
Ubi Displays: A Toolkit for the Rapid Creation of
Interactive Projected Displays

John Hardy1, Carl Ellis2, Jason Alexander2, Nigel Davies2
HighWire-DTC1, School of Computing and Communications2

Lancaster University, UK
john@highwire-dtc.com, carl.ellis@comp.lancs.ac.uk, j.alexander@lancaster.ac.uk,

nigel@comp.lancs.ac.uk

ABSTRACT
In this demonstration we present Ubi Displays: an open source
toolkit designed to simplify and expedite the process of creating
media-rich interactive projected displays. Our toolkit enables
users of web technologies and commodity hardware to quickly
create applications that previously would have taken substantial
development effort by skilled programmers. By reducing the
required skills, development time, and the costs of tools and
hardware we hope to encourage people from a diverse set of
communities (e.g. designers and hobbyists) to engage with
pervasive displays and explore the different kinds of impact and
interaction they can support. This demonstration covers the key
features of Ubi Displays and highlights a selection of real-world
case studies that illustrate how the toolkit can be used.

Categories and Subject Descriptors

H.5.2 [User Interfaces]: Input Devices and Strategies
General Terms
Design, Human Factors

Keywords
Pervasive displays, interactive, projection, multi-touch, multi-
display, ubiquitous computing

1. INTRODUCTION
Over the last two decades, researchers have explored how mixing
relevant interactive content with the physical world has the
potential to create transformative interfaces [2,4,5,6] However, a
key challenge in this space has always been that creating such
interfaces is expensive. Implementations are typically bespoke
and the lack of standardised development tools dictates that large
amounts of skilled labour, time, and money must be invested in
their creation [1]. These factors create barriers that prevent many
people from engaging with the technology and thus iteratively
evaluating and improving it as a community. This is particularly
harmful in application driven / exploratory scenarios where a
technical contribution is not the focus of the work and the
expected results cannot always justify a large investment of
technology or development time.
The Ubi Displays toolkit aims to change this by offering a toolkit

that greatly simplifies and expedites the process of creating rich
interactive projected displays.
This demonstration serves as an introduction to the Ubi Displays
toolkit (http://code.google.com/p/ubidisplays) and showcases a
selection of its features and capabilities. In the following sections
we outline the key features of Ubi Displays and provide several
real-world case studies that show how the toolkit has been applied
or extended.

2. TOOLKIT FEATURES
Using commodity hardware (a PC combined with a standard
projector and depth camera) users with web development skills
are able to quickly create a wide variety of display installations
that leverage their existing hardware, skillset and expectations of
rich content (see Figure 1).

Users do not need to learn any new display programming
languages and the basic operation of the toolkit’s drag-drop
interface can easily be communicated through a five minute
tutorial video.

Figure 1: An interactive bed display; each wooden slat in the
bed controls a light in the room. Related video:
http://youtu.be/df1NO7MoAUY
In brief, the toolkit offers the following features:
Displays are sandboxed Chromium instances. Each display is
effectively a web-browser tab and has a similar performance
profile.
Web Standards enable rich content. Web developers can use
the latest HTML5, CSS3 and JavaScript constructs to quickly
build complex interactive displays. Limited support for Adobe
Flash and WebGL (software rendering) is also included.

Multiple displays per projector are supported to maximize the
utility of the projection hardware. The JavaScript hosted in each
display is able to query and invoke logic on surrounding displays
through a simple programming interface. A moderation
mechanism is included to help prevent malicious code.

PerDis 2013, June 04 – 05 2013, Mountain View, CA
Copyright retained by the authors.

Physical responsive design enables display content to configure
itself automatically based on the physical characteristics of the
display surface it is being presented on (e.g. increasing button
sizes on physically larger display surfaces). As with a normal
responsive design, the extent of its application remains under the
control of the web developer.
Displays are able to move around their environment within the
view of the projector and depth camera. However, we also limit
projection to areas pre-defined by the person responsible for the
deployment so that they can maintain a degree of control over the
content and aesthetic of the space.

Displays can spawn, delete and move other displays using
JavaScript functions that interact with the underlying toolkit.

Displays are transient and can be made to disappear when not
needed. The can then re-appear in response to some internal or
external trigger (i.e. a person walked into a certain area).

Displays are agnostic of interaction modality. Each display is
able to request and handle multiple forms of interaction without
affecting the other displays. For example, a display placed on a
floor could react to foot position, whereas one on a wall could
react to touch or gesture.

Accurate multi-touch detection when the sensor is positioned
less than 1.2m from the interaction surface. This uses a point
cloud based multi-touch detection algorithm described and
profiled by Hardy et al [1].

Built on an extensible codebase. It is easy for native
programmers to add new features either by editing the program
code or invoking external processes from the JavaScript and
capturing the output. Technical web developers can use browser
features such as WebSockets to enable external connectivity.
Simple user interface for deploying displays. The toolkit has a
simple visual process for selecting which part of a physical space
can be used as a display area. Deploying content is also a ‘drag-
drop’ process with fully supported save and load functions which
help automate the start-up of unattended installations.

Easily achievable hardware requirements. Readily available
commodity hardware helps to promote the use of Ubi Displays in
cost-sensitive and rapid-prototyping situations.

Online community support helps to promote a growing
community of Ubi Displays users (over 700 downloads worldwide
at the time of writing) which are able to offer community support.

3. CASE STUDIES
The following sub-sections are real-world examples of how Ubi
Displays has been applied to create a variety of display types.
Each has been selected as the toolkit was in some way extended in
order to achieve it.
Big Bang Fair Particle Accelerator Simulator
Ubi Displays was used to help create a ‘Particle Accelerator
Simulator’ game for a large national science fair. Robustness was
a key requirement as the fair had 60,000 visitors over the course
of 4 days. A WebGL display formed the centerpiece of a large
metal table. WebSockets were used in order to communicate with
a USB BV4626 general purpose IO board. This enabled the
visualization of the projected display to control external devices
via relays and receive input from large physical buttons. Related
video: http://youtu.be/IqtZC9sewuk
Object Detection Support

In collaboration with researchers from the University of Stuttgart,
Ubi Displays has been combined with an implementation of the
BRISK feature recognition algorithm [3]. This gave displays the
ability to determined which (if any) pre-determined objects are
placed in an area visible by a web camera. The integration
extended the native Ubi Displays code by allowing it to invoke
external processes (in this case an object detection binary
implemented in C++) and stream data to and from these processes
via JavaScript. Although a security risk, this extension could be
useful in other contexts.
Interactive Table Alternative
One of the most popular requests we receive through the open
source project is the ability to use Ubi Displays as a cheap
interactive table. Typically, these requests are motivated by one
of four reasons: (1) they have a pre-existing native application
they want to use, (2) they lack experience programming
JavaScript, (3) they want to use a full Windows desktop
environment, or (4) they cannot afford the cost of a large damage-
resistant multi-touch table display. To cater for these groups, we
have extended a pre-release version with two additional modes:
Desktop mode which forwards multi-touch events from a display
and injects them into a full Windows desktop, and display mode
which enables users to select desktop regions and then re-project
this content onto another surface with multi-touch support.

4. ACKNOWLEDGMENTS
Thanks go to Markus Funk at the University of Stuttgart who
implemented the object detection algorithm. This demonstration
was conducted as part of the post-disciplinary HighWire
programme at Lancaster University. HighWire is funded by the
Digital Economy Programme: a Research Councils UK cross
council initiative led by the EPSRC and contributed to be AHRC,
ESRC and MRC. We also acknowledge the financial support of
the Future and Emerging Technologies (FET) programme within
the 7th Framework programme for Research of the European
Commission, under FET-Open grant number: 244011 (PD-NET).

5. REFERENCES
[1] Hardy, J. and Alexander, J. Toolkit Support for Interactive

Projected Displays. In Mobile and Ubiquitious Multimedia
(MUM) (2012), ACM.

[2] Hardy, J., Bull, C., Kotonya, G., and Whittle, J. Digitally
annexing desk space for software development: NIER track.
In Proceeding of the 33rd international conference on
Software engineering (2011), ACM, 812--815.

[3] Leutenegger, S., Chli, M., and Siegwart, R. Y. BRISK: Binary
robust invariant scalable keypoints. In Computer Vision
(ICCV) (2011), IEEE, 2548-2555.

[4] Pinhanez, C. The Everywhere Displays Projector: A Device to
Create Ubiquitous Graphical Interfaces. In Proceedings of the
3rd international conference on Ubiquitous Computing
(Ubicomp '01) (2001), ACM, 315-331.

[5] Raskar, R., van Baar, J., Beardsley, P., Willwacher, T., Rao,
S., and Forlines, C. iLamps: Geometrically Aware and Self-
Configuring Projectors. In ACM Trans. Graph. (2003), 809-
818.

[6] Underkoffler, J., Ullmer, B., and Ishii, H. Emancipated pixels:
real-world graphics in the luminous room. In SIGGRAPH'99
(1999), 385-392.

