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Abstract. We analytically and numerically discuss the plasma distribution and
electron temperature enhancement in striations for a given heating source. It is
shown that, in stationary conditions, the reduced plasma concentration and the
temperature enhancement should be of the same order of magnitude. We deduce
that the electron temperature inside striations cannot greatly exceed that in the
heated volume. The elongation of striations is calculated for different transverse
scales and heating powers. We show that medium sized irregularities are associated
with striations and develop after the formation of striations. The peculiarities of
the relaxation process for small-scale and medium sized artificial irregularities are
investigated and it is found that the relaxation of small-scale irregularities exhibits
two time scales, in qualitative agreement with experimental observations.

1. Introduction
Small-scale artificial field-aligned irregularities (AFAI) also known as ‘striations’
appear in the F-region of the ionosphere illuminated by a powerful high-frequency
(HF) radio wave. According to theory, striations are formed due to the conver-
sion of the electromagnetic (EM) pump wave into upper-hybrid resonance (UHR)
oscillations on small-scale plasma inhomogeneities (Gurevich 1978). The variation
of the reduced plasma concentration in striations measured directly on a rocket
is of the order of a few per cent (Kelley et al. 1995). Typical transverse scales
of striations obtained in the same experiment are about L⊥ ∼ 3–10m, although
the total spectrum of excited artificial plasma inhomogeneities is very broad and
complicated. Its behaviour for scales from metres down to several centimetres was
investigated long ago by backscattering (Minkoff et al. 1974). However, artificial
irregularities with larger transversal scales are also excited in heating experiments.
In addition to a pronounced maximum for scales ∼5m, a local spectral maximum
also exists at scales of the order of a few hundreds of metres (Erukhimov et al.
1987). As for the elongation of AFAI, only rather scant information is available.
Different authors give various estimates for the elongation of striations: L‖ ∼ 3–
5 km (Rao and Thome 1974; Korovin et al. 1983), L‖ ∼ 10–15 km (Jones et al. 1984;
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Kelley et al. 1995). In the existing theory, only crude estimates are obtained based
on ambipolar ion diffusion and recombination lifetime (Gurevich et al. 1995a).
For medium-sized irregularities (L⊥ ∼ 50–200m), it was found by experiments

that they can extend below the reflection height by about 100 km, thus covering
the whole F-region (Hedberg et al. 1983; Bakhmet’eva et al. 1989). It is interesting
to mention that according to Bakhmet’eva et al. (1989), such irregularities first
appear at the heights where striations are formed and later on begin to occupy a
larger height interval.
The modern theory of the stationary state of striations predicts a large (3–4

times) increase of the temperature of electrons inside striations and at the same time
a very weak variation of plasma concentration (Gurevich et al. 1995a,b). Significant
temperature enhancement is indeedmeasured by incoherent scattering during heat-
ing (Robinson et al. 1996; Leyser et al. 2000). Unfortunately, in such experiments
it is impossible to distinguish whether the rise of temperature occurs only inside
striations or in the bulk plasma. At the same time, Peria et al. (1999) reported rocket
observations of the electron temperature enhancement inside striations to be of the
order of 100K. The absolute temperature was not measured in this experiment,
but it seems reasonable to assume that this equates to an enhancement of 10% or
less.
In the present paper we give a detailed analytical analysis of the stationary

distributions of plasma density and electron temperature in a single striation. The
analytic results are supported by a two-dimensional (2D) numerical analysis which
we also use to investigate, in a basic form, the effects of vertical inhomogeneity in
the ionosphere. We show that, as the temperature and density perturbations are
of the same order due to the balance of pressure, the small density perturbations
observed in striations imply that the electron temperature inside striations cannot
greatly exceed the background temperature in the heated volume. We demonstrate
that the elongation of striations can be expected to be greater than previously
thought. We also discuss the formation of medium-sized irregularities and show
that they are closely connected to striations. Based on our results, the relaxation
of AFAI with different transverse scales is investigated.

2. Basic equations
In this section we derive equations describing the stationary conditions of AFAI
in the F-region of the high-latitude ionosphere. Let us assume that the Earth’s
magnetic field is directed along the vertical z-axis and in the transversal plane
the inhomogeneity exists only along the x-axis. The results obtained in this paper
are valid also in the case where striations have axial symmetry, that is, they
are considered as cylinders stretched along the z-axis. We suppose that at the
heights where striations are formed, collisions with ions play the main role for
electrons, νei � νen, where νei, νen are the electron collision frequencies with ions and
neutrals. However electrons in the ionosphere lose their energy mainly in nonelastic
collisions with neutrals (Gurevich, 1978). The corresponding losses determined by
the frequency δenνen are much larger than the losses in collisions with ions δeiνei
up to heights of approximately 300 km. For larger heights, the losses in collisions
with ions give a significant contribution to the total losses if the increase of the
bulk electron temperature in the heated volume is small enough. Here δen is a loss
rate in non-elastic collisions with neutrals, δei ≈ 2m/M is a loss rate in collisions
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with ions and m,M are the masses of the electron and ion. For ions, collisions with
neutrals νin play the main role even in the F-region of the ionosphere due to the
small ratio m/M : Mνin � mνei.
To discuss the stationary distribution of plasma and the heating in striations,

for electrons we use the hydrodynamic equations in a completely ionized plasma
derived by Braginskii (1965) with slight modifications. In the heat equation we
insert an additional term δenνen describing the energy losses in non-elastic collisions
and in the continuity equation the finite lifetime of electrons τr is retained. As for
ions we distinguish two different cases. It is well-known that hydrodynamics can
be used only if the transversal scale of plasma inhomogeneity L⊥ is much larger
than the Larmor radius L⊥ � ρHi = vTi/ωHi, where vTi is the thermal speed, ωHi is
the cyclotron frequency of ions. In the ionosphere ρHi ≈ 3–5m, which is of the order
of a transversal scale of striations. It means that we have to discuss two cases. If
L⊥ � ρHi ions can be described within hydrodynamics; otherwise a kinetic approach
should be used.
Electrons in a completely ionized plasma in stationary conditions are described

by the following set of equations:
• the continuity equation

∂Nvex
∂x

+
∂Nvez

∂z
+

N − N0

τr
= 0; (2.1)

• the equation of motion

−∇pe + eN

(
∇ϕ − ve

c
×H

)

− mNνei(0.51u‖ + u⊥) − 0.71N∇‖Te − 3
2

νeiN

ωHe
h× ∇Te = 0 (2.2)

and;
• the heat equation

3
2
ve∇Te + Te∇ve +

1
N

∇qe +
3
2
δenνen(Te − Te0) = QT. (2.3)

Here N is the concentration of plasma, vex, vez are the transversal and the longi-
tudinal components of the velocity of electrons, τr is the recombination lifetime,
pe = NTe is the pressure, Te is the temperature of electrons, N0, Te0 are the undis-
turbed plasma concentration and the bulk temperature of electrons in the heated
volume, −e is the charge of an electron, E= −∇ϕ is the electric field of polarization,
u‖, u⊥ are the drift velocities of electrons with respect to ions along and across the
magnetic field, ωHe is the cyclotron frequency of electrons, h=H/H is the unit
vector along the magnetic field line, QT is the source of heating, qe is the heat flux

qe = −κ
(e)
‖ ∇‖Te−κ

(e)
⊥ ∇⊥Te− 5

2
NTe
mωHe

h×∇Te−0.71NTeu‖ +
3
2

NTeνei
ωHe
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where

κ
(e)
⊥ = 4.66

NTeνei
mω2

He
, κ

(e)
‖ = 3.16

NTe
mνei

.

The motion of ions is described by the equation

−∇pi + eN

(
− ∇ϕ +

vi
c

×H
)

− MNνin(vi − vn) = 0 (2.5)
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where pi = NTi is the pressure of ions, and vi, vn are the speeds of ions and neutral
particles. The expression for the longitudinal velocity follows from (2.5)

viz = vnz − 1
MNνin

(
∂pi
∂z

+ eN
∂ϕ

∂z

)
(2.6)

and for the transverse x-component

vix = vnx +
νin

ω2
Hi + ν2

in

(
1

MN

∂pi
∂x

+
e

M

∂ϕ

∂x

)
. (2.7)

Further, for simplicity we neglect the speed of the neutral wind vn = 0. In this case
the continuity equation for ions reduces to

∂
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D
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⊥
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+
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σ
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⊥
e
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where
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νin
ω2
Hi + ν2

in
, D
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Ti
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According to Gurevich (1978) the lifetime of charged particles τr in the F-region
of the ionosphere is of the order of 5 × 102–103 s at night and 102–5 × 102 s during
the day. This time is much larger than the period required for the formation of
the stationary state of striations (Frolov et al. 1997). Hence we may set τr → ∞.
For typical scales of striationsL(N)

‖ � 106 cm,L(N)
⊥ ∼ (5–10) × 102 cm and the values

of the frequencies νin ∼ 2–5 s−1, ωHi ∼ 102 s−1, we find that the longitudinal terms
in (2.8) are much smaller than the transversal terms. As a result, an approximate
relation between plasma perturbation and electric potential applies:

∂N

∂x
+

eN

Ti

∂ϕ

∂x
= 0. (2.9)

In the case of small-scale plasma inhomogeneities L⊥ � ρHi, it follows from a kinetic
approach that ions have, in the first approximation with respect to L⊥/ρHi, a
Boltzmann distribution (Kadomtsev and Pogutse 1970)

N = N0 exp
(

−eϕ

Ti

)
. (2.10)

Hence, in both cases the same relation (2.10) between plasma perturbation and
electric potential applies.
Now we concentrate on the equations for electrons. Using (2.10) we eliminate

the electric potential ϕ from the system (2.1)–(2.3). It is convenient to introduce
dimensionless functions

N

N0
= n(z, x),

Te
Te0

= τ(z, x).

Note that this temperature Te0 can significantly exceed the undisturbed (without
heating) temperature of electrons in the ionosphere. In deriving hydrodynamic
equations we take into account that collision frequencies νei, νen depend on the
electron temperature

νei = ν
(0)
ei τ−3/2, νen = ν(0)

en τ1/2, (2.11)
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where ν
(0)
ei , ν

(0)
en are the background collision frequencies in the heated volume

(Schunk and Nagy 1978). If the pump frequency is not very far from the crit-
ical frequency of the ionosphere, the height variation of the background plasma
concentration N0(z) can be neglected. In this case the strongest dependence on
the z-coordinate exists in the diffusion coefficient D

(e)
‖ (z). Here D

(e)
‖ =Te/mνei

and D
(e)
⊥ =Teνei/mω2

He are the longitudinal and transverse diffusion coefficients
for electrons. Such a dependence can be modelled in numerical calculations by
a linear function D

(e)
‖ (z) = D

(e)(0)
‖ (1 + z/Lz). The height dependence of other

parameters (D(e)
⊥ , Te0, N0) is weaker and is therefore neglected. As a result (2.1),

(2.3) are presented in the final form
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Equations (2.12)–(2.13) are rather complicated and in the general case can only
be solved numerically. If the variations of plasma ∆n = n − 1 and temperature
enhancement ∆τ = τ − 1 are small enough, (2.12) and (2.13) are simplified signi-
ficantly and reduce to the system of linear partial differential equations:
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3. Analytical analysis of plasma distribution and temperature
enhancement

Let us assume that the background plasma is vertically homogeneous and perturb-
ations are weak enough |∆n| � 1, |∆τ | � 1. In this case the problem can be discussed
analytically. Taking into account that each striation is localized in space, that is
∆n → 0,∆τ → 0 for |z| → ∞ or |x| → ∞, after the integration of (2.14), (2.15)
along the magnetic field line, we arrive at the following set of ordinary differential
equations (

1 +
Ti
Te0

)
D

(e)
⊥

d2

dx2

∫
∆ndz + 2.5D

(e)
⊥

d2

dx2

∫
∆τ dz = 0 (3.1)

(
1 +

Ti
Te0

)
D

(e)
⊥

d2

dx2

∫
∆ndz + 4.1D

(e)
⊥

d2

dx2

∫
∆τ dz − δenνen

∫
∆τ dz =

2
3

∫
QT dz

Te0
.

(3.2)

The relation between height-integrated perturbation of plasma in striations and
the temperature of electrons follows from (3.1):∫

∆ndz = − 2.5
1 + Ti/Te0

∫
∆τ dz. (3.3)

It is convenient to introduce the vertical scale of the enhanced temperatureL
(T )
‖ and

the length of striations L
(N)
‖ . According to (3.3) the reduced plasma concentration

can be estimated as

∆n ∼ − 2.5
1 + Ti/Te0

L
(T )
‖

L
(N)
‖

∆τ.

The values L
(T )
‖ and L

(N)
‖ should be of the same order. Indeed, in stationary

conditions perturbations of temperature at any point cause variations in plasma
concentration due to the balance of pressure. Hence, the variation of the reduced
plasma concentration in striations is of the same order of magnitude as the variation
of the reduced electron temperature. This means that, at least in the linear approx-
imation, the increase of the reduced temperature ∆τ causes a similar decrease of
the reduced plasma concentration. The system of equations (3.1) and (3.2) reduces
to one equation:

1.6D
(e)
⊥

d2

dx2

∫
∆τ dz − δenνen

∫
∆τ dz = −0.7

∫
QT dz

Te0 + Ti
. (3.4)

The characteristic scale that enters (3.4) is

L∗
⊥ =

(
D

(e)
⊥

δenνen

)1/2

. (3.5)

If the transverse scale of the heating source in the right-hand side of (3.4) is less
than L∗

⊥, the plasma inhomogeneity in stationary conditions still has a scale of the
order of ∼ L∗

⊥. In the opposite case, the transverse scale of the inhomogeneity is
determined by the source∫

∆ndz ≈ −2.5
∫

QT dz

(1 + Ti/Te0)δenνen
. (3.6)
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Integrating (2.14), (2.15) across the magnetic field line, we find an equation for the
longitudinal distribution of inhomogeneity

D
(e)
‖

d2

dz2

∫
∆τ dx − 0.3δenνen

∫
∆τ dx = −0.3

∫
QT dx

Te0
. (3.7)

This equation contains another characteristic scale that is connected to the length
of striations

L∗
‖ =

(
D

(e)
‖

δenνen

)1/2

. (3.8)

Applying a Fourier transform across the magnetic field line of the form

∆nκ(z) =
1

2πL∗
⊥

∫
∆n(x, z) exp i

(
κx

x

L
(∗)
⊥

)
dx,

we arrive at the following equation for the Fourier components of plasma perturb-
ation [

L
(∗)4
‖

d4

dz4
−

(
1.6L

(∗)2
‖

d2

dz2
+ 0.4

)
+ 0.4κ4

x + 0.2κ2
x

]
∆nκ

=
(

0.4κ2
x − 0.6L

(∗)2
‖

d2

dz2

)
Qκ

(δenνen)2(Te0 + Ti)
. (3.9)

Here κx = kxL∗
⊥ is the dimensionless wave number along the x-axis. If the heating

source has a large transverse scale (κ2
x � 1) it follows from (3.9) that the length of

a striation is determined by(
−L

(∗)2
‖

d2

dz2
+ 0.4

)
∆nκ = 0.6

Qκ

(δenνen)2(Te0 + Ti)
. (3.10)

It is seen from (3.10) that the maximal length of a striation in the vertically
homogeneous ionosphere is approximately equal to 3L∗

‖. It is achieved for striations
with not too small transverse scalesL(N)

⊥ > L
(∗)
⊥ . With the decrease of the transverse

scale the length of a striation changes. It is seen that the solution of (3.9) decreasing
for |z| → ∞ takes the form

∆nκ(z)= C1(κx) exp

(
− p1

|z|
L

(∗)
‖

)
+ C2(κx) exp

(
− p2

|z|
L

(∗)
‖

)
, (3.11)

where p1,2 are the following

p2
1,2 = 0.8κ2

x + 0.2 ±
√

0.24κ4
x + 0.16κ2

x + 0.04, (3.12)

and C1(κx), C2(κx) are determined by the source in the right-hand side of (3.9).
It is interesting to mention that the solution (3.11) determines striations with
two different lengths (due to the fact that p1 > p2). The first solution (with the
coefficient p1 in the exponent) describes a striation that is definitely shorter than
a striation with large transverse scale (determined by (3.10)). The second solution
corresponds to a striation with a length that is close enough to the length of a broad
striation. This means that in the general case the length of striations increases with
the growth of the transversal scale. This result is in qualitative agreement with the
experimental data (Frolov et al. 1997).
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It is possible to find an analytical solution of the nonlinear system (2.12), (2.13)
in some approximation. We suppose once more that the background plasma is ver-
tically homogeneous and only perturbations with large transverse scales L

(N)
⊥ � L∗

⊥
are to be considered. In this case a relation between the reduced plasma perturba-
tion n and the electron temperature τ follows from (2.12)

n =
(1 + Ti/Te0)α

(τ + Ti/Te0)α
, α = 1.71. (3.13)

Usually in the F-region of the ionosphere the temperature of ions is smaller than
the temperature of electrons and so the ratio Ti/Te0 � 1 is neglected. After the
substitution of (3.13) into the heat equation (2.13), we arrive at the following
equation

d2f

dζ2
− 0.9

(
f−1/9 − f−2/3

)
= −0.6

∫
QT(x) dz

δenνenTe0
δ(z), (3.14)

where f = τ1.8, ζ = z/L∗
‖. As the length of the temperature perturbation is much

larger than the range of heights where the heating source is localized, we are able to
present the source in the right-hand side of (3.14) as a δ-function. The homogeneous
equation (3.14) reduces to a differential equation of the first order

df

dζ
= ∓

√
2(f8/9 − 1) − 5.4(f1/3 − 1), (3.15)

where the signs ∓ correspond to ζ > 0 and ζ < 0. From (3.14) and (3.15) we arrive
at the following equation for the maximal reduced temperature τ0(x) reached in a
cross section of a striation at ζ = 0

τ1.6
0 − 2.7τ0.6

0 + 1.7 = 0.05
(
∫

QT(z, x) dz)2

(δenνenL∗
‖Te0)

2
. (3.16)

It is seen from (3.16) that with the growth of the heating source power QT the
temperature of electrons also increases. For high powers the maximal reduced
temperature rises as

τ0 ∝
(∫

QT dz

)5/4

. (3.17)

The distribution of the enhanced electron temperature along a striation is obtained
numerically from (3.15). The results of computations are presented in Fig. 1 for
different values τ01 = 3, τ02 = 1.1. It is seen that the length of the perturba-
tion is very large L

(N)
‖ � 100km. It can be even more for a high maximal tem-

perature enhancement τ0 � 1. This conclusion is based on the assumption that
the usual collision frequency νei for electrons can be used. As the plasma inside
striations is in a turbulent state due to the excitation of UHR oscillations, it
is quite obvious that effective collision frequency ν

(eff)
e should be introduced in

our calculations instead of νei. It is well known that the effective collision fre-
quency substantially exceeds the usual collision frequency for high levels of tur-
bulence. Therefore, the length of a striation should be smaller than that obtained
in Fig. 1.
It is important to mention that the distribution of plasma determined by (3.13)

shows that strong enhancement of the electron temperature causes the formation of
a very deep plasma cavity. Since experiments show rather weak plasma depletion
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Figure 1. Solutions of (3.15) for τ01 = 3, τ02 = 1.1.

in striations, our results predict that the reduced temperature enhancement in
striations is also small. Nevertheless, the increase of the background temperature
Te0 compared to the non-disturbed electron temperature in the ionosphere can be
significant.

4. Numerical analysis of the distribution of plasma and electron
temperature in striations

Numerical analysis allows us to consider the full 2D solution of the nonlinear
equations (2.12), (2.13). The purpose of this analysis is to validate the analy-
tical approximations of the previous section and investigate the effect of vertical
inhomogeneity of the ionosphere on the solutions in a basic form. We note that
computational modelling would, in principle, allow a fully self-consistent model of
the development of striations to be constructed. However, many processes must
be taken into account, in particular, the plasma turbulence in the region where
the EM pump wave couples to the upper-hybrid waves. A comprehensive model
would have to simultaneously address small-scale features such as this, and the
propagation of the pumpwave and the plasma transport processes on the large scale.
Before such a model can be constructed it is important to understand at a basic
level the processes involved. Here we confine ourselves to discussing in detail the
nature of the transport processes associated with striations for a specified heating
source.
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Numerical modelling of plasma and electron temperature distribution in the
ionosphere heated by powerful radio waves has been undertaken many times, e.g.
Hansen et al. (1990), Blaunstein (1996, 1997), Guzdar et al. (1998), Gondarenko
et al. (1999). These papers either considered large-scale modification in which trans-
verse transport can be neglected or only included it approximately. In our case,
transverse transport is very important because of the small scale sizes of stri-
ations across the magnetic field and our model fully includes transverse transport
effects.
Equations (2.12) and (2.13) were solved numerically for n and τ using a finite-

difference method on a non-uniform rectangular (x, z) grid. Since (2.13) is nonlinear
in τ , an iterative method was used in which a linearized version of (2.13) was
solved at each step such that the solution converged to the solution of the nonlinear
equation (2.13). The heating source QT is modelled by a two-dimensional Gaussian
function

QT(x, z) = Q0 exp(−(x/L⊥)2 − (z/L‖)2), (4.1)

whereQ0 represents the peak value of the heating source. In the numerical solutions
presented here we take L‖ = 1 km. The coupled equations are to be solved subject
to the boundary conditions n, τ → 1 as |x|, |z| → ∞. Since we cannot have an
infinite grid in our numerical scheme, we approximate these boundary conditions
by requiring n = 1, τ = 1 on the boundary of our solution grid whose limits are
made sufficiently large so as to be effectively at infinity for the case under con-
sideration.
To begin with, we assume that the background plasma is completely homo-

geneous. Except where stated otherwise, we use the following conditions in the
numerical solutions presented here:D(e)

‖ = 6 × 1012 cm2 s−1,D
(e)
⊥ = 330 cm2 s−1, Ti =

1100K, Te0 = 2500K, δ = 1 × 10−3, νen = 40 s−1. These conditions are based on night-
time experiments at Tromsø, Norway and the high value of Te0 represents the
observed bulk-heating of the plasma.
Figure 2 shows the longitudinal distributions of n and τ for striations with

L⊥ = 3 m with different peak values of the heating source. It is clear that increas-
ing the heating power results in hotter striations with deeper density depletions.
We should stress that the large depletions indicated in this figure are not to be
expected in practice and only demonstrate what can be expected for a given heat
source. As noted above, in reality the heating source in a striation (upper-hybrid
waves) is a function of many processes and we do not attempt to self-consistently
estimate it here. It can also be seen that the length of the striations increases
with increasing heating power. For large temperature enhancements, the decay of
temperature and density perturbations along the field line is no longer exponential.
The relationship between the peak electron temperature τ0, peak density depletion
n0 and the heating power is presented in Fig. 3. The temperature enhancement
and density depletion can be seen to be of a similar order as expected. Note
that the curves show some tendency towards saturation as the heating power is
increased.
The effect of changing the transverse scale size of the heating source L⊥ can

be seen in Fig. 4. The longitudinal scale of the temperature and density profiles
L

(T )
‖ and L

(N)
‖ can be seen to increase as the striations become broader. This is

to be expected since, for narrower striations, the effect of transverse heat diffusion
becomes significant compared to longitudinal diffusion and causes the perturbation
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Figure 2. Longitudinal profiles of reduced electron temperature τ (top panel) and reduced
density n (bottom panel) for three different heating powers. Here L⊥ =3m.

to decay more rapidly along the field line. The longitudinal profiles for transverse
scales of 3 and 6 m almost coincide. This demonstrates that once L⊥ exceeds a
certain scale, the transverse scale no longer determines the length of striations. The
transverse distributions of n and τ for L⊥ = 0.5, 1m in Fig. 4 are very similar. This
corresponds to the effect described in Sec. 3 that for scales L⊥ <L∗

⊥, the transverse
scale is dominated by diffusion rather than by the scale of the heating source.
These results are summarized in Fig. 5 which shows the variation of L(T )

‖ and L
(N)
‖

as functions of L⊥. Here we have defined L
(T )
‖ and L

(N)
‖ as being the e-folding

distances of the longitudinal profiles of ∆τ and ∆n, respectively.
The numerical approach allows us to investigate the effects of vertical inhomo-

geneity on the parameters of striations. As discussed in Sec. 2, we may model the
vertical inhomogeneity bymaking the longitudinal diffusion coefficientD(e)

‖ a linear
function of z:

D
(e)
‖ =D

(e)(0)
‖ (1 + z/Lz) (4.2)

where Lz is the vertical scale length of inhomogeneity and D
(e)(0)
‖ is the diffusion

coefficient at z = 0. Figure 6 shows the results of such calculations for different
scales Lz. It is clear that for small Lz, striations are greatly elongated in the topside
ionosphere and shortened in the bottomside.
In Fig. 7 we have investigated the effect of different ionospheric conditions on

the elongation of striations. We have considered two cases intended to represent
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Table 1. Ionospheric conditions used in the solutions of Fig. 7.

Case Te0 (K) Ti (K) D
(e)
‖ (cm2 s−1) D

(e)
⊥ (cm2 s−1) νen (s−1)

Day 1250 1100 3.8 × 1011 1200 75
2500 1100 2.1 × 1012 880 100

Night 1250 1100 1 × 1012 460 30
2500 1100 6 × 1012 330 40

‘typical’ daytime and nighttime conditions. For each of these cases we have con-
sidered two values for the bulk electron temperature Te0. These two values represent
situations with and without the growth of Te0 in the whole heated volume. The
complete sets of conditions used are shown in Table 1. It is clear that a greater
value of Te0 increases the elongation of striations in both daytime and nighttime
conditions. The effect of the factor of two change in Te0 is quite considerable. It is
also evident that striations can be expected to be less elongated in daytime than
nighttime conditions. In addition, we note that the density depletion associated
with the temperature enhancement is of the same order in all cases and is of the
same order as the temperature enhancement itself.
In summary, the numerical results confirm the findings of the simplified analyti-

cal approach. In particular, we find that the length of striations increases with
increasing transverse scale as predicted from the linearized analytical solution.
The numerical approach has also allowed us to investigate the effects of vertical
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inhomogeneity which is necessary in order to compare the theoretical predictions
with observations made in a real ionosphere.

5. Formation of medium-sized plasma irregularities
It is interesting to mention that the equations presented in Sec. 2 also describe
plasma inhomogeneities with quite different transverse scales. To demonstrate
it in the most simple form we assume once more that the plasma is vertically
homogeneous and the perturbations ∆τ , ∆n are weak enough. We present the
total plasma perturbation associated with the heating inside a striation as a sum
∆n = ∆n1 + ∆n2, where ∆n1 is a small-scale plasma depletion (a striation) and
∆n2 is an additional inhomogeneity. Suppose that this inhomogeneity has a rather
large transverse scale L

(N)
⊥ � (νei/ωHe)L

(T )
‖ . We consider such an inhomogeneity

as medium-sized. It will be shown that such inhomogeneities are weaker than
striations |∆n2| � |∆n1|. For small-scale perturbations the results obtained in the
previous sections are valid. Let us consider the distribution of the electron tem-
perature inside a striation as a given function of coordinates ∆τ(x, z). In this case
we have two continuity equations, one each for electrons and ions that contain two
unknown functions∆n and ϕ. In the right-hand side of the continuity equation for
electrons, the temperature enhancement∆τ is present as the source of perturbation.
If the electric potential is eliminated from the continuity equations, we arrive at
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an equation of the fourth order[(
1 +

Ti
Te0

)
D

(e)
⊥ D

(i)
⊥

∂4

∂x4
+

(
2D

(e)
‖ D

(i)
⊥

(
1 +

Ti
Te0

)
∂2

∂z2
− D

(i)
⊥

τr

)
∂2

∂x2

]
∆n

−
[
2D

(i)
‖ D

(e)
‖

(
1 +

Ti
Te0

)
∂4

∂z4
+

2
τr

Ti
Te0

D
(e)
‖

∂2

∂z2

]
∆n

= −
(

2.5D
(e)
⊥

∂2

∂x2
+ 3.4D

(e)
‖

∂2

∂z2

) (
D

(i)
⊥

∂2

∂x2
+ D

(i)
‖

∂2

∂z2

)
∆τ. (5.1)

This equation describes plasma inhomogeneities with two different transverse scales.
Here we are only interested in medium-sized inhomogeneities, for which an approx-
imate equation follows from (5.1):(

D
(i)
⊥

∂2

∂x2
+ D

(i)
‖

∂2

∂z2
− Ti

Ti + Te0

1
τr

)
∆n2 = −3.4

(
D

(i)
⊥

∂2

∂x2
+ D

(i)
‖

∂2

∂x2

)
∆τ. (5.2)

Note that we have retained the lifetime τr in (5.2) because medium-sized irreg-
ularities are not formed as quickly as striations. Taking into account that the
length of the perturbation determined by the longitudinal diffusion of electrons
L

(N)
‖ ∼ (D(e)

‖ /δenνen)1/2 is very large compared to the scale (D(i)
‖ τr)1/2, it is possible

to neglect the longitudinal diffusion in the left-hand side of (5.2). However, we are
not able to neglect the similar term in the right-hand side of (5.2) because the term
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D
(i)
⊥ (∂2/∂x2)∆τ gives no contribution to the formation of a medium-sized plasma

inhomogeneity. As a result we arrive at the equation(
D

(i)
⊥

∂2

∂x2
− Ti

Ti + Te0

1
τr

)
∆n2 = −3.4D

(i)
‖

∂2

∂z2
∆τ. (5.3)

It follows from (5.3) that each striation is surrounded by a medium-sized plasma
depletion. The depletion described by (5.3) is weak. In stationary conditions

∆n ∼ −3.4
D

(i)
‖

D
(e)
‖

τr
τT

∆τ. (5.4)

It is worthwhile to numerically estimate the parameters of a cavity. For typical
values τT ∼ 10 s, τr ∼ 5 × 102 s, we find L

(N)
⊥,i ∼ 100–200 m, ∆n2 ∼ (0.3–1) × 10−3.

Each medium-sized plasma depletion acts as a seed cavity for thermal self-focusing
of the EM pump wave. It is important that seed plasma inhomogeneities are formed
at the heights where striations are developed and not at the bottom of the F-layer.
So, self-focusing should start at such heights (in the vicinity of the UHR level).
This result is in agreement with the experimental data (Bakhmet’eva et al. 1989).
Later on, self-focusing causes significant elongation of medium-sized cavities. It is
possible to expect that in stationary conditions medium-sized depletions extend up
to 100 km below the reflection height of the pump wave as measured by Hedberg
et al. (1983).
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6. Relaxation of artificial plasma irregularities
Our results allow us to investigate the relaxation of AFAI. For this purpose we apply
a Fourier transform to the linearized continuity equations for electrons and ions
and the heat equation. Note that time derivatives should be retained to investigate
the relaxation process. So we start with the following system of equations:

∂∆nk

∂t
+ k2

xD
(e)
⊥ (∆nk − Φk + 2.5∆τk) + 2k2

zD
(e)
‖ (∆nk − Φk + 1.7∆τk) +

∆nk

τr
= 0

(6.1)

∂∆nk

∂t
+ k2

xD
(i)
⊥

(
∆nk +

Te0
Ti

Φk

)
+ k2

zD
(i)
‖

(
∆nk +

Te0
Ti

Φk

)
+

∆nk

τr
= 0 (6.2)

∂∆τk

∂t
+ k2

xD
(e)
⊥ (6.16∆τk + 1.5∆nk − 1.5Φk)

+ k2
zD

(e)
‖ (7.54∆τk + 1.4∆nk − 1.4Φk) +

∆τk

τT
=

QT,k

Te0
, (6.3)
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where Φk = (e/Te0)ϕk, τT = (δenνen)−1 and QT,k is the Fourier transform of the
heating source QT. An important approximate relation follows from (6.1) and (6.2):

η

(
∆nk +

Te0
Ti

Φk

)
= ∆nk − Φk + 1.7∆τk, (6.4)

where η = k2
xD

(i)
⊥ /2k2

zD
(e)
‖ . For small-scale irregularities

L
(N)
⊥ � L

(cr)
⊥ = L

(N)
‖

(
D

(i)
⊥

D
(e)
‖

)1/2

,

the coefficient η is large η � 1. Hence, the following relation between plasma per-
turbation and electric potential applies:

∆nk +
Te0
Ti

Φk = 0. (6.5)

For medium-sized irregularities L
(N)
⊥ � L

(cr)
⊥ the coefficient η is small. In this case,

another relation is valid instead of (6.5):

∆nk − Φk + 1.7∆τk = 0. (6.6)

The critical scale L
(cr)
⊥ can be estimated if we take into account that L

(N)
‖ ≈ L

(T )
‖ ∼

(D(e)
‖ τT)1/2:

L
(cr)
⊥ = (D(i)

⊥ τT)1/2.

In the F-region of the ionosphere,L(cr)
⊥ is of the order of∼ 10m. This is in qualitative

agreement with the experimental data (Frolov et al. 1997).
To investigate the relaxation of a medium-sized depletion, one should substitute

the relation (6.6) into (6.2), (6.3). As a result, we arrive at the equations

∂∆nk

∂t
+

(
1 +

Te0
Ti

)(
k2

xD
(i)
⊥ +k2

zD
(i)
‖

)
∆nk = −1.7

Te0
Ti

(
k2

xD
(i)
⊥ +k2

zD
(i)
‖

)
∆τk (6.7)

∂∆τk

∂t
+

(
5.2k2

xD
(e)
⊥ + k2

zD
(e)
‖

)
∆τk +

∆τk

τT
=

QT,k(t)
Te0

. (6.8)

If the heating source is switched off at t = 0, the relaxation of medium-sized de-
pletions for τr > t > τT is determined according to (6.7) by ambipolar ion diffusion
with coefficient (1+Te0/Ti)D

(i)
⊥ across the magnetic field and (1+Te0/Ti)D

(i)
‖ along

the magnetic field.
To investigate the relaxation of small-scale irregularities L

(N)
‖ � L

(cr)
⊥ we substi-

tute the relation (6.5) into (6.1), (6.3). The equations obtained can be presented in
the form

L̂1∆nk = −
(
2.5k2

xD
(e)
⊥ + 3.4k2

zD
(e)
‖

)
∆τk (6.9)

L̂2∆τk +
(

1 +
Ti
Te0

)(
1.5k2

xD
(e)
⊥ + 1.4k2

zD
(e)
‖

)
∆nk =

QT,k

Te0
(6.10)
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where

L̂1 =
∂

∂t
+

(
1 +

Ti
Te0

)(
k2

xD
(e)
⊥ + 2k2

zD
(e)
‖

)
,

L̂2 =
∂

∂t
+

(
6.16k2

xD
(e)
⊥ + 7.54k2

zD
(e)
‖

)
+

1
τT

.

The system (6.9), (6.10) reduces to one equation describing the relaxation of a
small-scale plasma perturbation

L̂2L̂1∆nk −
(

1 +
Ti
Te0

)(
2.5k2

xD
(e)
⊥ + 3.4k2

zD
(e)
‖

)(
1.5k2

xD
(e)
⊥ + 1.4k2

zD
(e)
‖

)
∆nk = 0.

(6.11)
If we seek the solution of the form ∆nk ∝ exp[−γ(kx, kz)t], an equation of the
second order with respect to γ is obtained. This equation has two different roots
γ1,2 that describe relaxation with two time scales. To find the relaxation law in
the usual space we need to apply the inverse Fourier transform. As the roots are
rather complicated functions γ1,2 = γ1,2(kx, kz) the decay of a small-scale cavity
does not obey the exponential law in the general case. It is important to mention
that the estimate for the critical length L

(cr)
⊥ and the peculiarities of the relaxation

of small-scale and medium-sized irregularities are in qualitative agreement with the
experimental data (Frolov et al. 1997). The detailed comparison with experiments
is beyond the scope of the present paper and will be carried out elsewhere.

7. Discussion and conclusions
The distribution of plasma and the variation of the electron temperature in stri-
ations in stationary conditions were investigated analytically and numerically. It
was found that in all cases the reduced plasma perturbation in striations ∆n is of
the order of the variation of the electron temperature |∆n| ∼ ∆τ. This means that
it is impossible to expect a stationary state of striations with strongly enhanced
electron temperature and very weak plasma depletion. The in-situ observations of
Peria et al. (1999) and Kelley et al. (1995) at Arecibo indicate striations with plasma
depletions on the order of 6% and electron temperature enhancements of ∼100K,
which is likely to be of a similar order as the plasma depletion when the ambient
electron temperature is taken into account. This is in good agreement with our
theoretical predictions. At the same time this result does not prevent a significant
increase of the electron temperature Te0 within the heated volume compared to the
undisturbed temperature. Such an increase is measured by incoherent scattering
(Robinson et al. 1997; Leyser et al. 2000). A possible mechanism of anomalous heat
transfer from striations to the whole heated volume will be discussed in a separate
paper.
We have estimated the typical length of striations as ∼(1–2) × 102 km. This is

much larger than estimated before (Rao and Thome 1974; Korovin et al. 1983;
Jones et al. 1984; Kelley et al. 1995; Frolov et al. 1997). Such an elongation is
connected to a strong localized heat outflow (mainly upward) along the magnetic
field line.
Our conclusion is based on the assumption that the ionospheric turbulence in

the heated volume does not influence the longitudinal diffusion of striations. This
influence could be twofold. First, it might happen that striations are destroyed due
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to instabilities before they reach their stationary state. In this case, the real lifetime
of striations is much smaller than the recombination lifetime τr. Second, due to the
excitation of plasma turbulence in striations, the usual electron collision frequency
νei should be substituted by some effective collision frequency ν

(eff)
e which grows

with the intensity of the excited waves and can exceed the frequency νei many
times. Thus, the longitudinal diffusion and the length of striations are reduced
significantly. To find confirmation of this effect, accurate measurements of the
length of striations are desirable.
We have found numerically how the length of a striation depends on its transverse

scale L
(N)
⊥ . For small values of L(N)

⊥ its increase causes the elongation of striations.
This result is in accordance with the experimental data (Frolov et al. 1997). For
the scales L

(N)
⊥ > 5–6 m, the length of a striation does not depend on its transverse

scale. At the same time the elongation depends on the vertical scale of plasma
inhomogeneity Lz and the increase of the bulk temperature of electrons within
the heated volume. The higher the temperature Te0, the stronger the elongation of
striations.
We have discussed the formation of seed medium-sized irregularities in the vi-

cinity of striations. We predict that depletions start to grow at the heights where
striations are formed and later on become more and more elongated due to the
thermal self-focusing. The predicted dynamics of the medium-sized depletions and
their elongation are in qualitative agreement with the experimental data (Hedberg
et al. 1983; Bakhmet’eva et al. 1989).
Finally, we have investigated the relaxation of small-scale L

(N)
⊥ <L

(cr)
⊥ artificial

plasma irregularities (striations) and we have confirmed theoretically the appear-
ance of two time scales that determine the decay of small-scale irregularities that
is often seen in experiments (Frolov et al., 1997). A more detailed investigation of
the relaxation of small-scale irregularities and comparison with observations will
be the subject of a future paper.
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