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Abstract

Research into localisation and tracking of pedestrians is a growing area, but

developed techniques have tended to be infrastructure-based or to rely on access

to prior information such as floorplans and maps. There are situations, such as

search and rescue missions, where more robust and versatile self-contained locali-

sation systems are desirable. To our knowledge, this a relatively unexplored area

of research. Relative localisation, involving only objects in the vicinity of the tar-

get being tracked, offers a partial solution by not requiring any infrastructure. We

demonstrate and discuss some techniques based on this approach, and develop an

algorithm suitable for tracking highly mobile sensor networks. We also highlight

its limitations and look for complementary solutions. Pedestrian dead reckoning

(PDR) based on foot-mounted inertial sensors is a promising method which we de-

scribe in detail, including its inherent flaws. We combine the dead reckoning and

sensor node techniques to perform simultaneous localisation and mapping (SLAM)

for pedestrians in indoor environments. Finally, we include our SLAM algorithm

in a complete navigation solution which we evaluate in a virtual environment.

This study allows us to offer insight into problems and opportunities offered by

these technologies and their application in the field of pedestrian navigation in

uninstrumented and unknown environments. We describe the potential offered by

tracking and navigation once they are no longer dependent on infrastructure, pre-

deployment, or prior knowledge of an area.
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Chapter 1

Introduction

Localisation systems represent a significant area of current scientific and industrial

research. Knowing the location of users, robots, sensors or specific objects can en-

hance existing computer-based applications and opens up new possibilities to assist

humans and to automate tasks. There are applications in robotics (Thrun et al.,

2000), ubiquitous and mobile computing (Duff et al., 2005), and wireless sensor

networks (Niewiadomska-Szynkiewicz et al., 2009), and research into localisation

systems covers a range of aspects including data processing algorithms (Giremus

and Tourneret, 2006), sensing and measurement hardware (Belloni et al., 2009),

and the effects of localisation information on the user experience (Mahmud et al.,

2009). Some form of localisation is essential for autonomous vehicles such as mil-

itary drones or the cars of the DARPA Grand Challenge (Urmson et al., 2008);

smartphones typically include several apps which make use of the embedded GPS

receiver for localisation; and navigation aids for the visually impaired (Jacquet

et al., 2004) rely on sensing their location. Thus, localisation is a key part of mod-

ern computer systems.

Localisation facilitates other fields of scientific research and industrial opera-

tions: for instance, monitoring the environmental conditions in a field of crops

1



1. Introduction Problem 2

(Hwang et al., 2010), or the movements (Steiner et al., 2000) and interactions (Men-

nill et al., 2012) of certain animals, optimising gully cleaning operations1, or guiding

medical tools to perform delicate surgical operations (Bandala and Joyce, 2007),

These tasks are made possible, or easier, or more reliable, thanks to developments

in localisation systems.

These systems also provide a platform for testing and further developing hard-

ware and algorithms that are useful for other activities. Researchers developing

localisation systems rely on communication channels (Stojanovic et al., 2002), net-

working algorithms (He et al., 2004), and sensor hardware, and are faced with lim-

itations in each of these areas. New developments then overcome these limitations,

and the improvements are made available to the wider research community.

1.1 Localisation and tracking: an unsolved prob-

lem

Localisation appears to be a solved problem in some contexts, but there are many

more where existing solutions do not apply. A number of commercial products

already support localisation, and many research projects have already suggested

ways of estimating location indoors. GPS is a common solution to outdoor localisa-

tion problems. From the end user’s point of view, it does not rely on any particular

infrastructure or esoteric hardware. However, it does not function well when the

receiver is indoors and satellites are out of view, and generally does not provide

the resolution required for indoor navigation. Specialised localisation systems pre-

installed in a building, or existing infrastructure, such as wifi access points, can

provide, or at least contribute, to a solution. But in many places, this infrastruc-

ture does not exist at all, is insufficient or may be damaged. For instance, caves,

tunnels, or derelict buildings are unlikely to contain even a functional electrical

1http://www.intouch-ltd.com/gully_cleaning.asp (Accessed 2012.09.24.)

http://www.intouch-ltd.com/gully_cleaning.asp
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supply, let alone a high-tech localisation system. The same applies to localisation

systems which rely on maps and floorplans. The structures where location infor-

mation would be most useful may well be those for which plans are unavailable or

outdated.

Activities such as firefighting, urban search and rescue, or underground explo-

ration present particular challenges when it comes to estimating location. The

environment is shielded from radio signals. This makes communication difficult,

and localisation based on GPS satellites or other radio transmitters deployed out-

side becomes unreliable. It also makes it difficult to deploy any devices directly

into the area of interest (e.g., dropped from a plane) without first entering and

exploring it. In most cases, there will not be any specialised localisation system,

and any existing infrastructure will be unreliable due to the conditions. Maps and

plans can be a tactical asset when they are available, but they can also be mislead-

ing as they cannot indicate passages which are blocked by a collapsed roof, walls

which have been broken through, or areas which have never been mapped.

We focus our research on localisation in environments with the following char-

acteristics:

Uninstrumented: No existing localisation or communication system. This in-

cludes indoor environments with no GPS or communication with outside,

and restricted access.

Unknown: No floorplans, maps, or other prior knowledge. No assumptions about

the existence or geometry of corridors, stairs, or doorways (unstructured).

The terms localisation, tracking and navigation appear frequently in the litera-

ture, and are often used interchangeably. In our work, the distinction is important

due to the lack of absolute frame of reference, so we define the terms here. Lo-

calisation refers to determining the position of a person or object at a particular
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instant. When we estimate its position over time by logging movement (rather than

positions) (Fischer et al., 2013), we prefer the term tracking. We can also track a

target by successively performing localisation at several points, or by modeling its

trajectory (Park et al., 2008). Navigation is providing the user with directions to

help them achieve their goal, which could be reaching a particular location, follow-

ing a path, or avoiding obstacles. A navigation system could use localisation and

tracking information along with a map to provide guidance. But a person could

also follow directions from one waypoint to the next in the absence of a complete

map. In many cases, we will take the term position to include both the spatial

coordinates and the orientation. The orientation relative to the environment is es-

sential when providing navigation support as the direction in which we guide the

user depends on it. Throughout this thesis, we emphasise the distinction between

relative and absolute localisation. The exact difference is context dependent, and

it could be argued that all localisation is relative. However, for the purposes of our

work, we define relative localisation as the estimation of the coordinates of a target

object relative to other objects within the close vicinity of the target, using only

measurements to and from these objects. Absolute localisation, in contrast, is the

estimation of coordinates within a frame of reference that extends far beyond the

immediate vicinity of the target, and using measurements from far away objects.

1.2 Methods

We ask which technologies, methods and algorithms can be used to pro-

vide localisation, tracking, and navigation support in unknown, unin-

strumented, and unstructured indoor environments.

The localisation problem has not been solved for such environments, but we

acknowledge that it has been approached from many angles by researchers from

different areas, often with a particular application in mind and a specific set of
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constraints, such as the availability of sensors, the type of movement, or the required

accuracy. In this thesis, we provide some insight into how existing research can be

used to address the challenges we have described, which aspects are suitable, which

need further developments in terms of algorithms or sensing technology, and which

combinations result in a robust system.

Due to the broad range of areas which relate to our topic, in our survey of

existing work we report on general methods and approaches, rather than small

variations in performance between different versions of an algorithm for instance.

We do, however, perform small focused studies into particular technologies and

algorithms. When we recognise a clear limitation of one method, we attempt to

address it by drawing from a different area. We evaluate some of the algorithms

using controlled experiments, but the simpler concepts are directly tested with

a demonstration system. In cases where the technology currently available to us

is limited or inadequate, we ask users to test our ideas in a virtual environment.

This is an important aspect of our work because, although it does not permit a

detailed evaluation of an algorithm or specific type of sensor, it allows us to see

how a localisation system could be deployed and used in practice, and whether it

is convenient or reliable from the user’s perspective. We were not able to conduct

field trials in the course of this work due to the lack of suitable sensor platform

and the difficulties of safely creating a low visibility environment.

A search and rescue mission, performed by firefighters for instance, is a canonical

example of a scenario in which a robust tracking and navigation system would be

valuable. This is simple to understand even with very little background knowledge

of firefighting. During such a time critical mission, the rescuers do not have the

opportunity or time to deploy and configure a localisation system, and the buildings

in which they operate are often damaged. This application has driven much of the

research in this thesis and has helped us understand more clearly the shortcomings

of existing work. In the following chapters, we refer back to this example scenario

to evaluate the suitability of the different methods under investigation.
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1.3 Contribution

Despite recent technical developments in indoor positioning and pedestrian naviga-

tion, and a number of research projects which aim to support emergency response

through the use of computers, there is very little in the literature about truly self-

contained navigation systems. Few researchers, if any, have explicitly identified,

let alone addressed, the challenge of localisation in unknown and uninstrumented

environments. In this thesis, we contribute the following:

• We define localisation in unknown and uninstrumented environments as a

specific and relevant challenge, worthy of investigation.

• We show that existing research in a range of areas offers some useful tech-

niques but that none of these constitute a complete or general solution.

• We give an overview of research into localisation for emergency response and

identify unanswered research questions.

• We develop and test several combinations of technologies and algorithms

which address some aspects of our problem:

– a Kalman filter for the relative localisation of mobile sensor nodes using

ultrasonic distance and bearing measurements,

– a pedestrian dead reckoning algorithm based on a foot-mounted inertial

measurement unit,

– a simultaneous localisation and mapping algorithm built on the above,

and suitable for pedestrian navigation.

• We highlight the challenges of testing navigation systems (as opposed to

localisation systems) and we show how these can be resolved through virtual

reality simulations.
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1.4 Summary of chapters

In each of our chapters we examine different aspects of solving this challenging lo-

calisation problem, and draw conclusions about the effectiveness of methods taken

from wireless sensor networks, robotics, and mobile and ubiquitous computing.

In chapter 2 we give an overview of work in these areas and highlight the

limitations that prevent it from solving our localisation problem. We also point out

to what extent certain features of sensing technologies and localisation methods

contribute to our research. One section looks more closely at the special case of

localisation for emergency response and the state of the art in commercial and

research projects in that area in order to understand why this problem is still so

challenging.

In chapter 3, we take a look at ultrasonic range and bearing sensing, a technology

used in the area of wireless sensor network localisation. We use these sensors in

the design and trial of a wearable navigation system suitable for deploying during

a search and rescue mission. We then address the practical failings of this system

by bringing in a more advanced algorithm to estimate locations more robustly but

without losing the features which make the initial concept attractive; we test this

algorithm in a controlled wireless sensor network.

In chapter 4, we cover inertial pedestrian dead-reckoning (PDR), a technique

which has been used by many projects in recent years to build pedestrian tracking

systems, yet is rarely described in detail. We give a practical description of how

PDR works, along with a detailed implementation. Despite its attractive features

for our research, PDR is not of itself a complete solution for all our tracking needs.

Drawing on robotics research, in chapter 5 we show how PDR can be combined

with the ultrasonic beacon concept proposed in chapter 3 to bring together the best
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of both methods and to address each of their limitations in a single localisation

and tracking system which could offer a solution to navigation for firefighters.

In chapter 6, we bridge the gap between localisation and navigation by im-

plementing this system in a video game and seeing how successful players are at

using it to find their way. This allows us to study how human beings, who already

have their own sense of direction and individual navigation strategies, respond to

the information computed by our system, and how it copes when users ignore its

indications or break assumptions that we have made.

Finally, chapter 7 concludes this thesis by summing up our contributions to the

field of localisation and identifying which areas need further work.



Chapter 2

Related work

Several areas of research investigate the issue of localisation and offer solutions to

estimate the position of devices, objects or people. This is a very broad topic which

is studied for a variety of reasons. Sometimes it is a key part of a novel application

for mobile phones (Siegemund and Flöer, 2003; Guinard, 2007), or a component of a

defence system (Groves, 2003; Chen et al., 2009; Simon et al., 2004), or a means to

illustrate (Simon, 2000) or validate (van der Merwe, 2004, ch.5) the theory behind

certain families of algorithms. In this chapter, we look at six areas which contain

valuable tools and methods for our work: wireless sensor networks, robotics, asset

tracking, pedestrian tracking, (military) target tracking, and machine vision. We

characterise their general approach to localisation, in terms of the technologies

and physical properties used to obtain low level measurements, and in terms of

the mathematical and geometrical properties which connect these to the actual lo-

cation estimates. The wide range of techniques and the explorative nature of this

research make it difficult, and even unnecessary, to perform a detailed quantitative

comparison. At this stage, it is most important to determine which general cate-

gories of technologies and algorithms are potentially suitable. Therefore, we draw

a more qualitative overview of the higher level characteristics of these systems. In

particular, we highlight the reasons why none of them present a complete solution

9
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to our localisation problem. We close this chapter with a case study of localisation

for emergency response in which we look at the requirements and challenges, and

see how some of these principles have already been applied to emergency response

scenarios, either in research projects or commercially.

2.1 Wireless sensor networks (WSN)

Work in the area of wireless sensor networks (WSN) is typically motivated by the

idea that many small, wireless, electronic devices can monitor the physical prop-

erties of our world more effectively than a single monolithic system. Applications

include monitoring temperature and humidity in a field of crops (Hwang et al.,

2010), analysing the performance of a factory production line (Valverde et al.,

2012), or detecting threats in a battlefield (Dargie and Poellabauer, 2010). WSN

researchers may consider algorithms for data aggregation and pattern recognition,

routing protocols for fast and reliable communication of data, and localisation

methods so nodes can tag data with the location at which it was recorded. Since

the sensor nodes are often assumed to be battery-powered and deployed in harsh

environments, researchers generally design and evaluate these algorithms with en-

ergy efficiency and resilience in mind (Xia et al., 2011; He et al., 2004). Because of

the low computational power available on wireless sensor nodes, many of the devel-

opments in localisation algorithms are optimisations designed not only to improve

accuracy but also to reduce their complexity and the required hardware.

2.1.1 Measurements and methods

Typically, wireless sensor nodes communicate via radio, light, or sound. Radio sig-

nals decrease in amplitude with distance. Thus, by measuring the amplitude of

the radio signals transmitted by a sensor node, we can estimate its distance using
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only the hardware that we already have (Whitehouse et al., 2007). By collecting

distance estimates between many pairs of nodes, we can estimate their relative posi-

tions using optimisation algorithms. Gradient descent is one such algorithm which

attempts to minimise the difference between the measured ranges and the ranges

which result from the estimated positions (Hazas et al., 2005). The mass-spring

metaphor is another way to iteratively estimate positions by identifying each dis-

tance measurement with a spring of a certain length, and each node with a mass

subject to the forces of the springs (Priyantha et al., 2003; Efrat et al., 2006). By

applying the laws of classical mechanics, each mass relaxes into a position which

is close to the true position of the corresponding node.

Alternatively, we can ignore all distance estimates and only consider connectiv-

ity. We assume that if nodes are able to communicate, they are within a limited

range of each other. This constrains their positions in space and allows us to esti-

mate their positions using various geometric algorithms (Baggio and Langendoen,

2008; Xiao et al., 2008; Stoleru et al., 2007).

There are other methods of measuring distance. Ultrasound, acoustic (audible)

sound, and light (Krohn et al., 2005) also decrease in amplitude with distance, and

we can use these types of signals to estimate distance between devices. However,

for all these methods, the relationship between amplitude and distance is very

dependent on the environment and often unpredictable.

Instead of the amplitude, we can measure the time of flight of radio or sound

waves (Guo and Hazas, 2011). Although the speed of sound can vary with temper-

ature and humidity, the results tend to be more accurate and robust than using

amplitude. We can measure the time of flight of sound waves directly by using

a radio signal to synchronise the nodes, because radio waves propagate so much

faster than sound. We can also measure round-trip time of flight by sending any

type of signal and measuring the time until we receive a reply (Thorbjornsen

et al., 2010). Or we can use the time difference of arrival in the case where one
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node transmits and several others listen (Muthukrishnan and Hazas, 2009). The

difference in arrival time gives us a relationship between the positions of the trans-

mitting and receiving nodes. This method is also suitable for locating acoustic

sources (Guo and Hazas, 2011) and ultrasonic sources (Duff et al., 2005) when the

locations of the other sensors are known. Angles of arrival, measured using arrays

of radio antennae (Belloni et al., 2009), or microphones (Ali et al., 2007), or ultra-

sonic transducers (Hazas et al., 2005; Priyantha et al., 2001), are more complex to

acquire but are also suitable for position estimation using similar optimisation al-

gorithms (Peng and Sichitiu, 2006). A more comprehensive overview of localisation

in sensor networks is given by Pal (2010).

2.1.2 Limitations

Many wireless sensor network localisation algorithms assume there will be a dense

and reasonably uniform mesh of sensor nodes measuring the physical properties

of the environment and communicating these values to each other or to a base

station. These algorithms will therefore often be less reliable or completely unsuit-

able when the network is sparse, with fewer nodes spread over a greater area, and

when the nodes are deployed in a non-uniform configuration, such as a line. The

focus of WSN research has changed to include tracking of fast moving objects for

instance, but many of the techniques and algorithms still rely on the idea that we

are interested in environmental properties which change slowly, and that the sensor

nodes themselves are not moving. Therefore, many algorithms are not designed for

highly dynamic situations and the update rates are not sufficient to deal with fast

moving sensor nodes.

WSN localisation algorithms also take advantage of the large number of nodes

to average out measurement errors, and many that are claimed to be suitable

for “sparse” networks require a high degree of connectivity and a geometry that

are not compatible with deployment on-the-fly by pedestrians (e.g., Wang et al.



2. Related work Robotics 13

(2008), Goldenberg et al. (2006)). Some do not deal well with errors that are not

white noise. In particular, measurements that have systematic non-zero error due

to unpredictable environmental factors can cause large errors in the position esti-

mates (Krohn et al., 2007).

A major problem with many of the algorithms described above is that they

rely on a reasonable initial estimate of node locations which is then refined. When

we use only distance measurements, there is an inherent ambiguity because we

have no notion of orientation. But even when angular measurements are available,

the optimisation algorithms can fall into local minima and fail to converge to an

accurate solution.

Sometimes we can assume that a small proportion of nodes know their abso-

lute positions, thanks to an on-board GPS receiver or a manual calibration phase.

This helps with the initialisation and avoids some geometric ambiguities because

these nodes are effectively already initialised to their true positions. However, this

requirement makes the algorithms less versatile.

2.2 Robotics

Robotics is often concerned with creating machines or vehicles that are able to

autonomously navigate in their surroundings. This includes unmanned aerial vehi-

cles (UAVs or drones) (Kim and Sukkarieh, 2007), autonomous underwater vehicles

(AUVs) (Olson et al., 2006), and “cars that drive themselves” (Urmson et al., 2008),

as well as specialised industrial or military vehicles and experimental humanoid

robots (Stasse et al., 2006). In order to achieve this, they need to have a sense of

their environment and their position in it. The area of robotics research concerned

with this is called simultaneous localisation and mapping (SLAM). This name high-

lights the fact that building a map when the location of the robot is known, and
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locating a robot in a known environment, are relatively simple tasks that can be

achieved by recording and matching a series of photos for instance, but that doing

both simultaneously is more challenging.

2.2.1 Measurements and methods

In order to navigate autonomously, a robot needs to avoid obstacles, such as walls

and furniture for indoor robots, or rocks and trees for outdoor ones. Laser range

finders (Konolige, 2004; Hähnel et al., 2003) and sonar arrays (Kleeman, 2003)

are popular sensors for autonomous robots because they give a 360 degree view

of obstacles around the robot, including their distance. This gives us content to

construct a map, but we also need to know how much the robot moved between

each set of measurements (or between each scan).

There are several ways to estimate the movements of the robot. If we are

controlling it with our own software, then we know how much we are asking it

to move at any moment. The true movements may not match exactly what we

requested but they give us a rough estimate. If the robot has wheels or tracks,

we can perform odometry by measuring how much each wheel has turned and

by applying geometric principles to estimate the total movement. This is also

subject to measurement error, especially if the wheels slip (Kleeman, 2003). Inertial

measurements are also a way of measuring movement. Accelerometers measure

changes in speed (accelerations) and gyroscopes measure changes in orientation

(rate of turn). By integrating these values, we can estimate how much the robot

has moved or turned (Walchko et al., 2003). Or, if the successive laser scans are

close enough together, we can perform odometry without any additional sensors,

by aligning the scans and analysing the differences between them (Hähnel et al.,

2003). We can use a camera in the same way (Tardif et al., 2008).

The robot can use other sensors to build a map of the environment without

specifically detecting obstacles. RFID tags, wifi access points, and visual markers
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such as QR codes can be detected with the appropriate hardware and used as

landmarks in the map.

There are a range of approaches to SLAM. They are mostly probabilistic meth-

ods, but they vary by the way they represent uncertainty in the map and the

position of the robot, and how they aggregate the measurements (Durrant-Whyte

and Bailey, 2006; Bailey and Durrant-Whyte, 2006). It is essential to represent the

uncertainty in the estimated values and at least some of the correlations between

them in order to get a working system. The positions of the robot and the land-

marks can be represented as clusters of particles, or as Gaussian variables with a

mean and a standard deviation, or a combination of the above. There are tradeoffs

with each representation, especially between robustness and stability over time,

and memory and computational requirements. Some algorithms which have been

shown to work in practice for short experiments, have been proven to eventually

degenerate (Bailey et al., 2006).

2.2.2 Limitations

The principal difference between tracking humans and robots is the type of mo-

tion. Robots and vehicles often have more predictable behaviours than humans

because they are controlled by software of limited complexity and only have a

limited number of actuators. Wheeled or tracked robots generally move horizon-

tally, thus ensuring that laser scans are all taken in the same plane and can easily

be matched. They also generally consist of rigid bodies, so all sensors remain in

the same positions relative to each other. The mechanics of a robot permit more

approximations than human motion, thus making the tracking problem simpler

in many respects. A few researchers have considered the more challenging prob-

lem of tracking all-terrain robots. Kleiner and Dornhege (2007) essentially use a

vision-based system combined with an inertial measurement unit (see the following

sections), while Suthakorn et al. (2009) use a laser range finder and accelerometer
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but do not detail their method or results. Despite these differences between human

and robot motion, the algorithms used in robotics demonstrate principles which

can be transposed to pedestrian tracking.

2.3 Asset tracking

Many types of businesses want to keep track of their assets in order to cut costs by

optimising their processes and preventing theft. In some cases, it may be practical

to track a fleet of vehicles by transmitting GPS coordinates over the GSM net-

work. But for indoor environments, the methods used range from hand-labelling

computing equipment, tools, and other valuable assets, to using machine readable

tags that have to be manually scanned, to installing highly specialised tracking

equipment throughout the premises. We are interested in the latter.

2.3.1 Measurements and methods

The key to many of these asset tracking systems is reliable remote detection. We

can use RFID tags if the readers are placed strategically along a production line

or in doorways, bottlenecks where items are forced to pass. Caterpillar use such

a system for tracking parts (O’Connor, 2007), and Savant provide the EuroSDS

tracing system for decontamination of surgical instruments1; both these systems

use RFID tags. NFC tags have similar uses but the short detection range requires

that they be manually swiped. For instance, ENAiKOON provide inventory and

personnel tracking solutions based on NFC2. Systems based on ultrasound signals

benefit from the fact that ultrasound is completely blocked by walls and doors3.

An ultrasonic pulse transmitted by a special tag will usually only be detected

1http://www.savant.co.uk/product/eurosds (Accessed 2012.09.24.)
2http://www.nfc-tracker.com/ (Accessed 2012.12.28.)
3http://sonitor.com (Accessed 2012.09.24.)

http://www.savant.co.uk/product/eurosds
http://www.nfc-tracker.com/
http://sonitor.com
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by receivers in the same room. This makes room-scale location straightforward.

Ultrawide band radio (UWB) systems using time difference of arrival (TDOA) and

angle of arrival (AOA) need significantly more receivers and extensive calibration

but give higher resolution tracking4.

Since many buildings are now completely covered by wifi,we can use the wireless

access points to estimate the location of a networked device5. Each access point

covers a limited area, so at any given time, the visible access points and their

respective signal strengths give us a rough idea of our location. These fingerprints

can be recorded at different locations during a calibration phase and stored in a

database as a reference. Or if the locations of the access points are known, we can

perform some basic interpolation to determine our approximate location (Mok and

Retscher, 2007). Wifi fingerprinting is appealing because of the many access points

that exist, especially in urban areas and in office buildings, and the fact that most

laptops and smartphones are already equipped with wifi cards.

2.3.2 Limitations

For many asset tracking applications, high update rates and fine resolution are

unnecessary. The goal is to know roughly where the company’s equipment is, or

where it was last used, rather than locating it in real time. Many of the items will

remain in the same position for a reasonably long time, giving ample opportunity

for them to be detected. This is not suitable for continuous tracking of highly

dynamic objects. In addition, Elnahrawy et al. (2004) state that there are fun-

damental limits to the accuracy of localisation systems based on signal strength

(median localisation error of 10 feet using commodity 802.11 hardware).

4http://www.ubisense.net/en/rtls-solutions/research-packages.html (Accessed
2012.09.24.)

5http://www.ekahau.com (Accessed 2012.09.24.)

http://www.ubisense.net/en/rtls-solutions/research-packages.html
http://www.ekahau.com
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These systems are built around electronic hardware pre-attached to the building

at specific points, and they rely on infrastructure for power and communication.

For these reasons, they are limited to controlled and specialised environments.

2.4 Pedestrian tracking

Automatic tracking of people is a relatively new area which has become more

relevant and achievable as electronic devices have become smaller and the majority

of people in our societies now carry at least a mobile phone with them. Many

recent phones include a GPS receiver, and can also benefit from services such as

Skyhook6 which additionally uses cell tower and wifi fingerprinting. Developers of

social networking applications are trying to make use of this location-awareness

(e.g., foursquare7, and Facebook’s “check-in” service8). However, one of its main

applications remains GPS-assisted navigation.

Indoor pedestrian tracking is still an open problem that is relevant for the devel-

opment of ubiquitous and embedded computing systems such as smart-homes (Mra-

zovac et al., 2011) and smart-hospitals (Coronato and Esposito, 2008). Many of the

solutions described previously are applicable in such scenarios, but in this section,

we discuss more novel methods of tracking specific to pedestrians.

2.4.1 Measurements and methods

Pedestrian motion has certain features that we can use for tracking. We have two

ways of performing dead-reckoning that are specific to pedestrians. In the first

method, we count steps and estimate the direction of travel (Randell et al., 2003).

By accumulating each step and its direction, we get an idea of the trajectory of

6http://www.skyhookwireless.com/ (Accessed 2012.09.24.)
7https://foursquare.com (Accessed 2012.09.24.)
8https://www.facebook.com/about/location/ (Accessed 2012.09.24.)

http://www.skyhookwireless.com/
https://foursquare.com
https://www.facebook.com/about/location/
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the pedestrian. Steps are assumed to have a constant length, or their length can

be estimated based on factors such as the delay between steps or the maximum

and minimum accelerations. We can conveniently implement such a system on

a mobile phone worn in a pocket or held in the hand, using the accelerometers

and compass that already exist in the phone. The alternative is to use a separate

inertial measurement unit (IMU) and double integrate accelerations and gyroscope

readings to obtain an estimate of the trajectory (Foxlin, 2005). In principle, this

should work for any type of motion, but due to the characteristics of the sensors,

the results are unusable as error accumulates very fast. By attaching the inertial

sensors to the foot, we can reset the estimated velocity to zero every time we detect

a footfall, thus reducing the error to acceptable levels. This is a very effective

“trick”, but one that only works for pedestrian motion with foot-mounted sensors.

Both these methods are completely self-contained and do not require any external

hardware.

Pedestrian dead-reckoning (PDR) inherently accumulates error and provides

no means to correct absolute position estimates. For this reason, many researchers

try to combine it with other location information in order to make the system

more robust. GPS provides absolute position estimates when outdoors, and dead-

reckoning can continue to provide position estimates for a few minutes when the

pedestrian moves indoors and GPS becomes unavailable (Godha and Lachapelle,

2008). Wifi fingerprinting described earlier can be used in a similar way (Evennou

and Marx, 2006). In some situations, it may be acceptable for the user to manually

correct their position from time to time by clicking on a map or floorplan.

Where maps or floorplans are available, we can also use the information they

provide to improve location estimates (Krach and Robertson, 2008; Beauregard

et al., 2008). By assuming that the tracked pedestrian only moves along corridors

and through doorways (without ever passing through a wall), we can avoid some

of the error that creeps into our estimates. Or using a related technique, we can
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try to recognise, in the inertial data, certain patterns of movement corresponding

to stairs or ramps, or perhaps use an additional sensor to recognise doorways,

and then correct the estimated position using the corresponding positions on the

floorplan (Gusenbauer et al., 2010; Jiménez et al., 2011). This will often require

us to use a probabilistic representation of the position because there is ambiguity

between several similar features at different locations on the map.

2.4.2 Limitations

The main drawback of any dead-reckoning technique is the inherent drift. The er-

ror in position estimates gradually increases unless we use an independent source

to determine the absolute position and correct the estimate. This means we lose

the benefits of completely self-contained PDR and start relying on external infras-

tructure or detailed prior knowledge of the environment. Improvements in MEMS

inertial sensing may mean that in a few years we will be able to track a pedestrian

for several hours with almost no error, but even then, a single glitch in measurement

values or timestamps will compromise all future estimates.

We achieve the most reliable tracking by using dedicated foot-mounted sensors

which require additional wiring and specific attachments. Even the most recent

MEMS inertial sensors do not allow us to track with the same accuracy if they are

mounted elsewhere on the body, or embedded in a handheld device. This presents

a practical obstacle to using PDR in many real world applications.

2.5 Target tracking

Tracking aircraft is a key part of most national defence systems and as such has

benefited from years of applied research. Using data from radar or cameras, we

can not only track, but also predict the position of a fast moving target, even
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when it is occluded or when the measurements are noisy. Many implementations

of the Kalman filter have been developed specifically for this purpose (Singer, 1970;

Gutman and Velger, 1988; Bilik and Tabrikian, 2006) and the maturity of research

in this area suggests that it is worth mentioning.

2.5.1 Measurements and methods

A key feature of target tracking literature is the variety of movement models used

for the target (Li and Jilkov, 2003). The Kalman filter (or other tracking algorithms)

use these models to filter outlier measurements, smooth the estimated trajectory

and predict future positions. Different models make different assumptions about

how the target moves, how fast it can turn, accelerate, decelerate, what types of

manoeuvre are feasible and how likely they are.

2.5.2 Limitations

The range of movements that a ship or aircraft can perform are more limited than

those of a pedestrian and thus easier to predict. In many situations, pedestrians

may walk in straight lines at constant speed, and turn at right angles because

they are following the layout of a building, but not all buildings are built on a grid

pattern and these assumptions do not help much in open spaces. More importantly,

the situations where tracking pedestrians is critical are those situations where the

movement is least normal and least predictable. Thus, methods which work for

target tracking are not directly applicable to pedestrians but could potentially be

adapted.

2.6 Machine vision

Perhaps machine vision comes closest to mimicking the way humans usually locate

themselves and navigate their environment. Similar to our eyes, cameras can give
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us a lot of high resolution and high frame rate information about our surroundings.

Typically, as we walk around, we identify key features to use as landmarks in a

mental map of our environment and to help us locate ourselves (Lee and Tversky,

2005). We later use those same landmarks to determine where we are, whether it’s

over a few seconds while we are distracted by something else, or much longer term

when we are trying to find our way back to a friend’s home.

2.6.1 Measurements and methods

We can use machine vision to perform simultaneous localisation and mapping

(SLAM), as described earlier. As in other types of SLAM, the defining character-

istics are the type of landmark used, and the representation chosen for the state

estimates, their uncertainties and correlations (e.g., Gaussian,mixture of Gaussians,

cloud of particles). Artificial markers, such as black and white printed patterns sim-

ilar to bar codes are one type of landmark that are relatively easy to locate in a

video stream. They have the added benefit of being uniquely identifiable, making

the SLAM algorithm simpler. But natural features such as corners and edges of

doorways or other building fixtures are a viable alternative (Shi and Tomasi, 1994;

Lowe, 2004). We can store a small image patch for each of the features we choose

in order to recognise them later, or encode each feature as a series of numerical val-

ues computed from this image patch using feature descriptors such as SIFT (Lowe,

2004) or SURF (Bay et al., 2008).

Visual SLAM can rely either on a stereo camera rig (Davison, 1998) which

provides additional depth information, or a single camera (Davison et al., 2007).

Researchers have shown it is possible to create a map of a large outdoor environ-

ment by simply walking through it with a single camera (Clemente et al., 2007).

Others have created a detailed three-dimensional model of a desktop by slowly

panning the camera across it (Newcombe and Davison, 2010). More recently, re-
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searchers have used the depth-camera from the Microsoft Kinect to map a complete

room with a lot of detail (Izadi et al., 2011).

2.6.2 Limitations

The fundamental limitation of visual SLAM is its assumption that the environment

does not change. This is not true in all situations. Most SLAM algorithms will

filter out a small number of dynamic objects in the scene, such as pedestrians or

vehicles passing by. Some are even designed to take advantage of moving objects in

the environment (Bibby and Reid, 2007). But as far as we know, none of them are

designed to cope with drastic changes in the appearance of the environment itself.

During firefighting missions, the surroundings are likely to change substantially due

to collapsing floors and ceilings, or walls blackened by smoke. Changing lighting

conditions, or low visibility also compromise vision-based techniques.

Scalability is another concern. With most SLAM algorithms, the time required

to process each new image increases with the number of landmarks in the map. Due

to the resolution of the images and density of the map, the map can only reach a

limited size before the processing is slower than real-time. Some algorithms address

this by creating a hierarchy of local submaps of limited size, and only working on

one local map at a time (Blanco et al., 2008b).

2.7 Localisation for emergency response9

Although localisation is becoming available for the general public and for busi-

nesses via widespread use of GPS receivers and commercial indoor location sys-

tems10 many solutions are not suitable for use by emergency responders such as

9This section is a revised version of: Carl Fischer andHans Gellersen. Location and Navigation
Support for Emergency Responders: A Survey. IEEE Pervasive Computing, 9(1):38–47, January–
March 2010.

10http://www.ubisense.net, http://sonitor.com, http://www.ekahau.com (Accessed
2012.09.24.)

http://www.ubisense.net
http://sonitor.com
http://www.ekahau.com
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firefighters, as highlighted in previous sections. The conditions they work in are

significantly more demanding than non-emergency environments. Darkness, smoke,

fire, power cuts, water and noise can all prevent a location system from working,

and heavy protective clothing, gloves and facemasks make using a standard mobile

computer impossible. In the past decade much research effort has been put into

this challenging problem and a wide variety of ideas have been developed. Pre-

vious surveys have addressed localisation methods in general and have not taken

into account the specific requirements of emergency response, e.g., Hightower and

Borriello (2001). In this section, we look at different localisation technologies and

techniques that could assist responders in the challenging conditions they face.

2.7.1 Requirements analysis

Location and navigation support is useful in many every day situations but essential

in emergency response scenarios. Teams need to be able to reach safety quickly if

conditions become too dangerous, and the incident commander needs to keep track

of where teams are. The simple task of finding one’s way in a building becomes a

challenge when there is little or no visibility due to smoke and darkness. The high

levels of mental and physical stress add to the difficulty. Getting lost in a burning

or collapsing building can have fatal consequences for both the rescue personnel

and the casualties as breathing apparatus run out of air and medical attention is

delayed.

Concrete problems

A report by the National Fire Protection Association (NFPA) (Fahy, 2002) in

the United States identifies “lost inside” as a major cause of traumatic injuries

to firefighters. Reports11 by the National Institute for Occupational Safety and

11Fatality Assessment and Control Evaluation (FACE) Program, and Fire Fighter Fatality In-
vestigation and Prevention Program (FFFIPP): http://www.cdc.gov/niosh/fire/ (Accessed
2012.09.24.)

http://www.cdc.gov/niosh/fire/


2. Related work Emergency response 25

Health (NIOSH) also reveal that disorientation and failure to locate victims are

contributing factors to firefighter deaths, and a report on the Worcester warehouse

fire, in which six firefighters died, highlights the difficulty to keep track of firefighters

within the building as one of the major causes for loss of life (Anderson, 1999).

In case of a sudden increase in temperature a firefighter may only have seconds

to reach safety. They need to find the exit as fast as possible. In some cases they

may not be able to retreat along the same path due to a collapsed ceiling or floor.

Alternative exits may be available but not clearly visible. When a firefighter radios

a distress call because they are trapped, or when someone fails to report, the rescue

team must be able to locate them. Even when situations are not immediately life-

threatening, precious time can be wasted by searching the same room twice or

failing to search another. The incident commander also needs to know elements of

the building layout, where the team members are and which parts of the building

have been searched.

Several recurring recommendations from the NIOSH reports explicitly highlight

the need for a navigation and tracking system, and suggest some solutions:

• “train fire fighters on actions to take if they become trapped or disoriented

inside a burning structure” (FACE report 2007-1812);

• “consider using exit locators such as high intensity floodlights, flashing strobe

lights, hose markings, or safety ropes to guide lost or disoriented fire fighters

to the exit” (FACE report 2007-1812);

• “ensure that the Incident Commander receives pertinent information (i.e.,

location of stairs, number of occupants in the structure, etc.) from occupants

on scene and information is relayed to crews during size-up” (FACE report

2006-1913);

12http://www.cdc.gov/niosh/fire/pdfs/face200718.pdf
13http://www.cdc.gov/niosh/fire/pdfs/face200619.pdf

http://www.cdc.gov/niosh/fire/pdfs/face200718.pdf
http://www.cdc.gov/niosh/fire/pdfs/face200619.pdf
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• “working in large structures (high rise buildings, warehouses, and supermar-

kets) requires that fire fighters be cognizant of the distance traveled and the

time required to reach the point of suppression activity from the point of

entry” (FACE report 2007-1812);

• “conduct research into refining existing and developing new technology to

track the movement of fire fighters inside structures” (FACE reports 2007-

1812 and 2008-0914).

In addition to the localisation and navigation requirements, other reports em-

phasise the need for reliable communication of interior conditions to the incident

commander and for monitoring building stability (FACE reports 2007-1615 and

2007-0116). Temperature, smoke, sounds and vibrations are all indicators of the

progression of the fire and the stability of the building.

Current practices

Firefighters have developed their own specific navigation practices for use in poor

visibility. Details vary but overall the same ideas are used worldwide. The methods

tend to be simple and practical, and the equipment is seemingly low-tech and very

robust.

Techniques Following a hose is a simple method to find the exit through a

dark or smoke-filled building. If no hose is available, firefighters may use dedicated

ropes called lifelines which connect them to a point outside the dangerous area

(Fig. 2.1). The other end can be left attached if a new team comes in to continue the

search (Klann, 2009). Additional lines may be attached to rings on the main lifeline

to allow several firefighters to branch off in different directions while remaining

14http://www.cdc.gov/niosh/fire/pdfs/face200809.pdf
15http://www.cdc.gov/niosh/fire/pdfs/face200716.pdf
16http://www.cdc.gov/niosh/fire/pdfs/face200701.pdf

http://www.cdc.gov/niosh/fire/pdfs/face200809.pdf
http://www.cdc.gov/niosh/fire/pdfs/face200716.pdf
http://www.cdc.gov/niosh/fire/pdfs/face200701.pdf
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physically linked to the rest of their team. A series of knots on the main lifeline

helps firefighters determine the direction and distance to the exit and can be used

as reference points when radioing positions to the commander (Sendelbach, 2002).

A flashlight left in the doorway of a room helps locate the exit and indicates

to colleagues that the room is currently being searched, and a chalk mark on the

door indicates that a room has already been searched (Sendelbach, 2002; Klann,

2009). Teams returning from a search mission sketch the layout of the building to

assist the commander and any further teams.

Figure 2.1: Two Paris firefighters practise using a lifeline with their facemasks
blacked out. Photo courtesy of Markus Klann, Fraunhofer FIT.

All firefighters entering hazardous areas wear a Personal Alert Safety System

(PASS) device attached to their breathing apparatus (National Fire Protection

Association, 2002) (as cited by Donnelly et al. (2006)). The PASS device sounds

an alarm if the firefighter does not move for a short time. At a fire scene, the

sound of a PASS alarm is a signal that a firefighter is in distress. By following the

sound the rescue team can locate that firefighter. While not strictly a navigation

tool, thermal imaging cameras can also be used for finding people and seeing walls,

doorways and windows when unaided vision is obscured by smoke.
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Many firefighters are trained to search a dark room while keeping either their left

or right hand in contact with the wall. This helps with orientation and provides a

strategy for systematically exploring an unknown space (International Association

of Fire Chiefs, 2004).

Human contact and accountability are also essential. Searches are always per-

formed in teams of at least two members who should avoid being separated (Clark,

1991). During a lifeline search, one team member may remain at a fixed position

to help with orientation and provide progress reports while their colleagues search

further. Locations are reported as accurately as possible over the radio to the

commander outside the building who keeps track of team locations on a white-

board (Jiang et al., 2004).

Limitations of traditional methods These methods are practical and sim-

ple to understand, and they become more effective with training. However, they

sometimes fail. A lifeline may become tangled in furniture, a flashlight may be

buried under debris, and the temperature of the environment may make a thermal

imaging camera unusable. But the principles behind these methods are familiar —

the physical properties of a rope, the propagation of light, even the principle of

thermal imaging. Failure is understood and even expected in certain conditions.

The left hand method for finding an exit can also be misleading and a person can

find themselves walking in circles around a large pillar or repeatedly visiting two

or three rooms connected by several doors.

None of these techniques are treated as fixed ways of operating. They are used

to aid and support navigation rather than impose an inflexible method. Human er-

ror can occur especially during complex and prolonged incidents. Simple techniques

such as taking notes (for the commander) or following a rope (for the search teams)

are designed to reduce the mental load. As pointed out in the NIOSH reports, many

improvements can be made by following procedures and through adequate training.
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But localisation, sensing and communication are all areas where embedded com-

puters, body worn sensors, and wireless sensor nodes could play a role if they can

be adapted to the harsh conditions and accepted by highly trained professionals.

High-tech systems have potential not only to address the limitations of traditional

methods, but also for adding value beyond what is currently possible.

Constraints on high-tech location systems

Navigation by sight is impossible when darkness, smoke, or dust limit visibility

to less than an arm’s length. Persons or objects that are out of reach can easily

be passed unnoticed. The environment can change as ceilings, floors, or shelves

collapse, as furniture is moved, and doors are opened or closed by people searching

for an exit. The noise of the fire can mask PASS alarms, interfere with radio

conversations and make cries for help difficult to locate.

High-tech systems are generally not adapted to these conditions. Propagation

of radio, ultrasound and laser signals typically used for location is hindered by high

temperatures, thick smoke, noise, gusts of air, obstacles and falling debris. A report

by the City of Phoenix Fire Department (Worrell and MacFarlane, 2004) analyses

problems with radio communications inside buildings and identifies unreliable radio

links as the cause of several injuries. Sensors deployed in the environment may be

kicked, fall through the floor, or be buried. Firefighters may crawl or walk in unusual

patterns, and body-worn sensors may lie at odd angles. In addition, there is the

issue of presenting the right amount of information to the firefighter in an accessible

way, and ensuring that devices can be used in the dark with gloves. Finally, the

casing and electronics of all devices must be made as robust as possible, in the

same way as PASS devices and radios, to withstand rough handling and very high

temperatures (Donnelly et al., 2006).

The FIRE project at UC Berkeley reports on some of the major difficulties in

designing high-tech location systems for the emergency services (Steingart et al.,
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2005). Reliability is more important than high resolution or fast updates. Consis-

tent room-level locations every twenty seconds are deemed more useful than finer

resolution updates with higher probability of error. And the firefighters must be

able to customise and service the equipment themselves to some extent. All this

is key to acceptance of new technologies.

2.7.2 Key properties

There have been many efforts over the past decade to help emergency responders

navigate in low visibility. Some devices have been produced commercially while

others only exist as prototypes, and a few concepts have been described but not

implemented. We identify the following criteria that are particularly relevant for de-

signing and comparing different localisation and navigation systems for emergency

response.

Primary function Localisation determines where the teams are within a struc-

ture. Tracking records how they got there. Navigation shows the teams how to

reach a target location (without necessarily knowing exactly where they are). For in-

stance, a flashing beacon provides navigation support without localisation, whereas

a number displayed on an office door provides localisation only. A location com-

bined with a correctly oriented floorplan can provide navigation support.

Quality of information Localisation systems are typically characterised by the

quality of the information they provide. Researchers often compare accuracy (or

resolution), precision (or consistency), and update rate, for different algorithms or

systems. These reflect the level of detail and the reliability of a system. Some sys-

tems provide reliable location estimates with a lot of detail (good accuracy) whereas

others only give coarse locations (poor accuracy). The estimated locations can be
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consistent with each other over time (good precision) or can vary to some degree

between measurements (poor precision). Navigation systems are more difficult to

evaluate than localisation systems without a full trial because of the influence of

the display and the behaviour of the user.

Amount of information and flexibility The usability of a system is heavily

affected by how much information it provides and how well it can be adapted to

different situations. Providing as much information as possible to the user allows

them to make their own decisions, but this flexibility sometimes comes at the cost of

increased mental workload, whereas a system that filters information, or even makes

decisions for the user, will most likely not adapt to unexpected circumstances.

Technology Much of the electronic equipment used by firefighters today is rel-

atively low-tech. High-tech systems tend to be more fragile, more complex to use,

and require training, although in some cases the complexity is masked behind a

simple and intuitive interface. There is a danger that if the internal workings of the

system are not properly understood failure may go unnoticed. Devices containing

sensitive electronics are vulnerable to high temperatures and moisture, and must

be designed to withstand these conditions (Donnelly et al., 2006).

Components Systems can also be classed according to their number of separate

parts, their size and weight. This is particularly relevant when they need to be

carried into a building or deployed at the scene. An indoor location system based

on a wireless sensor network could consist of a network of tens or hundreds of

sensor nodes combined with several body-worn sensors and a small computer. This

contrasts with a single self-contained thermal imaging camera for instance.
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Deployment and prior knowledge Some systems must be preinstalled in a

building in the same way as smoke detectors or sprinklers (Steingart et al., 2005).

Others can be installed rapidly in strategic locations upon arrival at the scene of

a fire, either outside the building (Graham-Rowe, 2007) or inside by a dedicated

team (Renaudin et al., 2007). Yet others are deployed implicitly by the search teams

themselves as they carry out their mission, e.g., the safety rope or a trail of sensor

nodes (Klann, 2009). Self-contained systems such as PASS devices that firefighters

carry with them require no deployment at all. For some location systems a digital

floorplan is required (Walder et al., 2009).

Limitations All these systems are likely to fail under certain conditions. Some

devices will simply cease to work, others may be able to work in a degraded mode

and yet others may fail silently and continue to provide incorrect information. One

major cause of failure is the coverage which can be limited by the range of a

particular signal such as radio, ultrasound or light, or by the number of devices

deployed.

Additional features In some cases, a system will provide extra information in

addition to location or navigation, for instance by providing reliable radio commu-

nication or by monitoring the environment inside the building in real time.

2.7.3 Discussion of systems

The different approaches to localisation mentioned throughout this chapter each

have their own strengths and weaknesses when it comes to emergency response.

The best solution may be a variation of one of the techniques, or a combination

of several. We now describe a number of key research prototypes and commercial

systems which use these techniques in the context of emergency response. Table 2.1

summarises the characteristics of the different systems.
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SmokeNet Researchers at UC Berkeley have developed SmokeNet (Wilson et al.,

2007), a preinstalled sensor network which tracks firefighters in a multistorey build-

ing. Sensor nodes installed in each room and approximately every ten metres along

corridors provide room-scale location accuracy. Additional sensor nodes monitor

smoke and temperature, and relay data to the command post. Colour-coded LEDs

show occupants which escape routes are safe. The FireEye display mounted inside

each firefighter’s face mask displays a floorplan and short text messages from the

command post. The incident commander uses the electronic Incident Command

System to see the locations and health status of firefighters, and the status of the

smoke detectors. Independently, at Carnegie Mellon University, researchers have

used robots to autonomously map the positions of radio (Kantor et al., 2003) or

ultrasound (Djugash et al., 2006) beacons. This map can then be used to monitor

the progress of a fire and to track firefighters in a similar way to SmokeNet.

LifeNet The LifeNet concept developed by Klann (2009) is designed to provide

the functionality of the traditional lifeline (or search rope). It consists of beacons

and a wearable device that senses nearby beacons and shows navigational guidance

on a head-mounted display. A device attached to the firefighter’s breathing appara-

tus drops the beacons automatically at appropriate intervals. These form a trail of

“breadcrumbs”17. Each beacon acts as a waypoint to guide the firefighter in either

direction. Trails deployed by different firefighters combine to offer alternative es-

cape routes, and loops create shortcuts instead of becoming a trap. The challenge

is to present concise and clear information to the firefighters despite the inaccura-

cies in detecting the direction of the beacons. We collaborated with Klann and his

colleagues in this project but the implementation of algorithms and sensors and

the identification of the challenges is our own work. We describe a demonstrator

for this system in chapter 3.

17This may not be the best choice of words. In the fairy tale of Hansel and Gretel, the bread-
crumbs were eaten by birds and the children got lost. White pebbles, however, provided more
reliable markers.



2. Related work Emergency response 34

Relate Trails The Relate Trails project (Fischer et al., 2008) provides navigation

assistance by displaying an arrow on a head-mounted display to help a person

retrace their path. The person drops ultrasonic beacons on the way in, and the

system uses these to correct PDR position and direction estimates on the way out.

Absolute positions may be inaccurate due to PDR drift over long distances but

navigation only relies on the position of the user relative to the closest beacons.

The use of PDR in addition to beacons allows the system to function to some

extent even if beacons are destroyed or out of range. This concept is developed in

chapters 5 and 6.

Pathfinder The Pathfinder system produced by SummitSafety18 consists of a

handheld tracker, and beacons which transmit powerful ultrasound pulses. Fire-

fighters can use the tracker to locate a beacon placed at the exit while rescue

teams can use it to locate a beacon transmitting on a different frequency worn by

a firefighter in distress. Ultrasound waves are blocked by walls but will find a path

around corners and under doors; this path can be followed by firefighters. Accord-

ing to the manufacturer, smoke, heat, humidity and audible sounds from the fire

do not interfere with ultrasonic waves, and a directional receiver for ultrasound is

a lot smaller than for audible sound. The tracker displays the amplitude of the

detected signal on a bar graph so a firefighter can locate the direction of a beacon

by scanning a 360 ◦ circle.

Precision Personnel Location system The Precision Personnel Location sys-

tem (PPL) (Amendolare et al., 2008) developed at the Worcester Polytechnic In-

stitute uses RF receivers at fixed locations on emergency response vehicles outside

the building to track the 3D position of personnel carrying a special transmitter.

The RF signals can be used alone to estimate location or they can be used to

correct drift in dead-reckoned positions. The dead-reckoning is particularly useful

18http://summitsafetyinc.com/ (Accessed 2012.09.24.)

http://summitsafetyinc.com/
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in larger buildings where the RF position estimates are less accurate due to poor

signal propagation into the building.

Flipside RFID A team from the National Institute of Standards and Technology

(NIST) investigated how predeployed RFID tags embedded in the building could

be used to correct PDR (Miller, 2006). They call this the flipside of RFID because,

unlike typical RFID systems, the tags are static and the mobile reader is worn by

the firefighters. The range of the reader and the distance between tags are the key

parameters. A long range will only give approximate locations but a short range

will miss tags.

Map matching with RFID The drift in PDR position estimates can be cor-

rected by using information from floorplans when these are available. A team from

EPFL asks the first team of firefighters to identify doorways by placing an RFID

tag on the frame as they pass through (Renaudin et al., 2007). As each tag is placed

the location system adjusts the PDR position estimate based on the position of

the nearest doorway on the floorplan. The system corrects the orientation estimate

based on the direction in which the doorway will typically be crossed. Following

teams wear an RFID reader which detects the tags deployed by the first team so

the system can correct the position and orientation estimates in the same way.

Map matching with particle filters Researchers from the WearIT@Work

project also use floorplans to ensure that successive PDR position estimates do

not pass through walls (Widyawan et al., 2008). A particle filter keeps track of

thousands of different position and orientation estimates (the particles), and each

one is weighted according to how well it fits with the inertial measurements. Par-

ticles that pass through walls are eliminated and replaced by plausible ones. The

map filtering method works with building outlines but benefits from more detailed

floorplans. Woodman and Harle (2008) at the University of Cambridge use maps
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which also include vertical positions to represent stairs. Their particle filter uses

these 2.5-dimensional maps to track locations over several floors and improve PDR

estimates even further.

HeadSLAM HeadSLAM (Cinaz and Kenn, 2008a) combines PDR with readings

from a laser scanner mounted on a helmet to produce a map. The scanner detects

the direction and distance of obstacles such as walls. The map produced resembles

an actual floorplan showing corridors, rooms and doorways. This idea is based

on Simultaneous Localisation and Mapping (SLAM) from robotics where a robot

gradually builds a map of its environment and keeps track of its current position on

the incomplete map (Hähnel et al., 2003). SLAM can be very effective when a robot

is allowed to repeatedly scan the environment but it is unclear how well it would

perform for a pedestrian in an emergency. We believe our work in chapter 5 offers

a more realistic and robust solution by abandoning the head-mounted scanner in

favour of foot-mounted sensors and artificial landmarks.

In general we see a tradeoff between systems that provide high quality location

information and those that are easy to deploy. Table 2.1 gives a summary of the

characteristics of the reviewed systems, while figure 2.2 shows the dependency of

good quality location information on preinstalled infrastructure and prior knowl-

edge of the environment. Systems such as PDR, which require little deployment

or prior knowledge of the area, tend to be either unreliable or inaccurate. But al-

though preinstalled systems work well under favourable conditions, they cannot be

relied upon in a disaster and may not be present at all in many locations.

2.8 Conclusion

We have seen how localisation research in different fields uses a variety of ap-

proaches and utilises assumptions specific to their applications. In general, there
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Table 2.1: Summary of location support systems for emergency response.

Name Function Technology Deployment Floorplan Components Limitations Bonus

Tracking Navigation

Available

Lifeline Distance Yes Rope, knots Implicit No Rope, clips Limited length, tan-
gled, trapped

No

Torch No Yes Light Strategic No Torch Obstacles, thick smoke No

PASS No Yes Alarm No No PASS device Sound masked, direc-
tion difficult to deter-
mine

No

PathFinder No Yes Relative ultrasound direc-
tion

Strategic No Wearable beacon, exit
beacon, hand-held
tracker

Limited functionality,
approximate direction
of beacon only

No

Commercial
indoor loca-
tion systems

Yes No UWB or ultrasound Preinstalled Optional Sensors in building,
wearable tag

Sensitive calibration,
loss of connectivity
and power

No

Prototypes

PPL Yes No RF ranging, inertial sen-
sors

Strategic Optional Multiple receivers out-
side, mobile transmit-
ter

Metal structure, large
buildings

No

SmokeNet Yes No RF fingerprints Preinstalled Required 1 beacon per room
and every 20m

Changes in environ-
ment

Environment
monitoring,
communication

LifeNet Distance Yes Relative ultrasound direc-
tion

Implicit No Beacons every few me-
tres, wearable sensor

Beacons moved or de-
stroyed

Environment
monitoring,
communication

PDR No Yes Inertial sensors No Optional Shoe-mounted sensor Drift, unpredictable er-
ror

No

Map match-
ing with
particle filter

Yes No Inertial sensors No Required Shoe-mounted sensor PDR drift No

Map match-
ing with
RFID

Yes No Inertial sensors, RFID Strategic Required Shoe-mounted sen-
sor, wearable RFID
reader, RFID tags

PDR drift Posture moni-
toring

Flipside
RFID

Yes No Inertial sensors, RFID Preinstalled Required Shoe-mounted sen-
sor, wearable RFID
reader, RFID tags

PDR drift No

Relate Trails No Yes Inertial sensors, relative ul-
trasound direction

Implicit No Shoe-mounted sensor,
beacons, wearable sen-
sor

Beacons moved, PDR
drift

Environment
monitoring,
communication

HeadSLAM Yes Yes Inertial sensors, laser
range scanner (relative
distance and direction)

No No Head-mounted in-
ertial sensors and
scanner

Scanner fails in low vis-
ibility, PDR drift

Environment
monitoring,
communication

is a trade-off between reliability, resolution and ease of deployment. This is partic-

ularly relevant when it comes to emergency response where each of those require-

ments is important. Time is precious, so systems which require no deployment,

such as inertial dead-reckoning and vision-based SLAM, appear attractive. But

these systems may not be robust enough for safety critical applications in harsh

environments. Methods from industrial asset tracking and military target tracking

have some benefits in terms of reliability, but they rely on complex infrastructure.

The resolution of the location estimates is a key consideration because responders

must be able to find a doorway or a person in near zero visibility. Some commer-

cial indoor location systems can provide the required level of accuracy but, again,

they require pre-installed and calibrated infrastructure. WSN researchers working

on localisation strive to design systems that will work reliably in harsh environ-
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Figure 2.2: Comparison of different location systems according to the ease of de-
ployment and quality of location support. Increased reliability and accuracy comes
at the cost of more deployment or prior knowledge of the environment.

ments with minimal human intervention, and, as in other areas, there is an effort

to improve resolution; however, wireless sensor networks often achieve this by us-

ing large numbers of nodes and aggregating measurements over a wide area and a

long time. Existing research into localisation for emergency response attempts to

resolve these conflicting requirements by using elements from these different areas.

We find that, although the research community and industry are aware of the

demand for tracking and navigation support for firefighters, none of their proposed

solutions adequately address the issues. Systems that provide high quality location

information in terms of reliability and granularity still tend to rely on pre-installed

infrastructure or prior knowledge, such as floor plans, while systems based purely

on wearable sensors cannot currently guarantee sufficient tracking accuracy for the

duration of an emergency intervention. One avenue of exploration for researchers is

therefore the coupling of dead reckoning with other localisation techniques, without

substantially increasing the deployment effort.
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In the following chapters of this thesis, we look more closely at a selection of

existing technologies and algorithms, and see how they can be used for pedestrian

tracking in uninstrumented and unknown environments. In chapter 3, we explore

the feasibility and practical application of relative positioning, that is the estima-

tion of positions of objects relative to each other, outside of any absolute coordinate

frame (such as a map). We illustrate this by looking at a method from the field of

WSN research using ultrasonic ranging, and propose a variation which allows us to

track sensor nodes in real time. In chapter 4, we show that we can use body-worn

sensors to measure movements from a given starting point, and provide position

estimates. We cover the topic of inertial pedestrian dead-reckoning by giving a

reference implementation and describing some of the requirements to make it work

as well as possible. Then, in chapter 5, we learn how to create a map and track

a person in that map without any prior knowledge of the landmark positions. We

achieve this by combining the sensor network approach and the inertial navigation

approach to provide simultaneous localisation and mapping (SLAM), a technique

used in the field of autonomous robots. Finally, chapter 6 explores how well this

SLAM method might work in practice, when used in a search and rescue mission,

by taking into account the deployment of the sensor nodes, the inaccuracies of the

algorithm, and the user interface.



Chapter 3

Peer-to-peer ultrasonic measurements for

relative positioning

In the previous chapter, we remarked that many localisation systems estimate posi-

tions in an absolute coordinate system. GPS, for instance, uses a global geographic

coordinate system (WGS84), while some of the other solutions require coordinates

to be referenced to a floorplan. This is not suitable for indoor localisation in a

building for which maps are inaccurate or unavailable. In this chapter, we exam-

ine the feasibility of relative localisation, that is localisation of objects solely with

respect to each other, without requiring an external frame of reference. This is an

important step towards providing navigation support for emergency response.

Some of the work in this chapter is based on localisation techniques from wire-

less sensor networks, but the applications include localisation in smart environ-

ments and navigation assistance for emergency response. Our various studies and

demonstrators have in common that they are all built around sensor nodes that

measure distance and angle (also called range and bearing) to each other using

ultrasound. We call these measurements peer-to-peer because each one is taken

between two nodes without requiring any external synchronisation or calibration

40
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with respect to another device or reference point. The measurements can still be co-

ordinated and collected by a central device for convenience but the measurements

themselves are peer-to-peer. The sensor nodes we use are also wireless and battery-

powered. These characteristics of the sensor nodes and the measurement process

make these studies relevant to our research into location support in uninstrumented

and unknown environments.

In this chapter, we first examine some applications and proof-of-concept imple-

mentations which show how relative position measurements between devices can

be used in place of more traditional infrastructure-based localisation systems to

provide location-aware services. These initial studies uncover a number of practi-

cal limitations which restrict the use of these systems in the real world. We then

propose an algorithm which addresses some of these issues and allows us to more

reliably track mobile devices while maintaining the infrastructure-less nature of

the system.

3.1 Background and simple demonstrators for

relative localisation

Many research projects aim to provide indoor localisation by instrumenting the

environment. In contrast, the Relate project1 investigated technologies, methods,

algorithms, and applications for relative positioning of electronic devices only with

respect to each other, independently of the environment. This was driven by the

observation that many location-aware services rely more on the positions of devices

relative to each other than absolute positions within a building. For instance, a

system that teleports your computer desktop to a suitable screen as you move

between offices only needs to know how close you are to each available screen

and which screen you are facing (Harter et al., 2002). Using only this minimal

1Project No. 013790, FP6 IST Programme funded by the European Commission
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amount of data, the application should also be more robust to change; it should

work seamlessly without reconfiguration when screens are shuffled around between

offices. At first, the Relate project was concerned with collaborative work, location-

aware user interfaces, and interactions with smart environments. These topics are

described in the first part of this section and in an article by Gellersen et al. (2008).

Later in this section, we describe another application where we provide navigation

support to emergency responders using devices from the Relate project.

3.1.1 Hardware: ultrasonic sensor nodes

Several prototype devices were developed by our colleagues in this project in order

to explore relative positioning. The first devices use a circular array of infrared

receivers and transmitters to measure range and bearing to each other (Krohn et al.,

2005). The following generation of devices are the USB dongles described by Hazas

et al. (2005). Each dongle has three ultrasonic transducers and connects directly

to the USB port of a laptop or PDA. Later work made use of battery-powered

dots which can be attached to various objects in the environment without needing

to be connected to another device. Finally, bricks are more typical sensor nodes,

battery-powered, with four transducers each and an optional USB connection for

data logging. Figure 3.1 shows these three types of ultrasonic sensor nodes. They

are all compatible with each other. For the work in this thesis, we used the hardware

as provided but made some minor improvements to the sensor firmware.

Each of these devices is built around a Particle Computer (Decker et al., 2005)

and its associated AwareCon network protocol stack. Measurements are taken

when a transmitter sends a trigger packet over the RF channel and simultaneously

emits an ultrasonic pulse. This allows the receivers to measure the time-of-flight

(inferring the distance) and estimate the angle of arrival (inferring the bearing to

the transmitter). If only one of the transducers detects the ultrasonic pulse, the

bearing is estimated as the multiple of 90◦ corresponding to that transducer. If the
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Figure 3.1: Ultrasonic devices from the Relate project — clockwise from right:
brick, dongle and dot.
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pulse is detected by two or three transducers, the bearing is estimated by linear

interpolation based on the pulse amplitude

φ = φmax +
π

4

aleft − aright
amax

, (3.1)

where the angle φmax is the multiple of 90◦ corresponding to the transducer having

received the pulse with the greatest amplitude amax; aleft and aright correspond to

the amplitude detected on this transducer’s left and right neighbours respectively.

The receiver measures the local temperature in order to more accurately es-

timate the speed of sound but variations in the environment can introduce error

into the measurements. The largest errors are due to reflections, so some simple

heuristics are applied to detect and eliminate some of these bad measurements.

For instance, the firmware flags measurements where the transducer measuring

the shortest time of flight is different from the transducer receiving the strongest

signal. Using similar principles, each measurement is assigned a quality rating be-

tween zero and four. Range and bearing measurements where three transducers

detected consistent pulses (a strong pulse on the central transducer, and weaker

pulses with a short delay on both lateral transducers) are rated four and are the

most reliable.

We encountered a particular problem when we started working on larger scale

experiments using the more powerful pulses generated by the Relate bricks. Each

device waits approximately thirteen milliseconds between transmission of succes-

sive ultrasound pulses. During this time, the pulse has travelled around 4.5 metres.

If the receiving device is more than 4.5 metres away, it will give up listening for

the first pulse after thirteen milliseconds and start listening for the second one.

Then the first pulse arrives and the receiver underestimates the distance by 4.5

metres. The second pulse is assumed to be a reflection and ignored. The solution

we adopted was to discard measurements with a short estimated distance but a
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weak amplitude. A better solution requiring more advanced hardware would use

variable gain amplification where the gain increases with time.

3.1.2 Non-linear regression

One of the first application scenarios for relative positioning in the Relate project

was collaborative work (Kortuem et al., 2005). A group of co-workers sits around

a table, each with their own laptop or PDA. Each device is equipped with an

ultrasonic Relate dongle and software to estimate the relative positions of each of

the other devices. This position information is then used to populate spatialised

widgets which display a map of neighbouring computers, or allow users to select a

recipient for an instant chat message or a file transfer from a drop down list sorted

by distance.

The algorithm used for this system operates as follows and is also described

by Krohn et al. (2005).

1. A batch of measurements is recorded over a few seconds. Ideally, there should

be at least one range and bearing measurement between each pair of sensor

nodes.

2. Positions and orientations for all sensor nodes are initialised using a graph

tracing algorithm which attempts to successively place each node in a graph

using only the best available measurements.

3. A Levenberg-Marquardt non-linear regression minimises the differences be-

tween the estimated positions and orientations, and the measured values. We

use a slightly modified version which ensures that angle-wrap is handled cor-

rectly, e.g., an error of 361◦ is the same as an error of 1◦. The minimisation

is run several times in an attempt to eliminate outliers; each time, the mea-

surement with the highest residual is removed.
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Hazas et al. (2005) show that this method works well to estimate the positions

and orientations of stationary devices in a plane (such as a tabletop). Since the

algorithm processes measurements in batches and does not use a history of position

estimates, it will continue to work just as well after devices are moved to different

positions. It may also work, albeit with a lower accuracy, while a single device moves

slowly and the others remain at fixed positions. But it is not able to track multiple

moving devices or a fast moving device due to the inherent measurement errors

which occur for mobile devices, and to the fact that measurements within a batch

will have been taken at different positions over a few seconds. The simultaneity

assumption is broken (Welch and Bishop, 1997). The non-linear regression does

not scale well with the number of nodes. More nodes mean more unknowns to

estimate, and larger batches of measurements which take longer to accumulate

and to process.

3.1.3 Using individual measurements

We also use the range and bearing measurements from the Relate sensor nodes to

create two demonstrators designed to help a person navigate in their surroundings.

The first helps a person identify what parts of a smart environment they can

interact with, the second provides navigation support for a firefighter. The sensor

nodes from the Relate project measure angle of arrival as well as distance; this is

essential for orienting oneself. Both these applications have in common that they

use only single measurements and do not perform any kind of filtering such as the

non-linear regression described above.

Relate Gateways: an interface for spontaneous interaction

We consider the scenario where a user with a laptop, PDA, or smartphone walks

around a building, and wants to interact seamlessly (and wirelessly) with services
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available in the environment (Guinard et al., 2007; Gellersen et al., 2008) For

example, they may want to show a colleague a presentation on a large public

display rather than the tiny phone screen, or print a document from their laptop

when they happen to pass a printer on their way to a meeting. The Gateways

interface displays icons around the edge of the screen of the mobile device; each

icon represents a service available in the environment, such as a printer, a display or

a loudspeaker. These icons, the gateways, are located around the screen in positions

corresponding to the position of the device in the real world in order to make the

interaction more intuitive (fig. 3.2a).

We designed an additional ultrasonic sensor node called the dot to make this

scenario possible. The dots have a much smaller form factor than the dongles,

and no USB connection, but they are compatible with the Relate USB dongles

(fig. 3.2b). A dot is attached to each service in the environment but not connected

in any way; each dot is battery-powered and wireless. The dots are programmed

to each transmit in turn, and to broadcast the type of service and the URL which

identifies and gives access to this particular service. Mobile devices listen via their

ultrasonic USB dongle, identify, and locate nearby services which are then displayed

as icons in suitable positions around the edge of the screen. In principle, this system

works, but in practice the measurements are not sufficiently accurate or stable, and

this makes the interface difficult to use as the gateways jitter. Although the concept

was demonstrated with some success at several venues (Fischer et al., 2007a,b), we

more frequently used a Wizard of Oz setup instead of the sensor-based localisation

system. A researcher (the “wizard”) sits discreetly in a corner of the room and

clicks on an office floorplan to indicate the location and orientation of the user

(fig. 3.2c). This updates the display on the user’s device more reliably than the

sensor-based system, and allows us to study the user interface independently of

the measurement errors.
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(a) A handheld com-
puter showing three
gateways : a shared
screen to the left of the
user, a printer to their
right, and a keyboard
located behind them to
the right.

(b) Part of the demon-
stration: a handheld
computer with its
Relate dongle and a
shared screen tagged
with a dot.

(c) The Wizard-of-Oz in-
terface for conducting
user studies. Here the
user is standing close to
a keyboard and facing
it.

Figure 3.2: Components of the Relate Gateways prototype.

Relate Trails: supporting firefighter navigation

In collaboration with the wearIT@work project2, we developed software that uses a

trail of Relate devices as a virtual lifeline to assist a firefighter in finding their way

along a path (Klann et al., 2007). The virtual lifeline is intended as a replacement

for the physical ropes that are sometimes used by firefighters. It is deployed behind

them as they advance into a building, and guides them back to the exit when they

need to retreat.

The firefighter’s boots include a Relate ultrasonic sensor node that transmits

and receives ultrasound pulses from four transducers attached around the sole

(fig. 3.3). The sensor nodes deployed on the ground have similar hardware and all

communicate wirelessly. Each time a new node is dropped and turned on, it detects

other nearby nodes and is added to this firefighter’s virtual lifeline. Each node in

the lifeline keeps track of its distance to the exit (the first node) by accumulating

its measured distance to the previous node with the previous node’s distance to the

exit. The nodes periodically transmit heartbeat messages and update the distance

2Project No. 004216, FP6 IST Programme funded by the European Commission.
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Figure 3.3: Boots equipped with ultrasonic sensor nodes. The transducers are lo-
cated around the sole.

to their neighbouring nodes. When a node has not transmitted for a while, or has

moved too far away, the lifeline registers that this path to the exit is no longer

available. New nodes are only dropped when a firefighter has moved a certain

distance away from existing nodes. When multiple lifelines are close to each other,

the nodes from each line detect it and register that an alternative path to an

exit is available. The firefighter’s transmitter regularly sends pulses to determine

which lifeline nodes are nearby. The lifeline nodes then respond by sending a pulse

and telling the firefighter how far they are from the exit. Their pulse allows the

firefighter’s sensor node to measure which direction each node lies in. The firefighter

is guided to the best node by an arrow on their head-mounted display. When

they move closer to this node, another node closer to the exit is detected and the

direction of the navigation arrow is updated accordingly. They are thus guided

step-by-step towards the exit.

This demonstrator worked in the lab but only poorly when we showed it at a

conference. Once again, the problem was unreliable measurements: incorrect an-

gles caused the arrow to swing erratically, incorrect distances caused the system
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to miss the nearest node, and delayed radio messages caused nodes to timeout and

be removed from the line. These issues were traced back to several sources: radio

interference from other demos, ultrasonic interference from a noisy environment,

reflection of ultrasonic pulses off obstacles, weak pulse due to unfavourable orien-

tation of devices, measurement collisions between multiple nodes. Only the latter

could potentially be addressed through more careful coordination of the measure-

ment protocol, but all the other issues would require substantial hardware and

low-level software development. We believe these changes to be achievable with

sufficient resources.

3.2 Real-time relative positioning of mobile nodes

in sensor networks3

In the previous section, we discussed the use of ultrasonic sensor nodes to enable

location-aware collaboration and interaction with services in a smart environment,

and to support navigation for firefighters. The concept of relative localisation with

no infrastructure was shown to work in principle, but the localisation algorithms

we used and the quality of the measurements were inadequate for tracking mobile

devices in real-time. Not only are the particular algorithms incapable of producing

good position estimates while a device is moving because the simultaneity assump-

tion is broken (Welch and Bishop, 1997), but they also take several seconds to

stabilise after movement has stopped. In our opinion, this is not good enough for

a system with a live user interface, as would be the case for a navigation system.

In this section, we focus on a more suitable algorithm which gives good results

even when many devices are moving. This mobile scenario occurs when one or more

3This section contains unpublished work conducted by Carl Fischer with Matt Fisher and
Carl Ellis under the supervision of Mike Hazas at Lancaster University. Matt Fisher wrote the
initial software demonstrator in Java; Carl Ellis implemented the MDS-MAP initialisation; we
coordinated the work, conducted the experiments, and reimplemented and refined the algorithm.
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people equipped with sensors (either attached to their bodies, or on their phones)

are trying to navigate an unknown area. In order to develop, test and compare our

algorithm to other methods, we use a generic wireless sensor network (WSN) rather

than one designed to support a particular application. Hence, we use the approach

and the vocabulary of WSN research rather than those of ubiquitous computing or

pedestrian tracking. WSNs are appealing to us because they are composed of small

and easy-to-deploy sensor nodes which often work in a decentralised fashion, and

the embedded algorithms for communication, localisation and data collection are

typically able to initialise and reconfigure themselves as required. These character-

istics are a good match for the uninstrumented environments we are considering.

We use measurements from a real-deployment of sensor nodes but the processing is

done offline in Matlab. Online processing is feasibly with a few changes discussed

at the end of this chapter.

3.2.1 Introduction

We argue that Kalman filtering is a positioning solution more generally suited

to the localisation of sensor nodes than other algorithms, because of its accuracy,

robustness to measurement noise often encountered in WSNs, real-time tracking

capability of multiple mobile devices, and low computational and communication

overheads which scale linearly with the number of neighbours of each device. We

demonstrate this argument by a deep performance analysis of a Kalman filter which

uses range, and optionally bearing, measurements between sensors to estimate their

locations and orientations, including when all sensors are mobile.

We characterise the filter using data taken from our Relate sensor nodes (sec-

tion 3.1.1) which transmit and receive ultrasound pulses; they use time-of-flight to

estimate the range between the nodes, and the relative amplitude of the received

pulse at different transducers to estimate the angle of arrival (or bearing). There
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are a number of other methods and technologies which have been used to mea-

sure range and bearing. For example, range can be estimated using the received

signal strength or the round-trip time of a radio transmission, and bearing can be

measured with a directional antenna or an antenna array. Alternatively, a camera

can be used to determine the range and bearing to a visual marker. Regardless

of sensing modality, this tracking algorithm can be applied in any sensor network

where node-to-node range, and optionally bearing, can be measured. Other types

of measurements such as speed (Amundson et al., 2008) can easily be incorporated

into the system by defining a suitable measurement model (see equation 3.4).

In previous WSN literature, the Kalman filter (and more generally, Bayesian

filtering) has been used to track a single mobile node moving within a field of static

neighbours, using a centralised algorithm (Savvides et al., 2002; Taylor et al., 2006).

Our core argument is that the Kalman filter is a strong candidate for generalised

WSN positioning, with the following advantages:

• General algorithm with extensive supporting literature from other fields.

• Configurable and extensible to incorporate a variety of sensing modalities,

measurement types, and node mobilities.

• Can be distributed across the nodes thanks to low computation and commu-

nication requirements.

• Scales well to large multihop networks, as each node needs only knowledge

of measurements to its immediate (single hop) neighbours.

• Location accuracy and robustness to sensor noise is better than or equal to

other WSN localisation algorithms in this context.
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3.2.2 Related work on localisation in wireless sensor net-

works

There is a large amount of literature on sensor network localisation, primarily focus-

ing on localising static nodes in multihop networks, where not all nodes are within

measurement range of one another (Niculescu and Nath, 2003; Shang and Ruml,

2004; Moore et al., 2004). These and similar algorithms have been comparatively

evaluated for different network densities, measurement ranges, and topologies (Lan-

gendoen and Reijers, 2003). Whitehouse and Culler (2006) have shown how algo-

rithm performance can be severely degraded by raw measurement error charac-

teristics which deviate from the commonly-used Gaussian “noisy disk” model. To

evaluate algorithm performance, they recommend using simulations which draw

samples from error distributions compiled from real-world ranging data. Our ex-

perimental methodology and analysis follows this strategy.

A few researchers have also used bearing measurements as well as ranges. Chin-

talapudi et al. (2004) describe a localisation algorithm based on an iterative opti-

misation using blocks of both range and bearing measurements. They first show

that by using bearing measurements with small errors of a few degrees, sparser

networks with fewer anchors can be localised adequately. Then they show that

even when only rough sectoring information is available (e.g., 45◦ sectors) they

are able to get better results than with ranges alone by including the sectors in

the initialisation phase of the algorithm. They achieve good results but their al-

gorithm requires anchor nodes with known positions and operates on batches of

measurements, making it unsuitable for real-time tracking of mobile devices.

Since our method is specifically designed to deal with mobile as well as static

nodes, we concentrate here on prior sensor network localisation algorithms involv-

ing mobile nodes. Park et al. (2008) use the expression moving-baseline localisation

to track nodes “operating in the absence of a fixed reference frame”. Rather than
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solving a series of static localisation problems they determine the parameters of

the nodes’ trajectories which are assumed to be piecewise linear. Based on real

range measurements between a pair of ultra-wideband radio nodes, they apply a

distance-dependent Gaussian model for their simulations, with a 5% chance for

“large error” which is drawn from a uniform distribution from zero to ten metres.

They show that the algorithm can perform tracking even when all nodes are si-

multaneously mobile. However, it is unclear how it performs with more aggressive

types of noise (systematic over– and under-ranging), observed in the multinode

ultrasonic deployments by ourselves and others (Whitehouse and Culler, 2006).

The Monte Carlo Localisation Boxed method described by Baggio and Langen-

doen (2008) uses a particle filter to locate a set of mobile nodes. Their method

requires some of the nodes, called anchors, to have known positions. This is a

“range-free” method which relies on knowledge of whether two nodes are in range

of each other (connectivity). It is designed to work well with mobile nodes, and

they evaluate their method via simulation. The advantage of a particle filter is

that it can model arbitrary measurement error distributions rather than simply

Gaussian ones, and it can model a non-linear relationship between measurements

and position estimates instead of the linear approximation used in an extended

Kalman filter. However, this comes at a much higher computational cost required

to process the hundreds of particles.

Galstyan et al. (2004) employ bounding box constraints to estimate the loca-

tions of static nodes, as they sense a mobile node moving among them. Taylor et al.

(2006) build on this idea, but incorporate live tracking of the mobile node, as well

as refining estimates for static nodes. They employ a Bayesian filter operating on

range-only measurements, and evaluate its accuracy and convergence using a sin-

gle data trace from each of three deployments. Our proposed Kalman filter-based

method differs from theirs in two important ways: (1) we do not differentiate be-

tween static and mobile nodes, all our nodes are identical in terms of hardware
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and software, (2) we do not rely on collecting batches of measurements and are

therefore able to localise fully mobile networks. Their three data traces are used

to show how well, on average, the positions of static nodes are refined, as a mo-

bile node moves among them. The mobile node tracking accuracy is not reported,

since no dynamic ground truth capture was in place. We plot dynamic tracking

accuracy distributions for increasing proportions of mobile nodes. Savvides et al.

(2002) also use a Kalman filter formulation in the centralised version of their n-hop

multilateration algorithm but it is used to process blocks of range measurements

between static nodes.

By contrast, our Kalman filter is a “single constraint at a time” (SCAAT) re-

alisation, most similar to the dynamic tracking and autocalibration method used

by Welch and Bishop (1997). Cameras on their mobile HiBall tracker device detect

the bearing to ceiling-mounted LEDs; the SCAAT filter uses these individual mea-

surements to compute the location and orientation of the HiBall with a Kalman

filter, while concurrently refining the LED position estimates.

Work by Kusy et al. (2007) and Amundson et al. (2008) tracks a single mo-

bile robot by processing Doppler shift velocity measurements with a Kalman filter.

The sensing technique is based on radio signals which have a much wider coverage

than our ultrasonic pulses but the location errors are of a similar proportion to

ours, given the scale of the experiment. They use a maneuver detection algorithm

to improve performance when the robot changes direction and the constant veloc-

ity assumption is broken. Their Kalman filter implementation can be seen as a

specialised version of the more general algorithm we present below. Their imple-

mentation is tailored to suit their scenario of a single mobile node moving through

a field of stationary nodes with a relatively low measurement rate.
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3.2.3 Relative Kalman Filtering

The Kalman filter is a iterative Bayesian method for estimating the state of a sys-

tem given a series of observations. In our particular implementation, it estimates

the locations of the sensor nodes relative to each other, given range and bearing

measurements between them. It is particularly attractive for tracking problems

because it can process single measurements at a time and provide location esti-

mates in real-time, unlike the batch methods described above where the system

must collect a number of measurements before being able to run the localisation

algorithm. The design we have chosen is suited to lightweight sensor nodes because

each sensor only locates itself and its immediate neighbours, and is not required to

store any other information than those estimated locations. For an overview of the

Kalman filter applied to localisation and navigation we refer the reader to Groves

(2008), and for a more formal derivation of the Kalman equations to Simon (2006).

The defining features of our specific implementation, which we use to demon-

strate the advantages of Kalman filtering for the localisation of wireless sensor

nodes, are as follows:

• Range and optionally bearing measurements are used to locate static nodes

and to track mobile nodes in real-time.

• Mobile nodes can be located in real-time relative to each other, even when

all nodes are mobile.

• No anchor nodes (nodes with known positions) are necessary. All nodes are

located within the network, within one coordinate system. As there are no

local neighbourhood coordinate systems, no “patch-and-stitch” step is neces-

sary to merge to a global, network-wide coordinate system (Whitehouse and

Culler, 2006).
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Figure 3.4: Notations used for coordinates, orientations and measurements. xrx,
yrx and θrx are the coordinates and orientation of the receiver. xtx and ytx are the
coordinates of the transmitter. r and φ are the range and bearing measurements.

• Accuracy is better than previously proposed localisation algorithms which

use range and, optionally, bearing, and the required computation is less. Our

method is suitable for distribution on lightweight sensor nodes.

Typically, a Kalman filter tracks the position of a single object in an absolute

coordinate system, but we use it to track the position of multiple objects relative

to each other. In our case, the state of the system consists of the 2D locations and

orientations of the sensor nodes. An observation, or measurement, consists of the

range and bearing measured by the receiving device with respect to the transmit-

ting device. We denote the state of the receiving device by staterx = (xrx yrx θrx)
T .

The state of the transmitting device uses the subscript tx. Measurements are de-

noted by meas = (r, φ). These variables are illustrated in fig. 3.4.

In addition to the estimated state, the filter maintains an error covariance

matrix which represents the uncertainty of the state estimate. The 3 × 3 error

covariance matrices are denoted by Prx and Ptx respectively. We will sometimes

refer to the state simply as the position, although it also includes the orientation.

Instead of working with a single large state vector containing coordinates of all

devices, our filter constructs a state vector on the fly with only the states of the

two devices involved in the current measurement. The same principle is applied
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to the error covariance matrix. When the filter has finished processing the current

measurement, the states and covariance matrix of the two devices are saved. The

aggregate state and error covariance are constructed as state =







staterx

statetx






and

P =







Prx 0

0 Ptx






.

The steps to process a measurement are as follows:

1. Construct the state vector and error covariance matrix by combining the pre-

viously stored values for the transmitter and receiver involved in this mea-

surement.

2. Predict the current state according to the previous state and the system

model. Update (increase) the error covariance accordingly. These are the a

priori values because they do not take into account the latest measurement.

We denote them by state− and P−.

3. Update the predicted state with information from the measurement, weighted

according to the predicted estimate covariance and the measurement error

model. Update (decrease) the error covariance accordingly. These are the a

posteriori values, denoted by state+ and P+.

4. Split the state vector and the error covariance matrix into the part corre-

sponding to the transmitter and the receiver. Store these values.

Initialisation

Initialisation is likely to be application and network dependent. The following dis-

cussion relates particularly to our sensor nodes which transmit pulses in a round-

robin fashion. In situations where measurements are scheduled differently, or where
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some sensors are known to be static and have positions which are known approxi-

mately, different initialisation schemes may be more suitable.

When the filter is started, one device is arbitrarily assigned the coordinates

(0, 0) and an orientation of 0◦. When a device transmits a pulse which is received

by another device with a known position and orientation, we can determine the

position of the transmitter but not its orientation (eq. 3.2). And when a device with

a known position receives a pulse from another device with a known position, we

can determine the orientation of the receiver (eq. 3.3). Based on these conditions,

our algorithm initialises devices’ positions and orientations as soon as the necessary

measurements are available. Note that the position estimate of the first device will

change as further measurements are processed by the filter; it will not necessarily

remain at the origin of the arbitrary coordinate system. A more robust variation

on this naive initialisation method is to wait for several measurements between

each node pair and take the median.

xtx = xrx + rcos (θrx + φ)

ytx = yrx + rsin (θrx + φ)
(3.2)

θrx = atan

(

ytx − yrx
xtx − xrx

)

− φ (3.3)

In a single hop network such as the one we start with, where all devices transmit

in round-robin fashion and assuming there is no packet loss, the total initialisation

time is the number of devices multiplied by the duration of a measurement. For

a multihop network, this is multiplied by the maximum number of hops from the

first device. In a multihop network, this naive initialisation method can be slow

because devices several hops away from the first device will only be initialised after

closer devices have themselves been initialised. Errors also accumulate over multi-

ple hops when this basic method is used. In order to speed up initialisation and
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to avoid the inconsistencies that can arise between different portions of a multi-

hop network, we investigate the performance of alternative initialisation methods

such as a graph tracing algorithm (which applies simple trigonometry to range

and bearing measurements to produce rough location and orientation estimates)

and MDS-MAP (Shang and Ruml, 2004). These methods are discussed in subsec-

tion 3.2.5.

Prediction of the state and error covariance

The prediction of the state is trivial for static devices because their position remains

the same between measurements. The covariance matrix for static devices is also

propagated trivially as P−

k+1 = P+
k , where k is the timestep. For mobile devices,

we may use a constant velocity model or a random movement model as discussed

in subsection 3.2.3.

At this stage, the filter can predict the range and bearing measurement accord-

ing to the measurement function h.

h (state) =







r

φ






=







√

(xtx − xrx)
2 + (ytx − yrx)

2 + ǫr

atan
(

ytx−yrx
xtx−xrx

)

− θrx + ǫφ






(3.4)

(ǫr ǫφ)
T is the measurement noise with covariance R, determined empirically. Our

devices provide a quality indicator which we use to estimate the noise covariances

for each measurement individually. The quality indicator takes the value 1, 2 or

3, based on the number of transducers at which a sufficiently strong pulse was

detected. A pulse received by more transducers tends to have a smaller range and

bearing error, and the exact value of R is chosen according to this. We use the

90th percentile value of range and bearing errors (approximately 7cm and 30◦when

considering all measurements).
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Update of the state and error covariance

The measurement model in eq. 3.4 gives the range and bearing as a function of the

positions of the devices. The measurement function h is non-linear so we use an

extended Kalman filter (EKF) which linearises h around the current state estimate.

The EKF uses the matrices of partial derivatives (Jacobians) of the non-linear

functions. In particular, H is the matrix of partial derivatives of the measurement

function h with respect to the state variables xrx, yrx, θrx, xtx, ytx.

The Kalman gain K represents the ratio between the uncertainty of the predic-

tion and the uncertainty of the measurement, and is computed asK = P−HT (HPHT+

R)−1.

The gain is then used to combine some of the information from the measure-

ment with some of the information from the prediction as state+ = state− +

K (meas− h (state−)).

To improve the linearisation, we use an iterated update phase (Jazwinski, 1970).

Each iteration calculates H at the current state estimate, then computes the gain

K and re-estimates the state until the state estimate converges.

Finally the error covariance P is updated with P+ = (I−KH)P−(I−KH)T +

KRKT . This form guarantees that P remains symmetric positive definite (Simon,

2006) and avoids potential instability. R is the covariance matrix of the measure-

ment noise vector (ǫr ǫφ)
T and I is an identity matrix of appropriate dimensions.

The state vector and error covariance matrix are then split into their respective

components staterx, statetx, Prx and Ptx.

Outlier filtering

We define innovation = meas − h(state) as the difference between the predicted

measurement and the actual measurement. It can be used to estimate whether
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Figure 3.5: Filtering of outliers in a deployment with fifteen nodes. Measurements
with high range error are successfully rejected. In this example, 5% of all measure-
ments are rejected as outliers. Eq. 3.5 gives the expression of the criteria shown as
the abcissa.

a measurement is an outlier. We discard all measurements for which the ratio of

innovation to estimate uncertainty is too high. Every time the filter eliminates an

outlier we increase the uncertainty of the corresponding devices so that in the case

where the device really has moved or the current estimate is incorrect the filter

will eventually update its position instead of discarding all further measurements.

This is essential because it allows the position estimates to be corrected when the

initialisation is wrong. It is an alternative to techniques such as adding artificial

process noise or using a fading memory filter (Simon, 2006, sec. 5.5) which are

necessary for a Kalman filter to correctly estimate static values.

Our outlier criterion is highly correlated with the actual range error as illus-

trated in figure 3.5. By removing all measurements where this criterion is greater

than an empirically determined threshold, we successfully remove many of the

measurements with high range errors while keeping all measurements with low

range errors. The range innovation is the most useful for detecting outliers but the

bearing innovation can also be used.
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The outlier criterion is computed as follows:

range outlier criterion =
innovation

√

max(Prx(1, 1), Prx(2, 2)) +max(Ptx(1, 1), Ptx(2, 2))
.

(3.5)

Filtering for mobile devices

Mobile device tracking can be accomplished with only minor modifications to the

filter specified above. One approach is to model a mobile device’s velocity, and

assume that it remains constant between measurements. This approximation is

almost perfectly valid in our experiments during the straight segments of the robots’

paths but not when they are changing direction and reversing. The state and error

covariances of each mobile device are augmented to include linear velocity so the

state vector for a mobile device becomes state = (x y θ ẋ ẏ)T . The prediction of P

now becomes P−

k+1 = AP+
k A

T+WQW T where A is the matrix of partial derivatives

of the prediction function (the system model) with respect to the state variables,

Q is the process noise covariance, and W is the matrix of partial derivatives of

the prediction function with respect to the process noise variables ǫθ, ǫẋ and ǫẏ.

The speed of the device is assumed to be affected by additive Gaussian noise of

covariance Q. This allows for changes of direction.

The system model for a mobile device is given by the prediction function f .

statek+1 = f (statek) =

























xk+1

yk+1

θk+1

ẋk+1

ẏk+1

























=

























xk + ẋkδt

yk + ẏkδt

θk + ǫθ

ẋk + ǫẋ

ẏk + ǫẏ

























(3.6)
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where δt is the time passed between the previous update of the estimate for this

device and the present measurement. The matrix A is the matrix of partial deriva-

tives of this function with respect to the state variables. Note that we do not model

the speed of rotation because, in our experimental setup, mobile sensors move in

straight lines most of the time and only rotate briefly.

Alternatively, a mobile device’s movement can be modeled as random. The

state no longer needs to include velocity, and the position is directly affected by

Gaussian noise. The prediction function becomes

statek+1 = f (statek) =













xk+1

yk+1

θk+1













=













xk + ǫx

yk + ǫy

θk + ǫθ













. (3.7)

3.2.4 Real deployments

In this section, we describe our deployment scenarios, and characterise the nodes’

raw range and bearing accuracy. In these experiments, we use the Relate bricks

already described in section 3.1.1. Figure 3.6 gives a more detailed view of the

hardware. These nodes share measurements with each other over the RF channel.

For experiment logging purposes, one node reports this data to a computer via a

USB connection.

In a 2.75 × 2.00m arena, we ran two types of experiment: (1) fifteen static

nodes; (2) five static nodes and one mobile node. Mobile nodes were carried by

Lego Mindstorms robots, which were programmed to run in a straight line until the

border of the arena was hit, and then turn back into the arena and proceed onward.

In order to get accurate, real-time groundtruth location/orientation of nodes, we

used two cameras suspended above the arena and ReacTIVision software developed

by Bencina and Kaltenbrunner (2005) to track visual markers attached to the tops



3. Relative positioning Sensor networks 65

Figure 3.6: Ultrasonic sensor node: a Relate brick — microcontroller and radio
transceiver on the top board, transducers and amplification circuit on the lower
board.

of all the nodes. In many applications, this camera-based tracking system is not a

viable alternative to other localisation modalities because it requires installation

and calibration, and only covers a small area. We found that this system gave

centimetre-level resolution over most of the arena, with slightly lower accuracy

in the corners due to the distortion introduced by the wide-angle camera lenses.

Each experiment was run five times for five randomly generated layouts of the

nodes, and data was collected for approximately five minutes each time. Our full

dataset from both types of experiment contains over two million range and bearing

measurements between nodes.

Our first set of experiments, shown in figure 3.7, involved fourteen static nodes

and six mobile nodes mounted on Lego Mindstorms robots. The poor results for the

mobile nodes in this experiment prompted us to run a second set of experiments

with only five static nodes and one mobile node. Using fewer robots increased the

effective update rate due to lower contention rates, but not enough to successfully

track the mobile node. We also ran a third set of experiments involving fifteen
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cameras

static nodes

mobile nodes

Figure 3.7: Deployment of nodes and mobile nodes mounted on Lego Mindstorms
robots. The two cameras suspended above the arena are used to measure the real
positions of the nodes. (Due to problems with the measurement rate this particular
experiment was not used in our analysis.)

static nodes and no mobile nodes in order to increase the size of our total data set

and get a more accurate error distribution for use in simulations.

Raw measurement errors. As has been previously observed for other ranging

sensor systems (Whitehouse and Culler, 2006), the ranging error of our ultrasonic

nodes is not Gaussian. In fact, looking at the range error distributions for sin-

gle node pairs (fig. 3.8a), it is clear that a significant proportion (about 7%) of

links systematically under– or over-range by more than 10 cm. This is similar to

Whitehouse and Culler’s proposed “Model 3” error, which accounts for under- and

over-estimates. However, in our case, the large offsets for measurements between a

given node pair in a particular spatial configuration are repeatable (i.e. the error

has a significant systematic component). This systematic error is heavily dependent

on the relative location and orientation of the particular node pair.

We illustrate the amount of systematic error which occurs in our experiments in
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figure 3.8a. We designate a link as under– or over-ranging if more than ten percent

of its measurements were worse than 10 cm. These limits are represented by the

dotted black lines. Any node pairs with error distributions outside of those lines

have high proportions of systematic error. Figure 3.8b gives further detail on the

frequency of over– and under-ranging which occurred on each link. For example,

one can read from the plot that 1% of links under-ranged, and 2% of links over-

ranged in more than a quarter of their measurements. We additionally show the

per-link measurement failure distribution; 35% of links failed to detect an in-flight

ultrasonic pulse more than 10% of the time. (As explained below, these failures are

due to the ultrasonic sensing; they do not include measurements lost due to radio

communication failure.) For the node pairs in which one or both of the nodes is

mobile, there were no such systematic offsets.

In total, from our five and fifteen static node experiments, we have over a

thousand per-link error distributions. For each link between a static node pair in

our simulated evaluations below, we randomly choose a real link error distribution,

which is used to model range error, bearing error, and measurement failure for that

link throughout a particular simulation.

Packet loss and measurement failure. The physical dimensions of our

deployments were such that all nodes should have been within measurement range

of each other. Thus, a pulse emitted by a node should cause each of the other

nodes to produce a range and bearing estimate. However, we observed that for most

emitted ultrasonic pulses, less than half of the other nodes reported a measurement.

Fig. 3.9 shows that the measurement rates achieved in our experiments are much

lower than the expected values. This low measurement rate can be attributed

to two causes: (1) measurement failure (characterised above), where the receiving

node was unable to detect a valid ranging signal; and (2) radio packet loss, affecting

the trigger packet sent out by the transmitting node as it emits the pulse, and/or

affecting the range/bearing readings reported by receiving nodes to the logging

computer.
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Figure 3.8: Distribution of per link severe under/over-ranging rate (error greater
than 10cm) and measurement failure rate (RF sync packet received but no ul-
trasound pulse detected). Both plots generated from 1010 one-way node-to-node
links.

The maximum aggregate ultrasonic pulse transmission rate4 is about 10 pulses

per second for our devices. Each transmitted pulse should generate a measure-

ment at each receiver within range. Thus, six nodes (five static and one mobile)

should yield an aggregate rate of 50 measurements/s, and fifteen nodes 140 mea-

surements/s. Total losses were about 38% for the six-node case, and 59% for the

fifteen-node case. Since nodes always report the ranging result (even when the

ultrasonic measurement failed), we can compute the readings lost due to mea-

surement failure (the difference between “all reported measurements” and “valid

measurements only” on fig. 3.9).

It is clear that the majority of the measurement losses are due to packet loss.

This is typical of the legacy radio module and MAC protocol used on the “brick”

devices. In a separate set of experiments, Agbota (2009) found packet losses to be

greater than 55% for a single-hop network of twenty nodes. With contemporary

radios (CC2420) running the TinyOS MAC in the same setup, he found packet

losses to be only about 5%.

4The aggregate transmission rate is the number of ultrasonic pulses transmitted per second
for all nodes. The individual rate is less because the ultrasonic channel is shared between them.
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Figure 3.9: Distribution of measurement rates for six nodes (five static and one
mobile), and for fifteen nodes (all static).

Low total loss rates are particularly crucial for the dynamic tracking of mobile

nodes. In our simulations below, we have neglected radio packet loss, since near-

perfect packet delivery to single-hop neighbours is achievable with modern radio

modules, especially if one is careful to coordinate transmissions to minimise con-

tention. However, we have taken into account loss due to ultrasonic measurement

failure; we even model node pairs with nearly broken links (more than 90% mea-

surement failure), in accordance with the proportion of such links observed in our

real data. This implies that dynamic tracking should be achievable with suitable

hardware.

3.2.5 Evaluation

We evaluate the accuracy of the Kalman filter for both static and mobile nodes.

Using the data from our single-hop deployments, we simulate larger multihop net-

works. We also simulate the dynamic tracking of nodes, since the total loss rate in

our deployments was too high to track our mobile robots. However, for all simulated

conditions (multihop and/or mobile), we always draw from the real per-node-pair

measurement error distributions.

Computing relative localisation error. Like any relative (anchor-free) po-

sitioning algorithm, our Kalman filter produces position and orientation in an arbi-
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trary coordinate system that can shift slightly between updates. Thus, to evaluate

the accuracy of the estimates, we use the Kalman-estimated positions and orien-

tations to compute the distances and bearings between all pairs of devices after

each measurement. We then compare these distances and bearings to those derived

from our ground truth computer vision system. In a network of N nodes, there will

be N(N − 1) distance and bearing errors in total. These determine the accuracy

of the system seen from the point of view of the nodes. Equivalently, this would

be the accuracy visible to a user equipped with one of these devices and viewing

the spatial layout on a handheld screen.

Locating static devices

Initialisation method and convergence (real data). As mentioned on page 58,

we implemented several ways to initialise the Kalman filter. Fig. 3.10 compares

convergence after initialising the filter with: (1) naive initialisation – a single

range/bearing measurement to initialise the position of a node and another single

measurement for the orientation; (2) graph trace initialisation – a block of the first

N(N − 1) measurements is used to roughly locate all possible nodes using simple

trigonometry. Convergence is reached after about fifteen seconds for both methods

in the five and fifteen node experiments; this corresponds to approximately five

rounds of measurements in the fifteen node case (i.e., each node transmitting a

pulse five times in total). In theory, assuming an aggregate pulse transmission rate

of 10 pulses per second, five rounds of measurements should only take 2.5 seconds

in a five node network, and 7.5 seconds in a 15 node network. However, with our

poor packet delivery conditions, it takes at least twice as long to collect the same

number of measurements.

Static single-hop performance (real data). We compare the accuracy of

our Kalman filter with the accuracy of the raw range and bearing measurements,

with a centralised non-linear regression (NLR) algorithm, and with MDS-MAP
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Figure 3.10: Median accuracy convergence of the naive and graph trace initialisa-
tion methods averaged over 25 real experiments with 5 and 15 nodes.

(a popular sensor node localisation algorithm by Shang and Ruml (2004)). For

each trace, we run the NLR and MDS-MAP on 500 successive blocks of N(N − 1)

measurements5 (where N is the total number of nodes in the experiment) in order

to illustrate their localisation error distributions.

Fig. 3.11 also shows that in the static node experiments, 90% of the Kalman

relative position estimates are under 4 cm. This is slightly better than the unfiltered

range measurements of which 90% have errors under 7 cm, and considerably better

than the output from MDS-MAP where more than half the estimates have an error

greater than 20 cm. The bearing errors improve considerably; the 90th percentile

bearing error is more than halved from 38◦ in the unfiltered measurements to less

than 15◦. We remind the reader that although we compare range and bearing

errors, these are derived from the Kalman filter’s coordinate and orientation result

for each node. Such relative spatial information (in a single coordinate system)

isn’t directly available from the raw range and bearing measurements.

We see that our filter is close to the accuracy of NLR for our deployments,

which is a good result considering the computational expense of the regression’s

large matrix inversions and gradient descent method. Our estimates are also more

5These algorithms can produce estimates using fewer measurements, but these need to be
selected so that all nodes are connected. In practice,N(N−1) ensures that all nodes are connected
and locatable.



3. Relative positioning Sensor networks 72

stable over time than the NLR orMDS-MAP estimates, although this is only visible

in error versus time plots for individual experiments which are not presented here.

The additional stability is expected because only our filter takes previous estimates

into account and has a built-in smoothing effect.
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Figure 3.11: Distribution of relative localisation errors for static nodes. The raw
measurement errors, the localisation results from a centralised, computationally
expensive nonlinear regression algorithm, and the results from the popular MDS-
MAP algorithm are shown for comparison. Aggregate data from experiments with
five and fifteen static nodes.

Accuracy using ranges only (real data). Because not many sensor plat-

forms are capable of taking both range and bearing measurements, we evaluated

the performance of the Kalman relative positioning algorithm operating on the

range-only data. For our real deployments, the static accuracy was nearly identical

to that of the Kalman filter which used range and bearing (fig. 3.11). The median

and ninetieth percentile errors are within 1 mm, and the ninety-ninth percentiles

are within 6 mm of each other. Although in our case bearing measurements do not

significantly improve the location estimates, they are essential in determining the

orientation of the nodes and in resolving “flip ambiguities” (Moore et al., 2004)

during initialisation.

Static multihop performance (simulated). Based on the error distribu-

tions and measurement failure rates for each node pair in our real deployments, we

simulate larger, multihop static deployments which would realistically occur when
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the area covered by the sensors extends beyond their measurement range. For each

node pair within measurement range of one another, the simulator (a Matlab script)

randomly chooses a range/bearing error distribution and measurement failure rate

from a real node pair (fig 3.8a). Measurements between the two nodes are drawn

from the same distributions throughout that simulated layout, to capture both the

systematic error and measurement failure qualities of our nodes. The simulations

involve twenty-five nodes on a 15 × 15m grid with a 3m spacing. The maximum

sensing range was capped at 5 m (similar to our actual sensors) so each node could

only see at most eight neighbouring nodes. In these static simulations, the nodes

take turns to transmit a pulse with an aggregate rate of 10 pulses per second (we

assume lossless communications). When initialising the Kalman filter using the

naive method or the graph trace method, results were poor. These simple methods

are not robust enough to provide good initial estimates for multihop networks and

the Kalman filter is unable to correct large scale errors. In an attempt to improve

this, we tried two alternative initialisation methods. One is similar to the naive

initialisation but uses the median of ten measurements instead of a single measure-

ment. The other is MDS-MAP (Shang and Ruml, 2004) which has the benefit of

considering the global map, not just local relationships between nodes.

As fig. 3.12 shows, the multihop localisation accuracy with MDS-MAP initiali-

sation is better than 25 cm and 15◦ after two minutes, for 90% of estimated ranges

and bearings. The other initialisation methods all perform poorly for this type of

multihop network although taking the median of ten measurements does bring a

slight improvement. Due to large, systematic range and bearing errors, the naive or

graph tracing methods (which in fact operate on a similar principle) often provide

a globally distorted view of the network, even though relative location estimates

are correct in many local neighbourhoods. In a multihop network, the Kalman

filter is unable to correct this type of errors because it also works locally. However,

in this larger scale multihop topology MDS-MAP is able to generate a much more

accurate view of the global network by using hop counts in addition to the range
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measurements. After using the bearing measurements to detect and correct a po-

tentially mirrored MDS-MAP result (a shortcoming of all anchor-free, range-only

methods), the Kalman filter can then refine the location estimates further. The

results in fig. 3.12 were obtained using this technique.
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Figure 3.12: Range and bearing error distributions after two minutes in a multihop
network. 25 nodes in a 15×15 m grid. Ten pulses per second, aggregate distributions
over 100 simulations.

Fig. 3.13 shows how long the initialisation takes for each of the initialisation

methods described. Again, the naive and graph trace methods perform similarly,

but the graph trace method needs to wait about 10 seconds to collect enough mea-

surements. The method which initialises sensors using the median of 10 measure-

ments for each sensor pair performs slightly better but waits even longer, approxi-

mately 25 seconds, to collect the required measurements. MDS-MAP initialisation

enables the relative Kalman filter to perform best in terms of accuracy and only

requires ten seconds to collect enough measurements.

In summary, the particular initialisation method used depends upon the ap-

plication. For larger, multihop networks where global topological correctness is

important, a lightweight algorithm such as MDS-MAP should be initially run on a

network-wide (global) batch of measurements. Then, each node’s Kalman filter can

be used to greatly improve the MDS estimates and accurately track mobile nodes

in real-time (as shown below). For other situations, where only local neighbour-
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(a) Median range errors.
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(b) Median bearing errors.

Figure 3.13: Multihop initialisation performance. Twenty-five nodes in a 15×15 m
grid. Ten pulses per second, average errors over 100 simulations. Compare to single-
hop initialisation in fig. 3.10.

hood correctness is important, it may be sufficient to use a simpler initialisation

method for the Kalman filter running on each node.

Tracking mobile devices

As mentioned in section 3.2.4, we were unable to directly perform real-time tracking

on the mobile nodes in our gathered data traces because the measurement loss rate

was too high. Thus, to evaluate the real-time tracking performance of the Kalman

filter, we rely on simulations. Raw measurements involving our mobile devices have

slightly worse error characteristics (about 2 cm worse for ranging, at the ninetieth

percentile) than measurements between static devices, but large error offsets tend

not to be recurring. This is because the mobile devices do not stay for long in

a position that systematically produces over- or under-estimates for range and

bearing. Thus, in our simulations, we sample the mobile node measurement errors

from an aggregate error distribution of the real-world data gathered to and from

mobile devices, where the measurement failure rate is 15% according to that same

data. Measurements between static devices are generated as described earlier. As

before, all devices take it in turns to transmit an ultrasound pulse which is received

by all other devices (subject to the measurement failure rate for each particular
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link). Thus, for every pulse, up to N−1 range/bearing measurements are produced.

We vary the rate at which pulses are emitted from 10 to 50 per second (aggregate

pulse rate).

In this simulation, most nodes are within measurement range of one another,

most of the time. There are five static nodes placed randomly in a 5× 5m arena,

wherein varying numbers of mobile device move. Like the Mindstorms robots in the

real deployments, a simulated mobile node travels in a straight line at a constant

speed until it reaches an edge, then it changes direction to move back into the

arena.

Movement models and real-time tracking accuracy. Fig. 3.14a illustrates

the tracking accuracy, where the Kalman filter running on the mobile nodes uses a

constant velocity model (eq. 3.6). Note that tracking accuracy does not significantly

worsen as the number of mobile nodes increases from one to five. In the case where

there are five mobile nodes, 50% of the network is mobile. The assumption that

the nodes travel at constant velocity causes the position estimates to overshoot

the edge of the arena due to the sudden change of direction but this is quickly

corrected especially with higher measurement rates. We were able to observe this

in a number of videos6 generated from a sequence of estimated positions in Mat-

lab. For each frame, we use a Levenberg-Marquardt minimisation to compute the

optimal transformation (2-dimensional rotation and translation) mapping the esti-

mated node coordinates to the real node coordinates, before assembling them into

a continuous animation. In a dynamic scenario, these animations help us visualise

and evaluate the quality of the estimated coordinates more effectively than a static

graph.

However, for some applications it may be more desirable to apply the same, gen-

eralised model to all nodes, and not require that they have knowledge of whether

they are static or mobile. Fig. 3.14b shows the accuracy when all nodes (static and

6http://www.youtube.com/user/kalmanvids/videos/ (Accessed 2012.09.24.)

http://www.youtube.com/user/kalmanvids/videos/
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Figure 3.14: Kalman filter dynamic tracking accuracy. Five static nodes. Speed
of mobile nodes = 1 m/s, aggregate pulse rate = 50 pulses/s. Averages over 20
simulations.

mobile) run the same filter. They are all allowed to move in any direction, only

constrained by their range and bearing measurements (eq. 3.7). As might be ex-

pected, accuracy for both static and mobile nodes worsens. Moreover, the dynamic

tracking accuracy visibly worsens as the number of mobile nodes increases—from

8 cm for one mobile node, to nearly 11 cm for five mobile nodes (90% confidence).

Fig. 3.15 illustrates the effectiveness of the different movement models, side-by-

side. Clearly, applying a random movement model to the mobile nodes worsens

their tracking result, which is not surprising for the type of movement in the sim-

ulations. Allowing static nodes to move freely worsens their result (3 cm to about

5 cm, 90% confidence). However, this general measurement model can deal with

the case where all nodes are mobile. This is in contrast to other techniques which

require a large proportion of the network to be static, or the mobile nodes to follow

a particular type of trajectory. We have not plotted the accuracy of our Kalman fil-

ter in scenarios where all nodes are mobile, but the real-time simulated animations

(see p.76) show promising results.

Measurement rates for effective tracking. To quantify the effect of speed

on the tracking accuracy for the mobile device we simulate a mobile device mov-

ing at different speeds in networks having different measurement rates. As one
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Figure 3.15: Comparison of tracking accuracy for different Kalman movement mod-
els. Five static nodes and three mobile nodes. Speed of mobile nodes = 1 m/s,
aggregate pulse rate = 50 pulses/s. Averages over 20 simulations.
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Figure 3.16: Mobile tracking accuracy for different aggregate pulse emission rates.
The 90th percentile errors are averaged over ten simulations of five static devices
and one mobile device in a 5× 5m arena.

would expect, devices moving at higher speeds require higher update rates to be

tracked with the same degree of accuracy (fig. 3.16). For instance in order to track

devices moving at a walking speed of about two metres per second with an accu-

racy greater than fifty centimetres, the aggregate pulse rate needs to be between

25 and 50 pulses per second. We recognise that the accuracy is also dependent on

the number and geometric configuration of the static nodes. Establishing the effect

of these parameters requires further work.
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3.2.6 Suitability of the relative Kalman filter for wireless

sensor network localisation

Although we have shown that our proposed algorithm works with real data, and

have addressed some of the limitations of our experiments through additional re-

alistic simulations, there are a number of questions that remain to be answered

in practice. Nonetheless, our results give us some insight into how this algorithm

would perform in a large scale experiment using dozens of nodes spread over tens

of metres, with our Kalman filter implemented on the sensor nodes themselves.

Distributed computation on sensor nodes

Accurate and sophisticated localisation algorithms can be prohibitively expensive

for sensor nodes. Although we developed and tested the relative location Kalman

filter on a workstation PC, it is suited to be distributed in a sensor network. Each

device would store its own location and error covariance. The RF trigger packet

that precedes the ultrasound pulse would include this information, thus enabling all

receivers to run the filter for this measurement and update their own location. Only

information about the two devices involved in a measurement is required to process

that measurement, and each measurement only affects the location estimates of

those two devices.

In figure 3.17, we show the floating point multiplications required of each node

running the Kalman filter, assuming it is able to take range/bearing measurements

to each of its neighbours. The Kalman operations are computed based on those

tabulated by Groves (2008, tab. 3.1). We also show the per-node computational

cost if each node produces updates based on five measurements to each of its

neighbours, to reflect the amount of computation needed for convergence in our

experiments. This is equivalent to the number of measurements taken during the
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Figure 3.17: Per-node computational complexity of the relative Kalman filter (float-
ing point multiplications).

first 15 s for the 15 node deployments in figure 3.10. The per-node computational

cost of MDS-MAP (Bischoff et al., 2006, tab. 1, neglecting the stitching and global

refinement stages), is plotted for comparison. (Of course, MDS-MAP) is not well-

suited to dynamic tracking, while the Kalman filter is.) For networks of small degree,

the computational cost of relative Kalman filtering is comparable to MDS-MAP,

and as the number of neighbours rises above seven, Kalman filtering becomes much

cheaper. MDS-MAP with no refinement is computationally comparable to Kalman

filtering, but it has an accuracy far worse (fig. 3.11a). MDS-MAP is, however, a

good candidate for a one-time initialisation of the Kalman filter, if the network has

many hops and global topology correctness is important.

Note that the batch-based algorithm employed by Taylor et al. (2006) is also

significantly more expensive than Kalman filtering. Because multiple static node

positions, and one or more mobile node positions (depending on the number of

events in the batch) must be estimated, the matrix inversions required are signifi-

cantly larger than the simple two-node solution computed in each of our Kalman

updates. It is cheaper to perform several two-node updates than a single many-

node update.

Communication overheads

All distributed algorithms incur some communication overhead as the local map

is computed. For our algorithm, each receiving node needs to share its location
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and orientation updates (pertaining to itself and the transmitting node) with its

one-hop neighbours. The neighbours use these location and orientation results to

update the current state of their filters. As others have proposed, these updates

could be piggybacked on other network traffic (notably the packets used to an-

nounce the emission of a ranging signal). Or, to allow updates to be delivered with

as little latency as possible, guaranteed, periodic time slots could be assigned to

nodes within two-hop neighbourhoods (Rhee et al., 2008).

Requirements for effective localisation of mobile devices

Tracking mobile devices requires a high measurement rate but because of the slow

physical speed of ultrasound (approximately 340m/s), the measurement rate is

limited by the maximum range. For instance if we want a maximum range of

5m then the devices must wait at least 15ms after each pulse before another can

be sent. This is equivalent to a maximum aggregate pulse rate of 67 pulses per

second. The measurement rates reported in this paper may appear higher than

those required by alternative algorithms for several reasons. First, we make no

assumptions on the type of movement and have no direct measurements of the

speed of the mobile nodes. A higher measurement rate is therefore required in order

to acquire more information about each node. Second, all nodes are transmitting

ultrasonic pulses in round-robin fashion. Pulses transmitted by a mobile node

generate useful measurements at each of the receivers, but pulses transmitted by

a static node with a known position only generate a single measurement which is

helpful in locating the mobile node, the other measurements between static nodes

are wasted. In the typical case of a single mobile node travelling among static nodes,

only the mobile node would need to transmit pulses and the required measurement

rate would be lower. The measurement rates required by our particular sensor

network may not be appropriate for some applications, but could be decreased if

different sensing modalities are used or if additional constraints concerning the

movement of the nodes are available.
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Variations on the filter

Our filter could be modified to process all measurements that were generated by

the same pulse simultaneously rather than one after the other. The state vectors

and covariance matrices would have to contain values for all nodes instead of just

two but the equations would be otherwise unchanged. According to Simon (2006,

p. 150), both methods are equivalent. We prefer the sequential formulation where

measurements are processed one after the other because it requires smaller matrix

inversions.

Our approach could also be adapted to use a particle filter (Arulampalam et al.,

2002) instead of the Kalman filter. The particle filter has the advantage of being

able to model non-linear non-Gaussian systems such as ours. It also has the benefit

of dealing well with the multimodal position distributions which we observed dur-

ing the initialisation phase. However, it typically requires hundreds or thousands

of particles to model the position of each node and each of these particles must

be re-evaluated for each measurement. This requires orders of magnitude more

computation than the Kalman filter which only needs to re-evaluate a single mean

and covariance for each measurement. In principle, it also makes the algorithm a

lot more difficult to distribute over devices because there is so much information

to share. However, Challa et al. (2002) describe how support vector machines can

be used to compress the particles before transmitting over the network, and Liu

et al. (2009) successfully use this method to track a single mobile target in a field

of static sensor nodes in a simulation.

Generalisation

In this section, we have used a specific type of sensor node using a specific sensing

modality and a specific communication scheme. However, our method and conclu-

sions can be generalised to many kinds of sensor network which require localisation.
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The Kalman filter we have described is easy to adapt, even if the range and optional

bearing measurements have different characteristics from ours, or if an altogether

different type of measurement, such as speed or signal strength, is available. Equally,

the measurement scheme is not limited to the simple round-robin scheme where

all nodes take turns at transmitting a signal. For example, in the scenario where

a mobile node moves through a field of stationary nodes, it may be best if the mo-

bile node constantly sends ranging pulses, in order to optimise tracking accuracy

and latency (since the measurement rate will be much higher than a simple round

robin scheme might allow). Different applications will have different requirements,

but will also be able to provide additional constraints for the localisation problem

which can be incorporated into the filter, improving performance. Our point is

that the Kalman filter is a low-overhead, scalable and accurate algorithmic tool for

localisation in sensor networks, and can be adapted to a variety of measurement

modalities and protocols, node mobilities, node densities, and network sizes.

Benefits of the relative Kalman filter approach

The Kalman filter is an untapped resource for wireless sensor networks and is able

to do more than just track a single mobile node among a network of static anchor

nodes. It is a competitive localisation solution in terms of accuracy, configurability

and adaptability, computational requirements, and communication overhead. We

have illustrated this by characterising a Kalman filter that is able to compute

the real-time location and orientation of sensors in an arbitrary reference frame.

The filter works with range and bearing measurements and has been shown to

perform as accurately as a centralised non-linear regression algorithm on single-

hop deployments. In simulated deployments over larger areas, with several hops

between devices, our filter converges well, provided it is initialised with a roughly

correct global topology, such as that produced by MDS-MAP. We have also shown

that the filter can accurately track multiple mobile devices as long as the effective
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measurement rate is high enough with regard to the speed. Real-time tracking is

even possible in the case where all devices are mobile. Not only is the Kalman

filter adept at accurate, real-time tracking of mobile nodes, but it also accurately

positions static nodes, at a computational overhead which scales linearly with the

local neighbourhood size.

A similar type of Kalman filter is used in chapters 5 and 6 to perform simultane-

ous localisation and mapping for pedestrians. The main difference is that, in those

later chapters, we are able to measure the movements of the mobile node using

inertial sensors with the methods explained in chapter 4. This gives us more infor-

mation about its trajectory and helps us initialise the positions of the stationary

sensor nodes.

3.3 Discussion on the merits of ultrasound for

localisation

Ultrasound is an appealing way to perform localisation, especially on low power

and low cost sensor nodes. The relatively slow speed of ultrasound means we only

need nodes with basic microcontrollers and simple electronics. Calibration need

not be painstakingly accurate because many of the timing errors introduced by

the radio transmission or processing will only translate to small errors in distance.

Ultrasound is easily blocked by obstacles; this could be considered a disadvantage

because it reduces connectivity between nodes and thus the information available

for estimating locations, but it also works to our advantage by reducing interference

between nodes in different rooms and allowing us to acquire topological information

rather than purely geometrical (e.g., two nodes that are on opposite sides of a wall

will not be able to see each other, although they are geometrically close). This is

useful in the firefighter navigation scenario.
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Despite these advantages, we also observed several limitations of ultrasound

technology which should be taken into account when designing future experiments

or systems. Below, we describe several avenues of research which should help im-

prove these points.

• Ultrasound is relatively slow and this inherently limits the measurement rate.

• Individual measurements, particularly bearings, are unreliable in realistic set-

tings. This is even more pronounced for mobile devices.

• The measurement scheme is important to reduce the effects of the two pre-

vious points.

• Our sensor nodes were designed to work in two dimensions, with all devices in

the same plane (e.g., on a tabletop or on the floor), not in three dimensional

space.

As mentioned earlier, the slow propagation speed of sound waves has some

advantages. It allows us to use low-cost hardware to measure time-of-flight and

still achieve errors of only a few centimetres. This is in contrast with the sophis-

ticated hardware and software algorithms required for radio time-of-flight or time-

difference-of-arrival measurements. However, working with sound means we must

allow a considerable delay for them to travel between the transmitting and receiving

nodes. This delay is proportional to the maximum distance we expect to measure

between the devices. Our first ultrasound prototypes waited approximately ten

milliseconds and thus had a maximum range of 3.5 metres. Later, we increased

this to five metres, but each measurement takes an additional four milliseconds.

Due to the limited resources of our sensor nodes, receivers can only listen on a

single transducer at a time. Each transducer only covers approximately a 90◦ sec-

tor. Therefore, the transmitter sends the ultrasound pulse on all transducers four

times. Each time, the receiver listens on a different transducer. This means that
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each measurement effectively takes four times longer, and a pair of sensor nodes

can take at most seventeen range and bearing measurements per second. If we

allow enough time to measure ranges up to ten metres (and if the amplitude of

our pulses is strong enough) then we can only take 8 measurements per second. If

more than one device needs to transmit, it will need to wait its turn, thus reducing

its own measurement rate even more. This is in addition to the delays occurring

in the radio stack, due to channel management, collisions and packet loss. Once

again, more advanced hardware would allow us to sample all four transducers si-

multaneously and save time, and to benefit from the information contained in the

phase of the pulse to refine both range and bearing measurements. The pulses

could also be frequency-multiplexed or pipelined to increase the effective measure-

ment rate. With some additional work on the hardware and low level measurement

code, achieving a pulse rate of 50 pulses per second (as required for tracking mobile

devices) is realistic.

Ultrasound measurements are sensitive to the environment. Two stationary

devices may measure range and bearing with systematic error due to reflections.

These systematic errors are in addition to the random errors, typically modelled as

Gaussian, due to air movement, acoustic noise or electronic noise. When one of the

devices is moving, the errors are unlikely to be systematic but the measured values

generally do not vary smoothly and include many outliers because each of the four

successive pulses is in fact sent from a slightly different position. This is a limitation

of the specific hardware we used. Individual measurements are not suitable for

many applications due to these systematic errors and numerous outliers. A moving

average filter is not sufficient to correct these problems but more sophisticated

filters such as the relative Kalman filter we have described above can produce

reasonable estimates even with poor measurements.

In our particular system, only the receiver can estimate the direction towards

the transmitter. This information relates the position and orientation of the re-

ceiver to the position of the transmitter, but the orientation of the transmitter
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is undetermined. This makes it important to think carefully about which devices

transmit and which receive ultrasonic pulses, depending on the application. If there

is a single mobile device moving among many stationary devices spread over a wide

area, it may be necessary to have only the mobile device transmit to ensure as many

measurements as possible from it. However, if the application needs to know which

direction the mobile device is facing, then the stationary devices will also need to

transmit. In this case, it would be preferable to design a transmission scheme where

only those devices closest to the mobile device transmit, in order to save time and

to ensure the system remains scalable. In our simulated experiments with the mo-

bile sensor nodes, the measurement rate was acceptable because all devices were

within range of each other, therefore each measurement was used to estimate the

position of all the nodes.

Our relative Kalman filter is only able to track mobile nodes if the measurement

rate is high enough. In the area of wireless sensor networks, this is an issue because

the communication and measurement overhead reduces battery life. In our appli-

cation to emergency response, however, the system only need work reliably for a

few hours at most, rather than the weeks or months that some WSN research tries

to achieve. Thus, the requirement of a high measurement rate is not necessarily a

problem for our research.

The sensors themselves are designed to work in a plane. The three or four

transducers transmit and receive best within a plane due to their directional nature.

The localisation algorithms we used all make the same assumption. The system

does not fail completely if the planar assumption is broken, but results become

even less reliable. A system designed to track sensors in three dimensional space

would require different hardware and a modified algorithm.

A number of questions remain unanswered by our work to date and should

be investigated through future research. It is not clear how ultrasound range and

bearing measurements are affected by the environment at a fire scene. On the one
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hand, it is likely that smoke, water vapour and drastic changes in temperature will

affect the propagation of ultrasound and maybe of radio waves as well. Noise from

the fire itself and from all the human activity at the scene may contain ultrasound

frequencies which interfere with our location system, but it may be possible to

modulate our signals in a particular way to minimise this interference. On the

other hand, high temperatures will not necessarily preclude the use of electronic

sensor nodes in this context, because if firefighters are still exploring a building,

the temperatures at floor level will not yet be high enough to damage the electron-

ics. Our relative Kalman filter algorithm was developed and tested in the context

of wireless sensor networks and a mesh of sensor nodes. In a deployment by an

emergency response team, the nodes are more likely to be deployed in a trail. This

different type of topology may affect the reliability of the tracking algorithm. Fur-

ther theoretical models and simulations, as are common in WSN research, would

provide some insight into the effect of a trail topology on the tracking ability of our

algorithm. However, we believe a real scale experiment, with dozens of redesigned

and improved sensors deployed as a person walks through several rooms of a build-

ing, is the only way to determine whether this technology and algorithms similar to

the one we have described are capable of providing a robust localisation solution.

3.4 Conclusion

In this chapter, we studied two localisation techniques using ultrasound sensor

nodes, suitable for use in an uninstrumented environment. We first demonstrated

how we use ultrasound range and bearing sensing to guide pedestrians towards

certain tagged locations in an otherwise uninstrumented environment. Then we

presented an algorithm capable of tracking several of these sensor nodes relative

to each other in a fully mobile wireless sensor network.

There are several reasons why these techniques have potential for providing

navigation support to emergency responders:
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• The systems we present work by design in uninstrumented environments.

• Ultrasound sensors can be built with modest resources but can still achieve

the required measurement rates for tracking pedestrians.

• Ultrasound is inherently constrained by walls; this is useful for determining

the layout of a building and which areas provide suitable paths for pedestri-

ans.

There are, however, several aspects which require further investigation before fo-

cusing on the methods we describe as fully viable solutions:

• Ultrasound range and bearing measurements must be more robust.

• The harsh environmental conditions at a fire scene may affect ultrasound

measurements; this must be tested.

• The trail topology of the sensor network deployed by the responders may

require a different tracking algorithm.

After addressing the points above, researchers should design a full-scale demonstra-

tor to uncover other implementation challenges specific to this application.

We showed that locating a specific item in the environment relative to a person

is useful for providing guidance to that person, even in the absence of localisa-

tion infrastructure, maps, or anchor nodes with known absolute positions. We also

showed that we can achieve this in practice for multiple moving sensor nodes by

estimating their positions relative to each other. This is a step towards localisation

for emergency responders in unknown environments because it demonstrates that

we can provide navigation support without maps or a global positioning system.

The sensor node system we used for our experiments was either pre-deployed or

simulated, and algorithm initialisation was sometimes problematic, which prevents
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this solution from being immediately useful for pedestrian tracking. The following

chapter begins to address these concerns by introducing pedestrian dead-reckoning

(PDR) which can, among other uses, serve to bootstrap position estimates of nodes

as they are deployed.



Chapter 4

Pedestrian dead reckoning1

In our survey of navigation support systems for emergency response (page 23), we

explained that inertial pedestrian dead reckoning (PDR) is a method with several

key advantages. First, it is completely self-contained, depending solely on the iner-

tial sensors worn by the pedestrian, and not on any external devices which are out

of their immediate control. Second, it is, in principle, suitable for any type of mo-

tion, whether walking, running, crawling, ascending or descending a ladder or stairs.

This autonomy and versatility offer great potential when it comes to our concern

for tracking pedestrians in unknown and uninstrumented indoor environments.

Despite the increasing number of researchers who use this technique, some

implementations are unnecessarily restrictive and very few authors give a complete

description. Although the principles involved are straightforward, our experience

has shown that PDR can be unpredictable, especially when it comes to tuning

parameters. This chapter provides a reference implementation for foot-mounted

inertial PDR and describes many of the difficulties we have encountered.

1This chapter is a revised version of: Carl Fischer, Poorna Talkad Sukumar, and Mike Hazas.
Tutorial: implementation of a pedestrian tracker using foot-mounted inertial sensors. IEEE Per-
vasive Computing, 2013. Accepted for publication. The author acknowledges that Poorna Talkad
Sukumar contributed to the development of the PDR algorithm under the author’s supervision.
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4.1 Introduction

Pedestrian dead-reckoning (PDR) using foot-mounted inertial measurement units

(IMUs) is the basis for many indoor localisation techniques which include map

matching, various types of simultaneous localisation and mapping (SLAM), and

integration with GPS or other localisation techniques. Despite the increasing popu-

larity of PDR methods over the past decade, there is little information about their

implementation and the challenges encountered even for very basic systems. Some

publications focus on the algorithmic details of PDR and use abstract formalisms

which can be daunting to readers who only require a simple implementation. Other

publications assume that readers are familiar with PDR and focus on the additional

sensors that distinguish their localisation system from others. With this chapter,

we aim to make it easier for others to use PDR as a component of a larger system.

We contribute in several ways. We provide researchers with a description of a stan-

dard inertial PDR method which is simple to implement, is usable with minimal

custom configuration, yet represents state of the art in terms of pedestrian inertial

tracking. We reference key work which can be consulted for a more formal under-

standing of the underlying principles, and other works which are dedicated studies

of particular aspects of pedestrian inertial tracking. We give an honest account

of the difficulties encountered when implementing, using, and evaluating a PDR

system.

Our focus in this chapter is on the implementation of inertial navigation systems

where gyroscope and accelerometer readings from foot-mounted sensors are inte-

grated to estimate the orientation, velocity and position of the pedestrian. There

is a related area of research which counts steps based on the pattern of acceler-

ations, and multiplies them by an estimated step length. This technique can be

implemented with inertial sensors worn elsewhere on the body, in more convenient

locations such as the waist (Jahn et al., 2010; Goyal et al., 2011). In particular, it is
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suitable for implementation on a phone carried in a pocket (Gusenbauer et al., 2010;

Jin et al., 2011). Despite this important benefit, in this thesis, we choose to develop

our selected method due to its higher accuracy and ability to track even when the

pedestrian is not walking forward in a typical fashion. Both methods, however, are

self-contained and present similar opportunities in terms of integration with other

sensors.

4.2 Key references

Those who want a better understanding of our tracking system and would like to

develop it further should become familiar with the area of Kalman filtering, non-

pedestrian inertial navigation, and inertial pedestrian dead-reckoning. For their

benefit, we give a few key references. Some of the technical terms will be explained

later in the chapter.

4.2.1 Inertial navigation and Kalman filtering

Simon (2001) provides a good starting point for understanding the Kalman filter,

using a simple vehicle tracking system as an example. Welch and Bishop (2006)

are only slightly more formal and give the fundamental Kalman update and predict

equations. They use a simple example to illustrate the effects of adjusting the

different filter parameters.

Titterton and Weston (2004) provide a textbook which lays down the founda-

tions of modern inertial navigation. It rigourously defines the different reference

frames, and shows how Euler angles, rotation matrices, and especially quaternions

can be used to represent the attitude (or orientation) of an inertial sensor. This

book explains how an error-state Kalman filter, similar to the one we use, can

fuse inertial navigation estimates with estimates from other navigation systems.
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Another book on the topic of integrated navigation systems is written by Groves

(2008). It includes several chapters covering inertial navigation and Kalman filter-

ing, and includes additional topics such as filter behaviour and parameter tuning.

These books provide two complementary views on a complex topic.

4.2.2 Pedestrian dead-reckoning (PDR) using shoe-mounted

inertial sensors

Many research papers since 2005 cover the topic of pedestrian inertial navigation.

We have selected a few which we found helpful in designing the implementation

suggested in this chapter. Ojeda and Borenstein (2007) describe a system similar

to our “näıve implementation”. They designed it with emergency responders in

mind, and tested it for a variety of walking patterns, on stairs and on rugged ter-

rain. Their simple algorithm performs well thanks to the high-quality IMU they

use, which is larger, heavier and much more expensive than our MEMS2 sensors.

Feliz et al. (2009) describe a similar system but with more emphasis on stance

phase detection and velocity error correction. Their system corrects position as

well as velocity during zero-velocity updates (ZUPTs), using a less powerful but

more intuitive alternative to the Kalman filter we describe. Foxlin (2005) is prob-

ably the most cited author in this area. He explains clearly the benefits of using

a Kalman filter to apply ZUPTs. Foxlin’s article includes details of the implemen-

tation, but in a more recent article, Jiménez et al. (2010) give a more complete

description of the implementation process. Their article also gives some tips for

tuning a Kalman filter in the specific context of pedestrian inertial navigation. In

our opinion, however, these two articles omit some of the essential details required

for actually implementing the algorithms they use.

2MEMS stands for microelectromechanical system.
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4.3 Inertial pedestrian dead-reckoning

Dead-reckoning is the process of estimating the position of an object by keeping

track of its movements relative to a known starting point. A typical example is a

ship travelling at a constant speed in a fixed direction. The current position of the

ship is on a line starting at the known starting point in the direction of travel, and

the distance from the starting point is given by the speed along the direction of

travel (i.e., the velocity) multiplied by the time since the ship was at that known

point. If the ship changes course, or if the speed changes, the navigator must make

a note of the current position estimate and start the process again using this

new position estimate as the starting point for future estimates. Over time, these

estimates become less and less accurate because they rely on previous estimates,

which are imperfect due to errors in speed and heading measurements. In other

words, the small errors in heading and speed accumulate to form an increasingly

large error in the position estimate.

A basic pedestrian dead-reckoning method could apply exactly the same prin-

ciples to estimate step-by-step positions, using a (digital) compass to measure

the heading and an (electronic) pedometer to count steps. This method works in

principle but relies on the assumption that the pedestrian is walking with steps

of constant length. Cheap and small microelectromechanical (MEMS) accelerome-

ters and gyroscopes have provided researchers with alternative methods. Typically,

these are combined into an inertial measurement unit (IMU) consisting of three

accelerometers and three gyroscopes aligned along three orthogonal axes. The ac-

celerations are integrated to estimate velocity and position. Most of the complexity

and the error of this method come from the fact that the accelerations are mea-

sured in the coordinate space attached to the IMU, the sensor frame, and not in

a coordinate space easily associated with the room in which the experiment is

taking place, the navigation frame. This is called a strapdown inertial navigation
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system because the accelerometers rotate with the object being tracked. This is in

contrast to a gimballed or stabilised platform system where the sensors rotate in-

dependently in order to maintain a fixed orientation. The two coordinate systems

are illustrated in figure 4.1.

Figure 4.1: Transformation from sensor to navigation coordinates via the direction
cosine matrix: posnav = Csensor→nav possensor.

4.3.1 Attitude and heading reference systems

Many off-the-shelf IMUs include an attitude and heading reference system (AHRS)

which estimates the transformation from the sensor frame to the navigation frame

(e.g., XSens’ MTx3, Intersense’s InertiaCube4, x-io’s x-IMU5). In other words, the

AHRS computes the orientation of the sensor in 3D space. It outputs the orienta-

tion of the sensor as three Euler angles (roll, pitch and yaw), or a 3 × 3 rotation

matrix, or a quaternion. These are all equivalent ways of representing an orienta-

tion. We use the rotation matrix notation, which we find the most intuitive.

An AHRS usually combines gyroscope readings with accelerometer, and some-

times magnetometer readings. The integrated gyroscope rates-of-turn give the ori-

3http://www.xsens.com/en/general/mtx (Accessed 2012.09.24.)
4http://www.intersense.com/pages/18/59/ (Accessed 2012.09.24.)
5http://www.x-io.co.uk/node/9 (Accessed 2012.09.24.)

http://www.xsens.com/en/general/mtx
http://www.intersense.com/pages/18/59/
http://www.x-io.co.uk/node/9
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entation; the accelerometers correct the tilt of the sensor (roll and pitch), and

the magnetometer corrects the heading of the sensor (yaw). These corrections

are necessary because the orientation estimated from integrating the rates-of-turn

accumulates error from the gyroscope noise. In contrast, the accelerometer and

magnetometer estimates of the orientation do not accumulate error, but are af-

fected by the movement of the sensor and magnetic interference respectively. By

combining these three types of sensors, an AHRS can provide a good estimate of

the orientation of the sensor at all times.

The most straightforward implementations of inertial tracking use the orienta-

tions computed by an AHRS. However, many AHRS use proprietary algorithms

and are designed to work well for a range of applications. Few are designed specif-

ically for foot-mounted pedestrian inertial tracking where rates-of-turn and accel-

erations are much higher than those encountered in other fields. We found that by

calculating the orientation of the sensor in the inertial tracking algorithm itself,

we can track the pedestrian more accurately, and have more flexibility in tuning

the parameters of the algorithm. We choose not to use magnetometer readings

because, in our experience, they are unpredictable when used indoors due to their

sensitivity to metallic objects and interfering magnetic fields in the environment.

4.3.2 Approximations and assumptions

For pedestrian tracking, we can simplify the general inertial navigation equations

derived from the laws of physics. There are two reasons for this. First, distances

and speeds are much smaller than for aircraft, ships, or land vehicles, thus reducing

the magnitude of some of the terms. Second, MEMS inertial sensors have relatively

poor error characteristics when compared to the navigation grade sensors typically

used for vehicles, and the effect of these measurement errors is much greater than

the errors introduced by our approximations.
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The full navigation equations compensate for a number of physical effects which

we are able to neglect with little consequence for the overall tracking error. For

typical walking speeds, neglecting the centrifugal force due to the rotation of the

Earth causes a position error of 0.5% of the total distance travelled, if the exper-

iment takes place at the equator, and less elsewhere. Neglecting this effect causes

the estimated position to drift down and away from the equator by a small amount.

The Coriolis force, the effect by which the rotation of the Earth appears to deflect

moving objects, is proportional to the speed of the target relative to the Earth

and to the Earth’s rate of rotation. For a pedestrian, the effect is several orders

of magnitude less than that caused by centrifugal force. In addition, some of the

Coriolis errors will cancel out when the pedestrian changes direction, so there is

not always accumulation of position error. The Earth’s rotation is included in

the gyroscope measurements, but the rate of rotation of the Earth (0.004◦/s) is

far less than the bias drift (slow but unpredictable error) of current MEMS gyro-

scopes (typically 0.1◦/s), and can thus also be neglected. If the tracked pedestrian

remains within a few kilometres of their starting point, then we can assume that

the curvature of the Earth over this area is negligible; this allows us to work in a

traditional Cartesian coordinate system, rather than mapping onto an ellipsoidal

surface which approximates that of the Earth.

If we wanted to compensate for all these errors, we would need an accurate

estimate of the pedestrian’s position and orientation relative to the Earth. This is

not possible using only inertial sensors, but requires additional technologies such as

GPS, and we have established in earlier chapters that GPS is not a viable solution

in many cases, notably indoors.

4.3.3 Zero-velocity detection

Zero-velocity updates (ZUPTs) are an essential part of an inertial tracking sys-

tem. Applying a ZUPT simply means resetting the estimated velocity to zero.
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Without them, the velocity estimate error increases linearly with time and the po-

sition estimate error increases at least quadratically (more if we take into account

the increasing error in the orientation estimates). The system can apply a ZUPT

whenever the sensor is stationary, but detecting the appropriate moment can be

challenging. During normal walking, zero-velocity (ZV) occurs during the stance

phase, when the foot touches the ground. This has made foot-mounted IMUs a pop-

ular choice for pedestrian tracking. Tracking algorithms can use sensors mounted

on other parts of the body to perform PDR by counting steps and estimating their

length, but this is not as accurate as methods using foot-mounted sensors with

ZUPTs every few seconds. Elwell (1999) seems to be the first published researcher

to note that each stance phase provides an opportunity to apply a ZUPT; but an

earlier unpublished project involving Larry Sher at DARPA also appears to have

used similar techniques in 1996 (Sher, 2003)6. This is also mentioned by Foxlin

(2005).

There are several ways of detecting the best instants to apply a ZUPT. One

option is to use knowledge of the human walking pattern to detect the stance

phase and then apply the ZUPT. Typically, such methods model walking as a

repeating sequence of heel strike, stance, push off and swing (Park and Suh, 2010).

The ZUPT is applied during the stance phase. We expect these methods to fail

for other modes of movement such as running, crawling or walking backwards. A

second option is more generic and tries to determine when the sensor is stationary

by using only data from the inertial sensors. The assumption is that, when the

sensor is stationary, the measured acceleration is constant and equal to gravity,

and the rates-of-turn measured by the gyroscopes are zero. Such methods may

incorrectly detect zero-velocity if the sensor moves at constant velocity, and may

fail to detect a stance phase if the sensors are very noisy. The occasional failure in

ZV detection will increase the accumulated error in the position estimate but will

not prevent the inertial tracking system from functioning. Figure 4.2 shows some

6https://dist-systems.bbn.com/projects/PINS/ (Accessed 2012.09.18).

https://dist-systems.bbn.com/projects/PINS/
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sample sensor data recorded over a few steps.
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Figure 4.2: PDR algorithm: each step has a stance phase (shaded) and a swing
phase. Velocity is reset to zero during the stance phase, acceleration is double
integrated during the swing phase.

Researchers have already compared different ZV or stance phase detection meth-

ods, often examining the error on the total distance estimate or the error in the

final position estimate (Skog et al., 2010b), or looking more closely at the number

of steps detected (Callmer et al., 2010). For typical walking, the consensus seems

to be that using the gyroscope rates of turn is the most reliable way of detecting

ZV. However, Callmer et al. (2010) suggest that including the accelerations in the

detection provides better performance when the pedestrian is running. In recent

work, Bebek et al. (2010) report using high-resolution pressure sensors under the

soles of a boot to detect the phase when the foot is stationary. They achieve slightly

better tracking accuracy than when using gyroscopes because they can apply the

ZUPTs more accurately. But, generally speaking, based on the results given by

the work above and our own experience, different stance phase detection methods

tend to have roughly equivalent performance when they are tuned correctly.
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4.3.4 Position estimation

Our initial implementation is straightforward. It uses the orientation estimates

from the IMU and simple velocity resets. We then improve our results by using a

Kalman filter to correct position estimates as well as velocity estimates. Finally, we

extend the Kalman filter to compute the orientation directly from the gyroscope

and accelerometer measurements, thus giving us more control over our tracking

system and even better results.

Näıve implementation

The simplest implementation proceeds in five steps. 1) Transform the accelerations

from the sensor frame into the navigation frame using the orientations estimated by

the AHRS. 2) Subtract gravity from the vertical axis. 3) Integrate the accelerations

to obtain the velocity. 4) Reset the velocity to zero if the sensor is detected to be

stationary. 5) Integrate the velocity to obtain the position. We have illustrated

this in the flowchart in figure 4.3.

Kalman filter implementation

We improve on the previous method by noting that velocity and position are corre-

lated (Foxlin, 2005). If the estimated velocity is incorrect, it will affect the estimated

position in a predictable way. In particular, when we detect that the sensor has

stopped moving during a zero-velocity phase, but the estimated velocity is not zero,

we know that the position estimate is likely to be incorrect. This means that when-

ever the sensor is detected to be stationary, we should not only reset the estimated

velocity to zero but also adjust the estimated position by a small amount.

We separate the basic inertial navigation system (INS) from the ZUPTs. The

INS transforms the accelerations into the navigation frame, subtracts gravity from
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Figure 4.3: Näıve zero-velocity update method.
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the vertical axis and integrates twice to obtain the velocity and position estimates.

Due to the noisy accelerometer measurements, these basic INS estimates can accu-

mulate several metres of error over a few seconds. But, as in the previous method,

ZUPTs can reduce this error to acceptable levels. The most common method used

in the literature to implement this correction is the Kalman filter. A Kalman fil-

ter estimates the state of a system based on noisy measurements and a system

model. In our tracking problem, the system is the INS (the foot, the sensor, and

the simple integration algorithm); the state is the error in velocity and position

estimates; the measurements are the ZUPTs. In addition to the values of the ve-

locity and position errors, the Kalman filter also estimates their error covariances

and cross-covariances. It is the cross-covariances that enable the filter to correct

the position (and not only the velocity) during a ZUPT. At the end of each ZUPT,

the estimated errors in velocity and position are subtracted from the INS estimates

to produce corrected estimates. This is illustrated in figure 4.4.

This method is an error-state, or complementary, Kalman filter, and is a com-

mon tool in multi-modal navigation systems. This Kalman filter estimates the de-

viation from the true state rather than the state itself. The principles are the same

as those used in a standard Kalman filter but the implementation looks slightly

different. For our application, the implementation is simpler because, as far as the

filter is concerned, there is no need to remember the state estimate which is always

zero at the beginning of each iteration.

Estimating the orientation of the IMU

As mentioned earlier, commercial IMUs do an excellent job of estimating their

orientation, but their AHRS algorithms are complex and usually inaccessible to end-

users due to intellectual property issues. One problem we faced is that the AHRS

embedded in our XSens MTx IMU performs some online calibration based on the

type of movement of the sensor. We noticed that the quality of orientation estimates
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Figure 4.4: Kalman filter zero-velocity update method.
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(and therefore the accuracy of tracking) often improves after a few minutes. This

suggests that some internal parameters of the AHRS take some time to reach their

optimal values. By estimating the orientation of the IMU ourselves, we can optimise

the parameters for pedestrian motion, we are no longer dependent on a proprietary

algorithm, and we can use other IMUs which may not compute orientation but are

less expensive or better quality.

We estimate the orientation by integrating the rates of turn measured by the gy-

roscopes. The estimated orientations inevitably suffer from drift, but the algorithm

corrects them during the ZUPTs. In the same way that the position estimates are

correlated with the velocity, so is the orientation. It can therefore be corrected

by our Kalman filter even though it is not measured directly. Intuitively, if the

orientation is incorrect, the gravity component will not be entirely removed from

the measured acceleration. The remaining gravity component will be integrated,

and will cause an error in velocity that is correlated with the error in orientation.

Thus, there is a strong correlation between the tilt errors (roll and pitch) and the

velocity errors because gravity acts on the vertical axis. There is less correlation

between yaw (or heading) error and velocity, and therefore less correction of the

yaw. In order to minimise yaw drift, we compensate for as much of the constant

gyroscope bias as possible by calibrating each sensor prior to use. The estimated

biases are the mean of gyroscope readings recorded during several minutes while

the IMU is stationary.

The main difference between this method and the previous Kalman filter method

is that the orientation must be estimated using the gyroscope readings, and that the

orientation error appears in the state vector along with the velocity and position

errors. Figure 4.5 describes this algorithm.
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Figure 4.5: Inertial navigation system with orientation estimation corrected by
Kalman filter ZUPTs.
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4.4 Practical implementation

In the following paragraphs, we give a step-by-step guide to implementing a pedes-

trian inertial tracking system which uses an error-state Kalman filter for zero-

velocity updates and orientation estimation. Although this is a more complex im-

plementation than the straightforward näıve implementation we described first, it

takes less than 60 lines of Matlab code and produces much better results. The

Matlab implementation is given in appendix A.

4.4.1 Initialisation

Before the main data processing loop, we define parameters, and declare and ini-

tialise variables. Table 4.1 (further down) sums up our parameter values.

• Define the ZV measurement matrix H =

(

03×3 03×3 I3×3

)

.

• Define the ZV measurement noise covariance R as the diagonal matrix with

values

(

σ2
vx

σ2
vy

σ2
vz

)

.

• Initialise the position p =

(

0 0 0

)T

. This value is arbitrary.

• Initialise the velocity v =

(

0 0 0

)T

. The sensor is assumed to be station-

ary; if it is moving, the first step estimate will be incorrect.

• Initialise the error covariance matrix P = 09×9.



4. PDR Implementation 108

• Initialise the orientation matrix C based on the accelerations. Here, we as-

sume the sensor is stationary. The yaw value is arbitrary.

roll = arctan(asensory /asensorz )

pitch = −arcsin(asensorx /g)

yaw = 0

C =













cos(pitch) sin(roll)sin(pitch) cos(roll)sin(pitch)

0 cos(roll) −sin(roll)

−sin(pitch) sin(roll)cos(pitch) cos(roll)cos(pitch)













4.4.2 Zero-velocity detection

Apply the ZV test to each data sample within the main loop. We achieved good

results using the detection method described by Jiménez et al. (2010). They apply

thresholds to the acceleration magnitude, gyroscope magnitude and local acceler-

ation variance. However, a simple threshold on the magnitude of the gyroscope

rate-of-turn measurements also works well; a ZUPT is applied when ‖ωk‖ < αω,

where ωk is the gyroscope measurement vector at timestamp k and αω is the cho-

sen threshold for detecting zero velocity. This is confirmed by Skog et al. (2010a)

who show that their gyroscope-based detector works as well as the one using both

accelerometers and gyroscopes for typical walking.

4.4.3 Main loop

The following operations are performed for every measurement sample. k is the

sample index and is occasionally omitted to simplify notations. Note that this is

an iterative algorithm where the estimated orientation of the sensor is used to

process the current measurement and re-evaluate the orientation.
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1. Compute the time step ∆t from the previous measurement. ∆t is equal to

the sampling interval which is typically constant.

2. Subtract the gyroscope bias from the measurements if required.

3. Compute the skew-symmetric angular rate matrix Ω from the gyroscope

readings: Ωk =













0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0













. This matrix represents an infinitesimal

rotation as measured by the gyroscope.

4. Update the orientation matrix: Ck = Ck−1 (2I3×3 +Ωk∆t) (2I3×3 −Ωk∆t)
−1 (Qi

and Moore, 2002). Postmultiply C by the update factor because the gyro-

scope measurements are taken in the sensor frame.

5. Transform the measured accelerations from the sensor frame into the navi-

gation frame: anavk = (Ck +Ck−1)a
sensor
k /2. Use the average of the previous

and the current orientation estimate because the movement has taken place

over the time interval between the measurements (as a rough approximation).

6. Integrate the acceleration in the navigation frame minus gravity to obtain

the velocity estimate: vk = vk−1+

(

anavk + anavk−1 − 2

(

0 0 g

)T
)

∆t/2. Use

the trapeze method of integration.

7. Integrate the velocity to obtain the position estimate:

pk = pk−1 + (vk + vk−1)∆t/2.

8. Construct the skew-symmetric cross-product operator matrix S from the nav-

igation frame accelerations: Sk =













0 −anavz anavy

anavz 0 −anavx

−anavy anavx 0













. This matrix re-

lates the variation in velocity errors to the variation in orientation errors.

9. Construct the state transition matrix: Fk =













I3×3 03×3 03×3

03×3 I3×3 I3×3∆t

−Sk∆t 03×3 I3×3













.
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10. Construct the process noise covariance matrix Qk as the diagonal matrix

with values

((

σωx
σωy

σωz
0 0 0 σax σay σaz

)

∆t

)2

.

11. Propagate the error covariance matrix Pk = FkPk−1F
T
k +Qk.

12. Detect a stationary phase when ‖ωk‖ < αω.

The following operations are only performed for samples occuring in a station-

ary phase.

13. Compute the Kalman gain Kk = PkH
T
(

HPkH
T +R

)

−1
.

14. Compute state errors from the Kalman gain and estimated velocity: εk =
(

εC εp εv

)T

= Kkvk. Here, the complete error vector ε is composed of

the three elements of the attitude error (error on roll, pitch and yaw angles),

the position error, and the velocity error, in that order.

15. Correct the error covariance: Pk = (I9×9 −KkH)Pk (alternatively, use the

more robust Joseph form (Simon, 2006, eq. 5.19)).

16. Construct the skew-symmetric correction matrix for small angles:

Ωε,k =













0 εC [3] −εC [2]

−εC [3] 0 εC [1]

εC [2] −εC [1] 0













. The indices are one-based, so εC [1] is

the first element of the attitude error (roll).

17. Correct the attitude estimate: Ck = (2I3×3 +Ωε,k) (2I3×3 −Ωε,k)
−1Ck (Qi

and Moore, 2002). Premultiply C by the correction factor because the cor-

rection is computed in the navigation frame.

18. Correct the position estimate: pk = pk − εp.

19. Correct the velocity estimate: vk = vk − εv.
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4.5 Evaluation

We do not aim to give a precise comparison of different PDR techniques, or to

determine optimal parameters. Rather, we want to provide a practical guide to

what performance can be expected from the standard implementation we have

described.

Detailed ground truth, with both position and timestamps, is difficult to obtain,

but even when it is available, aligning it with the estimated path, and computing

position errors remains a challenge. All position estimates are relative to the initial

position and heading, and a small error early in the path can have a significant

effect later on, even if no further errors occur.

In the literature, researchers have used several ways to evaluate the performance

of PDR systems.

• Inpection of estimated paths in the coordinate space and comparison to sim-

ple geometric ground truth.

• Computing the distance between starting point and final position estimate

for a closed loop walk; smaller distances indicate less drift; this does not

account for scaling errors.

• Computing the estimated total distance traveled; this will give different re-

sults depending on whether distance is accumulated per measurement or per

step, and does not account for heading errors.

• Computing the distance and heading error for each step (or segment) by

realigning each previous step (or segment) to the ground truth, as suggested

by Angermann et al. (2010).
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The quality of ZV detection can be evaluated by comparing ZV detection us-

ing the IMU to ZV detection using force sensitive resistors on the sole of the

footwear (Bebek et al., 2010), or video recordings of the foot movement (Skog et al.,

2010a). Our goal in this chapter is not to fine tune the tracking algorithm but sim-

ply to give a clear and concise implementation. Therefore, rather than providing a

quantitative evaluation of our work, we illustrate its performance by plotting and

manually aligning the position estimates on a floorplan. In our figures, the ground

truth is visible in the outlines of the corridors and the location of the stairs which

are clearly visible both on the floorplan and in the plotted path.

4.5.1 Recordings at Lancaster University’s Infolab21

We tested our pedestrian tracking system with six different people. They walked

approximately 240 metres in our office building, including several flights of stairs,

taking approximately four minutes. We used an XSens MTx sensor (model MTx-

28A53G25 or MTx-49A53G25) to record inertial measurements at 120 samples per

second. These sensors are the standard model with accelerometers with a full scale

of ±50 m/s2 and gyroscopes with a full scale of ±1200 degrees per second. We

have since realised that the accelerometer range is insufficient for optimal tracking;

the ±180 m/s2 model would have been more suitable. The sensor was attached

to the instep of the foot with a velcro strap (figure 4.6). In our experiments, the

exact position of the sensor made little difference to the results. Other researchers

have attached it to the heel or embedded it into the sole of a boot. The pattern

of accelerations and rotations is different for each position, and this should affect

the accuracy of the zero-velocity detection and of the tracking, but we hypothesise

that this is a small source of error compared to the gyroscope yaw bias for instance.

Figure 4.7 shows the horizontal and altitude plots from our three implementa-

tions: the näıve implementation and the Kalman filter implementation both using
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Figure 4.6: IMU attached to the instep of the foot with a velcro strap. The wire
goes up inside the trouser leg so it does not interfere with walking.

the orientations estimated by the built-in AHRS, and the Kalman filter implemen-

tation estimating the orientation itself. The fourth pair of plots shows the improve-

ment in horizontal position estimates when we manually correct the gyroscope bias.

The plots chosen for this chapter illustrate the improvement achieved for the al-

titude estimates by using the Kalman filter for the ZUPTs, and the additional

improvement in horizontal position estimates when we compute the orientations

ourselves and compensate for gyroscope bias.

There was a substantial difference between different subjects and sensors. Gy-

roscope bias varies between sensors and also between switch-ons of the same sensor.

Also, due to the dynamic range of our accelerometers being slightly too small (an

unfortunate choice of hardware), the walking patterns of some subjects introduced

more data clipping than others. For some subjects, we were unable to achieve such

accurate altitude estimates (drift of up to four metres over the whole walk) as

shown in figure 4.7. On the other hand, some datasets did not require any gyro-

scope bias correction and produced very accurate horizontal plots even with the

simpler implementations. Nevertheless, the Kalman filter implementation with ori-

entation estimation and manual gyroscope bias correction always produced the

best results. The stairs are clearly visible at both ends of the building, as well as

two detours to avoid seating areas, and even a small kink in the middle of a cor-

ridor where the subject paused to open a door. Data recorded at 120 samples per
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second gave the best results; lower sample rates displayed degraded performance,

but higher rates did not bring any noticeable improvement.

4.5.2 DLR figure-of-eight recording

Figure 4.8 is the output from our Kalman filter implementation for one of the

datasets recorded by the team at the German Aerospace Centre (DLR) (Anger-

mann et al., 2010), and shows that our proposed algorithm works well for other

data than ours. Michael Angermann and colleagues recorded inertial measurements

and ground truth for sixteen different walking experiments in a lab equipped with

a high precision motion capture system. They use an identical sensor to ours, the

Xsens MTx (model 28A53G25), sampled at 100 samples per second. They do not

provide the orientation estimates computed by the IMU so we only show the hori-

zontal and altitude estimates for the Kalman filter implementation with orientation

estimation. After manual alignment, the estimated path remains within 30cm of

the ground truth, and the altitude only drifts by 50cm over a total distance of 50m.

4.5.3 Running

Figure 4.9 shows the path estimated by our PDR implementation when the pedes-

trian ran along a corridor. The implementations using the orientation estimated by

the AHRS give very poor results and are not shown here. When estimating the ori-

entation in our algorithm, the horizontal estimate is acceptable but not the altitude

estimate. We believe the latter would improve considerably if the accelerometers

had a wider measurement range and could accurately record the high accelerations

on impact.
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(a) Näıve ZUPT: horizontal position.
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(b) Näıve ZUPT: altitude.
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(c) KF ZUPT: horizontal position.
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(d) KF ZUPT: altitude.
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(e) KF with orientation estimation:
horizontal position.
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(f) KF with orientation estimation: al-
titude.
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(g) KF with orientation estimation and
gyroscope bias correction: horizontal
position.
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(h) KF with orientation estimation and
gyroscope bias correction: altitude.

Figure 4.7: PDR estimated path of a four minute walk through the Infolab, in-
cluding stairs at both ends of the building. The stairs, outline of the corridor, and
height of the different floors make the true path apparent, particularly on the last
figure.
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Figure 4.8: PDR estimated path of the DLR figure-of-eight data set — KF imple-
mentation with orientation estimation.
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Figure 4.9: Running along a corridor in the Infolab. KF implementation with ori-
entation estimation and gyroscope bias correction. The true path is approximately
45.6× 34.5 metres in a horizontal plane, returning to the starting point.
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4.6 Challenges and suggestions

Two years ago, we started investigating pedestrian inertial tracking as a compo-

nent of a larger multimodal indoor localisation system. Since then, we have moved

from the näıve implementation described first in this chapter, to the Kalman filter

implementation, and more recently to estimating the orientation in the algorithm

itself. Each new implementation brought a better understanding of the inner work-

ings of pedestrian inertial tracking. In the following paragraphs, we share some of

the lessons we have learnt.

4.6.1 Major causes of tracking error

The gyroscope bias was the cause of most of the horizontal errors observed during

our work. It is only possible to compensate for these biases in the final implemen-

tation of the tracking filter, in which we estimate the orientations from the raw

inertial sensor data, hence the better results in the final plots of figure 4.7. We now

recalibrate our gyroscopes before each experiment by recording several minutes

of data while the sensor is not moving. The mean of the gyroscope readings for

each axis gives us the bias which needs to be subtracted from all measurements

before running the PDR algorithm. This method works well even if the sensor is

attached to the foot of a pedestrian during calibration. This is a run-specific cal-

ibration which should be performed again each time the sensors are powercycled,

as the bias changes from switch-on to switch-on. We have been unsuccessful in

our attempts to perform online calibration, that is the estimation of the sensor

biases while the system is running. Although others have included gyroscope and

accelerometer bias estimation in their pedestrian inertial navigation systems (Be-

bek et al., 2010; Foxlin, 2005), we have not managed to improve performance with

such methods. We believe it is for the following reasons. Much of the accelerometer

bias is already compensated for during the zero velocity updates. As we mentioned
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earlier, there is little correlation between yaw (heading) and velocity. For the same

reason, there is little correlation between the gyroscope bias corresponding to the

yaw, and the velocity (see 4.3.4 for more details). Thus, the most significant bias

could only be estimated with additional sensor inputs, not solely with zero velocity

updates. For instance, this would be feasible if we had position estimates from a

GPS receiver. In theory, we could also use readings from a magnetometer to correct

the heading and estimate the gyroscope yaw bias, but our attempts at this were

unsuccessful, primarily due to the magnetic interference caused by nearby large

metallic objects.

The other type of error we encounter frequently is altitude error. Faulkner et al.

(2010) give an analysis of the altitude errors in inertial pedestrian tracking systems.

The authors found that they are due to the accelerations of the foot exceeding the

dynamic range of the accelerometers. They noted that accelerations can reach±10g

when walking, and ±13g when descending stairs or running. This confirms our own

observations, and explains why the quality of our altitude estimates varies so much

between users with our 5g accelerometers. For the best results, developers should

use accelerometers with at least a ±10g range and gyroscopes with a ±900 ◦/s

range. Currently, these are close to the highest specifications available for MEMS

inertial sensors.

4.6.2 Parameter tuning

It is reasonable to tune the system parameters to some extent based on sensor

characteristics and prior knowledge of how the system will be used. However, it

should perform as well as possible for a variety of different types of movement

and without any user-specific training. The choice of one parameter value will

affect some of the others. In some cases, a poor choice of one parameter or even

an error in the implementation can mask another incorrect parameter. Table 4.1

gives a list of parameter values used in our final implementation. Others should
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get acceptable results with these values but may be able to improve with further

tuning. Nilsson et al. (2010) give a more formal analysis of the effects of different

parameters on performance. Note that due to an error, the values they give for the

noise parameters should be divided by 250 (the sampling frequency).

Step 10 of the algorithm, which estimates the process noise Q, simply multiplies

the gyroscope and accelerometer noise (σω and σa) by the timestep in order to

determine the orientation and velocity noise, and sets position noise to zero. Note

that these noise values take into account all sources of error in the INS, not only

short term sensor noise, but also bias variations, scaling errors and integration

errors. They are therefore different from noise values reported in sensor datasheets.

The zero-velocity measurement noise σv, used to construct R, represents the

uncertainty in velocity during a ZUPT and should therefore be one or two orders

of magnitude smaller than an average walking speed of 2 m/s. A more precise

ZV detector would require a smaller value, and a less precise one a larger value.

Generally, if the ratio of Q/R remains constant, the system will perform the same.

We recommend setting R, then adjusting Q.

We found an approximate value for the gyroscope ZV detection threshold αω

by plotting the norm of gyroscope rates-of-turn over time for a sample pedestrian

recording. Periodic stance phases are easy to recognise in such a plot. We set the

threshold value slightly higher than the value of the norm during these phases and

then adjusted it to get the best tracking results on the sample recording.

4.6.3 Output format

If the system is going to be used alone, it can simply output the estimated Cartesian

coordinates of the pedestrian. If the PDR system is just one component of a larger

localisation system, it may be more convenient to output incremental values such
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Table 4.1: PDR system parameter values.

Name Notation Value

Time step ∆t 1/120s
Accelerometer noise σa 0.01 m/s2

Gyroscope noise σω 0.01 rad/s
Gravity g 9.8 m/s2

ZV measurement noise σv 0.01 m/s
Gyroscope ZV detec-
tion threshold

αω 0.6 rad/s

as step length, variation in direction of travel, and variation in altitude. This allows

easier integration with other localisation systems such as covered by Groves (2008).

Some applications may not require or be able to process position updates at the

high sampling rate of the inertial sensors. In this case, the PDR system should

output estimates only once per step, or at a fixed rate.

4.6.4 Tracking the orientation

We found it useful to track the yaw of the IMU as well as the direction of travel.

This allows us to distinguish between the pedestrian walking forward or back-

ward, and is particularly useful in applications where we want to orient a display

according to the direction the user is facing (rather than the direction they are

walking in). Assuming the x-axis of the IMU is aligned with the forward direction

of the pedestrian, we can easily compute the yaw from the orientation matrix as

yaw = arctan(C2,1/C1,1). Another option which we explored briefly is to attach an

additional inertial measurement unit to the torso or head of the pedestrian. We in-

cluded its position and orientation estimates in the Kalman filter in the same way

as the foot-mounted sensor but without the ZUPTs. By regularly feeding the filter

artificially generated pseudo-measurements which indicate that these new sensors

are a fixed distance above the foot-mounted sensor (this is an approximation), the

filter can estimate the orientation of the torso or the head.
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4.6.5 Common mistakes

During our development of PDR systems, we often committed several trivial errors

which we list here to help others. When updating or correcting the orientation

matrix, developers must take care to post-multiply or pre-multiply as appropriate.

Notations and definitions vary between publications, and we have noted small

errors which completely change the meaning of an equation.

We also committed a more fundamental error by subtracting the acceleration

due to gravity from the measured acceleration immediately after transforming it

into the navigation frame. The acceleration due to gravity should indeed be re-

moved during the integration phase. However, it should be left untouched when

constructing the skew-symmetric matrix S, in order to preserve the correlation

between orientation and velocity.

4.7 Conclusion

In this chapter, we have shown how to implement a simple inertial pedestrian dead

reckoning system with comparable performance to other current implementations.

We have highlighted the requirements in terms of sensor specifications and given

some advice on selecting a good set of parameters for the system. During our work

on this algorithm, we were constantly reminded of the inherent limitation of PDR,

namely positional drift. This drift introduces error in position estimates, either

suddenly, due to a hardware glitch or an out-of-range measurement, or gradually,

due to slowly accumulating measurement errors.

This shortcoming of PDR makes it unreliable as a standalone tracking system,

but still very powerful as a component of a hybrid system. In our search for robust

localisation in unknown and uninstrumented environments, we believe we need to
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be more creative in our use PDR. Many PDR-based systems sacrifice the primary

benefits of PDR by relying on some form of infrastructure (e.g., wifi, RFID tags)

or prior knowledge (e.g., maps and floorplans). We have found only a few systems

which are careful to preserve the advantages of PDR. FootSLAM (Robertson et al.,

2009) constructs a map of walkable areas in a building using only PDR traces. More

recently, it has been improved by allowing approximate locations to be tagged, ei-

ther automatically from some external detection mechanism, or manually by the

user (Robertson et al., 2010). Another approach to improving estimates is to com-

bine traces from multiple pedestrians. We have contributed to some work which

shows that this works on a very large scale with tens or hundreds of users (Kloch

et al., 2011), all carrying PDR-enabled mobile phones which detect their proximity

to each other using Bluetooth. Others have shown that combining position esti-

mates from only two pedestrians (Strömbäck et al., 2009) or from several sensors

on the same pedestrian (Jin et al., 2011) also improve accuracy. We would like to

see more research projects like these which acknowledge the strengths of PDR and

the need for systems which can support navigation in challenging environments.

The final avenue of research which could address the issue of drift is improving

the hardware itself. The specially-designed NavChip (Wan and Foxlin, 2010) by

Intersense7 offers some improvements over other generic inertial sensors when it

comes to PDR but still suffers from the same fundamental limitations. Sysnav8

address the issue of localisation in GPS-denied environments by using an array of

magnetometers to estimate displacements. In his thesis, Dorveaux (2011) demon-

strates how this magneto-inertial sensing produces similar results to our inertial

PDR without requiring the sensors to be foot-mounted. A major shift in technol-

ogy could offer a solution if it were to drastically reduce the magnitude of inertial

measurement noise, especially bias.

Inertial pedestrian dead-reckoning provides a suitable starting point for many,

7http://intersense.com (Accessed 2012.09.24.)
8http://sysnav.fr (Accessed 2012.09.24.)

http://intersense.com
http://sysnav.fr
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more elaborate, hybrid localisation systems, which could provide a viable naviga-

tion solution for emergency responders or others who need support in unknown and

uninstrumented environments. In the following chapter, we use PDR to initialise

the position estimates of sensor nodes which will then provide the robustness that

PDR alone is lacking.



Chapter 5

Simultaneous localisation and mapping

using pedestrian dead reckoning and

ultrasonic sensor nodes1

In chapter 3, we described how ultrasonic sensor nodes could conceivably be used

as way-finding beacons during a firefighting intervention. A trail of these sensors

could be used to provide navigation support. However, their limited range and

accuracy, and the possibility that some would be moved or even destroyed, would

make this solution cumbersome and unreliable. As shown in chapter 4, pedestrian

dead reckoning is more compact and tracks with more detail than ultrasound, but

it intrinsically suffers from drift and cannot be relied upon for more than a few

minutes. In this chapter, we combine these two technologies through a technique

known as simultaneous localisation and mapping (SLAM). The ultrasonic sensor

nodes act as landmarks to correct the drift in pedestrian dead reckoning (PDR),

and PDR is used to initialise and refine the positions of the landmarks while

1This chapter is a revised version of: Carl Fischer, Kavitha Muthukrishnan, and Mike Hazas.
SLAM for Pedestrians and Ultrasonic Landmarks in Emergency Response Scenarios. In Marvin
V. Zelkowitz, editor, Advances in Computers, volume 81, chapter 3, pages 103–160. Academic
Press, Burlington, MA, 2011. The author acknowledges that the data collection and algorithm
development were conducted in collaboration with Dr Kavitha Muthukrishnan.

124



5. SLAM Introduction 125

providing detailed tracking even where sensor nodes are missing. Such a system

has the potential to provide accurate and robust localisation for pedestrians in

unknown environments.

5.1 Introduction

Our motivation for SLAM is to overcome the need for an a priori map and pre-

installed infrastructure, and to enable mapping and navigation that is both exten-

sible and adaptive in a changing environment. There is a lot of existing research to

draw on, and yet we found very little on pedestrian SLAM at the time of writing.

This chapter focuses on the creation and evaluation of a pedestrian SLAM system

in a controlled lab setting as a first step towards deploying such a system in the

real world.

5.1.1 Related work

SLAM has been extensively studied in the field of robotics (Djugash et al., 2006;

Dissanayake et al., 2001) and has been specifically applied to a variety of envi-

ronments such as indoor (Djugash et al., 2005), outdoor (Guivant et al., 2000),

aerial (Kim and Sukkarieh, 2007) and undersea (Newman and Leonard, 2003; Ol-

son et al., 2006). We report briefly some of the work developed within the context

of robotic SLAM and how there is now an interest in SLAM for pedestrians. For a

more comprehensive review of SLAM, we refer the reader to Thrun (2002), Durrant-

Whyte and Bailey (2006), and Bailey and Durrant-Whyte (2006).

SLAM in robotics

The basic setting for the SLAM problem is a robot with a known kinematic model

starting at an unknown location, and moving through an unknown environment



5. SLAM Introduction 126

containing landmarks. The robot is equipped with sensors that can detect and

measure the location of these landmarks relative to itself. For instance, these sen-

sors can be a camera to detect visual features (Folkesson and Christensen, 2008;

Andreasson et al., 2007), a laser range finder to observe the shape of surrounding

obstacles such as walls or trees (Hähnel et al., 2003), an RFID reader to detect

tags (Hähnel et al., 2004), or an ultrasound sensor to measure the range and bear-

ing to special beacons (Djugash et al., 2006). The SLAM algorithm places the

landmarks on a map, as the robot’s sensors observe them, using the robot pose

estimate (i.e., position and orientation) to determine the their locations in the

map. The algorithm simultaneously uses landmark observations to refine both the

robot’s pose estimate and the landmark location estimates. As the landmarks are

repeatedly observed, the confidence in their location estimates increases, and the

map converges to an accurate representation.

Some of the notable problems that are widely researched by the SLAM commu-

nity are: (i) the complexity of the SLAM methods, which becomes an issue when

the number of landmarks in the map increases, and (ii) data association of the ob-

served landmarks with landmarks held in the map. This second point is particularly

important for loop closure, when a robot returns to a previously mapped region

after traversing a long path. These problems are being addressed in detail within

robotics research (Durrant-Whyte and Bailey, 2006; Bailey and Durrant-Whyte,

2006).

Approaches to SLAM

SLAM methods fall mainly in three categories: (i) EKF-SLAM, which employs

an extended Kalman filter (EKF) to represent the joint state space of robot pose

and all landmarks that have been identified (Smith and Cheeseman, 1986); (ii)

FastSLAM, which uses a Rao-Blackwellized particle filter in which each particle
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effectively represents a pose and set of independent compact EKFs for each land-

mark (Thrun et al., 1998); and (iii) GraphSLAM, which models the landmarks and

the successive positions of the target as nodes of a graph, and measurements as

edges of this graph (Thrun and Montemerlo, 2006).

The EKF approach has two serious drawbacks that prevent it from being appli-

cable to certain large-scale real environments. Firstly, the complexity is quadratic

in the number of landmarks, thus limiting the number of landmarks that can be

handled by this approach. Secondly, it relies heavily upon the assumption that

the mapping between observations and landmarks is known. Associating a small

number of observations with incorrect landmarks in the EKF can cause the filter

to diverge. This shortcoming has been recognised and investigated by the com-

munity (Guivant and Nebot, 2001; Leonard and Feder, 2000). The computational

effort has been reduced by using submapping methods — splitting the global map

into a number of submaps (Leonard and Feder, 2000) — and by using sparse in-

formation matrices instead of covariance matrices (Thrun et al., 2004).

FastSLAM was introduced by Thrun et al. (1998) and Montemerlo et al. (2002)

as a more efficient SLAM algorithm. FastSLAM decomposes the SLAM problem

into a robot localisation problem and several landmark estimation problems that

are conditioned on the robot’s pose estimate. FastSLAM uses a particle filter for

estimation. Each particle effectively represents a pose and a set of independent

low-dimensional EKFs, one for each landmark. The conditioning on a pose allows

the landmarks to be estimated independently, thus lowering the complexity. Fur-

ther research by Montemerlo (2003) showed that FastSLAM is able to deal with

ambiguous data association more reliably than EKF methods. This approach does

have some drawbacks which are explored by Bailey et al. (2006). In particular,

the uncertainty estimates inevitably become too optimistic and the filter is unable

to explore the complete state-space. A further publication by Brooks and Bailey

(2009) present a hybrid approach combining the benefits of EKF-SLAM and Fast-

SLAM.
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Graph-based methods represent the positions of the landmarks and the succes-

sive positions of the target (e.g., robot or pedestrian) as nodes in a graph. Odometry

or dead-reckoning measurements become edges between target positions, and land-

mark observations (e.g., range measurements) are edges between target positions

and landmark positions. The positions of the nodes can be estimated using opti-

misation methods such as gradient descent or MDSMAP (Shang and Ruml, 2004).

Kleiner and Sun (2007) use a graph representation to build a map of landmarks

(the nodes of the graph) after several pedestrians have walked between them (thus

measuring the edges of the graph). Djugash et al. (2006) use a similar representa-

tion to initialise landmark positions but then use EKF-SLAM to track their robot.

Golfarelli et al. (1998) refer to their own method as “elastic correction” because it

models the connections between nodes as springs which constrain their positions.

Thrun and Montemerlo (2006) give a formal description of GraphSLAM. They

present it as a solution to the off-line SLAM problem for large environments. In

other words, it can only be used after all the data has been collected, not in real-time.

Off-line solutions such as GraphSLAM are able to produce more accurate maps

and traces than on-line methods such as EKF-SLAM and FastSLAM, because they

have more data to work with. Thrun (2001) use FastSLAM for real-time tracking,

but perform a backward correction of past poses whenever the system detects a

loop in the path. This backward correction aims to optimise the consistency of the

map similar to other graph-based methods.

Typical sensing modalities for SLAM

Dead reckoning traces its roots back to ship navigation. It is a common technique

in robotics where it is often implemented using wheel odometry, but it is now

becoming popular in the area of pedestrian tracking due to the miniaturisation of

inertial sensors. This method tracks the movements of the target (vehicle, robot, or

person) and deduces their current position relative to a previous position. Not all
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SLAM methods rely on wheel-based odometry or inertial dead-reckoning. Hähnel

et al. (2003) match successive scans from a laser scanner in order to estimate

motion. Tardif et al. (2008) use a similar method, visual odometry, to estimate the

trajectory of a single camera using only a stream of images.

In SLAM with range-only sensors (Newman and Leonard, 2003; Olson et al.,

2006; Blanco et al., 2008a) or bearing-only sensors (Deans and Hebert, 2000), a

single measurement does not contain enough information to estimate the location

of a landmark. Particle filters and Kalman filters can handle this without any

particular modifications once a landmark has been initialised. However, in the

case of the EKF, in order to initialise it, we must observe it from multiple vantage

points. This is one reason why some researchers have preferred to use a stereo

camera rig which provides depth information as well as bearing (Davison, 1998).

With a single camera, we must collect measurements over a period of time, and

initialise the landmark using a batch update scheme (Durrant-Whyte and Bailey,

2006; Bailey and Durrant-Whyte, 2006) or a voting scheme (Olson et al., 2006).

Montiel et al. (2006) propose an alternative solution where the system models the

inverse of the depth of a landmark rather than the depth; this results in a simpler

and more robust algorithm.

Possibly the most versatile but also the most challenging type of SLAM is visual

SLAM, using a single hand-held camera. It is versatile because it requires nothing

more than a camera which can be hand-held, or attached to a helmet, or fixed on a

robot. It is challenging because it must deal with landmark extraction from a high-

bandwidth data stream, ambiguous data association, bearing-only measurements,

and unpredictable movements. In addition, the memory required to store each

individual landmark, the high density of landmarks, and the potentially large size

of the map add to the difficulty. Despite these challenges, monocular visual SLAM

has been demonstrated to work well (Davison et al., 2007; Clemente et al., 2007;

Newcombe and Davison, 2010), although only for maps of limited size.
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An essential difference between different types of landmark sensor is whether

the landmarks are uniquely identifiable or not. Many types of artificial landmarks,

such as ultrasound or radio beacons, sonar transponders, RFID tags, and fiducial

markers, are uniquely identifiable. In this case, data association is not a problem

and the SLAM system can be simpler and more robust as it does not need to deal

with multiple hypotheses and erroneous matches. Naturally occurring landmarks,

such as the features detected by visual SLAM systems or laser range finders, are am-

biguous, and the corresponding SLAM algorithms must take additional measures

to achieve reliable convergence.

Pedestrian SLAM

In principle, the SLAM algorithms we have mentioned from the field of robotics

or autonomous vehicles can be applied to pedestrians. Some visual SLAM systems

are implemented with pedestrians in mind (Clemente et al., 2007; Strasdat et al.,

2010), but other types of sensor are not immediately suitable for use by pedestrians.

For instance, laser range finders which detect distance and direction to obstacles

are frequently used for robot SLAM where the movement of the robot ensures that

the measurements are all in a consistent horizontal plane. This is more difficult

to achieve for pedestrians. HeadSLAM (Cinaz and Kenn, 2008b) addresses this

by adding an inertial measurement unit to a helmet mounted laser scanner. The

inertial measurements enable the system to compensate for the varying tilt of

the scans and to perform pedestrian dead-reckoning before applying techniques

from robotics. Kleiner and Sun (2007) describe a form of SLAM specifically for

pedestrians, using inertial dead-reckoning and RFID landmarks. They construct

the map of RFID positions and the paths of the pedestrians offline.

We mentioned a novel application of pedestrian dead-reckoning at the end of

the previous chapter. FootSLAM uses traces from pedestrian dead-reckoning to

construct a map of the walkable areas of the building and does not require any
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additional sensors (Robertson et al., 2009). The map consists of a hexagon grid

showing which areas are most visited and how they are connected. This reveals the

structure of the building, including corridors, rooms, doorways and even furniture.

However, it only becomes usable once the pedestrian has covered the main walkable

areas of the building several times in different directions.

5.1.2 Contribution

The systems described above are not immediately useful for supporting pedestrian

navigation, although the techniques suggested are very relevant. The systems tar-

geted at pedestrians are either unable to provide real-time localisation, or they are

not reliable enough for our purposes. FootSLAM is extremely promising but we

believe that, in the firefighter navigation scenario, it suffers from the same short-

coming as the pedestrian dead-reckoning on which it is built, namely unpredictable

drift. The advantages of FootSLAM, the visualisation of paths and the correction

of drift, only become apparent when one or more pedestrians have walked multi-

ple intersecting paths a number of times. In this chapter, we develop and evalu-

ate a SLAM system for pedestrians using inertial pedestrian dead-reckoning and

ultrasonic sensor nodes which serve as landmarks. It works in real-time and is

particularly suited to pedestrian tracking, including use by emergency responders.

Foot-mounted inertial PDR provides the best possible estimates of a pedes-

trian’s movements and, in principle, works for many types of motion beyond typical

walking, including running, crawling, climbing and descending stairs and ladders.

The disadvantage is that foot-mounted sensors and their wires are difficult to attach

and can get in the way of the wearer. However, since this is a specialised system

which would go through several design iterations before being produced commer-

cially, we believe there will be opportunities to address this issue at a later stage,

during integration with other elements of firefighting equipment, for instance.
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Ultrasonic sensor nodes are an attractive solution for localisation in unprepared

environments. They are potentially small and power-efficient enough for response

teams to deploy at the scene as required. The nodes provide two-way measurements

and distributed computation because they are active devices, contrary to passive

RFID tags or visual markers for instance. In some deployments, they can also

provide a communication channel between different parts of the building. They are

unambiguously identifiable because they broadcast their unique identifier, unlike

the visual features used by SLAM systems based on cameras or laser scanners,

so data association is not a problem. Unlike radio ranging systems, they take

centimetre-resolution range measurements and can be designed to measure bearing

as well, and unlike visual markers, they work in low visibility.

We provide an initial proof-of-concept system that we demonstrate in a con-

trolled setting. There are many more aspects to address and we discuss some of

these at the end of this chapter. However, we are not aware of any comparable

work which has sought to base SLAM on pedestrian dead-reckoning, and we thus

believe that this is a valuable step towards a solution for navigation in unprepared

environments.

5.2 Implementation: multi-modal sensing and al-

gorithms

In this section, we describe our implementation of a tracking system based on iner-

tial pedestrian dead-reckoning and ultrasonic sensors deployed by the responders

as they explore a building. First, we implement an extended Kalman filter (EKF)

which can track the pedestrian when the sensor positions are known. Second, we

augment this EKF to track the pedestrian and simultaneously locate the sensors

in the case where no prior knowledge is available.
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5.2.1 Sensing technologies

In these experiments, we use the Kalman filter pedestrian dead reckoning imple-

mentation described in chapter 4 and the ultrasonic sensors described in chapter 3.

The errors in the range and bearing measurements taken during our previous ex-

periments (ch. 3) are shown in figure 5.1. Each line represents the range or bearing

error distributions for one of our eight selected experiments. The true positions

of the beacons were surveyed manually, and they were all oriented in the same

known direction, along one of the coordinate axes. The ground truth position of

the pedestrian was measured using the Ubisense Series 7000 real-time localisation

system2 based on ultrawideband radio signals. During the experiment, the sensor

node attached to the pedestrian was programmed to transmit a series of ultrasonic

pulses approximately ten times per second. The nodes on the ground used these

pulses to estimate the distance and bearing to the pedestrian.

The large error for the range and bearing measurements in our pedestrian track-

ing experiment can be explained by three factors. (1) The true position of the

pedestrian is measured by the Ubisense ultrawide band localisation system with

an accuracy of 15 centimetres according to some documents (Ubisense, 2012); this

accuracy is worse than the ranging accuracy of our ultrasonic sensors, and is further

limited by a challenging environment in terms of RF propagation. (2) The UWB

transmitter used to track the true position of the pedestrian was not co-located

with the foot-mounted ultrasonic transmitter but attached to his cap. (3) The

ultrasonic transmitter was modified to fit around the pedestrian’s shoe but this

causes the alignment of the transducers to be sub-optimal; the other foot can also

block the line of sight between the transmitter and the sensors lying on the ground.

Thus, to give a better indication of our sensors’ accuracy, we have also plotted the

error from the experiments described in section 3.2. In those experiments, we de-

ployed five static sensors and one mobile sensor on a Lego MindStorms robot in a

2http://www.ubisense.net (Accessed 2012.09.24.)

http://www.ubisense.net
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2.75 × 2.00 m arena. The thick dotted line in figure 5.1 represents the range and

bearing errors for over 60 000 measurements involving the mobile sensor in that

arena. In these previous experiments, the true sensor positions were measured using

visual markers on top of each sensor and camera tracking software which estimates

positions with an accuracy of the order of a centimetre, but only over a small area.
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Figure 5.1: Characterisation of the ultrasonic sensors: range and bearing measure-
ment errors. Each of the eight lines represents the error distribution of the unpro-
cessed measurements for a different experiment. The thick dotted line is the error
distribution measured in previous work using a more accurate visual fiducial-based
tracking system to record the true positions of the mobile sensor.

As we will see in the results presented later in this chapter, the limitations of

the ground truth

5.2.2 Localisation and mapping algorithms

We use inertial PDR and our ultrasonic sensor nodes to simultaneously locate a

pedestrian and map the positions of the nodes (which effectively serve as land-

marks). The simultaneous localisation and mapping (SLAM) techniques which we

use have been developed by robotics researchers since the 1980s, but have only

been applied to pedestrian localisation in the past decade. We first describe an

implementation which assumes that sensor positions are known; then we describe

an implementation that also estimates the positions of the sensors, thus requiring

no prior knowledge of the environment.
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Kalman filtering

The drawbacks of Kalman filter-based SLAM, mentioned in the introduction to

this chapter, do not pose a serious problem in our application scenario. First, the

sensor nodes we use as landmarks are uniquely and robustly identifiable. Second,

the landmarks can be relatively sparse due to the accuracy of the dead-reckoning,

and the total time during which tracking is required is limited, thus the total

number of landmarks remains small. We also believe this implementation has the

potential to be run in real time and distributed over the sensor nodes more easily

than the alternatives.

In our application we track a pedestrian. Their state is modeled as statep =
(

xp yp ψp

)T

, the two Cartesian coordinates and the direction of travel, or head-

ing. We only address the two-dimensional problem in this work. Tracking the

z-dimension is more challenging because our ultrasound sensors only measure bear-

ings in the horizontal plane. During our experiments, our PDR system tended to

drift more along the z-axis than in the horizontal plane for some users; however, we

later discovered that this was due to insufficient dynamic range on our particular

model of inertial sensor and not a fundamental flaw in the algorithm. Tracking

in the horizontal plane may be sufficient for many scenarios, including emergency

response. If necessary, stairs could be detected and flagged separately.

We have measurements from two sources: PDR which measures the movement

of the pedestrian, and ultrasonic sensor nodes which measure the range and bearing

to the pedestrian. The PDRmeasurements are used in the prediction phase, and the

ultrasonic measurements are used in the correction phase. The movement model

(or process model) takes advantage of the pedestrian dead reckoning measurements
(

d δψ

)T

which tell us how the pedestrian has moved since the previous estimate.

d is the distance traveled and δψ is the change in the direction of travel (heading)

since the previous PDR measurement. We measure the change in heading because
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we know that the absolute heading measured inertially is prone to drift, whereas

the short term variations are more accurate. These notations are presented in

equation 5.1 and illustrated in figure 5.2. k is the timestep.

Figure 5.2: Notations used for PDR measurements. d is the distance travelled, δψ is
the change in heading since the previous PDR measurement, and k is the timestep.

statek+1
p = f

(

statekp , measpdr
)

=




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





xk+1

yk+1

ψk+1




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

=


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







xk + d cos(ψk + δψ)

yk + d sin(ψk + δψ)

ψk + δψ













(5.1)

We assume that both elements of the PDR measurement are subject to additive

Gaussian noise. Measurement noise has been omitted from process equation 5.1

where each occurrence of d is actually d+d εd, and each occurrence of δψ is actually

δψ + d εδψ so that the noise is applied proportionally to the distance moved since

the previous measurement. The covariance of the noise

(

εd εδψ

)T

is denoted Q.

By defining the process noise proportional to the distance travelled we prevent
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the covariance (the position uncertainty) from increasing when the pedestrian is

standing still.

The ultrasonic sensor nodes are able to measure the range r and the bearing φ

to a compatible device attached to the pedestrian’s boot and colocated (as closely

as possible) with the inertial measurement unit used to perform PDR. The state

of each sensor i is modeled as statesi =

(

xsi ysi θsi

)T

, the two Cartesian coor-

dinates and the orientation. We can express the measurement as a function of the

state of the pedestrian and of the relevant sensor, as shown in equation 5.2. For

an illustration of the measurement model, see figure 3.4 in chapter 3.

predicted measus = h (statep, statesi)

=







r

φ







=







√

(xp − xsi)
2 + (yp − ysi)

2

arctan
(

yp−ysi
xp−xsi

)

− θsi







(5.2)

We assume that the ultrasonic measurements are subject to additive Gaussian

noise

(

εr εφ

)T

with covariance R. This has been omitted from measurement

equation 5.2 for simplicity. It is important to ensure that all angle differences

remain between −π and π so the filter can determine whether two angles are

similar or not.

The process function f (eq. 5.1) and the measurement function h (eq. 5.2) are

both non-linear functions of the state, measurements, and noise, so we need to

calculate their Jacobian matrices (eq. 5.3, 5.4 and 5.5). The Jacobian W = ∂h
∂εus

is

the identity matrix because additive noise is applied directly to the measurement,
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it can therefore be omitted from the expression of the gain K in equation 5.7.

A = ∂f

∂statep

=













1 0 −d sin(ψp)

0 1 d cos(ψp)

0 0 1


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





(5.3)
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∂statep
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(5.4)

V = ∂f

∂εpdr

=
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d cos(ψp) −d2 sin(ψp)
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0 d
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







(5.5)

We can apply the Kalman prediction equations whenever a PDR measurement is

available (eq. 5.6).

predicted statep = f (statep, measurementpdr)

predicted Pp = APpA
T + V QV T

(5.6)

Similarly, when an ultrasonic measurement is available we apply the Kalman up-

date equations (eq. 5.7).

K = PHT
(

HPHT +R
)

−1

updated statek+1
p = predicted statekp +K (measus − predicted measus)

updated P k+1
p = (I −KH) predicted P k

p

(5.7)
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Pedestrian SLAM

If the positions of the sensor nodes are unknown, then we have a simultaneous

localisation and mapping (SLAM) problem where we must estimate the positions

of the sensors (the map) in addition to the position of the pedestrian. This can

be achieved by modifying the Kalman filter developed above. The positions of

the sensors become variables instead of constants and the filter also tracks their

covariances.

The prediction equations remain the same – the filter uses the PDR measure-

ments to predict the position of the pedestrian. The sensors are assumed to be

static so their position estimates remain the same during the prediction phase.

However, the correction phase is slightly different because each ultrasonic measure-

ment can correct both the pedestrian position estimate and the position estimate

of the sensor which took the measurement.

The state under consideration is now the concatenation of the position of the

pedestrian and the position of the sensor i which took the measurement (eq. 5.8).

The Jacobian matrix H is also different because now the elements of the sensor

state statesi are also variable (eq. 5.9).

statep+si =







statep

statesi







Pp+si =







Pp 0

0 Psi







(5.8)
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T

(5.9)

The combined state statep+si is created when each ultrasonic measurement is re-

ceived, and when the correction phase is finished the position of the pedestrian and

the position of the sensor are stored separately. This allows us to only process data

of dimension six for each measurement. This scales better and is computationally

much less expensive than considering all sensors when doing the update. However,

there is a tradeoff because we lose the information about the cross-correlations

between the different sensor positions which would allow each ultrasonic measure-

ment to correct position estimates for other nodes as well as the one that took the

measurement.

In a typical Kalman filter the covariance increases during the prediction phase

due to the uncertainty of the process model and then decreases during the correc-

tion phase due to the information from the measurement.3 However, the covari-

ances of the sensors never increase because they are modeled as static. To avoid

the covariances decreasing too quickly we use the fading memory technique de-

scribed by Simon (2006) which artificially increases the sensor covariances before

each correction phase by multiplying Psi by a value slightly greater than one (Si-

mon (2006) suggests 1.012 and we also use this value). Without this, the sensor

covariances would converge to zero and their position estimates would never be

updated.

3There are exceptions, notably following a 180 degree turn when the covariance can decrease
for a brief period even during the prediction phase.
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Sensor initialisation

The first time a sensor reports a measurement, the filter has no information about it.

A sensor cannot be initialised from a single measurement, so we delay initialisation

until we have at least three measurements taken from positions that are well spaced

apart. This is not a limitation in practice because we only need to know the

position of the sensor when we return to the same location later in the mission, not

immediately after dropping it. Using these measurements, we can usually perform

reliable trilateration using a non-linear regression. However, if the points are nearly

collinear there are two solutions. The bearing measurements help us resolve such

ambiguities, but we find that using them directly in the regression gives poor

results. We adopt the following heuristic method for selecting the correct solution.

First, we use only the range measurements in the regression. We know that the

solution computed by the regression is either the true position of the sensor, or a

position that is the symmetric of the true position with respect to the path travelled.

Therefore, we estimate the least squares line which approximates the path travelled,

and compute the symmetric of the estimated sensor position. One of these points

should be close to the true sensor position. In other words, if there is indeed an

ambiguity we are likely to have found two local minima corresponding to the actual

position of the sensor and its reflection. Using each of the bearing measurements,

we estimate the orientation of the sensor for both positions. The correct position

will yield similar orientation estimates for all of the bearing measurements. The

incorrect symmetric position will yield inconsistent orientation estimates for each

of the bearing measurements. We select the position which minimises the bearing

residuals (i.e., the variance of the orientation estimates).

Figure 5.3 illustrates the sensor initialisation process. In this example, the pedes-

trian walked along a straight path for approximately two metres. An ultrasound

sensor took range and bearing measurements to the pedestrian and we recorded

those that were at least 50 centimetres apart. The circles represent the range mea-
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surements taken at these different points, and their intersections are the possible

positions of the sensor. There are two solutions because the pedestrian path was

almost linear. Using a single bearing measurement is not enough to choose the

correct solution, but the sequence of bearing measurements is only consistent with

the correct solution. This heuristic initialisation method works well but, because

of the noise in our bearing measurements, there are still times when it is unable

to choose correctly between the true sensor position and the symmetric.

Djugash et al. (2006) use a similar method for initialising sensor positions in

their work on range-only SLAM for robots, but they explain it differently (and

do not have the benefit of bearing measurements). They represent the sensors

as nodes in a graph, and robot positions as virtual nodes. The edges are either

sensor-to-sensor ranges (which we do not use) or sensor-to-robot ranges. Based

on this graph representation, they are able to determine the locations of sensor

nodes and of the robot by running a batch optimisation. Deans and Hebert (2000)

also use a comparable approach in their Kalman filter SLAM implementation for

bearing-only measurements. They initialise a landmark position by performing

bundle adjustment (a non-linear optimisation) over a section of the robot trajectory

and the first few bearing measurements in order to optimise both the landmark

position and the robot trajectory (we only optimise the landmark positions).

5.3 System evaluation

We evaluate the EKF algorithm (with and without SLAM) described in the pre-

vious section using multiple sets of inertial and ultrasound measurements. These

were recorded as a subject walked through an indoor office environment. In this

section, we first describe the experimental setup, then we show the results achieved

for different experiments, before finally drawing conclusions about the suitability

of this type of algorithm for emergency response scenarios.



5. SLAM Evaluation 143

−1 0 1 2 3 4 5

−2

−1

0

1

2

x (metres)

y 
(m

et
re

s)

 

 
PDR path estimates
Measured range
Measurement point
Sensor
Range−bearing measurement

Figure 5.3: Sensor initialisation from a sequence of range/bearing measurements.
First the ranges are used to determine the possible sensor locations. Then the
bearings are used to select the correct one.

5.3.1 Description of experiments

Our experiments took place in an office building at the University of Twente in

the Netherlands. The test area covered a large, mostly empty, office on one side of

a corridor, and two smaller individual offices, each with a desk, on the other side

of the corridor (figure 5.4).

Inertial and ultrasound data collection

We evaluate our algorithms using data gathered during eight different collection

sessions, each lasting from three to eight minutes. We placed twenty-one ultrasound

sensors on the floor (fig. 5.5(a)), and surveyed their positions by hand. Using a

total station4, we also surveyed six additional reference points which the pedestrian

walked to and from in some of the experiments.

During the data collection sessions, a pedestrian (the author) walked within

the test area at an average walking speed between 0.8 and 1.5 metres per second.

4A total station is a precision surveying tool similar to a theodolite.
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Figure 5.4: Test area: a large office, corridor, two smaller offices covering a total of
9× 13 metres.
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The pedestrian wore an XSens MTx inertial sensor on his foot, and an ultrasonic

transmitter on his lower leg (fig. 5.5(b)). The transducers of the transmitter were

on flying leads and attached around the edge of the sole so they would be in the

same plane as the sensors deployed on the ground. The paths are shown in fig-

ure 5.8 in the results and analysis section. Paths (a), (g) and (h) were constrained

to the large room. All other paths covered the large room, both smaller rooms, and

the corridor. For path (a), the pedestrian walked around the room once and then

to reference point 1 (not shown), then around the room again and to reference

point 2, and so on. For paths (b), (c), (d), and (e), he walked continuously between

the rooms following the same path each time; the path in the large room is a

straight line across the middle of the room, hence the ‘T’ shape. Path (f) is similar

but he walked around the large room instead of across it. For paths (g) and (h),

the pedestrian stopped at each reference point (not shown) for approximately ten

seconds after walking arbitrarily about the room for approximately a minute be-

tween each reference point. These different experiments contrast situations where

the same path is repeated multiple times with situations where the movement is

more varied. The scenario where the pedestrian stops at known positions would

potentially allow us to evaluate the accuracy of our position estimates even in the

absence of dynamic ground truth.

Path capture using Ubisense

Ground truth was measured using a commercial Ubisense Series 7000 ultrawide

band (UWB) localisation system5 . We placed six Ubisense receivers at the edges

of the measurement volume. This system was calibrated using the Ubisense soft-

ware’s “full calibration” mode (the most accurate but time consuming option). The

pedestrian wore a Ubisense tag on a cap in order to measure reference location

data. Ideally, the tag would have been colocated with the other sensors on the foot,

however, we tried this and found that the body shields the tag from the receivers.

5http://www.ubisense.net (Accessed 2012.09.24.)

http://www.ubisense.net
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(a) Sensor nodes deployed along the corridor. (b) Ultrasound transmitter (blue) and Xsens
inertial measurement unit (orange) attached
to the pedestrian’s foot; transducers around
the edge of the sole.

(c) Data collection performed in the large of-
fice. Ultrasound sensors are deployed on the
floor.

Figure 5.5: Experiment and data collection.
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However, from our previous work, we know that the ninetieth percentile horizon-

tal accuracy of this technology can vary from 11 cm to worse than 150 cm (Muthukr-

ishnan and Hazas, 2009, fig. 4 and tab. 2), depending on calibration effort invested,

sensor density, and environmental conditions affecting UWB line-of-sight and mul-

tipath. Thus, the Ubisense accuracy can be considerably worse than the ultrasonic

sensor ranging accuracy, which we measured in a separate set of experiments to

be about 7 cm at the ninetieth percentile confidence level (fig. 5.1). It therefore

cannot be used to characterise the lower bound of the accuracy for our pedestrian

tracking and SLAM algorithms. However, it does give a reliable indication of the

path traversed, and can to some extent be used to compare the relative accuracy

of different types of path, side-by-side (assuming both types of path cover similar

parts of the measurement volume, and thus will be subject to similar amounts of

Ubisense tracking error). Finally, unlike the error in the PDR position estimates,

the absolute error of the Ubisense system is bounded making it useful for ground

truth.

Error characterisation

Typically, a localisation system is characterised by the error between the estimated

position of the pedestrian and his true position, and the estimated positions of

the sensors and their true positions. For our system this is not possible because

the SLAM algorithm works in its own arbitrary coordinate system which can

potentially change over time. In other words, the positions of the pedestrian and

of the sensors can only be compared to each other, not to their true values. For

this reason, we calculate the errors in the ranges and bearings between sensors,

and between sensors and pedestrian. We can then examine how these errors evolve

over time and compare their distributions. This is very similar to how we evaluated

our sensor node localisation algorithm in chapter 3. The performance of the filter

can also be evaluated to some degree without any ground truth, by examining the
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innovations (i.e., the differences between the predicted ranges and bearings, and

the actual measurements). If the innovation remains small, then the filter is likely

to have correctly estimated the positions of the pedestrian and of the sensor.

The estimated positions of the sensors may be aligned with their hand-surveyed

positions either manually or by using a regression to determine the optimal trans-

lation and rotation to apply. This method can be useful for visualising the output

of the filter but it must be used with care because of the additional complexity

introduced by the optimisation and the fact that the coordinate system in which

the filter locates the sensors and the pedestrian changes over time.

Algorithm parameters and SLAM initialisation

The specific algorithm parameters we use are given in table 5.1. Note that the

values we use for Q and R bear no clear relationship to measurable noise values,

and were chosen empirically. This is a common situation when designing a Kalman

filter for which the system model is not well known or not detailed enough; the

modeled noise values need to be increased in order to account for the modeling

“errors”. Measurements for which the range innovation divided by the square root

of the sum of x and y covariances for the pedestrian and the relevant sensor are

greater than 0.5 are discarded as outliers. In other words, we discard measurements

that are very different from what we expected, unless we are very unsure of our

current estimates.

In the case where we assume that the sensor positions are known in advance,

we initialise them to their true values and set Psi to zero. The initial position of the

pedestrian is set according to the Ubisense position estimates. Their direction of

travel is initialised by using the angular difference between the direction given by

the first two Ubisense measurements that are at least three metres from each other,

and the corresponding position estimates using PDR alone. In the case where we
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Table 5.1: Parameters used in the SLAM algorithm.

Name Notation Value

PDR noise covariance Q

(

2 0
0 20

)2

Range/bearing measurement noise covariance R

(

2 0
0 1

)2

Initial sensor position covariance P 0
si





50 0 0
0 50 0
0 0 8.73





2

Initial pedestrian position covariance P 0
p

(

0
)

Fading memory factor 1.012

assume no prior knowledge of sensor positions, we use five ultrasonic measurements

taken at least 30 cm from each other to initialise the sensor positions, as explained

earlier.

5.3.2 Results and analysis

We now take a closer look at the different components of the system and how they

perform on our datasets.

Inertial Pedestrian Dead Reckoning (PDR)

The inertial pedestrian dead reckoning measurements can be used for determining

the path, but, as explained in chapter 4, the estimated position drifts over the

course of the experiment. Figure 5.6 shows how the position estimates suffer from

drift when the PDR measurements are used alone. In path (b), all iterations are

superimposed so we can assume that there is very little error in the position esti-

mates. Paths (c), (d), (e), and (f) display slight rotational and translational drift

of up to ten degrees and three metres respectively. Path (a) shows slightly more

drift but the roughly rectangular shape of the path remains clear throughout the
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experiment. Paths (g) and (h) are difficult to analyse at this stage because there

is no repeating pattern, but we will see that this is beneficial when we attempt to

locate the sensor nodes.

We know from observing these traces that the uncertainty in the PDR position

estimates increases with distance travelled. The process model in our Kalman filter

is designed to take this into account and the value of the pedestrian position esti-

mate covariance should therefore increase with distance travelled (and with time).

Figure 5.7 shows how the estimated position error covariance changes with time for

experiment (d). We plot
√

|Pp,xy| (square root of the determinant of the estimated

position error covariance) versus time which is an indicator of the pedestrian posi-

tion uncertainty, and
√

Pp,ψ (square root of the heading estimate error covariance),

which is an indicator of the pedestrian heading uncertainty. The uncertainty starts

at zero because we arbitrarily decide on the initial position and heading of the

pedestrian. We see that globally the uncertainty increases as expected but there

are several instances where the uncertainty decreases. This occurs on corners when

the change in heading is large. This decrease in uncertainty is normal, as position

errors can cancel each other out for some time following a 180 degree turn. Intu-

itively, a pedestrian will become somewhat “less lost” if they turn around and walk

back towards their starting point for a short time. Wan and Foxlin (2010) give a

more detailed analysis of PDR error, including this phenomenon.

Kalman filter using known sensor positions

If the positions and orientations of the sensors are known in advance, we can use

the first form of our Kalman filter to correct the PDR location estimates. In our

implementation of the Kalman filter, we set the sensor and pedestrian positions

and orientations based on the surveyed positions. Setting the estimated sensor

position error covariances to zero ensures that their position estimates do not
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Figure 5.6: Paths estimated from inertial pedestrian dead reckoning alone.
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Figure 5.7: Change in the uncertainty of the pedestrian position and heading esti-
mates when PDR is used alone (with ZUPTs and orientation estimation). Overall
the uncertainty in position increases linearly over time (the covariance is quadratic),
and the uncertainty in heading increases with the square root of time (the covari-
ance is linear). Created from experiment (d).

change as range and bearing measurements are processed by the filter, only the

pedestrian position is affected.

The results are shown in figure 5.8. Much of the drift observed in the PDR-

only traces (fig. 5.6) has been corrected. Experiments (a) to (f) all show similar

errors near the corners of the arena. There is an offset of approximately one metre

between the ground truth positions and the estimated positions. We note that the

estimated positions are all consistent with each other (i.e., they are all aligned).

Therefore, we suspect that these errors are due to inaccuracies of the Ubisense

location estimates which can worsen when the tracked tag is placed close to the

limits of the covered area. As previously, experiments (g) and (h) are difficult to

evaluate, however, we observe that the estimated position of the pedestrian remains

correctly constrained to the upper part of the area, and that several sections of the

ground truth path can be matched to corresponding parts of the estimated path.

Figure 5.9 illustrates how the covariance of the pedestrian position estimate

evolves during these experiments when range and bearing measurements are taken

into account. As they start to walk, the covariance increases due to the potential

error in the PDR estimates, but when ultrasound measurements are received the
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Figure 5.8: Paths estimated from inertial pedestrian dead reckoning and ultrasonic
measurements from sensors with known positions. Our path estimates are in blue;
the Ubisense ground truth is in green. The sensors are shown as black squares.
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covariance decreases due to the additional information. Eventually, a regular cycle

of increases due to PDR and decreases due to ultrasonic measurements maintains

the covariance around a constant value. As mentioned earlier, the exact values of

the covariance (or its square root) do not always map well to true errors, due in

particular to the approximations and non-linearities in our model.
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Figure 5.9: Change in the uncertainty of the pedestrian position and heading esti-
mates when PDR is combined with ultrasonic measurements from landmarks with
known positions. Uncertainty increases over time due to PDR error accumulation,
but decreases when ultrasonic measurements from sensors are available. Created
from experiment (d).

Simultaneous Localisation And Mapping (SLAM)

Visualising the output of the SLAM filter as we did when the sensor positions were

known in advance can be misleading because the estimated coordinates of the sen-

sors change during the course of the experiment as they are updated by the SLAM

process. Figure 5.10 shows that in all the experiments, the estimated positions

of the sensors change over time. Note that these plots are in an arbitrary coordi-

nate system and do not directly map to the surveyed sensor positions without first

finding and applying the most appropriate rotation and translation. Initially, they

move a lot as more measurements are taken but, even after they have stabilised,

they continue to drift slowly. Since our map is defined by the sensor positions, it

also moves. In other words, this SLAM filter only gives positions of the sensors and

of the pedestrian relative to the other sensors, not in an absolute coordinate system.
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This means that the filter might provide different coordinates for the pedestrian

after he returns to a previous location, but this could still be correct (in a relative

sense) if the estimated positions of the sensors have also changed during that time.

Conversely, if the estimated position of the pedestrian remains the same as previ-

ously but the estimated coordinates of the sensors have changed the result could

be incorrect (in a relative sense). This is because we are performing online SLAM.

Offline methods such as GraphSLAM (Thrun and Montemerlo, 2006), which opti-

mise the complete trajectory estimate and map after all data has been recorded,

do not suffer from this limitation. They can be used to display the complete path

and the landmarks on a single map.

In our experiments, we find that we are able to display the estimated path of

the user (fig. 5.11) despite the potential issues described above. The drift in sensor

positions (fig. 5.10) may have been small enough to not interfere with the visual-

isation. Figure 5.11 also shows the estimated positions of the sensors at the end

of each experiment. These estimates were aligned to the surveyed sensor positions

after running a non-linear regression to determine the affine transformation (rota-

tion and translation) that minimises the sum of squared errors between surveyed

and estimated positions. The green line represents the Ubisense estimated path

which is already in the same coordinate space as the surveyed sensor positions.

The path estimates are similar to the ones obtained with prior knowledge of the

sensor positions, and most of the sensors are placed within 30 centimetres of their

true positions. In experiments (c) and (e), there are a number of sensor nodes with

incorrectly estimated positions (although the path estimates are accurate). This is

a consequence of the ambiguities in the initialisation method – each of these sensors

is placed on the wrong side of the path. As explained earlier in the chapter, this

occurs due to the combination of two factors – (1) the measurements used for the

initialisation of the sensor are taken from points which are nearly collinear, (2) the

bearing measurements are too noisy to determine which of the two possible posi-

tions is correct, so our heuristic selection method (fig. 5.3) fails. The consequences
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Figure 5.10: Changes in the estimated positions of the sensors during the experi-
ments. Initially, the estimates change a lot, then they stabilise while continuing to
drift slowly. Each sensor is shown in a different colour.
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can be quite small if the misplaced sensor is only in range of the straight section of

path with which it was initialised, for instance the two sensors in the upper right

and left corners of figure 5.11(e). But in general, these types of errors in the sensor

position estimates will create error in the pedestrian position estimates. This prob-

lem occurs for our data because the sensors were deployed in advance (although

their positions were not made available to the SLAM algorithm), an unfortunate

artefact of our experimental setup. In a practical scenario, the sensors would be

dropped or placed near the feet of the pedestrian as they walked around. Their

positions could be directly initialised with the pedestrian’s current position esti-

mate, thus eliminating any ambiguity. Their orientations could be initialised using

subsequent bearing measurements. This is the method we adopt in the following

chapter.

Figures 5.11(g) and 5.11(h) provide particularly good estimates of the sensor

positions. This is probably because these paths did not include any straight sec-

tions, therefore the initialisation was less likely to be ambiguous and sensors that

were initialised incorrectly were adjusted thanks to the variety of range/bearing

measurements taken from many different positions. In other words, the SLAM so-

lution benefits from favourable geometric dilution of precision. This bears some

similarity to situations where planes or ships are required to perform a particu-

lar manoeuvre in order to improve their tracking of a target by increasing the

observability of its position (Song, 1999).

In order to evaluate the performance of the filter in a more quantitative manner,

we look at the range and bearing errors between the sensors, and between the

sensors and the pedestrian for every update (figs. 5.12 and 5.13). These errors

reflect how accurately the sensors and the pedestrian are positioned relative to

each other. As expected, in most cases the errors for SLAM are higher than when

the sensor positions are known a priori. In almost all cases the nintieth percentile

range error between the pedestrian and the sensors is less than two metres. This

value reflects how well the pedestrian can be located in the map.
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Figure 5.11: SLAM performance: estimated pedestrian path and estimated po-
sitions of sensors at the end of each experiment rotated and translated to min-
imise the distance with the surveyed positions. Our estimated path is in blue; the
Ubisense ground truth is in green. Our final sensor estimates are red triangles; the
true sensor positions are black squares.
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Figures 5.12 and 5.13 also show the innovations, i.e., the differences between the

predicted measurements and the actual measurements. The range innovations tend

to be smaller than the corresponding estimated errors. This again suggests that

using the position estimates from the Ubisense localisation system as groundtruth

overestimates some of the errors.

The bearing errors from figure 5.13 are more difficult to interpret because they

depend on the position error of the pedestrian and sensors, and on the orientation

error of the sensors. For instance, if a sensor’s orientation is correct but the pedes-

trian is estimated to be a few centimetres in front of it, instead of a few centimetres

behind it, the bearing error could be 180 degrees.

In figures 5.12 and 5.13, we show errors between all sensors, but it would also

be reasonable to only take into account sensors that are either close to or far

from the pedestrian depending on whether we are interested in local accuracy

(position relative to nearby sensors, necessary for navigation) or global accuracy

(position relative to sensors which are far away, necessary for route planning). In

figures 5.14 and 5.15, we have plotted separately the errors between sensors, and

between pedestrian and sensors when they are less than three metres apart, and

those errors when they are more than three metres apart. The three metre limit

is arbitrary, but corresponds to an area which could quickly be searched by a

firefighter equipped with a long-handled tool. These figures show that in many

cases the local range error for SLAM is close to the error when the sensor positions

are known. When the far range errors are larger than the local errors, this is due

to large scale distortion of the sensor positions. Large scale distortion makes it

difficult to overlay the estimated sensor positions onto a map or floorplan, but

should not affect indoor navigation scenarios where a firefighter uses only nearby

sensors as landmarks to progress towards a target in small steps.

In the case where sensor positions are known in advance, the bearing errors from

far away sensors tend to be much smaller than the local bearing errors. Due to
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Figure 5.12: Cumulative range error distributions for the full duration of each
experiment.
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Figure 5.13: Cumulative bearing error distributions for the full duration of each
experiment.
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simple geometric properties, distance dilutes the effect of position error on the bear-

ing. SLAM bearing errors are generally large. In some cases, despite our heuristic

initialisation method (fig. 5.3), the SLAM algorithm places sensors on the wrong

side of a straight section of path due to the symmetry ambiguity (experiments

(c) and (e) especially). This does not affect local range errors between the sensor

and the pedestrian because of the symmetry, but the errors for far away sensors

are increased. Sensors in this situation are likely to have very inconsistent orien-

tations and thus the bearing errors for both near and far away sensors are high

(figs. 5.15(c) and 5.15(e)). This ambiguity is difficult to resolve with our current

implementation because only the sensors take bearing measurements to the pedes-

trian. If the pedestrian-worn sensor took measurements to the deployed sensors,

then these errors could more easily be avoided.

All our experiments can be split into sections of similar duration during which

a similar path was walked. For experiments (b) to (f), the same path was repeated

several times. For experiments (a), (g) and (h), the pedestrian returned to the same

point at regular intervals. Whereas the previous figures show the aggregate errors

over the full duration of the experiment, figures 5.16 and 5.17 give the median

range and bearing errors for each section of the path. In a few cases there is a

noticeable improvement at each iteration but for the other cases the median error

remains constant or even increases. For these latter cases, this could mean that

sensor and pedestrian position estimates are as good as they are going to get after

the first section and that there is no further improvement. After a firefighter has

explored the building once and deployed the sensors, the system is immediately

ready to help the following teams find their way.

5.3.3 Results summary

We evaluated our implementation of an ultrasound-assisted pedestrian tracking

system by comparing the ranges and bearings computed using the estimated po-
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Figure 5.14: Cumulative range error distributions for near sensors (≤3m) and far
sensors (>3m).
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Figure 5.15: Cumulative bearing error distributions for near sensors (≤3m) and far
sensors (>3m).
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Figure 5.16: Median range errors for each successive section of the path.
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Figure 5.17: Median bearing errors for each successive section of the path.
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sitions of sensors and pedestrian with the ranges and bearings computed using

the groundtruth positions. Our implementation achieves a median relative posi-

tion accuracy of between 0.3 and 0.6 metres when the sensor positions are known

in advance. When the sensor positions are unknown and we perform SLAM, our

implementation achieves a median relative position accuracy of between 0.4 and

0.8 metres. In the SLAM version, some of this error is caused by large scale dis-

tortions in the map (the estimated positions of the sensors). We have shown that

the relative position errors between the pedestrian and sensors closer than three

metres are comparable to the errors when the sensor positions are known.

Correct initialisation of sensor positions is essential in order for the SLAM

method to perform well. It appears to perform better when the paths are unstruc-

tured (not following a sequence of straight segments). We believe this is primarily

because sensor positions are more likely to be initialised correctly when the path

contains many turns than when it is mostly straight. MDS-MAP which we used

to initialise sensor positions in chapter 3 is not applicable here because we want to

initialise each sensor as soon as possible without waiting to first observe all sensors.

For the SLAM method, there is no clear improvement of sensor position es-

timates as paths are repeated. However the sensor orientations do improve with

time. This result suggests that this type of SLAM system would work well if it was

used in emergency response scenarios where the sensors are deployed on-the-fly,

and where paths are not necessarily repeated many times.

Finally, our results suggest that some of the error which appears in our plots

is due to inaccuracies in the ultrawide band reference localisation system. This

could mean that our system actually performs better than indicated by the results

presented in this chapter.
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5.3.4 Improvements and future work

Although we believe the results we have presented confirm the viability of this

type of hybrid tracking and navigation system, there are a number of areas which

require further work. Here we discuss a few avenues for further investigation and

improvement.

Tracking orientation. At the time of the experiment our PDR system did not

keep track of the orientation of the pedestrian, but only their direction of travel.

Estimating the orientation of the pedestrian is a requirement if we are to provide

them with navigation assistance, since they need to know which direction their

target is in. There is a simple relationship between the direction of travel and

the orientation of the inertial sensor, but a number of challenges remain. First, the

orientation of the foot-mounted sensor does not accurately represent the orientation

of the pedestrian or of the graphical interface that we are using to display our map.

In order to measure this, we would need to attach additional inertial sensors to

the head or chest of the pedestrian. Second, in our current SLAM system, the

orientation (and direction of travel) can only be corrected when the pedestrian is

moving, by using the cross-correlation between the error in the estimated direction

of travel and the error in the estimated position (an error in the estimated direction

of travel will cause an error in the estimated position). This could be improved

by directly measuring the bearing from the pedestrian to the landmarks (e.g.,

landmark X is behind the pedestrian). (Currently we only measure bearing from

the landmarks to the pedestrian, e.g., the pedestrian is to the right of landmark

Y.) Finally, it is challenging to evaluate how well the orientation is being tracked

because very few localisation systems which can be used as groundtruth provide

reliable orientation (a digital compass may work quite well in open areas but will

become unreliable in buildings). Tracking the orientation of the pedestrian remains

an essential part of a navigation system, so it is important to improve our system in

this respect. Since these experiments were run, we have successfully implemented
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an inertial tracking system using one foot-mounted sensor and one head-mounted

sensor. We are able to track the position using PDR while also estimating the

direction the wearer is looking.

Multiple sensors. Groups of mobile sensors (both inertial and ultrasonic)

could be used to great advantage. These sensors could be installed on both feet of

the pedestrian or on multiple pedestrians traveling together. We anticipate that

such scenarios would not only provide a lot more data than a single sensor in the

same amount of time, but would also benefit from the fact that the errors on each

sensor are independent from the others. For instance, PDR errors are typically

due to thermal noise and small vibrations in the MEMS components which will be

different for each sensor particularly if they are mounted on different feet or different

people. The SLAM algorithm would also benefit from additional measurements

from slightly different positions which could overcome many situations where the

line of sight is blocked by the other foot. The challenge would be to initialise

all the groups of sensors correctly so they all start moving in the same direction.

GPS could be used to synchronise the movements of sensors on different team

members before they enter a building. If GPS is not a suitable solution, maybe

range and bearing measurements between pedestrians could be used to locate them

relative to one another. Strömbäck et al. (2009) have started investigating such a

cooperative navigation system using ultrawide band radios for ranging between

two pedestrians.

Loop closure. We have shown that some of the error in the SLAM output was

due to large-scale distortions in the map. These distortions can often be corrected

when the path contains large loops. Gutmann and Konolige (1999) and others

have shown that loops can be used to correct maps built from dense laser range

scans. Many of the challenges they describe are non-existent in our implementa-

tion because we use sparse landmarks with explicit identifiers. Unfortunately, our

data does not contain such loops because each room only had a single entrance,
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so we have not been able to validate this aspect of our system. In principle, loops

are not a problem for our SLAM algorithm but the map will not necessarily be

correct until the loop has been walked several times, and, depending on the magni-

tude of the error, there may be stability issues. Graph-based optimisation (Thrun

and Montemerlo, 2006; Kleiner and Sun, 2007) or backward correction of path

estimates (Thrun, 2001) offer solutions to the loop closure problem.

Alternative Bayesian filter implementations. We have noted problems

due to the non-linearities in the process and measurement functions which cause

the location estimate error to be underestimated. These could possibly be solved

by using alternatives such as a particle filter or an unscented Kalman filter. The

particle filter would also have the benefit of resolving the ambiguity in the ini-

tialisation of sensor positions since it inherently allows multimodal solutions. The

initialisation problem may also be solved more simply by having the pedestrian

deploy the sensors just next to their feet so that the sensor positions can be directly

initialised using the estimated position of the pedestrian (see chap. 6).

Evaluation methods. The evaluation of such infrastructure-less tracking and

navigation systems is problematic. First, it is difficult to obtain any accurate

ground truth for large areas inside buildings. Second, even when accurate, high-

update rate, wide-area ground truth is available, it cannot easily be aligned to the

estimates due to coordinate systems which change over time. Some of the methods

we have used in this chapter are useful evaluation tools, but we hope that future

research will provide additional ways of comparing different navigation systems

before passing them over to users for testing, both in the form of technologies for

recording ground truth positions over wide areas and experimental best practices.

In the following chapter, we investigate virtual reality simulations as one possible

way to achieve this.

Practical considerations. Finally, the conditions in which such systems will

be used will require very careful design of both the hardware and the procedures
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for its use. Inertial sensors are sensitive to variations in temperature but we do not

know whether the effects will impair the performance of the system, or whether they

can be successfully mitigated by thermal stabilisation measures (e.g., filling the

sensor enclosure with oil) or software compensation. The environmental conditions

will also affect the propagation of ultrasound but the exact consequences have not

yet been determined experimentally. In the work presented in this chapter, we also

did not examine how the beacons would be deployed in practice. It could make the

initialisation phase of the algorithm more reliable if we are able to approximately

initialise the landmark positions with the position of the user at the instant they

were deployed. This depends on exactly how the beacons are deployed, whether

they are automatically ejected or placed by hand, how far they roll or bounce, the

density of the network and many other practical issues.

5.4 Conclusion

In this chapter, we focused on the use of a sensor network to provide positioning

and tracking capabilities that could potentially support emergency responders. Al-

though the application of sensor networks to support emergency response, and in

particular firefighting, has been explored in a range of projects by pre-deploying

positioning infrastructure, our research contrasts by using an ad-hoc approach that

does not require any pre-deployment.

Based on the understanding of the errors encountered in the PDR location

estimates, we looked into complementary technologies that can correct the drift.

Specifically, we used ultrasound sensors which have the capability to measure rel-

ative range and bearing between the tracked pedestrian and the deployed sensor

nodes. We used an extended Kalman filter (EKF) simultaneous localisation and

mapping (SLAM) method to concurrently estimate the location of the deployed

sensor nodes and the position of the pedestrian. Fusing ultrasound measurements
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with inertial tracking enables us to prevent the drift which makes inertial tracking

unreliable when used alone. In all but one of our experiments, ninety percent of

range errors were less than two metres, even when no prior information about the

environment was available.

The deployment of small sensors during an intervention is consistent with prac-

tices in certain firefighting units where a first team searches a building before

further teams enter to assist victims and attack the fire. Although there is plenty

of room for improvement, we believe our EKF implementation provides location

estimates suitable for indoor navigation of emergency responders and shows that

the combination of ultrasound sensors deployed on-the-fly with inertial pedestrian

dead reckoning is a viable solution. We strongly believe that such a combination of

modalities (inertial and ultrasound) can be extended to provide a fully functional

ad-hoc positioning system for guiding emergency responders. Although these tech-

nologies and algorithm can be used to provide navigation support to team members

inside a building, they are not immediately suitable for providing an overview to a

third party such as the incident commander located outside. This would require fur-

ther investigation into ways of presenting the data on top of floorplans or satellite

imagery for instance, and merging maps from multiple teams.

This chapter focused on the design of the system, and we used real world data

to show that this could be a practical navigation solution. However, there remain

many avenues for improvement in terms of sensing hardware, SLAM algorithms,

and high level system design. In chapter 6, we use this particular SLAM concept as a

basis for navigation support for firefighters in a high-fidelity simulated environment.



Chapter 6
Design and evaluation of a navigation

system using a virtual reality simulator

The previous chapters have given us the building blocks for a navigation system

suitable for use in an unprepared environment for which we have no maps and in

which GPS is unavailable. Experimental results are promising but the practical

implementation of such a navigation system will present issues beyond the sensors

and the algorithms. The way in which the sensors are deployed, how the naviga-

tion information is presented to the user, how they respond to it, and how their

behaviour affects the system, are all areas which are missing from most research

into localisation. We investigate those aspects in this chapter.

A fundamental question is how we can evaluate a navigation system without

building a complete and realistic environment to test it in. We distinguish navi-

gation systems from localisation or tracking systems which do not present such a

challenge. The position estimates from a tracking system can easily be compared

to the ground truth positions in an absolute coordinate system, and the errors

used as a metric to evaluate the performance of the system. Measuring the ground

truth can be a challenge but it is merely a technical one. Navigation, however,

presents a more fundamental challenge because there is a human in the loop. As

173
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human beings, we all have a certain sense of direction, some more than others, and

we are able to find our way in many different environments, known and unknown.

Sometimes, our own navigation strategies and common sense are sufficient to make

up for substantial errors or missing information from a navigation system. Other

times, small errors or omissions in the system can confuse us and lead to our getting

lost; for instance, depending on the situation and the person, an incomplete map

could make finding their way easier or more confusing. This is difficult to predict

without testing a full implementation of the navigation system in question, and

the answer is heavily dependent on the way the information is presented to the

users.

In this chapter, we show how we can answer some of these questions and accel-

erate the development of real solutions to our navigation problem through virtual

reality simulations. These video game-like simulations allow us to try out a va-

riety of ideas for navigation systems and test them with real users without time

consuming and expensive hardware development. This method is no substitute for

full system testing towards the end of the development process, but we believe it

helps fix a lot of the unknowns in this type of system development, and reduces

the number of design iterations that need to be implemented in the real world.

6.1 Introduction

We use a virtual reality simulation, essentially a video game, to evaluate some of

the ideas presented in the previous chapters. The simulation allows us to gain

more insight into how viable these ideas are, in particular with respect to a user’s

behaviour when faced with an imperfect system. This is a useful tool for researchers

who do not have the resources to develop new hardware or the time to run many

full-scale user studies.



6. Virtual reality Introduction 175

6.1.1 Evaluating navigation systems

Several researchers have successfully evaluated novel navigation interfaces by run-

ning user trials in the real world, for instance Rukzio et al. (2009), and Heuten

et al. (2008). The first study takes place in full visibility and the participants fol-

low directions along a path. The second study is more relevant for us because the

participants are blind-folded. However, it takes place in an open field where there is

little risk of injury. Walker and Lindsay (2006) test an auditory navigation system

in an immersive virtual environment and write that participants who used both the

physical prototype of the navigation system and the virtual system did not report

any major differences between the experiences. Witmer et al. (2002) highlight the

potential of virtual environments for training users in dangerous environments, but

their studies also use a fully immersive system with a head-mounted display and

additional tracking of the players’ walking movements. It is therefore not immedi-

ately clear that our desktop-based simulation presents the same benefits. We have

not found conclusive evidence in the literature that evaluating a technology in a

virtual environment is a valid substitute for real-world evaluation, especially when

the virtual environment is non-immersive (i.e., a basic flat screen as opposed to a

head-mounted display or a panoramic screen). Nonetheless, at the very least, we

have found that this study has been a worthwhile exercise which has forced us to

think about certain aspects of the implementation, and which has given us fresh

ideas for corrections and improvements.

Our work in this chapter offers the following benefits:

• It allows the (virtual) use of technology which is unavailable due to lack of

resources or limitations in state-of-the-art hardware.

• It avoids the risk of users tripping and injuring themselves during a study

conducted in low-visibility conditions.
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• It permits testing of a range of navigation technologies and methods such as

sensor nodes, pedestrian dead reckoning and machine vision.

• It encourages concrete advances in sensor hardware by providing specific

application requirements.

• It allows us to evaluate navigation systems while taking the user and their

innate navigation skills fully into consideration.

The virtual reality simulations we propose have their inherent limitations too.

Implementing various navigation systems in the virtual environment requires some

effort and creativity to overcome implementation issues. However careful and pre-

cise the simulation, the real sensors will behave differently from their virtual coun-

terparts, and a person will behave differently in the real world from when they

are playing a video game. One challenge, common to all user studies and not ad-

dressed by our suggested evaluation method, is the large number of users required

to compare the effects of different parameters. There is also a strong learning effect

if users navigate the same environment several times, so we either need more users

or many different environments. Despite these issues, we believe this type of sim-

ulation to be a helpful tool in discovering practical implementation and usability

issues.

6.1.2 FireSim

We base our work on FireSim, a virtual environment designed by researchers from

Fraunhofer FIT to better understand the work practices of firefighters. Klann (2007)

describes how he and his colleagues used first low fidelity board games and then

the virtual reality simulator, FireSim, to design a wearable computing solution for

firefighters. Their current work includes mixed reality simulations where FireSim is

connected to real radios, head-mounted displays and wearable computers, as they
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become available. Klann and his team ask the firefighters to play out specially

designed scenarios in order to determine which aspects of the support system are

successful and which need further work.

Our work differs from the work of Klann by its focus. While he is concerned

with the overall system and how it fits into the existing work processes, hierarchies,

and expectations of the firefighters, we see FireSim as a tool we can use to investi-

gate specific localisation and navigation methods, independently of the higher level

constraints. The emergency response and search-and-rescue application has helped

us define a number of criteria that are important for the design of our system, but

once these have been established, we prefer to work at a more technical level before

taking into consideration the higher level requirements which are beyond the scope

of this thesis.

6.1.3 Contributions

Our contributions in this chapter are as follows:

• We demonstrate a novel navigation system that does not depend on existing

infrastructure. This builds on the tracking system from the previous chapter.

• We show that a virtual reality simulation is a useful tool for testing and

evaluating novel methods and algorithms for localisation and navigation.

• We use our simulator to evaluate a simultaneous localisation and mapping

(SLAM) system of our design based on ultrasound beacons and pedestrian

dead reckoning (PDR).

• We provide insight into how people use the navigation support we provide

and how the system could be improved.
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6.2 Navigation system evaluation

We conducted a user study to evaluate the effectiveness of our novel navigation

system, both the interface and the underlying algorithms. Participants were asked

to play a video game in which they took on the role of a firefighter performing a

search and rescue mission in a dark building. This also provided the opportunity

to observe their behaviour when faced with a study based on a video game.

6.2.1 Study overview

During our user study, we asked each participant to accomplish a simple mission in

the virtual environment. They were asked to search a building for a missing person.

When they found the person, they were told to return to their starting point. They

each performed this mission three times in an underground car park, and three

times in an office building (fig. 6.1). The car park is essentially an open space, while

the office building is much more structured with corridors, and offices of different

sizes. In each building, one mission is performed with no navigation support, one

mission with the arrow interface, and one mission with the map interface. These

interfaces are described in more detail in the following subsection. The order in

which the two buildings are presented alternates between users, and the order of

the interfaces is balanced (see appendix C). If the player does not find the missing

person within three minutes, they are given the signal to retreat to their starting

point.

To ensure that all players search for a reasonable amount of time, we only place

the missing person in the game after 90 seconds in a location that the player has not

yet searched, but the player is not made aware of this. They are given a total of 180

seconds to complete the search. These timings are designed so that a very efficient

player will be able to find the missing person while keeping the total study length
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reasonably short. A good search strategy still pays off because it will constrain the

missing person to appear in a more limited set of locations. Once they have found

the person, or if they run out of time, the missing person is removed from the game

to avoid any distraction during the retreat phase. There is no time limit while the

player searches for their starting point.

(a) Structured office-type environment with
corridors and small rooms.

(b) Unstructured underground car park.

Office floorplan (5 metre grid)

(c) Office building floorplan.

Car park floorplan (5 metre grid)

(d) Car park floorplan.

Figure 6.1: Structured and unstructured environments in the virtual reality simu-
lation. Floorplans as presented to the participants.

The starting point is different for each mission but is always selected from a

predefined list of suitable points. It is always close to an external wall and is marked

with a traffic cone to enable to player to identify it unambiguously. The movement

of the character in the game is between five and six kilometres per hour. This is

close to, or slightly higher than, the average walking speed for most people, but is

much slower than the speeds at which characters move in many first person video

games. The player can move forward and backward, and turn, but not sidestep.

The limited speed and controls are put in place to prompt a more thoughtful
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and realistic strategy from the players. In order to prevent players from walking

in perfectly straight lines using the keyboard, we add some offset to the controls

which causes them to deviate slightly.

Our participants were recruited from among the university students and staff,

excluding anyone who was already aware of our research or conducting similar

research. They were paid £8 for their time. Half the participants were male, half

were female. The ages ranged from 21 to 30. Two participants suffered from motion

sickness during the study. One retired from the study towards the start so their

data was discarded and they were replaced by another participant. The other only

needed to leave briefly at the very end of the study but returned to complete all

questionnaires. The total duration of the study for each participant was less than

one hour.

6.2.2 Navigation system

The navigation system included in the game is based on the underlying idea of this

thesis: that we need to provide navigation support that is not dependent on any

existing infrastructure or prior knowledge about the building. The previous chapter

explores a particular implementation of simultaneous localisation and mapping

(SLAM) which allows us to build a map of sensor nodes with initially unknown

positions while simultaneously locating a pedestrian walking among them. In this

chapter, we extend this scenario and make it more relevant to real applications by

deploying the sensor nodes as the pedestrian progresses and feeding the location

estimates back to them to assist them in their navigation. We use the same Kalman

filter-based SLAM algorithm as described in the previous chapter to estimate the

positions of the pedestrian and of the sensor nodes, also referred to as beacons

due to their high visibility. We simulate the range measurements from the beacons

to include some additive Gaussian noise, and the inertial movement measurements

include a non-zero mean Gaussian error which causes the orientation and direction
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of travel estimates to drift, as is the case with actual PDR position estimates. A

new beacon is automatically deployed when necessary, i.e., when the pedestrian has

moved far enough from the other beacons. In addition to the positions, we build

a tree (graph) which connects all the beacons. The root of the tree is the starting

point, and each beacon knows which other beacon is one step closer to the root

of the tree. The pedestrian is always virtually “connected” to the nearest beacon.

The algorithms for building the tree and keeping track of the relevant beacons are

given in appendix B.

The arrow interface is designed to be very simple (fig. 6.3c). The tree structure

is hidden from the player. They only see a green arrow which points to the next

beacon which will bring them closer to the starting point. This beacon is referred

to as the target beacon. The green arrow effectively guides the player back along

their path. A red arrow points directly to the starting point, regardless of the

path previously taken by the player; it is designed to help them remember the

general direction of the starting point and take a short cut if they wish. This

was requested following the pre-study. As the player moves around, the navigation

system constantly recomputes the position of the target beacon relative to the

pedestrian and orients the green arrow accordingly; it also tests whether the player

has reached the target beacon and should now be guided to a new target. Both the

arrows are continuously updated to be consistent with the player’s orientation in

the game, with the typical convention in which up represents the forward direction.

Figure 6.2 illustrates how the player is guided and details of the algorithm used

are given in appendix B.

Our map interface displays the tree structure graphically (fig. 6.3d). Each node

is shown at its estimated coordinates, and connected to its parent and child nodes

by means of lines with arrows. The pedestrian is shown in the centre of the display

and connected to the nearest beacon via a similar line. The arrows on the lines

always direct the player back to the starting point which appears as a star on the
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Figure 6.2: The player is guided along a path of beacons to the exit (A). The
arrows indicate which beacon the pedestrian is guided to at a given position. If
they are within a certain distance from the nearest beacon, they are guided to the
next beacon (2,4,5). If not, we test whether they are between them (3) or not (1).
(See appendix B for full algorithm.)
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map. If the player backtracks before heading off in a different direction, a new

branch will be created on the map (and in the underlying tree data structure). On

the map, the player’s position is surrounded by a circle of radius one metre corre-

sponding approximately to the area within arm’s reach, for scale. The orientation

of the map is updated in real time according to the player’s orientation.

Neither of these interfaces require or suggest any prior knowledge of the environ-

ment. In fact, at the start of each mission, the map is empty with only the starting

point represented by a star in the centre of a blank area. The map builds up as the

player walks around. Although it does not tell them how to search the building,

it shows them where they have been and where they have not yet explored. Its

main use comes when the player needs to return to the starting point: they simply

follow one of the arrows or the map lines.

We deliberately limited the area visible on the map to a relatively small area

around the player (approximately 12×20 metres). We saw in the previous chapter

that the position estimates can be good locally, but poor on a larger scale. From

the player’s point of view, this means that even though the complete map might

appear incorrect (e.g., straight lines appearing as curved or vice versa), the close

up view of any portion of the map may still appear as expected (e.g., a left turn

at the expected place).

6.2.3 Study procedure

Our users play the game individually, one at a time, on a laptop computer, using

either a keyboard and mouse, or an XBox 360 gamepad, according to their pref-

erence. After explaining that we are investigating navigation in low visibility, we

describe the search task. We emphasise that the navigation system is not perfect,

and that the user should feel free to follow their own instinct if they feel the sys-

tem is incorrect or if they do not need it. Then we launch a training session of
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(a) Arrow navigation interface in pre-study. (b) Map navigation interface in pre-study.

(c) Arrow navigation interface in main
study.

(d) Map navigation interface in main study.

Figure 6.3: Close-up showing changes to the navigation interface following feedback
from the pre-study. We added direction to the map lines and a direct path arrow,
changed the colour of the smoke, and added a head torch.
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the game where we demonstrate the controls and show how the navigation system

works. We give the player a few minutes to walk around in the training area so they

can familiarise themselves with the controls and the navigation system. During the

training session, we decrease the visibility until it is the same as in the game itself

(fig. 6.4).

(a) Training area with good visibility (navi-
gation interface disabled).

(b) Training area with poor visibility (navi-
gation interface disabled).

Figure 6.4: The training area allows the players to familiarise themselves with the
controls and navigation system before starting the study proper.

Before the player starts the first mission in each building, we show them a

floorplan of the building and give them approximately 20 seconds to look at it

while we describe what the building is like (figs. 6.1c and 6.1d). We highlight the

fact that the carpark is not a complete rectangle, and that some offices have two

doorways. The floorplan is not available to them at any other point of the study.

This is intended to even out the learning effect by familiarising the player with

the layout of the building in advance, thus reducing poor performance during the

first mission. We adopt this approach because Witmer et al. (2002) record several

navigation studies in virtual environments where the players exposed to maps prior

to the study perform at least as well as those who are not. We also explain that

many firefighters are trained to keep one hand on a wall and to follow this wall to

avoid getting lost. Again, this is intended to provide all players with at least one

reasonable strategy, thus evening out some of the differences between players.

When the mission starts, the player is at their starting point, next to a traffic

cone which serves as a marker. They explore the area as they choose. When they
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find the missing person, or when they run out of time, the word ‘retreat’ flashes

on the screen several times and they return to their starting point as quickly as

possible. When they have found it, they are presented with a questionnaire about

the mission. They respond on the screen by moving sliders to indicate whether

they agree or disagree with the each of following seven statements (fig. 6.5):

1. “I searched the area thoroughly.”

2. “I could have been more effective in searching for the victim.”

3. “While searching for the victim, I knew how to return to the starting point.”

4. “I [would have] found the victim through luck rather than skill.”

5. “While retreating to the starting point, I felt disoriented.”

6. “I reached the exit in the most straightforward way.”

7. “I was confident I would find the exit.”

Figure 6.5: Questionnaire presented to the player after completing a search mission.
They use the sliders to indicate whether they agree or disagree with each statement.

After completing the questionnaire, they move on to the next mission. If the

questionnaire is the last one for a particular building, they are also shown a screen
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which invites them to discuss their experience with the researcher. These interviews

were audio recorded. Overviews of the questions asked and the feedback extracted

from the interviews are included in appendix C.

Following the experiment, the path of the player during each mission was over-

laid on a floorplan, the search path in blue and the retreat path in red. These traces

were anonymised and presented to four researchers familiar with indoor navigation

(including ourselves), in different orders, via a website (fig. 6.6). Each researcher

rated each trace according to four criteria using a slider:

• Poor search method. – Effective search method.

• Small area searched. – Most of the area searched.

• Lost. – In control.

• Long path back. – Direct path back.

We added the scores given independently by each researcher to determine how well

players had performed. The primary benefit of this process is to determine in which

cases players performed very poorly by clearly getting lost or walking in circles, for

instance. In the pre-study, we used the A* algorithm to find a reasonable path from

the retreat position to the starting point while avoiding walls (Hart et al., 1968). We

then compared the length of this path to the length of the path taken by the player.

The method worked well but we abandoned it in favour of a manual evaluation,

because the calculated results do not take into consideration the proximity to the

starting point or the fact that the player may legitimately prefer to retrace their

steps instead of taking a more direct route, even though the path would be longer.

6.2.4 Pre-study

We ran a pre-study in order to determine whether the players would be able to

understand our navigation interfaces and perform the search mission correctly. We



6. Virtual reality Evaluation 188

Figure 6.6: Website used to evaluate the players’ search and retreat strategies.
Traces are anonymised and presented to each researcher in a different order.

recruited six of our colleagues who were aware of our research but had not been

closely involved with the development of the study. These participants were not

paid. The key difference from the main study was that the navigation support

(map and arrow interfaces) was computed using the true positions of the player and

beacons in the game. These were obtained directly from the game engine itself, not

estimated using noisy measurements as was the case during the main study. This

meant the navigation interface was always correct and perfectly stable, allowing

us to evaluate the interface itself rather than the underlying SLAM algorithm and

sensor data.

Following the pre-study and based on the participants’ suggestions, we made

several changes to the navigation interface. We added arrows to each of the lines

on the map to indicate the direction of the exit, we included a second arrow on

both the map and arrow interfaces to indicate the direct path to the exit, and we

added a control to manually drop a beacon. This second arrow allowed players to

take a short cut to the exit, and we anticipated it would be especially useful in

the car park scenario (open space). The option to manually drop a beacon was

requested as a way to manually mark a room as visited. The rooms in the office

building are small enough that a beacon is not always dropped inside the room if

there is already one in the corridor, and, later in the game, players were not sure

whether they had searched those rooms or not. The navigation interfaces used in
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the pre-study and in the main study are shown in figure 6.3.

6.3 Results

We analysed the answers to the in-game questionnaire and the ratings of the traces

to determine the effect of the environment and the navigation interface (presence or

absence of navigation support, and the type of navigation interface) on the players.

The pre-study gave us some statistically significant results but these could not be

reproduced in the main study. We do, however, have some interesting qualitative

observations from the interviews.

6.3.1 Pre-study

Preliminary analysis of the pre-study questionnaire data suggested that the par-

ticipants felt more confident when supported by the arrow or map interface. This

was consistent with the verbal feedback from the players. The Friedman test re-

vealed a significant effect of the navigation interface (none, arrow, or map) on the

responses to two of the questions for the car park environment: “While retreating

to the starting point I felt disoriented” (χ2(2) = 10.174, p = .006) and “I found

the exit due to my resourcefulness (or the instructions) rather than by chance”

(χ2(2) = 6.870, p = .032). However, the post-hoc Wilcoxon test with Bonferroni

correction did not detect a significant difference, possibly due to the small number

of participants in the pre-study.

6.3.2 Main study

We did not find any visible effect of the navigation interface or the environment on

the answers to the questionnaire or on the quality of the search or retreat patterns.
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We discuss reasons for this in the following section. However, here we report on

the qualitative results for each of the aspects of the study. These are taken from

a semi-structured interview performed half way through the study and at the end,

after they had completed three missions in each environment. The interviews were

audio recorded and annotated later.

Effect of the environment

Ten of the twelve participants said that the office building was easier to search

than the car park, primarily due to the structure provided by the rooms. Two

participants mentioned that there appeared to be more light in the offices than the

car park1. Another highlighted that it was difficult to know exactly how far they

were able to see in the car park by torchlight due to the lack of walls. Nonetheless,

one participant described a sense of panic in the office building, while another said

that it was more difficult than she expected.

Beacons and other landmarks

Seven of the twelve participants mentioned using existing landmarks in the envi-

ronment (e.g., fire extinguisher, wooden crate in corridor, sign on wall) to help

them navigate. Five participants followed the walls in the car park, and two used

the pillars to help them explore the central area away from the walls. Two partici-

pants mentioned using the letter ‘D’ signs on the car park pillars as landmarks, but

two other participants told us that, although they had seen these signs, they de-

cided not to use them because they had correctly noticed that they were identical

throughout the building2

1The lighting settings were identical in both environments (no ambient light, only a headtorch
worn by the character) but the reflection off the office walls made that environment appear
brighter.

2‘D’ is the level of the car park, not a zone within the level.



6. Virtual reality Results 191

Nine of the twelve participants told us that they used the beacons to help them

find their way in at least one of the buildings. Five used them to remember where

they had already searched. Four participants claimed that the beacons were not

helpful or were difficult to use in one environment, but they all said that they had

used them in the other. One of the reasons given for them not being useful is the

fact that after a while there are beacons everywhere which either create a loop or

no longer define a clear path which can be followed back to the starting point.

Arrows

Ten out of the twelve participants told us they used the arrow navigation interface,

and two of them said it helped them during the search phase. Three preferred the

arrow interface over the map interface because it was simpler to use. These three

people used the red arrow which pointed directly to the exit rather than the green

arrow which guided them back along their path. However, seven people found the

arrow interface confusing in one of the environments, either due to not understand-

ing where it was leading them, or because its direction changed unpredictably.

Map

Ten of the twelve participants told us they used the map interface. Four of these

used it during the search phase to remember which areas they had already searched,

and two claimed they preferred the map over the arrow interface. However, two

participants found the map interface confusing. One of them explained that she

could not read a map, the other was confused by lines crossing on the map, either

due to estimation errors or a misunderstanding of the interface.
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Sample traces

We recorded the paths of the players and overlaid them on the floorplans of the

buildings. Note that this does not show the map as estimated by the SLAM algo-

rithm, but it shows the actual path followed by the player in the game. We also

recorded the estimated positions of the beacons and the pedestrian, but these are

difficult to represent graphically without replaying the whole mission. We can only

hypothesise about why the players behaved the way they did in particular situa-

tions based on observation of the traces and their feedback during the interviews.

Figures 6.7 and 6.8 show a selection of plots which illustrate various behaviours

that we observed during the study. Some players find the missing person before

retreating, others do not, but this is not relevant to our discussion.

In figure 6.7a, the player has no support except for the beacons. There is no

clear search pattern, and they do not appear to follow any particular retreat path

and they seem to be lost. Eventually, they get closer to the starting point and

follow the beacons for a short way until they reach their destination.

In figure 6.7b, the player also has no support. However, they are able to perform

a very tidy search by following the walls and then crossing the central area by

following the pillars. At the retreat signal, they return directly to the starting

point by the shortest path.

In figure 6.7c, the player has the map interface. They search by following the

walls and then crossing through the middle of the car park. At the retreat signal,

they initially walk around in a loop before following a reasonably direct path to

the starting point. They do not retrace their steps all the way but when they get

close to the starting point they leave their previous path; they may have seen the

star on the map or the traffic cone on the ground. The behaviour at the start of the

retreat phase could have been caused by errors on the map, poor comprehension
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of how the map or the direct arrow worked, or simply indecision (i.e., starting to

follow the map but then choosing to follow the direct arrow).

In figure 6.7d, the player has the map interface. There is no clear pattern to

their search. When they find the missing person, they retrace their steps until they

get close to the starting point. Similar to the previous example, they do not follow

their path all the way but they break off from it when it passes close to their

destination. This saves them some time.

In figure 6.8a, the player has the arrow interface. They methodically search

most of the building but miss a few rooms, including the one where the missing

person is located. They retreat by retracing their steps. We can assume that they

are following one of the arrows because they overshoot a turning slightly, before

coming back a few steps. They finish their retreat by following the corridor rather

than going through the room as they did previously which suggests they knew

where they were going.

In figure 6.8b, the player has the map interface. They search a large portion of

the building but their pattern is not optimal because they cover some areas twice.

They do not retrace their steps to retreat. They seem to take a more direct route

but they unnecessarily enter several rooms along the way. It is not clear whether

they were continuing to search for the missing person, or whether they were misled

by the map and thought that the starting point was in one of those rooms. They

may have tried to follow the direct arrow which pointed in a straight line to the

starting point.

In figure 6.8c, the player has the map interface. This player took the optimal

path back to the starting point, without retracing their steps. From this trace, we

cannot tell whether they were using the map or whether they remembered exactly

where they were.

In figure 6.8d, the player has no support except for the beacons. They get lost

during their retreat, and seem unable to get out of the left half of the building.
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(a) Player 0 – No support.
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(b) Player 1 – No support.
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(c) Player 7 – With map.
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(d) Player 9 – With map.

Figure 6.7: Selection of traces showing different search and retreat behaviours in
the car park.
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They walk in circles along the same path several times before returning to the

exit via an unexplored corridor. After this, they go directly to their starting point,

possibly because they see a beacon in front of the door.

6.4 Discussion

The outcome of this study is not as clear as we anticipated, but we believe we have

nonetheless learnt valuable lessons about our methods, as well as the navigation

problem. In this section, we aim to draw some helpful conclusions regarding the

use of a video game as a study tool for navigation systems, and regarding the

deployment of our navigation system, albeit in a virtual environment.

6.4.1 Virtual reality as a study tool for sensor-based sys-

tems

Working in virtual reality allows us to bypass some of the difficulties associated with

real-world sensor-based systems, but it is not always straightforward to transpose

a system into a virtual environment.

Limitations

Developing our study with the Unity3D game engine3 presented a number of tech-

nical challenges. Video games are designed to look realistic on the surface, but

underneath it seems they are based on a number of “tricks” designed to give the

appearance of reality while operating in a single flow of execution (thread) at a rel-

atively constant framerate. The lack of support for threads and the fact that many

functions are only called once per frame present obvious difficulties when it comes

3http://unity3d.com (Accessed 2012.09.25.)

http://unity3d.com
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−15 −10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

x (metres)

y 
(m

et
re

s)

 

(c) Player 10 – With map.
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(d) Player 11 – No support.

Figure 6.8: Selection of traces showing different search and retreat behaviours in
the office building.
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to simulating independent sensor nodes or measuring the acceleration of the char-

acter’s foot. Instead of simulating an inertial PDR system based on accelerometers

and gyroscopes, we had to simulate one level higher, step lengths and variations

in orientation and direction of travel. We were able to tune our error model so the

output resembles typical PDR drift but it takes us one step further away from the

system we would use in the real world. More details of the implementation issues

are given in appendix B. This awkward coupling between the simulation logic and

the graphical presentation is noted by Vala et al. (2009) who have developed the

ION framework to simplify the task of creating autonomous agents. Although we

do not use agents per se, the sensor nodes and location algorithm could be consid-

ered as such, and this framework could provide a convenient solution to some of

the issues we faced.

Two participants during our main study felt sick enough to stop playing, and

several others during our pre-study. This is a side-effect of playing a first person

video game where the screen is animated with a rather jerky walking motion, com-

bined with the low visibility and the lack of landmarks within the game itself. To

decrease the chance of motion sickness, we increased the lighting in the study room

and opened a window, but this decreased the realism of the game even further. Re-

alism is a concern because we want our players to be fully invested in the game

and not distracted by the real world. This is one reason why we asked all players to

wear a set of headphones through which they could hear their character breathing

and walking. Unity3D allows us to decrease visibility and remove lighting but not

to create physically realistic smoke for instance4. Nonetheless, although our play-

ers did not experience the physical and mental pressure that a firefighter would

go through, we observed that several players were taking their missions very seri-

ously. One participant was physically startled when she discovered the body in a

corner, another mentioned feeling “panic”, and several were reluctant to give up

the search without finding the missing person. This suggests that we achieved a

4We used the “fog” setting in Unity3D.
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level of immersion sufficient to maintain some psychological pressure on the play-

ers. This increases the difficulty of the challenge for them and makes it more likely

that usability issues will come to light. As far as we know, most virtual reality

studies in the literature are more immersive than our study. Riecke et al. (2005)

find significant improvements in spatial orientation abilities when the participants

have a wider field of view. Although they did not consider a setup such as ours

or a low visibility scenario, their results suggest that players may perform worse

using our smaller screen than they would in reality. We note, however, that fire-

fighters wearing a breathing mask have a relatively narrow field of view so this

may contribute to the difficulty in a way that is beneficial for the study.

User studies take time. In fact, since the video game mission takes place in real-

time, it takes as long for the participant as it would with a real world system. The

virtual environment saves on development and set up time, as well as equipment

costs, but the user study itself takes the same amount of time. For this reason,

we were not able to compare different beacon deployment parameters or sensor

models (e.g., RF ranging beacons vs ultrasound beacons vs RFID tags vs visual

markers). Despite these time requirements, virtual reality and video games may

still offer some solutions. If a game is designed to be appealing in itself, it could

be released to the wider online community, and results fed back to the researcher

automatically. Von Ahn’s “games with a purpose” (von Ahn, 2006) follow this

principle. Although he has applied it to simple word and image games which work

well in a web browser, the idea could maybe be extended to include more elaborate

games such as our study.

We only used two environments in our study, the car park and the office build-

ing. Each participant explored each environment three times and their search and

retreat strategies evolved as they became more familiar with the layout. Although

the study was fully counterbalanced with respect to the navigation interface and

the environment, although there was no clear learning effect visible in the ques-

tionnaire results, and although the players started from a different place each time,
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using the same building multiple times was not ideal and may have contributed to

masking more interesting effects. We chose to only use these two building layouts

because the 3D models were made available to us by Markus Klann and his col-

leagues from Fraunhofer FIT, and we had neither the time nor the experience to

design more. Creating different building layouts need not be too time consuming

and it could perhaps be done semi-automatically by adding and removing walls

and doors from a grid. However, one challenge would be to create multiple floor-

plans with similar characteristics (e.g., room sizes, number of doorways, number

of doorways per room). The other challenge would be to maintain a reasonably

realistic layout; buildings are rarely designed arbitrarily and information such as

the location of stairs and exits can often be guessed. In a sense, it would be easier

for the programmer to design worst case environments such as an empty surface

with no features at all, or a random maze, rather than strive for realism.

Realism affects another aspect of the game design, namely the position of the

missing person. In our study, they were placed in a random location (after the

player had searched for some time), but in reality they would be more likely to

be near a wall or hidden behind a closed door. Some players assumed the person

would be in the same location each time (even though we clearly told them before

the study that this was not the case) and others assumed they would be in a similar

location (e.g., near a pillar, in a corner, or away from the walls). These assumptions

would not be unreasonable in practice but they introduce complex dependencies

between conditions beyond the objectives of this study.

Recommendations

For future work, we would recommend defining the context of the study more

clearly; either we are evaluating and comparing the algorithms, sensors and general

system in a very abstract, controlled, and possibly unrealistic way, or we are testing

them in a realistic context to determine whether they provide a solution to a real
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problem, and whether they can be used in practice. In the first case, we could

very well use an automatically generated maze of a given length with the missing

person at one end and the player at the other. In the second case, we would create

a replica of an existing building, including furniture, and we would take care to

place the player and the missing person in carefully chosen locations. The controlled

experiments have the benefit of being easy to design, and could be run many times

with less effort, while the realistic experiments are suitable for getting valuable

insight from professional firefighters.

The lack of significant results in our numerical data is disappointing. Although

most participants claimed verbally that they used the navigation support and that

it gave them confidence, or was better than nothing, this was not reflected in their

responses to the in-game questionnaire or the quality of their search and retreat

traces. We designed the interfaces to be simple, but there was confusion for some

people about where the map or arrow were leading them. There is almost certainly

a learning curve where the players discover for themselves how the navigation

system works and how reliable it is. Results may have been more consistent if we

had required players to perform three complete missions in an additional dummy

environment rather than just giving them a few minutes to practise.

Another explanation for the inconsistent results could be that participants in-

experienced in search and rescue were unable to evaluate their own performance.

They may have incorrectly attributed the outcome of their search strategy to luck,

or conversely they may have thought that their strategy enabled them to find the

exit when in reality they were simply lucky. Several participants claimed to have

successfully used certain features of the buildings to assist them, but they did not

realise that identical features were present at other locations and that their strat-

egy could have been very misleading. Our in-game questionnaire and interview

questions were designed to determine whether the outcome of the mission was due

to skill, or luck, or the navigation support system, but it seems that the players
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themselves were not necessarily aware of the true cause, due to their lack of pre-

vious experience or failure to correctly analyse their performance. It is possible

that the researchers who took part in the pre-study simply had more perspective

and a better analytical approach than the participants of the main study who

were mostly students. We may have had better results if our participants had been

trained firefighters who already had well assimilated strategies and expectations

of themselves. The root cause of these issues may have been our compromise be-

tween a controlled study yielding quantitative results, and a realistic study yielding

qualitative feedback from professionals.

6.4.2 Evaluation of the non-infrastructure-based navigation

system

Participants in the study gave us feedback on how they felt about using the different

navigation tools. Using this and examining the paths they followed during each

mission, we can draw tentative conclusions about our system.

Beacon navigation

The beacons were by far the most appreciated means of support because of their

simplicity. There is no doubt about why they are there and their presence does

not claim anything beyond the fact that the player was at this point earlier in

the game. This suggests that the preferred solution for some people might be the

simple provision of high-visibility colour-coded markers with an automatic deploy-

ment system. This solution does not, however, allow many of the advantages that

would be available with the full system we have been investigating (e.g., reliable

communication channel, alternative exits, shared maps with team members).
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Arrow navigation

Several people preferred the arrow that pointed directly to the starting point, rather

than the more complicated map or the beacon-by-beacon arrow, because it was sim-

ple and did not require much interpretation. The direct arrow made shortcuts very

easy in the car park because there were no obstacles other than easily avoidable

pillars. Some players successfully took shortcuts in the office building. Maybe they

remembered the structure of the building enough to avoid walking into a room

and having to backtrack. Nevertheless, we have concerns about the direct route

arrow because it is sensitive to large scale errors in the map. If the starting point

is a long way from the player’s current position, the relative error between the two

might be large and the arrow might lead the player in the wrong direction with

no guarantee that the position estimates will be corrected because they will not

necessarily encounter previously deployed beacons (situation described by Fischer

et al. (2008)). In contrast, if they follow the beacon-to-beacon arrow or the path

on the map, they will be following a trail of beacons on the ground which serves

as a reassuring confirmation that they are on track and also provides the measure-

ments required to correct the position estimates (fig. 6.9). Part of the confusion

surrounding the beacon-to-beacon arrow may have been due to the parameters

used to determine which beacon we should be guiding the player to and when we

should guide them to the next one. There is a compromise between trying to guide

them along a precise path or a smooth path. On the one hand, a precise path will

guide them around obstacles and through doorways, but the arrow will sometimes

appear unstable due to the position estimate updates or if the player is unable

to follow the path closely enough. On the other hand, a smooth path will be a

lot more stable and less subject to the fluctuations of the estimates, but it will

sometimes be ambiguous about exactly which door to take for instance, because it

is only an approximation of the initial path.
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(a) Ground truth.

(b) Distorted estimates (ex. 1). (c) Distorted estimates (ex. 2).

(d) Player’s retreat path (ex. 1).
They can successfully retrace their
steps thanks to the regular position
corrections from the beacons. At-
tempting to reach the exit directly
leads them in the wrong direction
and they can only correct their path
when they intersect previously de-
ployed beacons.

(e) Player’s retreat path (ex. 2).
They can successfully retrace
their steps thanks to the regular
position corrections from the bea-
cons. Attempting to reach the exit
directly leads them in the wrong
direction with no possibility of cor-
rection.

Figure 6.9: Players can reliably retrace their steps in the presence of map errors by
following indications from the navigation system. They only see a small portion of
the map (dotted rectangles) with negligible error at any given time. The beacons
provide position corrections to the navigation system as the player walks past
them.
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Burigat and Chittaro (2007) conducted a navigation study in a virtual envi-

ronment and found that inexperienced players preferred a three-dimensional arrow

rather than a two-dimensional arrow or a radar view (similar to our map but with-

out the connecting lines). They hypothesise that inexperienced players prefer the

interface that requires the least mental geometric transformations. This is consis-

tent with the opinions expressed by some of our players. It also suggests that a

three-dimensional arrow may be an improvement over the two-dimensional arrow

that we implemented. We note, however, that in their study players were able

to fly around in three-dimensions instead of being constrained to moving in an

approximately two-dimensional plane such as in our simulator.

Map navigation

Errors in the position estimates sometimes cause lines to overlap on the map

where they should not and the beacon-to-beacon arrow to spin around erratically.

Not only does this cause confusion and prevent people from following instructions

correctly, but it also means the system loses their trust. A partial technical solution

may be to only display beacons and their corresponding lines on the map if we are

certain that they are in close proximity. Proximity can be verified when we have

received recent measurements from them. This would allow us to avoid confusion

when there is a lot of drift in the map and parts overlap that should not. A simple

algorithm would be to only display beacons that we have measured in the past

five seconds and beacons that are up to four hops away from them (or another

arbitrary hop-count).

The tree structure used for representing the path and beacon layout was only

adopted because it simplified certain aspects of the visualisation. Our system could

be substantially improved by replacing the tree structure with a better connected

directed graph. If the player is within range of several beacons at the same time, we

can assume that these beacons are all accessible from each other; in other words, if
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the player is near one of the beacons, they can easily walk to the other. When this

happens, we could add an edge connecting each of these beacons in our navigation

graph. This would open up many more options for finding the shortest (or safest)

path to the exit. It would come at the expense of more computation but given the

modest size of the graph (a few hundred vertices of degree two or three) it should

not present a major challenge even if the shortest path is recomputed frequently.

Player behaviour

One of the goals of our study was to see if players would find a good compro-

mise between following the guidance provided by the system and using their own

navigation skills. Some of them achieved this perfectly and compensated for the

errors of the system, thus giving it time to correct itself. Others got lost, either

by ignoring the navigation support, or by relying upon it entirely and not using

any skill of their own. A recurring comment from many of the participants of the

pre-study and study is that having a system that you can trust to get you to safety

helps you to relax and focus on the task at hand (the search). However, in many

cases they seemed not to use the navigation support but it was often unclear why.

One person told us she was unable to read a map and another explained he was

deliberately ignoring the navigation support so he could refine his own technique.

Possibly other people fell into one of these categories as well. In most cases where

the participants chose to follow the guidance provided, they reached the starting

point quickly. In retrospect, we may have over-emphasised the unreliability of the

system. Despite this, some players blindly followed instructions when the system

was incorrect, looking for the exit in the same rooms over and over again even

though the exit was not there.
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6.4.3 Thoughts on using inertial PDR and SLAM

Any navigation interface that orients itself according to the user, like our map, needs

to have a reliable estimate of the orientation of the user relative to the direction

they are travelling in. For example, if the person is walking forward they expect to

see their icon on the map move up (or all the other icons move down), and if they

step to the right while still facing forward, they expect to see their icon moving right

relative to the other icons on the screen. The key information required to achieve

this is not the direction of travel or the orientation, but the difference between

the two. This is fortunate because, although inertial foot-mounted PDR drifts and

thus does not allow us to measure the absolute direction of travel or orientation

reliably, it will give us a fairly accurate estimate of the difference between the

two (assuming we know how the inertial sensors are attached to the wearer, e.g.,

with the x axis pointing forward). We can therefore distinguish between the user

walking forwards or backwards, for instance. As long as they continue to face in

the same direction, we should not reorient the display of the map, regardless of

their direction of travel (e.g., walking backwards, sidestepping). We must take this

into account in the implementation of the PDR system. Without drift, a number

of variants would give the same result, but because the sensors are imperfect, we

need to output length of movement, change in orientation, and difference between

orientation and direction of travel (or change in direction of travel and difference

between orientation and direction of travel), in order to maintain an orientation

of the display consistent with the movements of the user. A useful side effect is

that when the SLAM system corrects the position estimates it can also correct the

direction of travel (because the two are highly correlated) and the orientation (via

the difference). The estimated direction of travel and orientation may still drift

but they will drift together and the navigation interface will be consistent with the

user’s movements.

Due to the nature of SLAM and the lack of anchor points in our current sys-
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tem, we cannot tag arbitrary locations, only beacons that we can physically locate

thanks to sensors. In the study, the starting point itself (the traffic cone) is not

marked on the map, but rather the first beacon is. In principle, even with perfect

measurements, the position estimates of the beacons and the player could all drift

by a large amount during the course of the mission and yet still be perfectly accu-

rate with respect to each other (and produce perfect navigation support). In other

words, the frame of reference in which these entities are tracked could change, and

we would not notice it because we are only interested in their positions relative

to each other. However, if we tagged a particular location on the map such as the

starting point, or an alternative exit, at one point in the game, a few minutes later

the frame of reference might have shifted and these coordinates would no longer

be relevant. In contrast, sensor nodes have their position estimates updated when-

ever a measurement is taken. In our implementation, it is only when we have a

direct measurement to that particular node; however, in more complex implemen-

tations using a full covariance matrix, all beacon estimates could be updated with

every measurement from any other beacon. This will be of practical importance

for more advanced uses of our navigation system because any area of interest to

be highlighted on the map must to attached (physically or virtually) to a sensor

node.

6.5 Conclusion

Using a video game, we have demonstrated how to build and evaluate a naviga-

tion system based on inertial dead reckoning and sensor nodes with the ability

to perform ranging measurements. This system provides navigation support in

unknown environments with no existing localisation infrastructure. The game gen-

erates sensor data and position estimates with similar characteristics to those we

have observed with real sensors; in other words, the in-game measurements contain
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realistic errors. The navigation support is built around the simultaneous localisa-

tion and mapping (SLAM) algorithm from the previous chapter. The algorithm is

simple but exposes some of the issues inherent to this type of system, particularly

drift and map inconsistencies.

During the development, we noted certain practical issues that would warrant

more consideration in future work. For instance, we faced implementation chal-

lenges as we tried to make our in-game sensors as realistic as possible and realised

that the game engine makes this task difficult. We also discovered that inertial

movement estimates need to be processed in a certain way to avoid inconsistencies

in the displayed map.

The study did not yield the clear results we had hoped for, but the process

has helped us to better see which aspects of it should be addressed. We have

realised the importance of giving participants more time to rehearse their search

and retreat strategies before starting the evaluated study. We also acknowledge

that there would be considerable benefits in using people with search and rescue

experience as study participants because their prior experience would give them

perspective and allow them to more reliably evaluate their own performance.

On the whole, the feedback from our participants was positive. There was some-

times confusion about how to interpret the map or the movements of the navigation

arrow, but other participants were able to use them well. While we observed some

people following navigation support too carefully and apparently not considering

where their path was taking them, others were easily able to include the provided

information into their own strategy. The “electronic breadcrumb” beacons were

mentioned most positively, highlighting the importance of keeping a navigation

system grounded in physical reality.

We suggest that future studies of this kind should be either designed as con-

trolled experiments to yield solid quantitative data regarding the algorithms and
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interface, or as realistic scenarios which provide professionals with the opportunity

to give qualitative feedback on the practical deployment and use of the system. Our

attempt to combine these two options into a single study may have jeopardised the

overall outcome. Running two distinct types of study might also make evaluation

of the results easier. We struggled to find good metrics for judging the performance

of the players and eventually resorted to manually rating the recorded traces. A

very controlled study could make it more straightforward to count mistakes, or

automatically measure the time taken or the time lost.

The navigation capabilities of the system do not require any anchor points with

known positions. The lack of anchor points only means that the position estimates

cannot be simply overlaid on a floorplan or satellite image. When such points are

available via GPS receivers or manual placement of nodes at known locations, the

system gains additional capabilities and can be used by a third party, such as the

incident commander, to track people in a building.

We are satisfied with the design of the navigation interface. Although some

users found some aspects confusing, we believe this can be resolved through better

training and experience. We were initially concerned that the interface would be

either too simplistic and that users would want more information, or that it would

be too complex and overwhelm them with information. Preferences were divided

between the arrow interface and the map, but we seem to have struck the right

balance in terms of the amount of information provided and the level of detail.

Our navigation system can certainly be improved upon, but we believe the

principles are right. The SLAM algorithm can be made more robust and effective by

using one which maintains more cross-correlations than we do (Julier and Uhlmann,

2006). Alternatively, a system based on a spring model (Golfarelli et al., 1998) could

also provide a way to re-evaluate the entire map and make it consistent when the

user completes a loop. Independently from the SLAM algorithm, the part of the

system that computes the navigation map and the direction of the arrow should
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be redesigned to use a more flexible data structure than a tree, so it can include

additional connections between nearby beacons and provide more and better paths.

These improvements are all subject to computational limitations, especially in the

virtual environment where framerate dictates certain restrictions, but also in a real

world implementation where communication and power resources are limited.

The choice of sensors for the beacons remains an issue. One of the reasons we

conducted our study in a virtual environment was the lack of clear solution for the

beacons. We have had some success with ultrasound but also many problems, and

radio-based ranging technologies do not seem to provide the required accuracy.

This is the major factor that requires further work and would either make our

system a reality or cause it to be abandoned.

We have taken the development of a navigation system further towards real-

world implementation than research projects typically do, by testing not only the

algorithms but also the user interface and the effect of the users’ behaviour on the

system. We have thus been able to discuss issues that usually only present them-

selves much later in the design and production process. By developing the system

in a virtual environment, we have highlighted some of the issues that designers

of navigation support systems may face, despite not having access to the ideal

technology for the beacons. We believe a virtual environment such as a 3D game

engine, with all its limitations, will allow a developer to go through several system

design, implementation, and evaluation iterations, and enable them to improve the

final navigation system at lower cost.



Chapter 7

Conclusion

At the start of this thesis, we noted that amongst all the research into localisa-

tion and location-aware technologies there was very little that was applicable to

unknown and uninstrumented environments. We were concerned by the fact that

many of the proposed solutions were highly dependent on existing infrastructure or

prior knowledge, and were thus not robust or flexible enough to support important

tasks such as firefighting or search and rescue.

7.1 Contributions

We have given an overview of the literature concerning localisation from many

different fields, and have shown that, despite the many advances in technologies

and algorithms, and despite the development of specialised systems which provide

reliable solutions to many problems, there is no given solution which provides

localisation for the type of situations encountered by emergency responders. More

and more researchers are acknowledging this as a worthwhile application, and are

investigating further in this direction, but our survey of this particular area of

research revealed that the community has not yet found a satisfactory solution
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and that all proposals so far fall short of the requirements in terms of robustness

and being entirely self-contained.

One of the key difficulties is getting away from the idea that we need to pro-

vide location estimates in an absolute coordinate frame. We have tackled this by

describing practical applications that only require position estimates relative to a

few nearby points rather than a large scale picture. We also introduced a scalable

algorithm based on peer-to-peer measurements between sensor nodes that could en-

able these applications to be supported robustly, even in the case where all sensors

are mobile.

Our experience with ultrasonic sensor nodes and our localisation algorithm,

with their practical limitations, prompted us to explore a separate strategy for track-

ing pedestrian movement using inertial sensors: inertial pedestrian dead-reckoning.

This method is the foundation of many navigation systems aimed at firefighters

due to its self-contained nature but there are no clear implementation details avail-

able to the research community, resulting in many researchers using sub-optimal

algorithms or wasting time redeveloping them from scratch. We provided a refer-

ence implementation and information on the required hardware, along with details

of how to make the most of this tracking method, emphasising its strengths and

limitations.

In order to mitigate the flaws of both previous techniques, we combined the in-

ertial pedestrian dead-reckoning algorithm with the sensor nodes using a concept

commonly used in robotics: simultaneous localisation and mapping. We demon-

strated how this method could be applied to pedestrians, and evaluated its practical

implementation, followed by a discussion of its application in a real setting.

Finally, we evaluated this system by implementing the localisation and map-

ping algorithm, and a navigation system based upon it in a virtual environment.

This allowed us to highlight some conceptual challenges in the design and imple-

mentation of this type of system, as well as discuss comments from participants in
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a usability study. We made several suggestions concerning the evaluation method-

ology for navigation systems such as ours, as our system has specific characteristics

different from ones previously studied in the literature.

7.2 Challenges and lessons learnt

During the course of our work, several challenges have been recurring and have

hindered our progress. Although we have been able to work around or solve them

in certain instances, they warrant further investigation.

Sensor hardware has limited our work in some respects. When we started we

were not aware of the exact requirements, but we now have a clearer idea of which

sensors will give acceptable results. This is true especially of the inertial sensors.

The question of which technology to use for the beacons remains unclear. We used

ultrasound in our studies primarily because this is what we had experience with and

what was available at the time. In retrospect, after having wrestled with obsolete

radio modules and simplistic signal processing, we still believe that ultrasound

offers the most promising characteristics due to its accuracy, its ability to produce

angular measurements, and the fact that it requires line of sight. We hope that

others will see the value of improving this technology. Radio ranging has made

some progress since we started this work and may soon offer a viable alternative

for range and bearing measurements in indoor environments.

The evaluation of the navigation systems we have designed poses both practical

and conceptual difficulties. From a practical point of view, it is difficult to obtain

continuous high-resolution ground truth over large areas, especially indoors. From

a conceptual point of view, even having obtained the ground truth, evaluating the

quality of the location estimates is not an obvious task because we do not use

a fixed coordinate system. The notion of localisation quality itself becomes more
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complex once we start evaluating navigation systems, because we need to look at

location estimates relative to the person using the system rather than from an

outside point of view. With hindsight, it seems necessary to us to separate two

types of system evaluation: one which will generate the quantitative data needed

to compare the effects of different parameters, another which will yield qualitative

feedback from professional end users. The first type of study needs to be repeated

many times, and would test the system in a very controlled, and therefore abstract

and unrealistic environment. The second type of study would be conducted only a

few times in a very realistic environment with a very targeted set of users.

7.3 Vision for the future of navigation support

for emergency response

This work has inspired us to see a future where emergency responders have access

to reliable tracking and navigation support in all environments. As we have found

out more about the conditions they face and the physical and mental challenges,

we have realised that this is a worthwhile area of research, and one that will be

truly appreciated when it starts offering mature solutions. We have also seen that

working solutions are within reach. Although we have emphasised the need for a

general solution to the localisation problem, certain aspects of emergency response

actually make the design easier. For instance, we do not necessarily need to have

an algorithm that can deal with tens of thousands of sensors if there are only going

to be a few hundred deployed in any given scenario. Similarly, since most search

and rescue missions by firefighters in low visibility will take place using breathing

apparatus, the duration of these missions is limited to roughly 30 minutes, which

means that batteries and algorithm reliability do not need to last much longer.

We can easily envision the following scenario. A team of firefighters enter a

smoke-filled building to rescue some people trapped inside. As they progress in
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complete darkness, they use their head-mounted display to keep track of which

parts of the building they have searched and where their companions are. Although

the display cannot tell them anything about the layout of the building, it allows

them to focus on the search without worrying about how to get to the exit or

how much time they have left before their air runs low. If they need to reach the

exit quickly, they simply follow the arrows on the display to retrace their steps.

The arrows and the path traced on the display are always oriented according to

the direction the wearer is facing thanks to information provided by an inertial

measurement unit built into their helmet. When their paths intersect with that

of another team which entered via another entrance a few minutes earlier, the

system recomputes the shortest path to the alternative exit and will guide them

to whichever one is closest.

As they advance, they deploy tiny beacons in key locations such as doorways

or at corners. These beacons transmit ultrasonic and radio ranging signals which

allow the navigation system to keep track of their path. However, the system can

continue to work reliably even if the beacons are destroyed or moved thanks to

the inertial sensors embedded in their boots. The beacons also act as radio relays

to guarantee a reliable voice and data communication link to the command post

outside. They have a third purpose as visual markers thanks to their flashing

ultrabright LEDs and reflective surface. The inertial tracking system functions for

any type of pedestrian motion, including walking, crawling, running, or climbing

stairs and ladders, and it is made more accurate by the combination of data from

different sources. Each firefighter has one sensor on each boot, and they work in

teams following approximately the same path. The tracking algorithm uses the

inertial data from each sensor as well as the ranging data between team members,

or between team members and beacons, to produce the most reliable position

estimates. As the team follow the walls inside the building according to standard

practice, their estimated positions are transmitted to the command post where the

commander starts to see a clear outline of the internal structure, including rooms,
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corridors, and stairs. Although a floorplan is not required, if one becomes available,

it only requires a few swipes across the screen for the commander to align the paths

with it.

If one team needs assistance, another team can simply follow the navigation

instructions to find them. They can also easily spot areas that the initial team has

not searched. None of these features requires a floorplan or any external location

system. However, if one of the firefighters is equipped with a GPS receiver, the

system can use this information to further improve its estimates and to align the

floorplan or satellite view automatically. The navigation system works reliably for a

single person with only a minimal number of sensors but its accuracy and reliability

increase as the number of users increases and additional sensors or data sources

are connected. It is also completely autonomous and capable of guiding the wearer

without any connection to the outside, and yet it allows effective collaboration

between team members and between teams. We find this picture to be inspiring,

even more so as we can see relatively clearly how all the features could realistically

be developed.

There is an increasing amount of research in the area of pedestrian navigation in

uninstrumented enviroments and we assume that the vision we described is a shared

one. More and more companies are advertising tracking solutions for GPS-denied

environments using technologies covered in this thesis, while others are actively

searching for solutions that will allow them to complete their software packages

with indoor location information. Calls for research proposals are also being made

in this area. We are encouraged to see that this is being acknowledged as a relevant

area of research and commercial development. We are confident that the community

has the ability to successfully tackle this problem in order to enhance the safety

of emergency responders, and provide convenient, robust, and low-cost navigation

and tracking solutions for a range of users, without the infrastructure and prior

knowledge contraints of existing systems.



Appendix A

Inertial pedestrian dead reckoning

implementation in Matlab

This appendix contains the implementation of our foot-mounted inertial pedestrian

dead reckoning algorithm in Matlab script.

Listing A.1: Foot-mounted inertial pedestrian dead-reckoning Matlab code

% Inertial pedestrian tracking.
%
% For best results use a foot−mounted inertial measurement unit with an
% accelerometer range greater than 10g and a gyroscope range greater than
% 900 degrees per second and at least 50 samples per second. The IMU does
% not need to estimate orientations.
%
%
% Copyright December 2010, Lancaster University.
% Authors: Carl Fischer, Poorna Talkad Sukumar.
% http://eis.comp.lancs.ac.uk/pdr/

clear all;

%% Read data from file.
% Data should include timestamps (seconds), 3 axis accelerations (m/sˆ2), 3
% axis gyroscopic rates of turn (rad/s).
data = importdata(’1.csv’); gyro bias = [−0.0156 −0.0101 −0.0020]’;
%data = importdata(’2.csv’); gyro bias = [0.0066 −0.0071 0.0120]’;
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%data = importdata(’3.csv’); gyro bias = [0.0066 −0.0071 0.0235]’;
%data = importdata(’4.csv’); gyro bias = [0.0066 −0.0071 0.025]’;
%data = importdata(’running.csv’); %gyro bias = [0.0386 −0.0488 −0.00]’;
data size = length(data.data);
timestamp = data.data(:,1)’; % Timestamps of measurements.
acc s = data.data(:,2:4)’; % Accelerations in sensor frame.
gyro s = data.data(:,5:7)’; % Rates of turn in sensor frame.
g = 9.8; % Gravity.

%% Initialise parameters.
% Orientation from accelerometers. Sensor is assumed to be stationary.
pitch = −asin(acc s(1,1)/g);
roll = atan(acc s(2,1)/acc s(3,1));
yaw = 0;

C = [cos(pitch)∗cos(yaw) (sin(roll)∗sin(pitch)∗cos(yaw))−(cos(roll)∗sin(yaw)) (
cos(roll)∗sin(pitch)∗cos(yaw))+(sin(roll)∗sin(yaw));
cos(pitch)∗sin(yaw) (sin(roll)∗sin(pitch)∗sin(yaw))+(cos(roll)∗cos(yaw)) (cos(

roll)∗sin(pitch)∗sin(yaw))−(sin(roll)∗cos(yaw));
−sin(pitch) sin(roll)∗cos(pitch) cos(roll)∗cos(pitch)];

C prev = C;

% Preallocate storage for heading estimate. Different from direction of
% travel, the heading indicates the direction that the sensor, and therefore
% the pedestrian, is facing.
heading = nan(1, data size);
heading(1) = yaw;

% Gyroscope bias, to be determined for each sensor.
% −− Defined above so we don’t forget to change for each dataset. −−

% Preallocate storage for accelerations in navigation frame.
acc n = nan(3, data size);
acc n(:,1) = C∗acc s(:,1);

% Preallocate storage for velocity (in navigation frame).
% Initial velocity assumed to be zero.
vel n = nan(3, data size);
vel n(:,1) = [0 0 0]’;

% Preallocate storage for position (in navigation frame).
% Initial position arbitrarily set to the origin.
pos n = nan(3, data size);
pos n(:,1) = [0 0 0]’;

% Preallocate storage for distance travelled used for altitude plots.
distance = nan(1,data size−1);
distance(1) = 0;
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% Error covariance matrix.
P = zeros(9);

% Process noise parameter, gyroscope and accelerometer noise.
sigma omega = 1e−2; sigma a = 1e−2;

% ZUPT measurement matrix.
H = [zeros(3) zeros(3) eye(3)];

% ZUPT measurement noise covariance matrix.
sigma v = 1e−2;
R = diag([sigma v sigma v sigma v]).ˆ2;

% Gyroscope stance phase detection threshold.
gyro threshold = 0.6;

%% Main Loop
for t = 2:data size

%%% Start INS (transformation, double integration) %%%
dt = timestamp(t) − timestamp(t−1);

% Remove bias from gyro measurements.
gyro s1 = gyro s(:,t) − gyro bias;

% Skew−symmetric matrix for angular rates
ang rate matrix = [0 −gyro s1(3) gyro s1(2);

gyro s1(3) 0 −gyro s1(1);
−gyro s1(2) gyro s1(1) 0];

% orientation estimation
C = C prev∗(2∗eye(3)+(ang rate matrix∗dt))/(2∗eye(3)−(ang rate matrix∗dt));

% Transforming the acceleration from sensor frame to navigation frame.
acc n(:,t) = 0.5∗(C + C prev)∗acc s(:,t);

% Velocity and position estimation using trapeze integration.
vel n(:,t) = vel n(:,t−1) + ((acc n(:,t) − [0; 0; g] )+(acc n(:,t−1) − [0; 0; g]))∗dt

/2;
pos n(:,t) = pos n(:,t−1) + (vel n(:,t) + vel n(:,t−1))∗dt/2;

% Skew−symmetric cross−product operator matrix formed from the n−frame
accelerations.

S = [0 −acc n(3,t) acc n(2,t);
acc n(3,t) 0 −acc n(1,t);
−acc n(2,t) acc n(1,t) 0];

% State transition matrix.
F = [eye(3) zeros(3,3) zeros(3,3);

zeros(3,3) eye(3) dt∗eye(3);
−dt∗S zeros(3,3) eye(3) ];
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% Compute the process noise covariance Q.
Q = diag([sigma omega sigma omega sigma omega 0 0 0 sigma a sigma a

sigma a]∗dt).ˆ2;

% Propagate the error covariance matrix.
P = F∗P∗F’ + Q;
%%% End INS %%%

% Stance phase detection and zero−velocity updates.
if norm(gyro s(:,t)) < gyro threshold

%%% Start Kalman filter zero−velocity update %%%
% Kalman gain.
K = (P∗(H)’)/((H)∗P∗(H)’ + R);

% Update the filter state.
delta x = K∗vel n(:,t);

% Update the error covariance matrix.
%P = (eye(9) − K∗(H)) ∗ P ∗ (eye(9) − K∗(H))’ + K∗R∗K’; % Joseph

form to guarantee symmetry and positive−definiteness.
P = (eye(9) − K∗H)∗P; % Simplified covariance update found in most books.

% Extract errors from the KF state.
attitude error = delta x(1:3);
pos error = delta x(4:6);
vel error = delta x(7:9);
%%% End Kalman filter zero−velocity update %%%

%%% Apply corrections to INS estimates. %%%
% Skew−symmetric matrix for small angles to correct orientation.
ang matrix = −[0 −attitude error(3,1) attitude error(2,1);

attitude error(3,1) 0 −attitude error(1,1);
−attitude error(2,1) attitude error(1,1) 0];

% Correct orientation.
C = (2∗eye(3)+(ang matrix))/(2∗eye(3)−(ang matrix))∗C;

% Correct position and velocity based on Kalman error estimates.
vel n(:,t)=vel n(:,t)−vel error;
pos n(:,t)=pos n(:,t)−pos error;

end

heading(t) = atan2(C(2,1), C(1,1)); % Estimate and save the yaw of the sensor
(different from the direction of travel). Unused here but potentially useful for
orienting a GUI correctly.

C prev = C; % Save orientation estimate, required at start of main loop.

% Compute horizontal distance.
distance(1,t) = distance(1,t−1) + sqrt((pos n(1,t)−pos n(1,t−1))ˆ2 + (pos n(2,

t)−pos n(2,t−1))ˆ2);
end
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%% Rotate position estimates and plot.
figure;
box on;
hold on;
angle = 180; % Rotation angle required to achieve an aesthetic alignment of the

figure.
rotation matrix = [cosd(angle) −sind(angle);

sind(angle) cosd(angle)];
pos r = zeros(2,data size);
for idx = 1:data size

pos r(:,idx) = rotation matrix∗[pos n(1,idx) pos n(2,idx)]’;
end

plot(pos r(1,:),pos r(2,:),’LineWidth’,2,’Color’,’r’);
start = plot(pos r(1,1),pos r(2,1),’Marker’,’ˆ’,’LineWidth’,2,’LineStyle’,’none’);
stop = plot(pos r(1,end),pos r(2,end),’Marker’,’o’,’LineWidth’,2,’LineStyle’,’none’);

xlabel(’x (m)’);
ylabel(’y (m)’);
title(’Estimated 2D path’);
legend([start;stop],’Start’,’End’);
axis equal;
grid;
hold off;

%% Plot altitude estimates.
figure;
box on;
hold on;
plot(distance,pos n(3,:),’Linewidth’,2, ’Color’,’b’);
xlabel(’Distance Travelled (m)’);
ylabel(’z (m)’);
title(’Estimated altitude’);
grid;

% Display lines representing true altitudes of each floor.
floor colour = [0 0.5 0]; % Colour for lines representing floors.
floor heights = [0 3.6 7.2 10.8]; % Altitude of each floor measured from the ground

floor.
floor names = {’A’ ’B’ ’C’ ’D’};
lim = xlim;
for floor idx = 1:length(floor heights)

line(lim, [floor heights(floor idx) floor heights(floor idx)], ’LineWidth’, 2, ’
LineStyle’, ’−−’, ’Color’, floor colour);

end

ax1=gca; % Save handle to main axes.
axes(’YAxisLocation’,’right’,’Color’,’none’,’YTickLabel’, floor names, ’YTick’,

floor heights,’XTickLabel’, {});
ylim(ylim(ax1));
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ylabel(’Floor’);
hold off;



Appendix B

Navigation algorithm and implementation

issues

In this appendix, we give the algorithm used to compute the navigation tree used

for the virtual reality study of chapter 6. The details of the inertial PDR algorithm

are the focus of chapter 4 (see appendix A for the Matlab implementation), and

the SLAM algorithm is described in chapter 5.

The game engine is configured to generate PDR movement measurements ev-

ery 10 milliseconds, and range measurements to any beacons within range every

30 milliseconds, but in practice this is limited by the framerate of the game (ap-

proximately 30 frames per second). We use the physics engine to keep track of

which beacons are within a five metre radius of the player, and we use ray casting

to determine which of those are within line of sight before generating range mea-

surements. Using the physics engine is a necessary optimisation which avoids us

having to iterate over every beacon in the game at every frame. In a real world im-

plementation, nodes that are far apart cannot sense each other and do not generate

measurements, so this would not be an issue. If there are no range measurements

less than four metres, a new beacon is deployed. Beacons are dropped no more than

once per second. We are unable to generate true inertial measurements in the game
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due to an approximate character animation, so we instead compute position and

rotation differences to simulate a PDR system which gives us step lengths, changes

in orientation, and offset between orientation and direction of travel. By adding

noise with non-zero mean to these values, we obtain position estimates which re-

semble PDR with drift. The movement and range measurements are passed to the

navigation system itself which is partially described by listing B.1. In particular,

it illustrates how the navigation tree is constructed.

Listing B.1: Navigation tree pseudo-Java code.

class Beacon {
Coordinate position;
Beacon previousBeacon;
List<List<Beacon>> branches;

}

class Navigator {
...
Coordinate position; // Estimated position of the pedestrian.
Beacon rootBeacon = null; // Root of the tree = starting point.
Beacon connectedBeacon = null; // Beacon that the player is currently connected

to.
Beacon targetBeacon = null; // Beacon that the player is being guided towards.
float nearThreshold = 1.0; // Closer than this distance, the player is considered

too close to a beacon and we should guide them to the next one.

AddBeacon(Beacon beacon) {
if (rootBeacon == null) {

rootBeacon = beacon; // First beacon to be dropped is assumed to be the
root of the tree.

}
if (connectedBeacon == null) {

connectedBeacon = beacon;
}
if (connectedBeacon.branches.count == 0 || // Beacon has just been deployed.

connectedBeacon.branches.count > 1 || // Beacon is a junction node with
multiple children.

connectedBeacon.branches.count == 1 && connectedBeacon.branches[0].
last != connectedBeacon) // Beacon is in the middle of a branch.

{
List<Beacon> branch = new List<Beacon>(); // Create a new branch.
branch.Add(connectedBeacon); // Add the parent node.
branch.Add(beacon); // Add the current node as the first child.
connectedBeacon.branches.Add(branch); // Add the new branch to the

previous beacon.
beacon.branches.Add(branch); // Add the new branch to the new beacon.

}
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else // Beacon is the last node of a simple branch.
{

connectedBeacon.branches[0].Add(beacon); // Append this beacon to the
end of the current branch.

beacon.branches.Add(connectedBeacon.branches[0]);
}
beacon.previousBeacon = connectedBeacon; // Keep a link to the parent node

so we can find our way back later.

ProcessPDRMeasurement(PDRMeasurement m) {
... // Update pedestrian position estimate.

}

ProcessRangeMeasurement(RangeMeasurement m, Beacon beacon) {
... // Correct pedestrian and beacon position estimates.

EvaluateConnectedBeacon(beacon); // Check which is the closest beacon.
}

// Find the closest beacon to the pedestrian.
EvaluateConnectedBeacon(Beacon beacon) {

if (connectedBeacon == null) { // If the pedestrian was not connected to a
beacon, use this one.
lastConnectedBeacon = beacon;

} else {
float thisDistance = Distance(beacon.position, position); // Distance to

this beacon.
float oldDistance = Vector3.Distance(connectedBeacon.position,

position); // Distance to current ”last connected” beacon.
if (thisDistance < oldDistance) { // If this beacon is closer to our

current position than the previous one, then connect to this one.
connectedBeacon = beacon;

}
FindTargetBeacon(); // We may be connected to a different beacon, so

re−evaluate the target beacon too.
}

}

// Check which beacon we should be guiding the pedestrian towards.
FindTargetBeacon() {

if (targetBeacon == null) {
targetBeacon = connectedBeacon;

}
if (targetBeacon != connectedBeacon || targetBeacon != connectedBeacon.

previousBeacon) // We should only be guiding the player towards the
beacon they are connected to or the previous one.

{
targetBeacon = connectedBeacon;

}

// Dot product telling us whether the player is ’between’ the target and
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previous target beacons (>0) or ’beyond’ the target beacon (<0).
float prod = DotProduct(connectedBeacon.previousBeacon.position−

connectedBeacon.position, position−connectedBeacon.position);

float distance = Vector3.Distance(position, targetBeacon.position);
if (distance < nearThreshold || prod > 0)

targetBeacon = targetBeacon.previousBeacon;
}

}
}

The Unity3D game engine1 presented some challenges to our work. Although

it includes a physics engine which aims to reproduce the effects of physical interac-

tions between objects, it is designed to mimic these effects in appearance only. For

instance, it does not allow us to easily simulate independent sensor nodes running

their own software, or inertial sensors measuring the accelerations and rates of turn

of the pedestrian’s feet 100 times per second. One reason for this is that games

(at least those created with Unity3D) are designed to run as a single thread, with

functions being called at most once per frame. Ideally, our simulator needs to gen-

erate measurements, add noise to them, and process them several times per frame.

This was not possible, so we adjusted the simulated measurements to mimic the

effects of inertial tracking at a lower rate than what we would have in a real world

implementation. Our SLAM algorithm from chapter 5 runs as a separate thread

but receives the measurements and updates the position estimates via two syn-

chronised (thread-safe) queues in order to not interfere with the main game engine

process. Once again, this would not be such a problem with a real system because

the measurements would be simply measured rather than generated, the CPU and

GPU would not be busy rendering a 3D landscape, and we would presumably be

working in a more thread-friendly environment.

1http://unity3d.com/ (Accessed 2012.09.24.)

http://unity3d.com/
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User study: navigation in a virtual

environment

C.1 Study design

Table C.1 gives the order of conditions for the participants of the navigation study.

The order in which the environments (car park or offices) were presented was alter-

nated, and the order of the interfaces was balanced. The pre-study was conducted

using six participants (numbered 0 to 5) and the full study was conducted using

twelve participants (numbered 0 to 11). In retrospect, we should have inverted the

order of the environments for participants 6 to 11, but we do not believe this had

any effect on the results.

C.2 Verbal questionnaire

These questions took the form of a semi-structured interview based on the points

below.

227
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Table C.1: Navigation study design.

Mission

Participant 1 2 3 4 5 6

0 cn ca cm oa on om
1 on om oa ca cm cn
2 ca cn cm om on oa
3 oa om on cm ca cn
4 cm cn ca on oa om
5 om oa on cn cm ca
6 cn ca cm oa on om
7 on om oa ca cm cn
8 ca cn cm om on oa
9 oa om on cm ca cn
10 cm cn ca on oa om
11 om oa on cn cm ca

Environment – c: car park, o: offices.
Interface – n: no support, a: arrow, m: map.

C.2.1 Following the three missions in each building

• First impressions.

• Describe your search strategy.

• How effective do you think your search strategies were?

• Describe your retreat strategy.

• Did you feel disoriented at any time during the missions?

In each case, prompt for differences between scenarios and interfaces.

C.2.2 At the end of the study

• Did the two types of building cause you to behave differently?
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C.3 Demographics questionnaire

The participant was asked to respond to this questionnaire on a paper form.

• Gender. [Male — Female]

• Age.

• Experience with computer games similar to the study (first person view).

[Regular player — Occasional player — Played in the past — Never played]

• Experience with other 3D virtual environments (e.g., modelling tools, flight

simulators). [Experienced — Occasional user — Used a few times — Never

used]

• General navigation skills (e.g., map reading, finding your way in new buildings

or cities). [Excellent — Good — Average — Poor — Awful]

• How do you feel about finding your way in the dark? [Confident — Cautious

— Likely to get lost or fall — Terrified — Don’t know]

C.4 Summary of interviews

Table C.2 provides a summary of the key points raised during the interviews.
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Table C.2: User feedback.

Player Car park Office Beacons Car park Beacons Office Arrow Car Park Arrow Office Map Car Park Map Office other

0 Faster to search.
Used D signs.

Easier. Used
landmarks.

Used to know
where had been.

Used to know
where had been.

Easier to retreat;
confusing.

Easier to retreat.

1 Used walls and
pillars. Used D
signs. More
difficult.

Found landmarks.
Easier.

Used to know
where had been;
Used for
orientation.

Confusing
(instability).

Confirm location. Confirm location. Navigation
support for
retreat only.

2 Followed wall. Felt panic. Used
landmarks.

Not helpful. Used to know
where had been.

Remember where
came from
(orientation);
allowed focus on
search; easier to
follow in panic.

Used on retreat
but got lost.

Remember where
came from
(orientation);
more useful in
open space.

Confusing (lines
cross).

3 Difficult to
compartmentalise.
Used walls.

Used to know
where had been;
useful.

Not helpful. Used on retreat. Used on retreat. Used on retreat. Used on retreat. Navigation
support for
retreat.

4 Used pillars. Easier. More
landmarks.

Preferred. Useful
for retreat.

Useful for retreat.

5 Rejected D signs.
Difficult to search.
No landmarks.
Darker.

Used fire escape
signs.

Frustrating
(instability).

Useful for retreat;
used to know
where had been.

Helpful; useful. Useful for retreat;
used to know
where had been.

6 Confusion. Easier to search. Easier than map. Confusing. Used to know
where had been.

7 Difficult to search.
No landmarks.

Less disorienting.
More light.

Used for
orientation.

Not helpful. Liked the arrow. Easier than map;
preferred arrow.

Tools helped
navigate and gave
confidence; used
them.

8 Rejected D signs. Found landmarks.
Not as easy as
expected.

Used when
nothing else.

Helped when
nothing else;
sometimes
disorienting.

Green arrow
didn’t move as
expected.

Used to know
where had been;
preferred; helpful
on retreat.

Used on retreat.

9 Difficult. Easier. Helpful but not
easy

Used (relied). Confusing (didn’t
understand).

Cannot use. Didn’t use.

10 Followed wall.
More difficult.

Followed wall. Used for retreat;
dropped near
start point.

Adapted to. Helpful on retreat. Helpful on retreat. Adapted away
from.

Confusing with no
support;
assistance made
retreat easier.

11 Followed wall.
Difficult to search
but easier to
retreat.

Only a few
landmarks.

Used to know
where had been.

Used Helpful for
retreat.

Helpful for
orientation
(retreat);
improved search.

Not helpful on
search.

Helpful, difficult
without.

Navigation
support helped
focus on search.
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Switzerland, 2010. 92

Andrew H. Jazwinski. Stochastic processes and filtering theory. New York, Aca-

demic Press, 1970. 61

Xiaodong Jiang, Jason I. Hong, Leila A. Takayama, and James A. Landay. Ubiqui-

tous computing for firefighters: field studies and prototypes of large displays for

incident command. In Proceedings of the SIGCHI conference on Humanfactors

in computing systems, pages 679–686, New York, NY, USA, 2004. ACM Press.

doi: 10.1145/985692.985778. 28
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András Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sensor network-

based countersniper system. In Proc. of SenSys, pages 1–12, New York, NY,

USA, 2004. ACM Press. ISBN 1-58113-879-2. doi: 10.1145/1031495.1031497. 9

Robert A. Singer. Estimating Optimal Tracking Filter Performance for Manned

Maneuvering Targets. IEEE Transactions on Aerospace and Electronic Systems,

6(4):473–483, 7 1970. 21
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