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Band-center anomaly of the conductance distribution in one-dimensional Anderson localization
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We analyze the conductance distribution function in the one-dimensional Anderson model of localization,
for weak disorder but arbitrary energy. For energy at the band center the distribution function deviates from the
form that is assumed to be universal in single-parameter scaling theory. A direct link to the breakdown of the
random-phase approximation is established. Our findings are confirmed by a parameter-free comparison to the
results of numerical simulations.
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The spatial localization of waves in a disordered potentialSPS then assumes that these conditions are universal. This
can be considered as the most dramatic effect of multiplessumption is much more restrictive than the general upper
coherent wave scatterirlg. Due to systematic constructive bound C,=O(L/l,) from the theory of large-deviation
interference in some part of the medium, the wave functiorstatistics'>*®* SPS assumes a lognormal distribution gf
is spatially confined and decays exponentially as one movesith the variance of Ig determined by the mean via the
away from the localization centgf. The localization length universal relation varlg=—2(Ing). It is the violation of this
l,oc can be probed noninvasively from the decay of the transrelation which frequently is used to indicate the breakdown
mission coefficient(the dimensionless conductafke, in of SPS theory(see, e.g., Refs. 14 and )15

terms of the average In this paper, we investigate(g) in the most-studied and
o best-understood paradigm of localization, the one-
Ci=(—Ing)=2L/l,c+O(L") (1) dimensional Anderson model defined by the Scimger

for system length.>1,,..° Localization results in insulating equation

behavior of disordered solids at low temperatiréand also —(\ _
can be realized in electromagnetic waveguities. Y-t ha=(VimBlv 2
One of the cornerstones of the theoretical understandingn a linear chain ol sites (lattice constanta=1) and a
of localization is the universal approach of single-parameterandom potential with(\V|)=0 and (V,V,)=2D §,,,. The
scaling(SPS.8~1In this theory, it is assumed that the com- strengthD of the potential fluctuations is taken to be small.
plete distribution functiorP(g) of the conductance can be We analytically calculate the cumulan@, in the localized
parametrized by the single free parame@3r The depen- regime, with main focus on the energy regidj<1 around
dence ofC; [and hence oP(g)] on L is then found from the band center of the disorder-free system. Eer0, we
solving a scaling equatiod C, /d(InL)=p8(C,), where the find the values
universal scaling function3 does not depend ok, nor
on any microscopic parametésuch as the Fermi wave- C,/C1=2.094, C3/C;=0.568. (6)
length N, the transport mean free path, or the lattice
constanta).
The distribution functionP(g) is completely determined
by the cumulants

The ratiosC,/C; with the higher cumulants also are finite.
HenceP(g) complies with the restrictions of large-deviation
statistics, but deviates from the special lognormal form as-
sumed in SPS theorfthis form is restored fofE|=D).
Co=(((—Ing)™) %) The conditions for validity of SPS have been a constant
n : subject of intense debat€!'®Originally, SPS was derived
which are obtained as the expansion coefficients of the gerwithin the random-phase approximatigRPA) for the scat-
erating function tering phase between consecutive scattering eveimshe
Anderson model, the RPA is known to fail around the ener-
n giesE=*2 (the band edges of the disorder-free syst&n
(3 wherexg=l,. Indeed, the SPS relatiori4) are violated for
all cumulants when one comes close to the band edge (2
The first three cumulants are given by H@) for C,, C,  —|E|=D?%3,'"in coincidence with the expectatiofis:®*®
=varlng, andC3=(((Ing)—Ing)3). The SPS hypothesis can ~ The RPA s also known to break down for the band-center
then be phrased like thigll cumulants are universal func- caseE =0.'° However, the only consequence observed so far
tions of C,. In the localized regime@;>1) and for weak has been a weak anomaly in the energy dependentgof
disorder, a one-dimensional calculation of the distribution(hence, also o€,),2°~?*which differs atE=0 by about 9%
function within the random-phase approximation implies thefrom the predictions of perturbation thedfySurprisingly,

0

n(§>=ln<<g‘f>=n§1 Cy

simple relation$ the violation (6) of the SPS relationg4) has not been
noticed—quite the contrary, the relevance of the RPA for
C,/C1=081,+28,,+O(L™Y). (4  SPS recently has been contedtadithin an investigation of
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the Lloyd model, given by E¢5) with a Cauchy distribution tie dg

for the potential®2*However, results obtained for the Lloyd P(u,a;x)zf — >, exfd m(&)x— Eulf (&, ),
model are not conclusive for the Anderson model and SPS, ~i= 271 {20

because in the Lloyd model formally the variance of the (10
disorder potentiaD =< and one encounters the modified where we require periodicity df(£,«) in «. It then follows
relation C,/C,=4+2, while |, varies smoothly with en- that the functiond (¢, «) solve the eigenvalue equation
ergy even aroundE=0.1° Moreover, the higher cumulants

have not been investigated. In previous numerical studies,  ikfk=[L5—ed,+&(C5—20,8,C,) + £2s51f, (11)
the violations may have passed unnoticed because the smﬁll which ¢ appears as a parameter apg(£) is the kth

deviation of C,/C, from the SPS value probably was not eigenvalugarranged in descending orglein the vicinity of

considered to be significant, and again the higher cumulantgz0 there is a finite gap between the largest eigenvalyie

have not been investigated. In this paper, we also will esta : . _ o
lish a direct link between SPS and RPA. bL'whlch vanishes fog=0, because of the normalization of

. . P(u,a;x)] and u;. According to Eq.(10), the asymptotic
We now preselnt the a}n.al_ytlcal calculation of the CUMU, ehavior of the distribution functio(u, a;x) for large x
lants C, of —Ing in the vicinity of the band-center energy

_ : hence is governed by, up to exponentially small correc-
E=0 of the Anderson mode_l, EcQS_). As pointed out Many  tions. A formal calculation of the moments of (i.e., of
years ago by Borlan8the dimensionless conductangen ~Ing) shows that the cumulant-generating functi® is
the localized regime is statistically equivalennﬁgz, where directly given by (&) =xuq(£). Hence
i is the solution of the Schdinger equation(5) with ge- y9 ¥ Hots): ’
neric initial conditionsyg, ¢, =0(1). Because\ g=4a, it is C,=n™n!DL, (12)
useful to introduce two slowly varying fieldg(l) =, e (m)en .
(—1)"2 whenl is even,x(1)=¢,(— 1) Y2 whenl is odd, where we expandedy(§)=2,_,u4'"V&" into a power series.

which can be considered as continuous functions with 1he expansion.coefficients(") can be calculated recur-
Langevin equations sively for increasing orden by solving the hierarchy of

equations
do 1 dy 1

=3B, 47=3

TR (W+E)¢. (7)

n
> pRE=g2£=2) 4 (¢2—-24,5,c)f "D
k=0
Here U and W independently fluctuate with(U)=0, 5
(U(L)U(L,))=4D5(L,—L,), and analogously fov. LM =2, f, (13
In order to calculate the wave-function decay and its fluc-which results when one introduces into Edl) the power
tuations, it is convenient to switch to the variables expansions fopo and forfo(gya)ZE::of(n)(a) & In each
ordern, we first integrate ovet from 0 to 27, which elimi-
£+ X natesf(™ and hence giveg" in terms of the quantities™
2x  2¢ and u™ with m<n. Afterwardsf(" can be obtained from
Eqg. (13) by two integrations. The iteration is initiated far
which are symmetric inp and . In the localized regime, =0 with x(9=0. This completely solves the problem to
u=—Ing characterizes the global decay of the wave funcalculate the cumulans,, in the localized regime.

-1

A NG

u=In(¢?+ x?), sina=

tion, while the variablex (parametrizing the local fluctua- Let us illustrate the procedure f&=0. To start the it-
tions) is identical to the scattering phase of the reflectioneration we consider Eq13) with n=0, given by £2f(©
amplituder = (¢ +i¢)/ (Y1 —1¢y). This parametriza- =g, This differential equation is solved by the normalized

tion allows us to draw a direct relation between SPS angynction
RPA: SPS will turn out to be valid whew is uniformly
distributed over (0,2). . (O ) V2

The Langevin equation&) now can be translated into a a)= 5 RN
Fokker-Planck equation for the joint distribution function *(1/4)\1+ cos'a
P(u,a;x). For the sake of a compact presentation, we usavhich is identical to the stationary limiting-distribution func-
shorthand notations for the functiorsg=sine, c,=cosy,  tion Iimxﬂmffmdu P(a,u;x) of the variablea.
and introduce the rescaled posities=DL, as well as the
rescaled energy =E/D. The Fokker-Planck equation then
takes the form

(14)

Now the next iteration. Equatiofi3) with n=1 is given
by

LoD (a)=(uM =2 +2d,5,6)f ). (15

dP(u,a;X) . .
* We first determine

=[ L2+ 0y(S20,—C2+23,5,C,) —£d,]P(U,a;X), (9)

. . . . W (27 20y I'2(3/4)

with the linear differential operataf,, = d,(1+c?)*2 M= fo da cif (a)_4F2(1/4) : (16)
The behavior o (u, «;x) for largex can be analyzed by

introducing into Eq(9) the ansatz The prediction for the inverse localization length
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FIG. 1. (Color onling First three cumulant€,=({(—Ing)") _(n g)1)> 3
for energyE=0 in the Anderson mode{5) with D=1/150, as 1000 F {(ng)?% © ‘A@,.«x"“”.
function of system length.. The data points are the result of a ~{(ng)y)) = o®

numerical simulation. The slopes of the straight lines follow the 800 |
predictions of Eq.(20). The localization length, is taken from

Eq. (17). 600
lioe=T2(1/4)/[2DT"?(3/4)], (17 400
obtained by combining Eq16) with Egs. (1) and (12), is 200 t
identical to the result found in Refs. 20—-22. Then we solve o2
for 0 & : : : :
0 50 100 150 200 250

f(l)(a):(1+ci)—l/2j dﬁ(“_cz)—l/z Lihge
0 FIG. 2. (Color onling Same as Fig. 1, but for enerdgy=0.1
B (upper paneland E=2 (lower panel. The straight lines in the
2s,c5fO(B) + J dy(uM—=c2)fO(y)|. upper panel follow the predictions of perturbation the¢Ref. 23
0 and single-parameter scalifi@ef. 9. The straight lines in the lower
(18) panel are the predictions of Ref. 13ee text

X

From the next iteratiom=2 we obtain

p= fozwda[(ci—u“))f(”(a)+sif‘°’<a>] (19

and alsof(®(«). Analogously we obtainu®. With Eq.
(12), this is sufficient to determine the values for the first
three cumulants

CyIC,

2C,/(DL)

C,=0.4569DL, C,=0.9570DL, C3=0.2595DL.
(20 1 0 E 0.1

They correspond to the anomalous ratios given in (BY. = o
The analysis of Eq(13) can be straightforwardly carried ¥
out also for finiteE/D. ForE/D> 1, the stationary limiting-
distribution function ofa is given byf(®(«)=1/(27), cor-
responding to a completely random phase. frerl we find 0 1 2
the coefficientuM=1/2, and the perturbative resulf, E
=4/D is r.ecovere.&.?’ In the next iteration we Obta'w(.z) FIG. 3. (Color online Energy dependence of the ratios of cu-
=1/2, while the higher coefficients all vanish. According to yyjantsc,/C, and C4/C,. The inset show<, in units of the
Eq. (12), the SPS relation#) then are reestablished. perturbative resulbL/2. The data points are the result of a numeri-
We have tested the predictions of the analytical theoryal simulation of the Anderson model with=1/150. The curves
against the result of a direct numerical computation of theare the analytical predictions of this pap&<(0.1), of perturbation
conductancey for the Anderson mode{5), by recursively theory (Ref. 23 and single-parameter scalin@Ref. 9 (0.1<E
increasing the length of the wif@.The potentialV, was  <1.8), and of Ref. 17E>1.8).
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drawn independently for each site from a box distributionagreement is found between our analytical theory and the
with uniform probability 1424D over the interval results of the numerical simulations.
[—/6D,\6D]. The data shown in the plots were obtained In summary, we have presented an analytical theory for
for D=1/150 (identical results are obtained for a Gaussianthe distribution functiorP of the dimensionless conductance
distribution with the same variand2). The cumulants were g in the localized regime of the Anderson model, Es). The
determined by averaging over “1@isorder realizations. relations(4) implied by single-parameter scaling theory for
The result of this computation for the first three cumulantsthe cumulant<C,, of —Ing are violated not only around the
and E=0 is shown in Fig. 1. The cumulants all increaseband edgegE|=2, but also at the band-center energy
linearly with the lengthL of the wire, and the slopes agree =0, where the correct values are given by E). Since the
perfectly with Eq.(20) [hence the localization length agrees random-phase approximation is known to break down in
with Eq. (17) and the ratios of cumulants agree with Eg).]. both cases, our findings reestablish the relevance of this ap-
The comparison is free of any adjustable parameter. proximation for single-parameter scaling, which recently has
For contrast, the upper panel of Fig. 2 shows the firsbeen contestet?.
three cumulants at enerdy=0.1, where the SPS relations  Whether the single-parameter scaling hypothesis itself
(4) hold andC,;=DL/2 follows from perturbation theo’  breaks down aE=0, or just persists in modified form, is an
The lower panel shows the results at the band €flg€2,  open question. The ratia®$) still imply universal relations
which are compared to the predictio®=0.7295D3L, between the cumulants for weak on-site disorder, i.e., they do
C,=1.602D*3L, C;=0.7801DY3L of Ref. 17. not depend on the distribution function of the random poten-
In Fig. 3, we show the ratios of cumulan@,/C; and tial. However, it can be questioned whether this universality
C3/C, as a function of energy. The inset sho@s. The  also extends to additional disorder in the hopping rates, since
anomalous region extends up Ee=10D. Around the band it is well known that the extreme case of purely off-diagonal
edge, the violations set in for2E<3D?3. Again, perfect disorder results in delocalization Bt=0.?°
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