or even downward) FAC at dusk, with weaker (or
absent) auroras. Figure 2 shows that such dawn-dusk asym-
metry is characteristic of the bright active intervals observed
in January 2004.

In this paper we investigate IMF influences on the size and
position of the open field region at Saturn during these ac-
tive intervals, corresponding to periods when the interplane-
tary field was at its strongest, such that the IMF effects may
be most evident. Our calculations are based on the Saturn
magnetospheric model described by Alexeev et al. (2006)
and Belenkaya et al. (2006b), in which the magnetopause is
taken to be a paraboloid of revolution about the Saturn-Sun
line. Kronian solar-magnetospheric coordinates (KSM) are
thus employed, in which the X-axis is directed towards the
Sun, Saturn’s magnetic momentMs lies in the X-Z plane,
and Y completes the right-handed orthogonal triad. It may
be noted that for the January 2004 interval the difference
between KSM and the heliospheric RTN system employed
in Fig. 1 is very small, such thatBx≈–BR, By≈–BT , and
Bz≈BN . The main contributors to the model magnetic field
are then (i) the intrinsic magnetic (dipole) field of the planet,
as well as the shielding magnetopause current which confines
the dipole field inside the magnetopause, (ii) the ring current
and the shielding magnetopause current that similarly con-
fines its field inside the magnetopause, (iii) the tail currents
and their magnetopause closure currents, and (iv) the IMF
which penetrates into the magnetosphere. We note that the
principal interplanetary influences on the model derive from
the solar wind dynamic pressure which determines the posi-
tion of the magnetopause and hence the overall size of the
system, and the direction and strength of the interplanetary
field which is reflected in the penetrating IMF component.
We also note that the ring current is modelled as a thin equa-

torial disc in which the azimuthal current intensity falls as the
inverse square of the radial distance, and that the tail current
is re-scaled from an earlier terrestrial model.

The parameters which define Saturn’s magnetospheric
magnetic field in the model are thus as follows: (i)Rss is
the distance from Saturn’s centre to the subsolar point on
the magnetopause; (ii)Rrc1 andRrc2 are the distances to the
outer and inner edges of the ring current, respectively; (iii)
R2 is the distance from the planet’s centre to the inner edge
of the magnetospheric tail current sheet; (iv) the field mag-
nitude of the tail currents at the inner edge of the tail current
sheet isBt /α0, whereα0=(1+2R2/Rss)

1/2; (v) 9 is the tilt
angle between the magnetic dipole direction and the KSM
Z axis (∼25◦ during the January 2004 interval, correspond-
ing to Northern Hemisphere winter conditions); (vi)Brc1 is
the radial component of the ring current magnetic field at the
outer edge of the ring current; (vii) the effect of the IMF in-
side the magnetosphere is given by the uniform fieldksBIMF ,
whereBIMF is the IMF vector andkS is the coefficient of
its penetration into the magnetosphere. With regard to the
latter model assumption, we note that Alexeev (1986) ob-
tained a finite-conductivity solution for the magnetic field in
the magnetosheath, in which magnetic field diffusion results
in only a partial screening of the IMF by the magnetopause.
The magnetic field inside the magnetosphere was then found
to be some fractionkS of the external field, depending on
the value of the magnetic Reynolds numberRm. In the next
section we calculate the size and location of the open flux
region in Saturn’s ionosphere using this model, employing
parameter values determined by Belenkaya et al. (2006b) ap-
propriate for compressed active conditions.
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2 Paraboloid model calculations for the cases of 16 and
26 January 2004

As can be seen in Fig. 1, during the “minor” compres-
sion region occurring between 16 and 18 January, the
KSM components of the IMF can be characterised by
(Bx , By , Bz)=(0.0,−0.4,−0.4) nT (Belenkaya et al., 2006a).
These values are taken as characteristic of the interval sur-
rounding the maximum in pressure during the “minor” com-
pression, near the “shifted” time of image (f). The solar
wind density increased to 0.1 cm−3, while the speed also
increased to∼530 km s−1. Following this compression, a
rarefaction region was then observed between days 19 and
25, with an IMF field strength∼0.3 nT, a density of 0.01–
0.04 cm−3, and with almost the same solar wind speed. The
“major” compression then occurred on 25 January, and lasted
essentially to the end of the interval considered. During
this compression the IMF strength was∼1–2 nT, the den-
sity increased to∼0.03–0.1 cm−3, and the solar wind speed
increased to∼630 km s−1. Belenkaya et al. (2006a) esti-
mated that during the earlier part of this event the KSM
IMF components were approximately (0.5,−2.0,−1.4) nT.
These values correspond to the interval near the time of im-
age (k), just prior to the pressure maximum during the com-
pression event. Later in the event, near the time of image
(m), the IMF can reasonably be typified by KSM components
(−0.3, 0.7, 0.7) nT. In our calculations below we use the three
IMF values given here as representative of the two compres-
sion intervals, together with other model parameters intended
to reflect the compressed magnetospheric conditions then
prevailing. Specifically, we employ the values determined
by Belenkaya et al. (2006b) appropriate to the compressed
magnetosphere observed during the Pioneer-11 flyby, given
by Rss=17.5RS , Rrc1=12.5RS , Rrc2=6.5RS , R2=14RS ,
Bt=8.7 nT, andBrc1=3.62 nT, whereRS=60 330 km is the
equatorial value of Saturn’s radius. These values should
therefore also provide a reasonable representation for the
compressed conditions of interest here, given that the results
should not be sensitively dependent on the exact choices.

With regard to the value of the IMF penetration parameter
kS , we note that Belenkaya (2006a) used values of 0.2 and
0.8 for rough estimations. Earlier, Belenkaya (2004) showed
that the value 0.8 was most appropriate at Jupiter for the in-
terpretation of observations of anti-corotational solar wind-
driven plasma flow in the equatorial magnetosphere. Tsy-
ganenko (2002) found that the best correspondence between
his model of the near-Earth magnetosphere and observational
data was obtained for an IMF penetration coefficient between
0.15 and 0.8. The larger size of Saturn’s magnetosphere com-
pared to Earth (by a factor of∼16) is expected to decreasekS

by a factor of∼2, sincekS is proportional toR−1/4
m andRm

is proportional to the size of the magnetosphere. However, as
deduced by Alexeev et al. (2003), plasma compression at the
bow shock increaseskS by a factor of∼2, and a high level of
magnetic field variability in Saturn’s magnetosheath can also

lead to an increase inkS . Overall, we thus expect thatkS for
Saturn should be similar to or larger than that for Earth. Here
we will therefore consider values ofkS within the range 0.2
to 0.8.

In Fig. 3 we present some results illustrating Saturn’s mag-
netic field lines for the above model parameters, together
with kS=0.8 and KSM IMF vectors given from top to bot-
tom of the figure by (0.0,−0.4, −0.4), (0.5,−2.0, −1.4),
and (−0.3, 0.7, 0.7) nT. The first two are the southward-
directed IMF vectors corresponding to the above “minor”
and initial “major” compression regions, while the third is
the northward-directed field corresponding to the later part
of the “major” compression. The field lines shown start from
the ionosphere on the noon and midnight meridians, but, due
to the presence of the IMFBy component, are twisted out
of the meridian in the region away from the planet. In the
left-hand column of Fig. 3 we show the projection of these
field lines on the X-Z plane, while in the right-hand column
we provide an indication of the 3-D structure. In the up-
per two panels with southward IMF we see that the size of
the modelled region of field lines having even one “end” in
the ionosphere (open and closed), decreases as the IMF field
strength increases. The bottom panel shows that the structure
of the model magnetic field lines changes dramatically when
the IMF becomes northward-directed.

In Fig. 4 we correspondingly show how the open-closed
field line boundary varies in response to the IMF vec-
tor, specifically for the Southern Hemisphere, thus match-
ing the auroral images shown in Fig. 2. The view is
looking “through” the planet onto the southern pole, with
noon on the right side of these figures, and dusk at the
top. Panel (a) corresponds to the “minor” compression
on 16 January with KSM vector (0.0,−0.4, −0.4) nT (and
9=25.05◦). The open field region is displaced to the dusk
side of the pole due to the presence of the IMFBy compo-
nent. In panel (b) the northwardBz component has been in-
creased in magnitude to−1.4 nT, such that the KSM com-
ponents are (0.0,−0.4, −1.4) nT. The open field region
shrinks and becomes centred sunward as well as duskward
of the pole. Panel (c) shows how the open area responds
to the By field, with an IMF given by KSM components
(0.0, −2.0, −0.4) nT. In this case the open region becomes
enlarged in area. In panel (d) we then increase the magni-
tude of the northward field component again to−1.4 nT, so
that the KSM components become (0.0,−2.0,−1.4) nT. The
increased magnitude of the southward-directed field again re-
sults in a decrease in the open area. Panel (e) then shows the
effect of changing theBx component, with an IMF vector
of (0.5,−2.0,−1.4) nT, which thus now corresponds to the
“major” compression region on 26 January (with9=24.64◦).
The open field region is almost unchanged compared with
panel (d) in this case. Finally, in panel (f) we show results
for the northward-directed IMF given by (−0.3, 0.7, 0.7) nT,
corresponding to the later part of the “major” compression.
In this case the open field line region significantly increases
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Fig. 3. Plots showing the field lines emerging from Saturn’s ionosphere in the noon and midnight meridians. On the left-hand side of the plot
the field lines are projected into the X-Z plane, while the 3-D structure is indicated on the right-hand side. The three rows correspond to dif-
fering IMF vectors. From top to bottom these are given by KSM components of (0.0,−0.4,−0.4), (0.5,−2.0,−1.4), and (−0.3, 0.7, 0.7) nT,
corresponding to the “minor” field compression interval, and the initial and later “major” compression intervals, respectively. The input
model parameters areRss=17.5RS , R2=14RS , Rrc1=12.5RS , Rrc2=6.5RS , Brc1=3.6 nT,Bt=−8.7 nT, andkS=0.8. The dipole tilt angle is
9∼25◦.
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Fig. 4. Open field line regions in Saturn’s southern ionosphere calculated using the paraboloid model for various sets of IMF components.
In panels (a–f) the KSM components are as follows:(a) (0.0, −0.4, −0.4) nT, (b) (0.0, −0.4, −1.4) nT, (c) (0.0, −2.0, −0.4) nT, (d)
(0.0,−2.0,−1.4) nT,(e) (0.5,−2.0,−1.4) nT, and(f) (−0.3, 0.7, 0.7) nT. The view is looking “through” the planet onto the southern pole,
with noon at the right, dusk at the top, and co-latitude is indicated at intervals of 5◦. The model parameters are as in Fig. 3.

in size.
In Fig. 5 we also show how the open field line region varies

with the value of the IMF penetration coefficientkS , again for
the Southern Hemisphere. On the left-hand side of the figure
we reproduce the results shown in Fig. 4 which correspond
to the typical IMF conditions during the “minor” and initial

and later “major” compression intervals usingkS=0.8 (pan-
els a, e, and f in Fig. 4, respectively). On the right-hand side
we show results for the same IMF vector, but withkS=0.2.
We see that the value ofkS smoothly changes the open field
line area in the ionosphere. At the same time, the value of
kS significantly influences the polar cap potential drop and
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Fig. 5. As for Fig. 4, but showing how the open field area varies with the IMF penetration parameterkS . The panels on the left side reproduce
those shown in panels (a), (e), and (f) of Fig. 4 withkS=0.8, while those shown on the right side have the same IMF vector, but now with
kS=0.2.

the global magnetospheric magnetic field structure, as can
be seen in Fig. 6. This figure shows the magnetospheric field
lines for these cases projected onto the X-Z plane in the same
format as the left-hand panels of Fig. 3. It can be seen that
the global size of the modelled region of Saturn’s open and
closed magnetospheric field lines depends strongly on the

kS value. It should be realised that, although the bounding
paraboloid magnetopause is of fixed size in Figs. 3 and 6,
considerable volumes in the model “tail” region contain field
lines that do not connect with the planet at either end (e.g.
Belenkaya, 1998), and are consequently not shown in these
figures.
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Fig. 6. Plots of magnetospheric field lines projected into the X-Z plane in the same format as the left side of Fig. 3, but now for IMF vectors
and penetration coefficients corresponding to the six panels of Fig. 5.

Alexeev et al. (1998) previously showed that even in
the case when the model magnetosphere is “closed” (e.g.
with kS=0 or with no IMF), the model contains long tail
lobe magnetic field lines which are directed almost parallel
to the equatorial plane, and intersect the distant tail cross
section perpendicular to the x-axis. These open field lines

may be considered to be formed from previous interactions
between the magnetosphere and the interplanetary medium,
and may thus be taken to correspond, for example, to
the open flux which is present during “deep” rarefaction
regions when the IMF is very weak. Alexeev et al. (2006)
estimated the open flux in each tail lobe in terms of the
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model parameters as80=(π /2)(1+2R2/Rss)BtR
2
ss (see also

Belenkaya et al., 2006b). This represents the “baseline”
open flux that is present for the model forkS=0. For
the chosen magnetospheric input parameters employed
here (Rss=17.5RS , R2=14RS , Bt=8.7 nT) we obtain
80=7529.5 nTR2

S (27.4 GWb). We can readily estimate
the ionospheric co-latitude corresponding to this amount of
magnetic flux. The dipole magnetic field strength at Saturn’s
equator isBS0=21 160 nT, so that the magnetic field strength
at the pole is roughlyBp=2BS0=42 320 nT. The flux80 can
also be written asBpS0, whereS0 is the area of the open field
line region in the ionosphere for the “baseline” model, and
S0=πρ2, whereρ is the radius of this region, andρ=RS sinθ ,
where θ is the co-latitude of the open-closed field line
boundary. Thus,80=Bpπ R2

S sin2θ , and correspondingly
sinθ=(80/(Bpπ R2

S))1/2=(7529.5 nTR2
S /(42 320 nTπ R2

S))1/2

=0.24, thusθ∼14◦. This value may be considered to provide
a rough estimation of the effective open field line region
boundary co-latitude for the “baseline” model withkS=0.

It is well known for the case of the Earth that the radius
of the region of open field lines depends on the north-south
component of the IMF. The experimental evidence is sum-
marized, for example, by Holzworth and Meng (1984) and
Bolshakova et al. (1988), while the dependence in numerical
models was obtained, for example, by Alexeev et al. (1993)
and Belenkaya (1998). For the Earth the open field line re-
gion increases for southward IMF, and decreases for north-
ward IMF, which is the opposite for Saturn, due to the oppo-
site sense of the planetary magnetic moment. The situation
which most closely represents the “baseline” case in those
computed here is Fig. 5f for a weak northward IMF. We see
that for this case the boundary is located at∼12.5◦, which is
in reasonable accord with the rough (14◦) estimation above,
based on the open tail lobe flux. We also note that Alexeev
(2005) gave a relation which determines the size of the po-
lar cap for the “ground state” of the Earth’s magnetosphere.
Recasting Alexeev’s (2005) Eq. (6) for the case of Saturn’s
magnetosphere, we find sinθ=(2.2RS /3RSS)1/2=0.2, which
givesθ=11.8◦. The difference of 0.7◦ between this value of
the polar cap size and that shown in Fig. 5f may be due to the
weak northward IMF, or physically to small magnetospheric
disturbances. Both factors increase the amount of open flux
in the magnetosphere. The same factors may also explain the
modestly increased flux in ourkS=0 “baseline” Saturn model
compared with Alexeev’s (2005) estimation. We finally note
that the “baseline” model should also provide an initial de-
scription of magnetic field conditions during “deep” rarefac-
tion regions when the IMF is very weak. However, this is not
a matter we explore in detail here, concentrating instead on
conditions during solar wind compressions.

3 Comparison with auroral observations

We now compare the results shown in Figs. 4 and 5 with the
observed auroral distributions shown in Fig. 2, which corre-
spond to the interplanetary data shown in Fig. 1, as indicated
by the vertical dashed lines (within the few-hour uncertain-
ties of the latter’s timing). As discussed previously by Bad-
man et al. (2005) and Bunce et al. (2006), the first HST ob-
servations during the 2004 Cassini campaign, on 8 January,
were obtained during a “deep” rarefaction region. The cor-
responding auroral oval (image a) was highly expanded at
15◦–20◦ co-latitude, with brightenings observed in the pre-
midnight, dawn, and pre-noon sector. By 15 January (im-
age e) the open field line region radius was a little smaller,
around 12◦–18◦. After the arrival of the “minor” solar wind
compression at Saturn (on 16 January), the radius of the con-
tracted open field line region varied from 5◦–8◦ in the post-
midnight and dawn sectors to∼13◦ in the post-noon sector,
with the brightness decreasing from post-midnight anticlock-
wise into the pre-midnight hours. During the subsequent “in-
termediate” rarefaction region, a re-expanded oval was seen
on 23 January (image i) with auroral brightenings at dawn
and noon. On 26 January, at the onset of the “major” CIR
compression, a highly brightened and contracted oval was
observed (image k), with bright auroral forms on the dawn-
side from∼3◦ to ∼15◦ co-latitude. On 30 January, near the
end of the “major” compression, bright auroras were still ob-
served except in the pre-midnight sector (image m), and the
oval re-expanded to 12◦–15◦ co-latitude in the pre-dawn re-
gion.

We now more directly compare the calculated open field
line areas shown in Fig. 5 with the corresponding compres-
sion region auroral images shown in Fig. 2. In Fig. 7 pan-
els (a–c) we thus show images (f), (k), and (m), respectively,
projected onto a polar grid in which the southern ionosphere
is viewed “through” the planet from the north, as in Figs. 4
and 5, with noon now at the bottom of each plot, and dawn to
the left. The dotted circles are at intervals of 10◦ co-latitude,
and the auroral intensities are indicated by the colour scale
shown on the right. Smoothed calculated open field bound-
aries are then over-plotted on the images, where the solid
lines correspond tokS=0.2 (Figs. 5b, d, and f in (a), (b), and
(c) respectively), and the dashed lines tokS=0.8 (similarly
Figs. 5a, c, and e). Some important points emerge from these
comparisons. First, the size of the calculated area of open
flux generally agrees very well with the area encircled by the
UV auroras, within the limitations imposed by the continuity
of the observed auroral emission in local time. The bound-
aries for the twokS values are essentially indistinguishable
in panels (b) and (c), while in panel (a) the larger area for
kS=0.2 agrees better with the area poleward of the emissions
than does the smaller area forkS=0.8. These results thus pro-
vide support for the hypothesis made by Badman et al. (2005)
that the dark area poleward of the auroral emission corre-
sponds to open field lines. Second, with regard to the detailed
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Fig. 7. UV images of Saturn’s southern polar aurora obtained during January 2004 are shown projected onto a polar grid, from the pole to
30◦ co-latitude, again viewed as though looking “through” the planet onto the southern pole, as in Figs. 4 and 5. However, noon is now at
the bottom of each plot and dawn to the left, as indicated. The UV auroral intensity is colour-coded according to the scale shown on the
right-hand side of the figure. Panels(a–c)show images (f), (k), and (m) in Fig. 2, respectively, whose HST start times are given at the top
of each plot. These projected images are reproduced from Badman et al. (2005). The over-plotted solid and dashed white lines show the
smoothed calculated locations of the boundary of open field lines forkS=0.2 and 0.8, respectively. The curves in panel (a) thus correspond
to Figs. 5a and b, respectively, those in panel (b) to Figs. 5c and d, and those in panel (c) to Figs. 5e and f.

Fig. 8. Comparison of the computed Southern Hemisphere open
field regions forkS=0.8 shown in panels(a), (c), and(e) of Fig. 5
(and a, e, and f of Fig. 4), shown by the green, blue, and purple lines,
respectively, with the median poleward (yellow stars) and equator-
ward (red crosses) southern auroral boundary locations determined
by Badman et al. (2006) (their Fig. 5). The plot format is the same
as for Figs. 4 and 5. The red lines show co-latitude circles at 5◦

intervals from the southern pole to−70◦.

position of the calculated open field region relative to the au-
roras, it can be seen that this agrees very well with the pole-
ward boundary of the auroras in panel (c) (for which the IMF
is northward). In panel (b) (for which the IMF is southward),
the bright dawn auroras also lie at and just inside the calcu-
lated open field boundary in this local time sector. Finally, in
panel (a) (for which the IMF is weakly southward) the calcu-
lated boundary forkS=0.2 is of a similar size and shape as the
poleward boundary of the auroras, as just indicated, but the
latter are displaced significantly toward noon, compared, for
example, with the similar distribution shown in panel (c). For
further discussion of the auroral distributions seen in these
images and their relationship to solar wind-magnetosphere-
ionosphere coupling current systems, the reader is referred
to the results of Belenkaya et al. (2006a), discussed briefly in
the Introduction.

We can also compare these calculated open field bound-
aries with the typical position of the UV oval determined by
Badman et al. (2006). These authors presented an analysis
of a selection of twenty-two HST images of Saturn’s auro-
ras obtained during 1997–2004, including the images shown
here in Fig. 2. In Fig. 8 the yellow stars and red crosses show
the median poleward and equatorward boundaries of the au-
rora determined from these images, respectively, plotted on a
polar grid in the same format as Figs. 4 and 5. The local time
coverage ranges from the pre-dawn sector to post-dusk via
noon. The green, blue, and purple curves then show the cal-
culated open field boundaries forkS=0.8 shown in panels (a),
(c), and (e) of Fig. 5 (and a, e, and f of Fig. 4), respectively,
thus corresponding to the “minor” compression region, the
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initial “major” compression region, and the later “major”
compression region, respectively, in the January 2004 data.
It can be seen that all of these calculated boundaries lie a few
degrees poleward of the median poleward auroral boundary
in the noon sector, roughly intermediate between panels (a)
and (c) in Fig. 7, while the largest boundary approaches the
median oval in the dawn sector.

4 Conclusions

In this paper we have investigated the IMF-dependence of
the open field line region in Saturn’s ionosphere using the
paraboloid model of the magnetosphere, combined with IMF
data obtained by the Cassini spacecraft during its approach
to Saturn in January 2004. We have compared these results
with simultaneous images of Saturn’s UV auroras obtained
by the HST, specifically the bright active emissions observed
during interplanetary compression regions when the IMF is
strongest. It has been shown that the IMF direction signifi-
cantly changes the magnetospheric magnetic field structure,
together with the area and shape of the region of open field
lines. Comparison with related auroral images shows that
the calculated area of open field lines is comparable to that
enclosed by the auroral oval, in support of previous hypothe-
ses to this effect. In addition, the position of the calculated
open field region sometimes agrees in detail with the pole-
ward boundary of the auroral oval, though more typically
being displaced by a few degrees of latitude in the tailward
direction. We thus conclude on the basis of these results that
the solar wind and its magnetic field plays a major role in the
generation of Saturn’s auroras.
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R., and Pranǵe, R.: Simultaneous observations of the saturnian
aurora and polar haze with the HST/FOC, Geophys. Res. Lett.,
22, 2685–2688, 1995.

Gérard, J.-C., Grodent, D., Gustin, J., and Saglam, A.: Charac-
teristics of Saturn’s FUV aurora observed with the Space Tele-
scope Imaging Spectrograph, J. Geophys. Res., 109, A09207,
doi:10.1029/2004JA010513, 2004.

Jackman, C. M., Achilleos, N., Bunce, E. J., Cowley, S. W. H.,
Dougherty, M. K., Jones, G. H., and Milan, S. E.: Interplanetary
magnetic field at∼9 AU during the declining phase of the solar
cycle and its implications for Saturn’s magnetospheric dynam-
ics, J. Geophys. Res., 109, A11203, doi:10.1029/2004JA010614,
2004.

Sandel, B. R. and Broadfoot, A. L.: Morphology of Saturn’s aurora,
Nature, 292, 679–682, 1981.

Trauger, J. T., Clarke, J. T., Ballester, G. E., Evans, R. W., Bur-
rows, C. J., Crisp, D., Gallagher III, J. S., Griffiths, R. E., Hes-
ter, J. J., Hoessel, J. G., Holtzman, J. A., Krist, J. E., Mould, J. R.,
Sahai, R., Scowen, P. A., Stapelfeldt, K. R., and Watson, A. M.:
Saturn’s hydrogen aurora: Wide field and planetary camera 2
imaging from the Hubble Space Telescope, J. Geophys. Res.,
103, 20 237–20 244, 1998.

Tsyganenko, N. A.: A model of the near magnetosphere with
a dawn-dusk asymmetry. Mathematical structure, J. Geophys.
Res., 107, A8, doi:10.1029/2001JA000219, 2002.

Young, D. T., Berthelier, J. J., Blanc, M., et al.: Cassini Plasma
Spectrometer investigation, Space Sci. Rev., 114, 1–112, 2004.

Ann. Geophys., 25, 1215–1226, 2007 www.ann-geophys.net/25/1215/2007/


