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[1] Mobilization of contaminants by CO,-charged brines is one concern relating to injection of CO, as part
of carbon capture and storage projects. This study monitors the mobility of trace metals in an exhumed
CO,-charged aquifer near the town of Green River, Utah (USA), where CO,-charged brines have bleached
red sandstones, and concentrated trace metals at the bleaching reaction front. Mass balance calculations on
the trace metal enrichments are used to calculate time-integrated fluid fluxes and show that a significant
fraction of the metals mobilized by the CO,-rich brines are redeposited locally. A sequential extraction
procedure on metal-enriched samples shows that these metals are incorporated into secondary carbonate
and oxide phases which have been shown to grow at the CO,-promoted bleaching reaction front. We argue
that while CO,-charged brines are capable of mobilizing trace metals, local metal redeposition implies that
the potential for contamination of overlying freshwater aquifers is low.
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1. Introduction

[2] Geological CO, sequestration is proposed as
one method for mitigating the effects of fossil fuel
burning on global climate [e.g., IPCC, 2007]. One
of the outstanding scientific questions relates to
the potential for injected CO, to leak and contam-
inate overlying freshwater aquifers [Gale, 2004;
Smyth et al., 2009]. CO,, injected into geologi-
cal formations in a gaseous or supercritical state,
is likely to dissolve into formation fluids at the
gas-water interface, forming acid brines [Bickle,
2009; Dubacq et al., 2012]. These brines can
mobilize trace metals via desorption of metals
bound to mineral surfaces, or by dissolution
of trace metal-bearing phases [Bradl, 2004; Yin
et al., 1996]. If these brines were to migrate into
overlying freshwater aquifers, then there is con-
cern that drinking water supplies could be affected.
Models [Wilkin and DiGiulio, 2010; Zheng et al.,
2009] and experiments [Little and Jackson, 2010;
Lu et al., 2010] have shown that CO, can mobi-
lize trace metals; however, field experiments have
not shown hazardous levels of contamination
[Keating et al., 2010; Kharaka et al., 2010].
Of critical importance is whether the mobilized
metals remain in solution or are redeposited
locally.

[3] CO, has been escaping along the Little
Grand Wash and Salt Wash grabens for at least
400,000 years, based on U-Th dating of surface car-
bonate deposits. [Kampman et al., 2012; Dockrill
and Shipton, 2010]. Near the town of Green River,
Utah, the red-bed Entrada sandstone, exposed by
the Salt Wash graben, exhibits spectacular bleach-
ing in which hematite grain coatings are removed
and trace metals released from the grain coat-
ings are concentrated at the bleaching reaction
front (Figure 1). Wigley et al. [2012] argue that
the bleaching results from inputs of CO,-charged
brines along the Salt Wash fault, distinguishing
the site from hydrocarbon-related bleached sand-
stones elsewhere on the Colorado Plateau [Wigley
etal.,2012; Loope et al., 2010; Beitler et al., 2005,
2003; Garden et al., 2001; Chan et al., 2000].
The CO,-promoted reaction fronts are used as an
analogue for processes occurring where CO, leaks
from injection sites into overlying aquifers. Here
we quantify trace metal enrichments and corre-
sponding time-integrated fluid fluxes [Bickle and
Baker, 1990] at the bleaching reaction fronts, and
use these to calculate the fraction of mobilized
metals which have been redeposited. This allows
an estimate to be made of the concentration of

metals in the solution leaving the CO,-promoted
reaction front.

1.1. Green River Natural Analogue Site

[4] Within the field area, the Jurassic Entrada sand-
stone is a well-sorted sediment of uniform grain
size and mineralogy. Regional burial diagenesis
includes the development of Fe-oxide grain coat-
ings [Cullers, 1995; Trimble, 1978], giving the rock
its red color. Along the axis of the Green River anti-
cline, the Entrada sandstone has been bleached by
diagenetic fluids which have dissolved the Fe-oxide
grain coatings [Wigley et al., 2012]. Bleaching
occurs at the base of the formation in a broad domal
structure and exposed over a 1-2 km east-west
section along the Salt Wash graben (Figure 2a).

[s] Bleaching of red bed sandstones is a common
worldwide occurrence, with the bleaching being
a result of acid-reductive dissolution of hematite
grain coatings, and mobilization of otherwise insol-
uble Fe*™ to soluble Fe*?. Such fluid-rock reaction
may be promoted by a wide range of common
volatile species (CH4, CO,, H,S, hydrocarbons,
and organic acids) present in geological fluids that
modify fluid Eh-pH. Several lines of evidence sug-
gest that the fluid causing the bleaching of the
Entrada sandstone in the Salt Wash graben was a
CO,-charged brine with minor methane.

[¢] Calcite cements and veins associated with the
Green River bleaching have a heavier §'°C than
hydrocarbon-related bleaching, consistent with
deposition from isotopically heavy C-rich fluids,
similar to those in the modern, actively leaking
CO, system at Green River that underlies the
study site [4ssayag et al., 2009; Kampman et al.,
2009], but inconsistent with isotopically light
methane-saturated fluids. Mobilization of low pH-
soluble trace metals is inconsistent with methane-
rich fluids which have pH 7.6 when saturated with
Fe-oxides (Figure S1 in the supporting informa-
tion).! Regionally, such bleaching is typically local-
ized to structural highs, implicating a low density
methane-saturated bleaching fluid. At Green River,
bleaching is restricted to the base of the formation,
and the morphology of bleached zone is consistent
with the flow of a dense fluid as a gravity current,
discrediting the role of buoyant methane-saturated
bleaching fluids. If the bleaching fluids contained
significant H,S, then hematite would be immedi-
ately reprecipitated in situ as pyrite and would not

! All supporting information may be found in the online version of
this article.
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Figure 1. (A) Google earth image of the area of bleached sandstones near the town of Green River, Utah. Dotted
gray line shows the extent of the bleaching. Black dashed lines show faults, and solid black arrows mark the Green
River anticline. (B) Map of Utah describing the location of the field area. Grey rectangle shows the area in Figure 1A.
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Figure 2. Illustration and outcrop photos of the exhumed CO, reservoir. (a) Bleaching at the crest of the anticline,
facing north. (b) Schematic development of bleached sandstone (yellow) in original sandstones (red). CO, (or CO,-
rich brine) migrated into the formation near the crest of the Green River anticline along faults and flowed laterally
as a gravity current. A CO,-promoted bleaching front (dotted lines) propagated laterally by advection and vertically
by diffusion. (d) The preserved reaction front is subhorizontal and exhibits cuspate regions associated with open frac-
tures and granulation seams. (c) Bleached halos develop around vertical fractures. (¢) Sampling across subhorizontal
reaction fronts.
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(A) Close up of the region 1200-1800 cm™' for the Raman spectra of the host and the vapor phase of a

fluid inclusion in a quartz overgrowth from bleached Entrada sandstone. The CO, peaks are marked, along with the
Fremi-diad split which is used to calculate a range in CO, partial pressures in the bleaching fluid. (B) Plane polarized
light image of fluid inclusions hosted in a quartz overgrowth from bleached sandstones.

result in the observed Fe depletion. While some
pyrite is observed in fractures, the lack of pyrite
(or its Fe-bearing weathering products) throughout
the bleached sandstones precludes involvement of
significant H,S.

[7] Microthermometry of single-phase aqueous
and two-phase liquid-vapor fluid inclusions hosted
in quartz overgrowths and gypsum, petrographi-
cally linked to the bleaching, suggests that the
bleaching fluid was a low temperature (= 27°C)
brine (salinity 2.5-7 wt%) [Wigley et al., 2012].
Raman spectroscopic analysis of successfully tar-
geted vapor bubbles reveals gas-phase composi-
tions dominated by CO,, with minor methane
(11-27 vol%) present in three inclusions (Figure 3)
[Wigley et al., 2012]. The presence of a free-phase
CO, bubble suggests the aqueous phase is saturated
with CO, at the inclusion pressure. The magnitude
of the Fermi-diad separation in the Raman spectra
of CO, is sensitive to the CO, density, and this sep-
aration has been experimentally calibrated for CO,
density in the vapor phase, for gaseous CO, to lig-
uid CO,, in the density range of 0.01-1.20 g/cm’
[Rosso and Bodnar, 1995]. Similarly, the Raman
peak position of the symmetric C—H stretching
mode in CH, is dependent on pressure, in CH, bear-
ing inclusions [Lu et al., 2007]. Measurements of
the Fermi-diad separation in CO, spectra reveals
CO, densities of 0.04-0.09 £0.02 g/cm*® which
equates to CO, pressures of 2.28-4.56 +1.03 MPa
and formation depths of 202-413 +97 m, assum-
ing hydrostatic pressures. Inclusion pressures based
on Raman peak position in CH4 bearing inclu-
sions [Lu et al., 2007] reveal inclusion pressures

of 2.59-3.98 +1.34 MPa. At these inclusion, pres-
sures dissolved CO, concentrations in equilibrium
with a CO, vapor phase are 0.65—1.30 mol/L, based
on the solubility models of Duan et al. [2006].
Based on burial curves for the Entrada Sandstone in
the area surrounding Green River [Nuccio, 2000],
modified for local variations in burial depth due
to the structural high formed by the Green River
anticline, the interval from which these samples
were taken passed through the burial depth range
200400 97 m between 2.1 and 5.5 £1.5 Ma,
and this gives an approximate age of the bleaching
event.

[s] The upper bleached-red contact is sharp and
subhorizontal except in regions of fractures and
granulation seams, where differences in porosity
and tortuosity enhance or retard vertical transport
of the reaction front, respectively (Figures 2b—2c).
To the east, the bleached zone terminates as a series
of meter scale fingers into red sandstones, while
the western extent is not exposed. It is thought that
the CO,-rich brine migrated as a gravity current,
with the main components of flow to the east, down
dip and in the direction of regional groundwater
flow [Kampman et al., 2009], with vertical transport
dominated by diffusion except in areas containing
faults and open fractures (Figure 2b) [ Wigley et al.
2012].

[v] The contact between bleached and unbleached
sandstone is characterized by stepped profiles
in bulk rock Fe-concentration, hematite and K-
feldspar abundances, which occur over 10—15 cm,
and demarc the final position of the acid-reductive
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Figure 4. (A-I) Concentration profiles for selected metals across horizontal reaction fronts (distances from the red-

bleached transition) and (J-L) fracture-associated reaction fronts (distances from the core of the fracture). Red color
denotes unaltered rock, yellow is bleached sandstone. (A—C) Cobalt from transects H1, H4, and H2 showing systematic
enrichment within 10 cm of the bleaching reaction front. (C—H) Enrichments in metals along profile H2; (D) Cu,
(E) Zn, (F) Ni, (G) Pb, (H) Sn. (I-L) Enrichments across fracture-associated bleaching reaction fronts. (I) Cu, F1;
(J) Co, F1; (K) Sn, F1; (L) Cu, F2 and F3. Background concentrations in red and bleached rock are indicated. Error
bars show 20 propagated uncertainties including recovery relative to U.S. Geological Survey (USGS) standard Sco-1,
repeat averages, and instrument uncertainties. Raw data and sampling localities are given in Tables S3 and S4.

front. A fine intergrowth of oxide and carbonate is
deposited in a 2-3 cm region spanning the reaction
front [Wigley et al., 2012]. Bulk rock trace metal
enrichments occur systematically in a narrow zone
within 5-10 cm of the upper subhorizontal contact

(Figure 4a—4h), due to release of trace metals as

et al., 2012]. The

grain coating Fe-oxides were dissolved, with sub-
sequent redeposition at the reaction front [Wigley

enriched metals are character-

istic in having high solubilities at low pH [e.g.,
Benjamin and Leckie, 1981], and this mobilization-

redeposition is thought to be fundamentally driven
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by acid-reductive dissolution of the Fe-oxide grain
coatings at low pH, with subsequent transport of
the trace metals in solution and redeposition at the
reaction front as pH rises due to a combination
of pH buffering silicate dissolution reactions and
secondary mineralization. The scale of enrichments
is determined by the volume of fluid that inter-
acted with the reaction front, which had previously
reacted with unaltered rock.

[10] Bleaching also occurs around open fractures
(Figure 2c), which are mineralized with carbonate
and Fe-oxides, and exhibits the same geochemi-
cal and petrological signatures as the subhorizontal
bleaching contacts, indicating a common parent
fluid and continuity in reactive-transport processes.
The fracture-associated bleaching reaction front ini-
tiated at the plane of the fracture and migrated
laterally by diffusion and advection of the fluid.
The asymmetry of the bleached halos is due to the
transport away from the fractures being imposed
on unidirectional horizontal regional flow in the
aquifer [Wigley et al., 2013]. Spikes in trace-metal
concentration are observed within 5-10 cm of the
red-bleached transition adjacent to the fractures
(Figures 4i—4l), similar to those across subhori-
zontal contacts. These are assumed to be related
to deposition of metals released by the bleaching
reaction front as it propagates from the fracture,
in addition to any metals present in the bleaching
fluid entering the fracture, due to the increase in pH
across the reaction front.

[11] Key questions include the following: (1) What
was the original distribution of the metals? (2) How,
and in which phases, are the metals redeposited?
(3) What fraction of the mobilized metals is rede-
posited? (4) Does the concentration of metals in the
fluid exceed drinking water guidelines?

2. Methods

2.1. Sampling and Analytical Methods

[12] Profiles from bleached to unbleached sand-
stones were cored using an electric diamond-edged
40 mm core plug drill, with samples spaced at
2—-15 cm intervals. Samples near to the bleached-
red contact were subsampled every 4 mm using a
2 mm tungsten-carbide drill bit. Between drilling,
the bit and core were cleaned with compressed
air. Samples were dissolved in HF and HNO;
using an open beaker method, and analyzed by
inductively coupled plasma (ICP)-atomic emission
spectroscopy (major elements) and ICP-mass spec-
trometry (trace elements) in Cambridge, UK.

2.2. Mass of Metals in Enriched Zones

[13] The mass of a metal in the enriched region
is determined by integrating across the enriched
zone, assuming a stepped concentration profile.
Uncertainties are estimated by propagating the
uncertainties on the background and enriched com-
positions. The background compositions are taken
as the average within the bleached zone (bleached
sandstone), and the average composition of red
sandstone near to the bleached fracture (unaltered
sandstone; 1o uncertainty; Table S1). The uncer-
tainty in peak height is propagated lo instrument
uncertainty, lo of repeat analyses, and recovery rel-
ative to USGS standard Sco-1 (Table S2). The range
in the fraction of each metal redeposited is cal-
culated from a Monte-Carlo simulation (» =1000)
where each parameter listed above is allowed to
vary within its range in uncertainty, and the range
is given by lo about the mean of the resulting
distribution.

2.3. Sequential Extraction

[14] The nature of the minerals hosting the rede-
posited metals was determined by a sequential
extraction procedure (modified from Tessier et al.,
1979 and Forstner, 1982) applied to a selec-
tion of unaltered and bleached samples and to
metal-enriched samples from subhorizontal reac-
tion fronts. Leaching was performed at room tem-
perature in five steps: (1) Water rinse: 1.5 mL
deionized 18.2 M2 water with continuous agita-
tion for 2 h. (2) Exchangeable fraction: 1.5 mL 1 M
sodium acetate solution (NaOAc) at pH 8.2, with
continuous agitation for 3 h. (3) Carbonates: 1.5 mL
1 M NaOAc adjusted to pH 5 with acetic acid
(HOAC), with continuous agitation for 7 h, repeated
three times. (4) Oxides: 1.5 mL 0.1 M oxalate buffer
adjusted to pH 3 with oxalic acid. Occasional agi-
tation for 54 h, repeated three times. (5) HCI rinse
(remaining carbonate/oxides): 1.5 mL 16 M HCI
with continuous agitation for 2.5 h.

[15] After each leach, the sample was centrifuged
for 30 min at 3000 rpm, and the liquid pipetted care-
fully into a cleaned centrifuge tube. The sample was
then rinsed with 18.2 M2 water, recentrifuged, and
the rinse added to the leachate solution. After the
final leaching step, the residue was dried down and
dissolved in a combination of HF and HNO; in an
open beaker method. The leachate solutions were
evaporated to dryness and redissolved in a dilute
nitric acid solution.

[16] The number of moles of a mineral phase
dissolved in each sequential leaching step was
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Table 1. Fraction of Each Mineral Released in Sequential Leaching Steps®
Average Fraction Released
18.2 M2 Water Rinse Exchangeable Leach Carbonate Leach Oxide Leach HCI Leach
Quartz 0.00 (0) 0.02 (1) 0.00 (0) 0.03 (1) 0.00 (0)
K-feldspar 0.10 (2) 0.17 (6) 0.01 (1) 0.12 (5) 0.01 (1)
Plagioclase 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.01 (0)
Clay 0.07 (1) 0.19 (7) 0.01 (0) 0.34 (12) 0.04 (1)
Calcite 0.04 (1) 0.23 (8) 0.63 (5) 0.00 (0) 0.84 (24)
Dolomite 0.05 (1) 0.05 (2) 0.18 (1) 0.17 (6) 0.04 (1)
Fe-dolomite 0.00 (0) 0.01 (0) 0.14 (1) 0.00 (0) 0.00 (0)
Hematite 0.00 (0) 0.00 (0) 0.01 (0) 0.29 (11) 0.06 (2)
Pyrite 0.00 (0) 0.00 (0) 0.00 (0) 0.04 (2) 0.00 (0)
Gypsum 0.73 (12) 0.34 (13) 0.02 (0) 0.00 (0) 0.00 (0)
TiO, 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

*Numbers in parentheses are 1o uncertainties for the last digit, calculated from the magnitude of the misfit to bulk rock values.

determined by a modal decomposition of the com-
positions of the leachate solutions. This was done
by minimizing the difference between theoretical
and observed compositions by varying the moles
of each mineral dissolved. Mineral compositions of
plagioclase, K-feldspar, and carbonates are taken
from electron microprobe analyses (Table S5).
An average clay composition is used based on the
major element chemistry of the < 2um fraction
(Al 4Cag,Fe) 5K sMgo 1 Nag 2 Si3 5010(OH),; recal-
culated to a 12 oxygen formula). Fe and Ti-oxides,
pyrite and quartz are assumed to exist as pure
phases.

3. Results and Discussion

3.1. Phases Dissolved During

Sequential Extraction

[17] The results of the modal decomposition of
sequential leaching solutions are shown in Table 1.
The water rinse predominantly dissolves soluble
salts, releasing up to 86% of available S with a
Ca/S ratio of 1. Modal analysis on water rinse
solutions shows that 75% of all minerals dissolved
in this step are gypsum (Table 1). The exchange-
able leach removes residual soluble salts and minor
amounts of calcite and silicates. It also removes
loosely adsorbed cations: in some samples, up to
60% of total Sr is removed in this step. Up to
80% total Ca and 60% total Mg are removed in
the carbonate leach indicating dissolution of calcite
and dolomite. Approximately 95% of minerals dis-
solved are carbonates. The oxide leach removes up
to 60% of total Fe with a greater fraction released
in bleached samples, reflecting the dissolution of
secondary coarse oxide phases rather than grain
coating oxy-hydroxides. Approximately 30% of the

minerals dissolved are Fe-oxides, along with some
clays and residual dolomite. A moderate correlation
(R? =0.34) between Fe and S suggests dissolution
of minor pyrite; however, an Fe/S ratio of ~100
precludes pyrite dissolution as the dominant con-
trol on the Fe content of the leachate solution. The
hydrochloric acid leach dissolves residual carbon-
ate and oxide phases, and minor silicates. A larger
fraction of total Fe is released in unaltered samples
in this step, reflecting partial dissolution of the grain
coating oxy-hydroxide phases.

3.1.1. Location of Redeposited Metals

[18] The results of the sequential extraction exper-
iments are typified by cobalt (Co; Figure 5).
In both bleached and unbleached samples where
no enrichment is observed, Co is released from
carbonate, oxides, and by dissolution of the
residue (Figure 5a), indicating an equal distribu-
tion between carbonate, coarse oxides, and grain-
coating phases. In samples with bulk rock Co
enrichment, the Co released in the steps dissolving
carbonate and oxide phases is two orders of mag-
nitude greater than background values (Figure 5b).
Redeposited trace metals are therefore incorporated
into the secondary oxides and carbonates growing
at the bleaching reaction front [ Wigley et al., 2012].

3.2. Fraction of Mobilized
Metals Redeposited

[19] The minimum fraction of each trace metal
redeposited can be calculated from bleached halos
surrounding fractures where the displacement dis-
tance of the reaction front is given by the per-
pendicular distance of the front from the fracture.
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Figure 5. Results of sequential leaching for Co.
(a) Mass of Co released in three samples without metal
enrichment: two samples of unaltered sandstone and one
sample of bleached sandstone 50 cm below the reac-
tion front. Co is widely distributed between phases.
(b) Mass of Co released in each leaching step for two
samples which show enrichment in Co. Transect name,
and distance from the red-bleached transition are given
(positive numbers indicate unaltered rock). Note the dif-
ferent scales on the two graphs. Error bars are 20 prop-
agated recoveries relative to bulk rock concentrations
and instrument uncertainties. Major and trace element
composition of leaches are given in Table S6.

The theoretical mass of a metal mobilized along
a one-dimensional path is given by the difference
between the background concentrations in the red
and bleached sandstones, and the displacement dis-
tance. The ratio of the predicted to observed mass
of metal in the enriched zone gives a measure of
the fraction of that metal redeposited at the reaction
front.

[20] Some metals analyzed (Cu, V1; Zn, V2 and
V3) exhibit redeposited fractions close to unity,

with the adsorbed mass being within error of the
total mass dissolved (Table 2). Others (Cu, V2 and
V3; Co, V1) show enrichment relative to the mass
dissolved by propagation of the reaction front from
the fracture. The true value lies in the upper range of
calculated results as the sampling may have missed
peaks in concentration, thus underestimating the
mass of metal that has been redeposited. Fluids
entering the fractures have previously reacted with
unaltered rock and may therefore be enriched in
metals and these, along with metals mobilized by
the reaction front moving away from the fracture,
are all redeposited.

[21] Metals in solution exist either as free-metal
cations or metal-anion complexes (e.g., with
OH’, HCO;y, or CI'). Speciation modeling using
the geochemical speciation program PHREEQC
[Parkhurst and Appelo, 1999] with the Lawrence
Livermore National Laboratory database [Johnson
et al., 2000], using the calculated range in Pco,
and salinity and assuming equilibrium with calcite,
suggests that Sn, Zn, and Co exist as uncom-
plexed species, with a minor fraction of Co and
Zn complexing with chloride and Zn also form-
ing carbonate complexes (Figure S2); Cu speciation
is dominated by chloride species. Realistic varia-
tions in methane concentrations do not significantly
change metal speciation profiles. This shows that
metal complexation does not play a major role
in the redeposition process, as metals complexing
with hydroxyl, carbonate, and chloride anions as
well as free metal cations are all redeposited at the
CO,-promoted reaction fronts.

—+— [cCu
meantle  [T]Sn [ Zn

CINi  [@Pb

N

Distance (m)

B Co

Frequency
S [\ B

.°

.1

Figure 6. Calculated vertical distances moved by the
subhorizontal bleaching reaction front. Colors repre-
sent calculations of different metal enrichments. Uncer-
tainties are lo of background uncertainties in red
and bleached sandstone propagated with peak height
uncertainties.
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Table 2. Enrichment Factors, Fractions of Each Metal Redeposited, TIFF, and Calculated Fluid Concentrations for

the Fracture-Associated Bleaching Reaction Fronts?

Advective Enrichment Fraction TIFF Enriched Av. Fluid

Metal Transect Distance (m) Factor Redeposited (m?/m?) Zone Width (m) Concentration (mg/L)
Cu V1 0.51 18 (1) 0.6 (4) 13.0 0.006 0.117

V2 0.08 20 (5) 2.8 (20) 2.0 0.01 0.342

V3 0.07 7(2) 3.4 (24) 1.7 0.006 0.579
Zn V2 0.08 8(3) 0.9 (5) 2.0 0.008 0.294

V3 0.07 3() 1.3 (8) 1.7 0.008 0.436
Co V1 0.51 21 (1) 2.8 (17) 13.0 0.006 0.029
Sn V1 0.51 12 (3) 0.4 (3) 13.0 0.006 0.007

*Numbers in parentheses are 10 uncertainties on the last digit. Uncertainties for fraction readsorbed and enrichments are 1o of background
uncertainties in red and bleached sandstone propagated with peak height uncertainties.

[22] Transport of mobilized metals is thus con-
trolled by the distance moved by CO,-promoted
reaction fronts, rather than by the distance moved
by the fluid. The difference between these length
scales is controlled by the stoichiometry and kinet-
ics of the fluid-rock reactions, and therefore the
mineralogy of the host formation. In nonreactive
reservoirs, mobilized metals will be transported fur-
ther; however, such reservoirs are less likely to
contain significant quantities of contaminants.

3.3. Vertical Transport Distances Across
Subhorizontal Reaction Fronts

[23] The observation that the metals removed from
the bleached sandstone are quantitatively rede-
posited can be used to calculate transport distances
perpendicular to the subhorizontal reaction fronts.
The length of rock bleached by the fluid inter-
acting with horizontal reaction fronts is calculated
using the difference in background concentration in
bleached and unbleached samples and the mass of
each metal deposited at the reaction front, assum-
ing 100% redeposition (/! = M/AC; where [ is
the length of rock bleached (m), M is the mass of
the metal in the enrichment (mol m2), and AC
(mol m™) is the difference in background con-
centrations between red and bleached sandstone).
Some metals may have been removed by the sub-
horizontal advection of the gravity current although
this flux may decrease near the margin of a grav-
ity current. If so the calculation underestimates the
transport distance. Four transects across horizon-
tal reaction fronts were analyzed (H1-4), and the
length of rock bleached for each unit area of reac-
tion front is low (<0.35 m; Figure 6), consistent
with the CO,-rich brine migrating as a gravity cur-
rent with vertical motion dominated by diffusive
processes except near open fractures.

3.4. Potential Impact on Water Quality

[24] The enrichment of metals in the fluid is cal-
culated from the mass of metal deposited at the
reaction front and the volume of fluid required to
transport this mass. The time integrated fluid flux
(TIFF, the volume of fluid that has interacted with
the reaction front) is calculated from the retardation
factor (R) and the distance the front is displaced
(Table 2). R is defined as the volume of fluid
required to displace the reaction front through a unit
volume of rock, and is estimated from the reaction
stoichiometry and change in brine-CO, concentra-
tion across the reaction front. TIFF is then given
by R x distance, i.e., the volume of fluid required
to displace the reaction front through the observed
volume of rock.

[25] Metal concentrations in the fluid (C,,; mol m)
as the reaction front propagates are given by the
following:

F
Cm* -

= F7f (1

where F,, is the metal flux (mol m™ s™), and F,
is the fluid flux (m s™). The time-averaged metal
flux is given by the mass of metal in the enrich-
ment (mol/m? reaction front); and the TIFF is the
corresponding F, (m*/m?; Table 2).

[26] Calculated concentrations of Cu and Zn are an
order of magnitude below the World Health Orga-
nization (WHO) drinking water limit (Cu: 2 mg/L,
Zn: 5 mg/L) [WHO, 2011], and Sn concentra-
tions are well below acceptable limits (150 mg/L)
[WHO, 2003]. No guidelines exist for Co; however,
calculated Co concentrations are 10 times the aver-
age composition of U.S. freshwater [ATSDR, 2004]
(a worked example is presented in Appendix A).
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Figure 7. Schematic description of a CO, injection site. If CO, migrates into overlying groundwater systems with
low natural fluid flow rates, then conditions may be similar to those in the Green River analogue site where the low
transport rates mean that reaction fronts retard the potential transport of metals.

4. Concluding Remarks

[27] The reaction fronts studied here, where fluid
velocities are low and diffusive processes are
important, have a high Damkohler number (Np; the
ratio of reaction rate to rate of advection) and a
low Peclet number (Pe; the ratio of advective to
diffusive transport). The high injection pressures in
CO,-storage reservoirs will result in high rates of
advection, and consequently CO,-promoted reac-
tion fronts will have a lower Np and a higher Pe
than those documented here. However, much of the
concern over contaminant mobilization relates to
migration of CO, into overlying aquifers where the
groundwater flow rates are likely to be considerably
lower (Figure 7), being dominated by regional gra-
dients in hydraulic head, such that reaction fronts
have a transport characteristic comparable to those
studied here. In this context, our results show
that mobilized metals are redeposited over small
length scales in secondary phases precipitating at
the CO,-promoted reaction fronts. Fundamentally,
this redeposition process is thought to be driven
by buffering of pH by fluid-rock reactions at the
reaction front, although a full reactive-transport
description of the system is required to fully
evaluate the redeposition process. Fluxes of CO,-
charged waters of approximately 25 times the vol-
ume of an aquifer of the composition of the Entrada
sandstone would be required for reaction fronts to
pass through the aquifer and for mobile trace metals
to be extracted.
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Appendix A: Calculating Metal
Concentrations in the Fluid:

A Worked Example

[29] Calculation of the concentration of a metal in
the fluid leaving the reaction front requires an esti-
mate of the retardation factor of the formation and
knowledge of the distance moved by the reaction
front and the mass of the metal under consideration
deposited at the reaction front.

[30] The retardation factor, R, is given by the
following:
R= Mem-S
ACO,
where Mpen 1S the number of moles of hematite
per m® formation (/~40 moles/m?®), S is the num-
ber of moles of CO, needed to dissolve 1 mole of
hematite (/3.2) [Wigley et al., 2012], and ACO,
is the change in CO, concentration in the fluid
across the reaction front (~5 mol/m?®) [Wigley et al.,
2012]. This gives a retardation factor of approxi-
mately 25.6.

(AD)

[31] The metal concentration is given by the metal
flux divided by the fluid flux (equation (1)). By inte-
grating over the duration of the bleaching event, this
reduces to the following:

Concentration = (A2)

TIFF

where M is the mass of metal at the reaction front
(kg/m?) and TIFF is the time integrated fluid flux
(m*/m?), which is given by: RxX, where X is the
distance moved by the reaction front (m).
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[32] The mass of copper deposited at reaction front
V1 is 0.00152 kg/m?, and the reaction front has
moved 0.506 m. The corresponding TIFF is there-
fore 13 m’/m?, and the concentration of copper
in the fluid as the reaction front propagates is
0.000117 kg/m? or 0.117 mg/L.
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