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To each discrete translationally periodic bar-joint framework C in Rd we associate a
matrix-valued function ΦC(z) defined on the d-torus. The rigid unit mode spectrum Ω(C)
of C is defined in terms of the multi-phases of phase-periodic infinitesimal flexes and
is shown to correspond to the singular points of the function z→ rankΦC(z) and also
to the set of wave vectors of harmonic excitations which have vanishing energy in the
long wavelength limit. To a crystal framework in Maxwell counting equilibrium, which
corresponds to ΦC(z) being square, the determinant of ΦC(z) gives rise to a unique multi-
variable polynomial pC(z1, . . . , zd). For ideal zeolites the algebraic variety of zeros of pC(z)
on the d-torus coincides with the RUM spectrum. The matrix function is related to other
aspects of idealised framework rigidity and flexibility and in particular leads to an explicit
formula for the number of supercell-periodic floppy modes. In the case of certain zeolite
frameworks in dimensions 2 and 3 direct proofs are given to show the maximal floppy
mode property (order N). In particular this is the case for the cubic symmetry sodalite
framework and some other idealised zeolites.
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1. Introduction

Let C be a mathematical crystal framework, by which we mean a connected
structure in the Euclidean space Rd consisting of a set Ce of framework edges,
representing bars or bonds, with a corresponding set Cv of framework points
(vertices), representing joints or atoms, such that Ce is periodic with respect to a
discrete translation group T of isometries of Rd, with T of full rank. We consider
mainly the case d= 2, 3 together with the locally finite assumption that Ce is
generated by the translations of a finite set of edges. Such a geometric bar-joint
framework C can serve as a model for the essential geometry of the disposition of
atoms and bonds in a material crystal M. In this case the vertices have atomic
identifiers, such as H, He, Li, B, ... , and the chosen edges may correspond just to
the strong bonds. The identification of strongly bonded molecular units, such
as SiO4 and TiO6, imply a polyhedral net structure for C and in particular
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aluminosilicate crystals and zeolites provide in this way a fascinating diversity
of tetrahedral nets in which every vertex is shared by two tetrahedra.

Material scientists are interested in the manifestation and explanation of
various forms of low energy oscillation and excitation modes. Of particular interest
are the rigid unit modes (RUMs) in crystalline materials, the low energy (long
wavelength) modes of oscillation related to the relative motions of rigid units,
such as the SiO4 tetrahedral units in quartz. The wave vectors of these modes
are observed in neutron scattering experiments and have been shown to correlate
closely with those for the modes observed in computer simulations with periodic
networks of rigid units. In both the experimental measurements and in the
simulations the background mathematical model is classical lattice dynamics and
the rigid unit mode wave vectors are observed where phonon dispersion curves
display markedly low energy. There is now a considerable body of literature
tabulating the rigid unit mode wave vectors of various crystals and it has become
evident that the primary determinant in a material M is the geometric structure
of an associated abstract framework C. This was outlined in the seminal paper of
Giddy, Dove, Pawley and Heine [7]. See also Swainson and Dove [23], Hammond
et al [9], [10] and Dove et al [6]. This experimental work shows that the wave
vectors of RUMs often lie along lines and planes in reciprocal space. However, for
many materials the wave vectors also lie on more mysterious curved surfaces. See
also the recent computer assisted analysis of Wegner [24].

In what follows we develop a mathematical theory of rigid unit modes in
idealized crystal frameworks. As we shall demonstrate, this is essentially a linear
first order theory and one can side-step lattice dynamical formulations that relate
to higher energy phonons and their dispersion curves. In fact in Definition 8
we define the RUM spectrum Ω(C) of an idealised crystal framework C, with
given translation group, as the set of multi-phases for which there exists a
nonzero phase-periodic infinitesimal flex. This form of the spectrum was first
given in Owen and Power [19] as a byproduct of the analysis of square-summable
infinitesimal flexes. Mapping the d-torus to the unit cube in Rd by taking
logarithms gives the usual wave vector parametrisation space for RUMs used
by crystallographers. The spectrum Ω(C) leads naturally to a definition of the
RUM dimension dimrum C, which takes integer values from 0 to d and which
gives a measure of the infinitesimal flexibility of C. In the interesting special case
of a crystal framework in Maxwell counting equilibrium (see Definition 2), such
as, for example, a tetrahedral net framework derived from an idealised zeolite,
the spectrum Ω(C) is determined as the zero set of a multi-variable polynomial
pC(z1, . . . , zd) defined on the d-torus. This polynomial may vanish identically,
which corresponds to the case dimrum(C) = d, and for d= 2, 3 this is also known
as "order N". (See Theorem 2.) This property occurs for example in the case
of the cubic form sodalite framework CSOD, as we prove below in Section 7 by
infinitesimal analysis. Interestingly, Kapko et al [13] have recently conducted a
simulation analysis to determine the extent of this property in idealized zeolites.

The infinitesimal flex perspective is useful for several reasons. Firstly it brings
into play the fairly well-established theory of infinitesimal rigidity for finite bar-
joint frameworks and this is of significance for local flexibility. On the other hand
the consideration of general infinitesimal flexes in infinite bar-joint frameworks
gives a route to understanding and predicting the appearance of linear components
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(lines, planes, hyperplanes etc) observed experimentally in RUM wave vector sets.
In addition, the first order infinitesimal flexibility properties of a crystal framework
C are implicit in the infinite rigidity matrix R(C) of C, and for phase-periodic
flexibility this simplifies to the consideration of a finite function matrix ΦC(z)
defined on the d-torus. This matrix function, which we also refer to as the symbol
function of C (borrowing terminology from Hilbert space operator theory) also
arises naturally from square-summable flex perspectives ([19]) and may be a useful
tool more generally. When the matrix is square the crystal polynomial pC(z) of C
is defined as a natural normalisation of its determinant.

In the development we give definitions, theorems, proofs and illustrative
examples all of which lie within a mathematical theory of infinite bar-joint
frameworks. While the focus is on rigidity and flexibility properties related to the
disposition of the bonds, rather than their strengths, the theory has the potential
to relate to applied analysis and simulations.

In Sections 2 and 3 we give examples of crystal frameworks and various spaces
of infinitesimal flexes. In Sections 4, 5 and 6 we define the matrix function
ΦC(z), the RUM spectrum Ω(C) (Definition 8), the RUM dimension (Definition
9) and the crystal polynomial pC(z). Also we give connections between phase-
periodic infinitesimal flexes, so-called periodic floppy modes, and low energy
harmonic excitations. (For discussions of wave vectors see Dove [5], the account
of phonon modes in Section 6 below, and the remarks following Definition 8 in
Section 5 where we define the wave vector of a phase-periodic infinitesimal flex.)
In particular the matrix function ΦC(z) features in a counting formula for the
periodic floppy modes in an n-fold supercell.

The final sections give determinations of Ω(C) for a range of examples and
some proofs. In particular we give the novel example of a two-dimensional zeolite
whose floppy modes are of order N .

2. Crystal frameworks: terminology and examples.

Let G= (V,E) be a simple graph, finite or countable, with vertices V =
{v1, v2, . . . }, and E ⊆ V × V a countable set of edges, and let p1, p2, . . . be a
sequence of points in the Euclidean space Rd, with pi ̸= pj if (vi, vj) is an edge.
Then the pair (G, p), with p= (p1, p2, . . . ) is said to be a bar-joint framework in
Rd with framework points, or joints, pi and framework edges, or bars, given by
the line segments [pi, pj ] between pi and pj when (vi, vj) is an edge in E. In all
our examples in fact, the framework points are distinct.

An isometry of R3 is a distance-preserving map T :R3 →R3. A full rank
translation group T is a set of translation isometries {Tk : k ∈Z3} with Tk+l =
Tk + Tl for all k, l, Tk ̸= Id if k ̸= 0, and such that the three period vectors

a= Tγ10, b= Tγ20, c= Tγ30,

associated with the generators γ1 = (1, 0, 0), γ2 = (0, 1, 0), γ3 = (0, 0, 1) of Z3 are
not coplanar. Full rank translation groups in Rd are similarly defined.

The following definition of a crystal framework C follows the formalism of
Owen and Power [19] and pairs a bar-joint framework of crystallographic structure
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with a group T of its translation symmetries. The definition brings into play the
periodic partitioning of the vertices and edges of C by the T -translates of a finite
geometrical motif of framework vertices and edges.

Definition 1. A crystal framework C = (Fv, Fe, T ) in Rd, with full rank
translation group T = {Tk : k ∈Zd} and motif (Fv, Fe), is a countable bar-joint
framework (G, p) with framework vertices pκ,k, for 1≤ κ≤ t, k ∈Zd, such that

(i) Fv is a finite set of framework vertices, {pκ,0 : 1≤ κ≤ t} in Rd, and Fe is
a finite set of framework edges,

(ii) for each κ and k the vertex pκ,k is the translate Tkpκ,0,
(iii) the set Cv of framework vertices is the union of the disjoint sets Tk(Fv)

for k ∈Zd,
(iv) the set Ce of framework edges is the union of the disjoint sets Tk(Fe) for

k ∈Zd.

This definition contains all the ingredients necessary for the definition of
rigidity matrices and operators associated with the various forms of periodic
infinitesimal flexes that we shall consider. We also refer to the framework
vertices simply as the framework points. Natural choices for T are maximal
translation subgroups of the crystallographic (spatial) symmetry group, subgroups
respecting preferred symmetry directions, and subgroups corresponding to
supercell periodicity.

Figure 1. Motif and period vectors for the kagome framework, Ckag.

1 2

3 4

5

Figure 2. A five-edged motif for the squares framework, Csq.
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In Figures 1 and 2 motif choices are shown for the kagome framework Ckag
and the squares framework Csq, where the filled vertices indicate the points of Fv

and where the translation group is determined by the period vectors. Thus Ckag
is the well-known framework of pairwise corner-connected congruent equilateral
triangles in regular hexagonal arrangement, while Csq is a translationally periodic
framework of corner-connected rigid square units.

One can similarly identify motifs for other well-known frameworks and
translation groups, such as (i) the grid framework CZd in Rd with Cv =Zd and
Ce equal to the set of line segments between nearest neighbours, (ii) Ctri, the
fully triangulated framework from the regular triangular tiling of the plane, and
(iii) Chex, the crystal framework in the plane associated with the regular hexagon
tiling.

In the examples we employ a mnemonic notational convenience with, typically,
Cxyz with all lower case letters indicating a planar framework, CXyx indicating a 3D
framework, and CXYZ indicating a 3D framework which derives in a well-defined
way from the zeolite with name XYZ. For example we write COct to denote the
basic regular octahedron net framework in three dimensions formed by corner-
connected congruent octahedra with maximal cubic symmetry. Also CSOD, defined
below, derives from the cubic form of the zeolite sodalite, while the companion
framework CRWY derives from the sodalite RWY. These conventions are useful,
for example, when discussing subframeworks lying in vector subspaces (slices).

The following definition is convenient.

Definition 2. A crystal framework C in Rd is said to be in Maxwell counting
equilibrium if d|Fv|= |Fe| for some, and hence every, motif. If d|Fv|< |Fe| then C
is said to be edge rich while if d|Fv|> |Fe| then C is said to be edge sparse.

We now define a number of illustrative crystal frameworks in dimensions 2 and
3 and in Section 7 we compute their RUM spectra. Of particular interest with
regard to rigidity and flexibility are the 4-regular (4-coordinated) frameworks
in 2D and the 6-regular frameworks in 3D, examples of which are provided by
idealized zeolites in the sense of Definition 3.

Graphene and diamond bar-joint frameworks, Cgra, CDia, C2
Dia. The usual

visualisation of graphene is as a two-dimensional hexagonal bond-node network
of carbon atoms with the geometry of Chex. However Chex is edge sparse and this
image is not suggestive of the strength of the material. If we view the C-C-C
angles as rigid, or, equivalently, if we also view second nearest neighbours as
bonded, then this leads to the edge rich crystal framework, C2

hex say, implied by
Figure 3. In the motif shown we take two of the edges of one of the equilateral
triangles to determine period vectors and a corresponding translation group T .

This crystal framework is of interest in its own right and we also write it as Cgra
when viewed as a bar-joint framework in R2. It may be assembled or decomposed
in a number of ways to reveal substructure and in particular it may be constructed
as a fusion of two congruent crystal subframeworks as follows. Let C+

tri be obtained
from the triangular framework Ctri by adding bars, in which alternate triangles
have three extra short bars added, connecting the triangle joints to a new joint at
the centroid of the triangle. Note that these added centroid joints are in natural
one to one correspondence with the joints of Ctri by a small translation. Then
Cgra is congruent to the framework formed from the join of two copies of C+

tri,
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one of which is rotated by π, and where the copies are connected by identifying
the centroids of one copy with the non-centroid joints of the other, together with
identification of the resulting double edges.

Figure 3. Part of Cgra = C2
hex with choice of period vectors and motif.

Similarly, crystalline diamond is usually indicated pictorially by a face-centred
unit cell, with 14 C atoms at face centres and corners, plus 4 internal C atoms,
and nearest neighbour connectivity. Again, the implied 4-coordinated edge sparse
bar-joint framework, CDia say, does not of itself impart a sense of rigidity. It
is natural for us to consider, once again, the derived first-and-second-nearest
neighbour framework, and to take this as the definition of an associated bar-
joint framework, which we denote C2

Dia. This too may be understood, or defined,
in various constructive ways. For one such construction, echoing the graphene
framework decomposition, note that there is a bipartite red-blue colouring of the
nodes of CDia with face atoms red and internal atoms blue say. The extra edges
of C2

Dia are either blue-blue or red-red. The red-red determined subframework we
refer to as the tetrahedron framework CTet. Adding to this framework the blue-
red edges of CDia gives a framework we call C+

Tet (created by centroid addition).
It follows that C2

Dia is a join of two copies of C+
Tet (with reflected orientation), the

join being effected by centroid/noncentroid identification, as before.

The cubic sodalite framework CSOD. The crystal framework CSOD in three
dimensions is built from 4-rings of tetrahedra in a way which echoes the crystal
structure of the cubic form of the zeolite sodalite. (See Figure 4.)

The following general definition is convenient.

Definition 3. An ideal (or mathematical) zeolite in two (resp. three)
dimensions is a crystal framework C in the plane (resp. R3) consisting of congruent
triangles (resp. congruent tetrahedra), each pair of which intersect disjointly or at
a common vertex and is such that every vertex is shared by two triangles (resp.
tetrahedra).
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We remark that in databases (such as http://www.iza-
structure.org/databases/) material zeolite frameworks are most frequently
indicated as a network of "T atoms" corresponding to tetrahedral centres, each
of which is 4-coordinated with neighbouring T atoms. This contrasts with the
rigid unit view here of a tetrahedral net framework implied by the positions of O
atoms as vertices.

The 4-ring building units of CSOD are oriented in the high symmetry
arrangement indicated in Figure 4. Six such rings may be placed on (the outside of
the) six faces of an imaginary cube so that the contact vertices sit on the midpoints
of the edges of the cube. This gives a finite bar-joint framework consisting of six
regular 4-rings connected together to form a finite bar-joint framework which we
call the sodalite cage framework. With unit edge length for the tetrahedra the cube
has sidelength 1 +

√
2, while the three orthogonal period vectors (determining unit

cell geometry) have length 2 +
√
2.

A motif for the framework can be given using the set Fe of edges in three
pairwise-connected pairwise orthogonally oriented 4-rings of the sodalite cage. The
images of the edges of Fe under the action of the associated isometry group T are
essentially disjoint and generate the crystal framework CSOD. For an appropriate
set Fv an examination of the positioning of Fv in the sodalite cage shows that one
must take the vertices of Fe except for 9 redundant exterior vertices.

Figure 4. The top 4-ring of the sodalite cage.

The kagome net framework CKnet. We give two specifications of the kagome
net framework in three dimensions. Firstly, it may be constructed in a layered
manner. Form upward tetrahedral rigid unit frameworks on alternate triangles
of a two-dimensional kagome framework lying in the xy-plane. Similarly, form
downward tetrahedra on the other triangles and thereby create a layer framework
of pairwise connected tetrahedra. Parallel copies of such layers can be joined at
their exposed joints together to fill space, creating, unambiguously, the crystal
framework we denote as CKnet.

Alternatively, CKnet is a translationally periodic bar-joint framework with
period vectors formed by three edges of a regular parallelapiped, with pairwise
angles of π/3. Each parallelapiped contains two tetrahedral rigid units located at
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opposite "acute" corners of the parallelapiped and with edge length half that of
the parallelapiped edges. The planar slices of CKnet, determined by each pair of
period vectors, give copies of Ckag.

The frameworks Cstar and Coct. The kagome framework can be viewed as arising
from the connection of translates of a regular 6-pointed star. There are analogous
frameworks, Cstar and Coct, arising from similar tilings using a regular 4-pointed
star and an 8-pointed star respectively. Figure 6, in the final section, indicates the
(primitive) star template for Cstar, while Figure 5 indicates tiling templates for
four 2D zeolite crystal frameworks. More precisely, a natural choice of translation
group for each of the associated bar-joint frameworks is that which is generated by
horizontal and vertical translation. One can note that the third framework (with
exterior angle 8π/12), viewed as simply a bar-joint framework, is also recognisable
as a congruent (rotated) copy of the bar-joint framework of Cstar. One can also
confirm similarly that the second and fourth frameworks are congruent by an
isometry of R2. The fourth framework here, with translation isometry group, is
what we define as the crystal framework Coct.

A motif (Fv, Fe) for Coct may be provided with Fv the set of four boundary
vertices (indicated as solid vertices in the fourth template) plus the eight internal
vertices (of the octagon), and with Fe the set of all 24 edges of the template.
Evidently, there is a smooth periodic edge-length-preserving continuous motion
(continuous or "finite" flex in the terminology of bar-joint frameworks) which
"connects" these frameworks and which is parametrised by specification of the
indicated exterior angle α say. This continuous motion, or evolution, maintains
the squareness of the unit cells indicated in Figure 5 but evidently changes their
edgelengths (and the period of translational periodicity). In Section 6 we give an
indication of how the RUM spectrum evolves under this motion. The motion here
may be viewed as an example of the idealisation of displacive phase transitions
in materials (Dove [5]). We remark that the derivative of this motion at any
particular value of α gives a particular infinitesimal flex of the bar-joint framework
associated with the value α. Such infinitesimal flexes are of affine type or flexible
lattice type and are not strictly periodic in the sense of Definition 6 below. For more
on such infinitesimal flexes, which are associated with infinitesimal affine motions
of the ambient space, see Borcea Streinu [1], Power [20] and Ross, Schulze and
Whiteley [21].

Further examples. Simple but informative examples of 3D zeolite frameworks
can be built from 2D zeolite frameworks in various ways by layer constructions.
With Coct for example, embedded in the x, y plane of R3, we may add bars and
joints to obtain alternately upward and downward pointing tetrahedral units and
so create a layer framework. These layers may be joined consecutively at their
exposed points to fill R3 and thereby create an associated ideal zeolite framework
C̃oct. Similarly one can view CKnet as the framework C̃kag.

We also note that interesting and diverse examples of mathematical crystal
frameworks are implied by various tilings and periodic nets. For an account of
three-periodic nets and connections with crystal chemistry see Delgado Friedrichs,
O’Keeffe and Yaghi [3], [4]. Such an (unlabelled) net, in any dimension, may be
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Figure 5. Templates for 2D zeolite frameworks, with exterior angles 10π/12, 9π/12, 8π/12, 7π/12.

defined as a pair (N,P ), where N the union of the edges of a crystal framework
whose framework edges only intersect at framework vertices, and where P is the
set of framework points.

3. Infinitesimal flexibility and rigidity.

We now define various flexes which act on the entire infinite crystal framework
in a locally infinitesimal manner. The definition is the same as that for a finite
bar-joint framework.

Definition 4. An infinitesimal flex of a finite or countable bar-joint
framework (G, p) is a vector u= (ui), with each component ui a vector in Rd,
such that for each edge [pi, pj ]

⟨pi − pj , ui⟩= ⟨pi − pj , uj⟩.

Regarding the ui as velocity vectors this asserts that for each edge the
components of the endpoint velocities in the edge direction are in agreement.
This is equivalent to the assertion that an infinitesimal flex is a velocity vector
v= (vi) for which the distance deviation

|pi − pj | − |(pi + tui)− (pj + tuj)|

of each edge is of order t2 as the time parameter t tends to zero.
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We will not be concerned particularly with continuous flexes, which are also
called finite flexes (or finite edge-length-preserving deformations). For such flexes
each framework point undergoes a continuous motion pκ,k(t) such that edge
lengths are preserved for all values of time t in some range. However we note
that, as for a finite framework, the derivative u= p′(0) = (p′i(0)) of a continuous
flex p(t) = (pi(t)) with differentiable vertex trajectories provides an infinitesimal
flex u.

In the case of a crystal framework in Rd a velocity vector is a doubly-indexed
sequence v of vectors vκ,k in Rd regarded as instantaneous velocities applied to
the frameworks vertices pκ,k, and it is convenient to consider the vector space of
all velocity sequences, written as a direct product, namely

Hatom =Πκ,kRd.

Thus, a real infinitesimal flex u for the crystal framework C is a velocity vector u
in Hatom such that

⟨pκ,k − pτ,l, uκ,k − uτ,l⟩= 0

for each framework edge [pκ,k, pτ,l]. In particular the set of all infinitesimal flexes
forms a vector subspace, Hfl say, of Hatom. Also each nontrivial infinitesimal
isometry of Rd gives rise to a one-dimensional vector subspace of Hfl.

The rigidity matrix R(C) of C is a real infinite matrix defined as in the finite
framework case.

Definition 5. The rigidity matrix R(C) of the crystal framework C in R3 has
rows labelled by the edges e= [pκ,k, pτ,l] and columns labelled by the framework
point coordinate indices (κ, x, k), (κ, y, k), (κ, z, k). The row for edge e takes the
form

[· · · 0 (pκ,k − pτ,l) 0 · · · 0 (pτ,l − pκ,k) 0 · · · ]
where the vector entry (pκ,k − pτ,l) indicates that the three coordinates of this
vector lie in the columns for (κ, x, k), (κ, y, k), (κ, z, k).

The definition of R(C) for d= 2, 4, 5, . . . , and also for general countably infinite
bar-joint frameworks (Owen and Power [17]) is essentially the same. We remark
that one may take the view that R(C) is 1/2J(C) where J(C) is the generalised
Jacobian, evaluated at the pκ,k, for the infinite quadratic equation system

|qκ,k − qτ,l|2 = d2e,

where the equations, labelled by the edges, are in the coordinate variables of the
points qκ,k, and where the constants de are the given lengths of the edges e of C.

It is natural to consider various linear transformations that derive from R(C).
To this end let

Hbond =Πe∈CeR=Πe∈Fe,k∈ZdR

be the space of real sequences w= (we,k)e∈Fe,k∈Zd labelled by the framework
edges. Then R(C) gives a linear transformation R :Hatom →Hbond. Indeed, each
row of R has at most 2d nonzero entries and the image R(u) is given by the
well-defined matrix multiplication R(C)u. As for finite frameworks one has the
following elementary proposition.
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Proposition 1. The infinitesimal flexes of the crystal framework C are the
velocity vectors in Hatom that lie in the nullspace of the linear transformation
R(C).

Let us introduce notation for the natural basic sequences of Hatom and Hbond.
Write ξx, ξy, ξz for the standard coordinate basis of R3, ξx = (1, 0, 0) etc., and for
σ ∈ {x, y, z} write ξκ,σ,k for the position indicator vector in Hatom with

(ξκ,σ,k)κ′,k′ = δκ,κ′δk,k′ξσ,

where δκ,κ′ is the Kronecker delta. While Hatom does not have countable vector
space dimension its subspace of finitely nonzero sequences has the set {ξκ,σ,k} as
a vector space basis. However, the set is a generalised product type basis for Hatom

in the sense below. In particular we may define the infinitesimal unit translation
flex ux in the x direction as the well-defined infinite sum

ux =
∑
κ,k

ξκ,x,k.

Similarly we may write ηe,k for the basic sequence in Hbond which is zero but for
the value 1 for the coordinate position e, k.

Let (G, p) be a countably infinite bar-joint framework in Rd. A product type
basis for a subspace M of the velocity space Hatom of (G, p) is a countable set
S = {w1, w2, . . . } of vectors in M such that,

(i) every vector u in M has a unique representation

u=
∑
n∈N

αnw
n, αn ∈R,

(ii) for each index k only a finitely many elements wn of S have nonzero kth
component wn

k .
The basic grid framework CZd has evident nonzero infinitesimal flexes u that

act only on linear subframeworks (copies of CZ in R2). One can show that a set, Sd

of representatives of all such flexes, is a product type basis for Hfl. In fact, we show
elsewhere that it is possible to identify product type bases for the vector space
of all infinitesimal flexes for many other basic crystal frameworks. Two examples
are Ckag and the 3D crystal framework COct for example.

The following definition gives the context for the special classes of infinitesimal
flexes of a crystal framework that will concern us.

Definition 6. Let C be a crystal framework with translation group T as above.
(i) An infinitesimal flex (or velocity sequence) u is strictly periodic if the

following periodicity condition holds: uκ,k = uκ,0 for all k ∈Zd.

(ii) An infinitesimal flex (or velocity sequence) u is a supercell-periodic if uκ,k =
uκ,0, for all k in a subgroup r1Z× · · · × rdZ for some positive integers r1, . . . , rd.

(iii) An infinitesimal flex u is a local infinitesimal flex if uκ,k = 0 for all but
finitely many values of κ, k.

Note the elementary fact that if there exists a local infinitesimal flex for C
then this framework is rich in supercell-periodic flexes. Indeed if u is such a local
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infinitesimal flex and if k→ αk is any supercell-periodic coefficient sequence then
the sum

w=
∑
k

αkTku,

is a well-defined supercell-periodic infinitesimal flex.
In Section 5 we turn attention to complex scalar infinitesimal flexes which are

phase-periodic, the real and imaginary parts of which provide real infinitesimal
flexes. It is such phase-periodic flexes that are closely allied to rigid unit mode
wave vectors. They lead naturally to the formulation of a matrix-valued function
associated with C and T and we describe this association in the next section.

The strictly periodic infinitesimal flexes are also referred to as fixed lattice
flexes. We remark that there is an interesting class of infinitesimal flexes which
lies outside our considerations here of (fixed lattice) rigid unit mode analysis,
namely the affinely periodic infinitesimal flexes. Such "flexible lattice" flexes allow,
roughly speaking, an infinitesimal adjustment of the period vectors. (See also the
comments on the frameworks in Figure 5.) For this and discussions of associated
finite motions ee, for example, Borcea and Streinu [1], Malestein and Theran [16],
Owen and Power [19], Power[20] and Ross et al [21].

Infinitesimal rigidity. If a connected bar-joint framework (G, p), finite or
infinite, has no infinitesimal flexes other than rigid motion flexes then it is said
to be infinitesimally rigid. The simplest way in which this occurs is when (G, p)
is sequentially infinitesimally rigid (Owen and Power [19]) in the sense that it
is the union of an increasing sequence of infinitesimally rigid finite frameworks.
This is evidently the case for the edge rich frameworks Ctri, Cgra, CTet and
C2
Dia. In particular it follows from the definitions below that the primitive RUM

spectrum of each of these frameworks is trivial. Indeed, the RUM spectrum
of a crystal framework is trivial when there are no phase-periodic infinitesimal
flexes other than the strictly periodic flexes. For a sequentially rigid framework
all infinitesimal flexes are trivial rigid motion infinitesimal flexes, and the only
phase-periodic flexes of this type are the strictly periodic rigid motion translation
infinitesimal flexes.

On the other hand we remark that overconstrained frameworks such as
these edge-rich crystal frameworks are rich in periodic infinitesimal self-stresses.
Following terminology for finite frameworks, a self-stress w= (we)e∈Ce of a crystal
framework C is an assignment of scalars to edges such that for every framework
point pκ,k the finite vector sum∑

τ,l:e=[pκ,k,pτ,l]∈Ce

we(pκ,k − pτ,l),

taken over all edges incident to pκ,k, is equal to zero. This is a companion notion
to that of an infinitesimal flex and indeed w is a self-stress if an only if w lies in
the nullspace of the transpose of the rigidity matrix R(C)T . One may similarly
consider subspaces of strictly periodic self-stresses and phase-periodic self-stresses
in a manner following the definitions for flexes.

One may relax the notion of infinitesimal rigidity to various forms of rigidity
which are associated with a (possibly normed) space S of velocity vectors. This is
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a viewpoint taken in Owen and Power [17], [19] leading to definitions of square-
summable rigidity, summable rigidity, vanishing flex rigidity (c0-rigidity) and local
flex rigidity (c00-rigidity). It is an interesting issue to determine which classes of
crystal frameworks are rigid in such a relative sense. In Kitson and Power [15] we
analyse c0-rigidity and its distinction from the other forms of rigidity.

4. The matrix function ΦC(z).

A matrix-valued function, or symbol function, for C is determined by the
periodicity group T and the given motif (Fv, Fe) as follows.

Write z = (z1, . . . , zd), with zi ∈C, |zi|= 1, to denote general points in the d-
torus Td. Also, write zk for the monomial function z→ zk from Td to C. Since
zi

−k = zi
k for points on the circle T we may think of general monomials zk as

products of the zi or zi with just non-negative powers.
It is convenient to define the edge vector ve of the directed edge e= [pκ,k, pτ,l]

as ve = pκ,k − pτ,l and to write ve,σ, for 1≤ σ≤ d, for the coordinates of ve.

Definition 7. Let C be a crystal framework in Rd with motif sets

Fv = {pκ,0 : 1≤ κ≤ |Fv|}, Fe = {ei : 1≤ i≤ |Fe|}.

Then ΦC(z) is the matrix-valued function on Td with rows labelled by the edges
e= [pκ,k, pτ,l]∈ Fe and with columns labelled by pairs κ, σ. As a matrix of scalar
function the entries are given by

(ΦC(z))e,(κ,σ) = ve,σ z̄
k,

(ΦC(z))e,(τ,σ) =−ve,σ z̄
l,

if κ ̸= τ , while for a reflexive edge, with κ= τ ,

(ΦC(z))e,(κ,σ) = ve,σ(z̄
k − z̄l).

The other entries are equal to the zero function.

Different motifs for T give matrix functions that are equivalent in a natural
way. Indeed, replacement of a motif edge (resp. vertex) by a T -equivalent one
results in the multiplication of the appropriate row (resp. columns) by a monomial.
Thus in general two motif matrix functions Φ(z) and Ψ(z) satisfy the equation

Ψ(z) =D1(z)AΦ(z)BD2(z),

where D1(z), D2(z) are diagonal matrix functions with monomial functions on
the diagonal and where A,B are permutation matrices, associated with edge and
vertex relabelling.

The next two examples and those we consider later occur in two and three
dimension and in this case we simply write (z, w) and (z, w, u) respectively for
general points of T2 and T3.
Example (a). The motif for Csq implied by Figure 2 has Fv equal to the ordered
set {(1/2, 0), (0, 1/2)} and Fe = {e1, . . . , e5}. Here the period vectors, given by the
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sides of the parallelogram unit cell, are scaled with unit length. It follows that the
matrix function for Csq is

1

2


1 −1 −1 1
−1 −1 z̄ z̄
w̄ w̄ −1 −1
−w̄ w̄ z̄ −z̄
0 0 −2 + 2z̄ 0

 .

If the final row of ΦCsq(z, w) is deleted then one has the matrix function for
the realisation of the square grid framework, CZ2 , when rotated by π/4. This
framework is in Maxwell counting equilibrium and so the matrix function is square
and we may compute

detΦCZ2 (z, w) = 4 (w̄ − z̄) (w̄z̄ − 1) .

We consider further matrix function analysis for this example in Section 7,
Example (f).
Example (b). With a choice of labeling for the motif in Figure 1, with period
vectors of length one, the matrix function Φkag(z, w) of the kagome framework
Ckag takes the form given by

Φkag(z, w) =
1

4



−2 0 2 0 0 0

0 0 1 −
√
3 −1

√
3

−1 −
√
3 0 0 1

√
3

2 0 −2 z 0 0 0

0 0 −1
√
3 zw −

√
3zw

w
√
3w 0 0 −1 −

√
3


.

In this case the determinant is equal to a constant multiple of

zw(z − 1) (w − 1) (z − w).

For a different motif for the given translation group this determinant would change
by a monomial factor.

Polynomials for crystal frameworks. Let C be a crystal framework in Rd

with a given isometry group T . If C is in Maxwell counting equilibrium then we
may form the polynomial det(ΦC(z)) of the matrix function associated with a
particular motif. This is a polynomial in the coordinate functions zi and their
complex conjugates zi, and is possibly identically zero. In the nonzero case we
remove dependence on the motif and formally define the crystal polynomial
pC(z1, . . . , zd), associated with the pair C, T and a lexicographic monomial
ordering, as the product αzγ det(ΦC(z)) where the multi-power γ and the scalar
α are chosen so that

(i) pC(z) is a linear combination of nonnegative power monomials,

pC(z) =
∑
α∈Zd

+

aαz
α,

(ii) pC(z) has minimum total degree, and
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(iii) pC(z) has leading monomial with coefficient 1.

It is natural to order monomials lexicographically, so that, for example, the
monomial function z21z2 has higher multi-degree than z1z

3
2 . In this way one defines

the leading term of a multivariable polynomial. (See also the discussion in Cox,
Little and O’Shea [2] for example.)

It follows that the crystal polynomial for the kagome framework and the
(primitive case) translation group, as above, is

pkag(z, w) = (z − 1) (w − 1) (z − w) ,

with lexicographic order z >w. Also, for the grid framework CZ2 and the non-axial
translation group given above we see from the form of the determinant that

pZ2(z, w) = (z − w)(zw − 1).

For the grid frameworks CZd it is in fact more natural to take the standard axial
translation group T and a minimal motif which consists of a single vertex and
d edges, one for each axial direction. For this pair C, T the crystal polynomial is
simply

(z1 − 1)(z2 − 1) . . . (zd − 1).

5. Rigid Unit Modes and ΦC(z).

We first show how ΦC(z) arises as a family of matrices parametrised by points
z in the d-torus where the matrix for z = ω determines the possible existence of
infinitesimal flexes which are periodic modulo the multi-phase ω.

Let Katom,Kbond be the complex scalar versions of the vector spaces
Hatom,Hbond. Write Kω

a for the complex vector subspace space of complex velocity
vectors v= (vκ,k) such that vκ,k = ωkvκ,0 for κ∈ Fv, k ∈Zd. This is a finite-
dimensional subspace of Katom of dimension d|Fv|.

Similarly let Kω
b ⊂Kbond be the subspace of the bond vector space of complex

sequences w= (we)e∈Ce which are phase-periodic in this way for the phase ω. Note
that the rigidity matrix R(C) provides a linear transformation Rω :Kω

a →Kω
b by

restriction. Indeed, with d= 3, let γi, 1≤ i≤ 3, denote the usual generators for Z3

and let Wi and Ui be the shift transformations on Katom and Kbond respectively,
with

Wi : ξκ,σ,k → ξκ,σ,k+γi ,

Ui : ηe,k → ηe,k+γi .

Then we have the commutation relations

R(C)Wi =UiR(C), 1≤ i≤ 3,

and the identities Wiu= ωiu, for u∈Kω
a , and Uiv= ωiv, for v ∈Kω

b . Thus for u
in Kω

a ,
Ui(R(C)u) =R(C)(Wiu) =R(C)(ωiu) = ωiR(C)u

and so R(C)u∈Kω
b .
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Let {ξκ,σ : κ∈ Fv, σ ∈ {x, y, z}} be the natural basis for the column vector space
C3|Fv |. Write ξωκ,σ for the displacement vectors in Kω

a which "extend" the basis
elements ξκ,σ. Formally, in terms of Kronecker delta symbol, we have

(ξωκ,σ)κ′,k = δκ,κ′ωkξκ,σ.

Similarly let ηe, e∈ Fe, be the standard basis for C|Fe| and write ηωe , e∈ Fe, for
the natural associated basis for Kω

b , with

(ηωe )e′,k = ωkδe,e′ .

Theorem 1. Let C be a crystal framework in Rd with matrix function ΦC(z)
and let ω ∈Td. Then the scalar matrix ΦC(ω) is the representing matrix for the
linear transformation Rω :Kω

a →Kω
b with respect to the natural bases {ξωκ,σ} and

{ηωe }.

Proof. Let ũ be a velocity vector in Kω
a determined by u∈Cd|Fv | as above. Let

e in Fe be an edge of the form [pκ,k, pτ,l] and let ⟨·, ·⟩ denote the bilinear form
on Cd. Then, from the definition of the rigidity matrix R(C), the (e, 0)th entry of
R(C)ũ in Kω

b can be written as

(R(C)ũ)e,0 = ⟨ve, ũκ,k⟩+ ⟨−ve, ũτ,l⟩

= ⟨ve, ωkuκ⟩+ ⟨−ve, ω
luτ ⟩

= ⟨ωkve, uκ⟩+ ⟨−ωlve, uτ ⟩.
This agrees with (ΦC(ω)u)e, both in the case κ ̸= τ and in the reflexive case κ= τ
and the theorem follows. �

In particular the strictly periodic (one-cell-periodic) (real or complex)
infinitesimal flexes are determined by the (real or complex) vectors in the nullspace
of the real matrix Φ(1, . . . , 1). This periodic rigidity matrix has rows carrying
entries from the vectors ve,−ve in the case of nonreflexive edges of the motif (in
the sense of Definition 7), with reflexive edges contributing zero rows.

The terminology of the following definition is justified in the next section.

Definition 8. The rigid unit mode spectrum (RUM spectrum) of the crystal
framework C in Rd, with translation group T , is the set Ω(C) of points ω=
(ω1, . . . , ωd) in Td for which there is a nonzero vector u in Kω

a which is an
infinitesimal flex for C.

We also define the rigid unit modes themselves as the nonzero infinitesimal
flexes that give rise to points in the RUM spectrum. The mode multiplicity
function as the integer-valued function defined on Ω(C) by µ(ω) = dimkerRω.

Note that from the theorem we have

Ω(C) = {ω ∈Td : kerΦ(ω) ̸= {0}}.
In particular, from a commutative algebra perspective this set can be viewed as
a real or complex algebraic variety.

Evidently the RUM spectrum is a construct of the crystal framework C =
(Fv, Fe, T ) and the ordering of coordinates matches the ordering of the generators
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of the translation group T = {Tk : k ∈Zd}. In the case of motif change, under a
fixed translation group T = {Tk : k ∈Zd}), one has two logically distinct crystal
frameworks, C = (Fv, Fe, T ) and C′ = (F ′

v, F
′
e, T ) with formally distinct symbol

functions, Φ(z) and Ψ(z) say. However, our earlier observation relating these
functions shows that in this case Ω(C) and Ω(C′) are identical subsets of the
d-torus.

Remarks. In the next section we make precise the connection between rigid unit
modes as we have defined them above and the low energy phonon modes that are
of interest to material scientists, and are referred to as RUMs. The convention
in material science is to indicate the set of reduced wave vectors that arise with
these modes, rather than indicating a set of multi-phases, as we are doing here for
their mathematical infinitesimal flex counterparts, but the conventions are simply
related.

If a material RUM has a wave vector k= (k1,k2,k3) then it has a multi-
phase ω= (ω1, ω2.ω3) in T3 obtained by exponentiating, with ωi = exp(2πiki).
The reduced wave vector for the RUM is the reduction modulo 1 in each coordinate
and is the point k′ = (k′

1,k
′
2,k

′
3) in the unit cube [0, 1)3. It is obtained by taking

the (principal) logarithms of each coordinate of the multi-phase.
For a simple crystal framework C in two or three dimensions (see Example

(f) in Section 7 for example) the set of RUM wave vectors often consists of
the intersection of [0, 1)d with a union of a finite number of points, lines and
planes (hyperplanes for d> 3) which are determined by equations over Q. Also, in
interesting cases the RUM wave vectors may fill all of [0, 1)d, with Ω(C) =Td. In
these cases we say that Ω(C) is a standard RUM spectrum. Otherwise, borrowing
terminology from Dove et al [6], we shall say that the RUM spectrum is exotic.
This includes the case of curves or curved surfaces in the unit cube. (The author
is not aware of examples of crystal frameworks whose RUM spectrum has isolated
irrational points or "exposed" irrational lines.)

The dimension dimrum(G, p). Returning to the RUM spectrum recall that Ω(C)
is a well-defined set in Td determined by the underlying bar-joint framework (G, p)
and a translation group T = {Tk : k ∈Zd}, and where generator permutations for
T correspond to a coordinate permutation. We now define the RUM dimension
of (G, p), which takes an integer value between 0 and d inclusive.

We first define the primitive RUM spectrum Ωprim(G, p) of the crystallographic
bar-joint framework (G, p) as the RUM spectrum for the crystal framework
C associated with (G, p) and a maximal translation group of isometric
automorphisms of (G, p). (The terminology borrows from the notion of a primitive
unit cell for a crystallographic set in Rd.) To see that Ωprim(G, p) is well-defined,
up to permutation of the coordinates, we first recall the classical fact of Bieberbach
that a crystallographic group in any number of dimensions has a unique maximal
normal free abelian subgroup. In our setting this entails that two maximal
translation subgroups T = {Tk : k ∈Zd} and T ′ = {T ′

k : k ∈Zd} of the isometric
(spatial) automorphism subgroup are congruent by an isometry Z of Rd which
effects an automorphism Z of (G, p). In this case we have T ′

k =ZTkZ
−1 for all

k. Moreover, in view of our earlier discussion we may assume that the motif
(Fv, Fe) for T is given and that the motif (F ′

v, F
′
e) for T ′ is chosen as the image

of (Fv, Fe) under Z, with a corresponding labelling. It follows that the respective
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symbol functions Φ(z) and Φ(z)′ are simply related. Indeed, let S be the linear
isometry component of Z. Then, in the notation for the symbol functions the new
motif edge vector v′e associated with framework edge Ze∈ F ′

e =ZFe is the vector
Zve =Zpκ,k − Zpτ,l which, being a difference, is equal to Sve. It follows from this
that

Φ(z)′ =Φ(z)X̃

where X̃ is an invertible block diagonal (scalar) matrix X ⊕ · · · ⊕X (with d|Fv|
summands). The well-definedness of the primitive RUM spectrum of (G, p) now
follows.

Definition 9. Let (G, p) be the crystallographic bar-joint framework, that
is, a bar joint framework that underlies a crystal framework. Then the RUM
dimension dimrum(G, p) of (G, p) is the real dimension of the real algebraic variety
Ωprim(G, p).

The dimension here can be considered as the topological dimension of the
manifold of nonsingular points in case Ωprim(G, p) is irreducible. Otherwise it is
the maximal such dimension over irreducible components. In fact we see below
that the dimension of the RUM spectrum Ω(C) of a crystal framework does not
depend on the choice of translation group in view of a simple relationship between
the RUM spectrum and the primitive RUM spectrum. Thus we may view the RUM
dimension of C as this common dimension.

In view of the determinations in Section 7 and our comments below we shall
see that

dimrum(Csq) = 0, dimrum(Cstar) = 1, dimrum(Ckag) = 1, dimrum(Coct) = 1,

in two dimensions, and in higher dimensions we have

dimrum(CZd) = d− 1, dimrum(CKnet) = 2, dimrum(COct) = 1,dimrum(CSOD) = 3.

For a framework in Maxwell counting equilibrium the variety Ω(C) is simply
the zero set of pC(z). For the kagome framework, for example, the polynomial is
(z − 1)(w − 1)(z − w) and we obtain the set which is the union of the three curves
on T2 defined by z = 1, w= 1 and z =w. In terms of wave vectors this translates
to the union of the three parametrised lines (0, α), (α, 0) and (α, α). Thus the
RUM dimension is 1.

When C is edge rich, with |Fe|>d|Fv| then one may instead form the finite
family of polynomials of the d|Fv| × d|Fv| submatrices of ΦC(z). Then the RUM
spectrum will be a variety contained in the intersections of the zero sets of these
polynomials on the d-torus.

We remark that the RUM spectrum will generally carry symmetries reflecting
the point group symmetries of the crystal framework. Even so the point group
may be trivial and the following rather theoretical inverse problem may well have
an affirmative answer.
Problem. Let q(z, w) be a polynomial with real coefficients with q(1, 1) = 0. Is
there a crystal polynomial p(z, w) whose zero set on the 2-torus is the same as
that for q(z, w) ?

Floppy modes and their asymptotic order. In applications the term floppy
mode often refers to rigid unit flexibility and oscillation within a large supercell
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and there is interest in the asymptotic order of the number of such modes as the
supercell dimensions tend to infinity. In particular, a so-called order N crystal
structure (to use terminology employed by material scientists) is one for which the
asymptotic order agrees with the order of the number of atoms in the supercell,
which is of order N = n3 in an n× n× n supercell of a 3D crystal. We now
formalise this terminology in the direction of infinitesimal flexes and indicate
connections with the RUM spectrum.

Definition 10. Let C be a crystal framework in Rd with translation group
T = {Tk : k ∈Zd}.

(i) An n-fold periodic floppy mode of C is a nonzero real vector u= (uκ,k) in the
nullspace (kernel) of the rigidity matrix R(C) which is periodic for the subgroup
(nZ)d. That is, uκ,k = uκ,0 for all k ∈ (nZ)d.

(ii) νn is the dimension of the real linear space of real n-fold periodic floppy
modes.

(iii) A crystal framework C in R3 is of order Nα for floppy modes, where
α= 0, 13 ,

2
3 or 1, if νn ≥Cn3α for all n for some C > 0, while there is no such

constant for the power α+ 1
3 . In particular C is said to be of order N if νn ≥ cn3

for some constant c > 0.

Since the real and imaginary parts of a complex infinitesimal flex are real
infinitesimal flexes it follows that νn ≤ dimkerRn(C)≤ 2νn where Rn(C) is the
rigidity matrix for n-fold periodicity viewed as a complex vector space linear
transformation. Thus, in considerations of asymptotic order we may more
conveniently consider the complex scalar case. The matrix Rn(C) is the rigidity
matrix for strict periodicity relative to the subgroup T ′ of T corresponding to the
index subgroup nZ× · · · × nZ. Accordingly it is given as the periodic rigidity
matrix associated with a motif for the n-fold supercell. Such a motif can be
taken simply as the union of nd translates of the given motif. More conveniently,
it is possible to explicitly block diagonalise Rn(C) (as a complex vector space
transformation) as a direct sum (even an orthogonal direct sum for natural inner
product) of the matrices Φ(ω) as ω ranges over the set of points, Tn say, with
coordinates ωj of the form e2πkj/n, where 0≤ kj <n are integers. This then gives
the following counting formula for floppy modes:

dimkerRn(C) =
∑

0≤ki<n,1≤i≤d

dimker(ΦC(ω
k))

where ωk = (e2πik1/n, . . . , e2πikd/n). This formula resolves a question posed by
Simon Guest. An elementary direct proof follows from the fact that nonzero
vectors u, v from distinct nullspaces kerΦC(ω

k) are linearly independent, on
the one hand, and that, on the other hand, by the usual averaging arguments,
any n-fold periodic flex may be decomposed as a sum of pure frequency n-fold
periodic infinitesimal flexes. By "pure frequency" we mean phase-periodic in each
coordinate for some nth root of unity (depending on the coordinate). Details are
given in the Appendix.
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It is of interest then to consider the rational subset of the RUM spectrum
corresponding to periodic floppy modes, namely

Ωrat(C) :=
∞∪
n=1

(Ω(C) ∩ Td
n)

and to ask:

To what extent does the asymptotic order of the periodic floppy modes
determine the RUM dimension ?

In the case of crystal frameworks with a primitive RUM spectrum which is
standard in the above sense, there is in fact a close connection. We make this
clear below in the case of order N (the maximal order). In the exotic case one
should expect examples where the rational points of the RUM spectrum are not
dense. It would be of theoretical interest to identify, for example, a curved RUM
spectrum only containing a finite number of rational points. Possibly the regular
octagon ring framework Coct has this property.

For the proof of Theorem 2 we note the following lemma.

Lemma 1. (i) Let C be a d-dimensional crystal framework with motif set
(Fv, Fe) and RUM spectrum Ω(C)⊆Td. Then

d− 1 + |Ω(C) ∩ Td
n| ≤ dimkerRn(C)≤ d|Fv||Ω(C) ∩ Td

n|

where |Fv| is the number of vertices in the partition unit cell and where Td
n is the

"discrete torus" (in the d-torus Tn) determined by nth roots of unity.
(ii) If dimkerRn(C)≥ cnα for some c > 0, α > 0, then dim(Ω(C))≥ α.

Proof. (i) The counting formula implies the second inequality since
dimker(ΦC(ω))≤ d|Fv| for all ω. Also, if ωk ∈Ω(C) ∩ Td

n then dimkerΦC(ω
k)≥ 1,

while for wave vector k= (0, 0, 0) we have dimker(ΦC(1, . . . , 1))≥ d, since there
are certainly d linearly independent translation infinitesimal flexes. Thus the first
inequality follows.

(ii) follows from (i) since for any algebraic variety Ω, if the dimension is less
than the integer α then the cardinality of Ω ∩ Td

n is at most of order nα−1. �
It can be shown by direct linear algebra, as we now sketch, that if a crystal

framework has order N then there exists a local infinitesimal flex.

Theorem 2. With the notation above the following properties are equivalent
for a crystal framework C in Rd.

(i) C has a local infinitesimal flex.
(ii) C is of order N .
(iii) dimrum(C) = d.
(iv) Ω(C) =Td.
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Proof. To see that (i) implies (ii) note that if u is a nonzero local infinitesimal
flex and ω is any multi-phase in Td then the sum

v=
∑
k∈Zd

ωkTku

is a phase-periodic infinitesimal flex. Also it is nonzero for almost every ω. Thus
(iv) holds and hence (iii) and (ii).

If (ii) holds then (iii), and hence (iv), follows from the lemma and the fact that
Ω(C) is a real algebraic variety in Td.

Since (iv) implies (ii) it remains to show that (ii) implies (i) and this we do in
the Appendix. �

RUM spectrum verses primitive RUM spectrum. Note that if one doubles
all the period vectors for C to obtain C′ then it follows that the new RUM spectrum
contains the range of the old spectrum under the argument doubling map, π :
(w1, w2, w3)→ (w2

1, w
2
2, w

2
3). This follows immediately from the definition. The

new symbol function, the number of rows and columns of which have increased
2d-fold, is less useful at this point. In fact the map π, and its general form for
arbitrary multiples of period vectors, gives a surjection π : Ω(C)→Ω(C′). (The
details are given in the Appendix.) In particular while as a set Ω(C′) can be
"smaller" that Ω(C) (for example, horizontal lines with rational intercepts in Ω(C)
may be coalesced in Ω(C′) under π) the dimension of the spectrum (as indicated
above) remains the same.

Square-summable flexes. An infinitesimal flex being local represents the
strongest form of rapid decay possible since it applies zero velocities to the
framework points outside some bounded region. It is natural to enquire to what
extent a crystal framework C might be resistant to flexes whose velocities diminish
to zero at infinity. With this in mind write K2

a and K2
b for the Hilbert spaces of

square summable sequences in Katom and Kbond. Thus u= (uκ,k)∈K2
a is such that

the sum of the squares of the Euclidean norms |uκ,k| is finite. It is elementary
to show that R(C) then determines a bounded Hilbert space operator from K2

a
to K2

b . For a given translation group T this operator intertwines the associated
shift transformations, as before, although now these transformations are unitary
operators on K2

a and K2
b . Identifying square-summable sequences with square-

integrable functions in a standard way one obtains unitary equivalences Ua and Ub

between K2
a and L2(Td)⊗ Cd|Fv| and between K2

b and L2(Td)⊗ C|Fe| respectively.
The corresponding unitary transform UbR(C)U∗

a of the operator R(C) is then
a multiplication operator between these matrix-valued function spaces and the
multiplying function is in fact the symbol function ΦC(z). In this way the matrix
function for C and its translation group appears naturally from the point of view
of square-summable velocity sequences. For more details see Owen and Power [19]
where other operator-theoretic considerations are given.

More speculatively, it would be of interest to investigate other possible roles
of the matrix function, particularly with regard to approximate flexes and
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quantitative issues. For example for the 3D framework C we may define the non-
negative scalar function λ on T3 with

λ : (z1, z2, z3)→ λmin(ΦC(z1, z2, z3)
∗ΦC(z1, z2, z3))

where λmin(A) denotes the smallest eigenvalue of the positive operator A. In
particular, when the spectrum is trivial, that is, equal to the singleton set
{(1, 1, 1)} the function is nonvanishing except at this point and so λ could be
viewed as a measure of RUM resistance.

6. RUMs and low energy phonons.

In the less idealised setting of traditional mathematical crystallography,
mathematical models for crystalline dynamics assume that the atoms oscillate
harmonically. The bond strengths are finite and a dynamical matrix embodying
them governs the modes and wave vectors of phonon excitations. We show how
the RUM spectrum Ω(C) arises as the set of wave vectors k of the harmonic
excitations of C which induce vanishing bond distortion in their low frequency
(long wavelength, low energy) limits.

Suppose that C is a crystal framework in Rd, with motif data (Fv, Fe, T ) and
suppose that the vertices pκ,k undergo a standard wave motion,

pκ,k(t) = pκ,k + uκ,k(t), κ∈ Fv, k ∈Zd,

where uκ,k(t) represents the local oscillatory motion of atom κ in the translated
unit cell with label k ∈Z3. Following standard formula-simplifying conventions,
the framework point motions take values in Cd, the case of real motion being
recoverable from real and imaginary parts. (See Dove [5].) Thus it is assumed
that we have

uκ,k(t) = uκ exp(2πik · k) exp(iαt)

where u= (uκ)κ∈Fv is a fixed vector in C3|Fv|, where k is the wave vector and
where α is the frequency.

Consider now the distortion ∆e(t) for the edge e= [pκ,k, pτ,k+δ(e)] measured as
the change in the square of the edge length. We have

∆e(t) := |pκ,k(t)− pτ,k+δ(e)(t)|2 − |pκ,k(0)− pτ,k+δ(e)(0)|2

= 2Re⟨pκ,k − pτ,k+δ(e), uκ,k(t)− uτ,k+δ(e)(t)⟩

+2Re⟨pκ,k − pτ,k+δ(e), uκ,k(0)− uτ,k+δ(e)(0)⟩

+ϵ(u,k, k, αt)

where

ϵ(u,k, k, αt) = |uκ,k(t)− uk+δ(e)(t)|2 − |uκ,k(0)− uk+δ(e)(0)|2.

First note that in any finite time period [0, T ] the difference quantities ϵ(u,k, k, αt)
tends to zero uniformly, for all t∈ [0, T ] and all k in Z3, as the frequency α tends
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to zero. This follows readily from the fact that for any θ the quantity

| sin(αt+ θ)− sin(αt)|2 − | sin(θ)− sin(0)|2

tends to zero uniformly for t∈ [0, T ] as α tends to zero.
For the other terms for ∆e(t) note that

2Re⟨pκ,k − pτ,k+δ(e), uκ,k(t)− uτ,k+δ(e)(t)⟩

= 2Re[e−αt−2πik·k⟨pκ,k − pτ,k+δ(e), uκ − ωδ(e)uτ ⟩]

= 2Re[e−αt−2πik·k⟨pκ − pτ,δ(e), uκ − ωδ(e)uτ ⟩]

which is zero, irrespective of t, if (ωkuκ) is an infinitesimal flex of the framework.
It follows that we have proven the implication (i) implies (ii) in the following

proposition and in fact the converse assertion follows from the same equations.
The theorem underlies the correspondence of the points in Ω(C) with the wave
vectors of RUM phonons that arise in simulations.

Theorem 3. Let C be a crystal framework, with specified periodicity, and let k
be a wave vector with point ω ∈T3. Then the following assertions are equivalent.

(i) (ωkuκ)κ,k is a nonzero phase-periodic infinitesimal flex for C.
(ii) For the vertex wave motion

pκ,k(t) = pκ,k + uκ exp(2πi k · k) exp(iαt),
and a given time interval, t∈ [0, T ], the bond length changes

δe(t) = |pκ,k(t)− pτ,k+δ(e)(t)| − |pκ,k(0)− pτ,k+δ(e)(0)|,

tend to zero uniformly, in t and e, as the wavelength 2π/α tends to infinity.

In the last two decades the RUM spectra of frameworks associated with specific
material crystals have been derived by experiment and by simulation using lattice
dynamics. Some of the results of this approach can be found in Giddy et al
[7], Hammond et al [9], [10], Dove et al [6] and Swainson and Dove [23]. In
particular the programme CRUSH has been used for this purpose and this method
reflects principle (ii) in the theorem above. Indeed in the simulations a double
limiting process is used (the split atom method) in which each shared vertex
(often an oxygen atom) is duplicated, for each rigid unit, and connected by bonds
of zero length and increasing strength, tending to infinity. In this set up the
RUM wave vectors coincide with those for which the long wavelength limits have
vanishing energy and through this connection they can be identified in simulation
experiments and counted.

7. Determinations of RUM spectra.

The rigid unit mode spectrum is now determined for a variety of basic
crystal frameworks. Also we emphasise an infinitesimal flex method for the
identification of lines and planes of wave vectors. The spectrum is of standard
type (in the sense given in the remarks in Section 5) for the frameworks
CZd , Csq, Cstar, Ckag, CKnet, COct and CSOD, while for the 2D zeolite Coct it is a union
of four closed curves.
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Consider once again the basic grid framework CZ2 in the plane with motif
consisting of a single vertex, Fv = {pκ}, and two edges. Examining all edges it
becomes evident that there exists an infinitesimal flex u supported on the x-axis,
with uκ,(k1,0) = (1, 0) for all k1 ∈Z. Using all the parallel translates T(0,k2)u of u,
we may define a phase-periodic velocity vector v in Katom,

v=
∑
k2∈Z

ωk2
2 T(0,k2)u,

where ω2 is a fixed point in T. Note that v is well-defined and

R(C)v=R(C)
∑
k2∈Z

ωk2
2 T(0,k2)u=

∑
k2∈Z

ωk2
2 R(C)T(0,k2)u=

∑
k2∈Z

ωk2
2 T(0,k2)R(C)u= 0.

Thus v is an infinitesimal flex, phase-periodic for the point (1, ω2) in T2 and
so (1, ω2) lies in the RUM spectrum. In the language of wave vectors the RUM
spectrum contains the line of wave vectors (0, α). By symmetry the line (α, 0)
is also included. Similar arguments apply to the kagome lattice which also has
linearly localised infinitesimal flexes. (See also [8], [11] for example.)

More generally, suppose that a crystal framework C has a nonzero infinitesimal
flex u which is

(a) band limited, in the sense of being supported by a set of framework vertices
within a finite distance of a direction axis for T , and

(b) periodic, or more generally, phase-periodic in the direction axis direction.

By (a) one can form a sum analogous to that above, using the
complementary axis direction(s), to obtain a well-defined phase-periodic
infinitesimal displacement which, by translational invariance and linearity, is an
infinitesimal flex. If ω1 is the phase in (b) then we deduce that {ω1} × Td−1 is
contained in Ω(C).

Thus, for the grid framework CZ3 in three dimensions one deduces from the
evident line-localised infinitesimal flexes that there are three surfaces, z = 1, w= 1
and u= 1, in Ω(CZ3). In general a line-localised flex of this type leads directly to
a hyperplane of wave vectors in the RUM spectrum.

Similar observations hold for plane-localised flexes. In three dimensions, for
example, such a flex, which is assumed to be "in-plane phase-periodic", leads to
a line of RUM wave vectors. This is the case for COct, considered below, and the
RUM spectrum here is the union of these planes.

Example (a): The regular 4-ring framework Cstar. This 2D zeolite is
defined by translates of the regular 4-ring of equilateral triangles in Figure 6.
It is sufficiently simple that one can deduce its RUM spectrum and its crystal
polynomial pstar(z, w) from infinitesimal arguments.

For a motif we may take Fe to consist of the edges of the 12-edged star and
take Fv to be the set of four vertices of the square together with the westward
and southern vertex. The four edges in the motif incident to the external vertices
(north and eastward) provide four rows of the 12 by 12 matrix ΦC(z, w) each of
which carries simple monomials (either z or w or their conjugates). Thus pC(z, w)
has total degree at most 4. One can identify band-limited infinitesimal flexes as
indicated in Figures 6 and 7. Here the top and bottom vertices of each are fixed
and there is horizontal periodic extension to a band-limited infinitesimal flex. In



25

the former case there is two-step horizontal periodicity while in the latter case
there is strict horizontal periodicity although the band is two cells wide.

Figure 6. A 2-cell-periodic band-limited flex of Cstar.

Figure 7. A 1-cell-periodic band-limited flex of Cstar.

From the discussion above the first band-limited flex shows that the phase
(−1, ω2) lies in Ω(C) for all ω2 ∈T. By symmetry (ω1,−1)∈Ω(C) for all ω1 ∈T.
The second band-limited flex shows that {1} × T lies in Ω(Cstar) and hence so too
does T× {1} by symmetry. Thus Ω(C) contains the set

({1} × T) ∪ (T× {1}) ∪ ({−1} × T) ∪ (T× {−1})
and so pC(z, w) must be divisible by the irreducible factors z − 1, w − 1, z + 1, w +
1. Since pC(z, w) has total degree at most 4 it follows that either p vanishes
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identically or
pC(z, w) = (z − 1)(w − 1)(z + 1)(w + 1).

In fact the former case does not hold. One can see this, thematically, by
demonstrating that there are no local flexes or one may compute detΦ(1/3, 1/3) ̸=
0. Thus the RUM spectrum is precisely the fourfold union above.

Example (b): The 2D zeolite framework Coct. There are no local or band-
limited infinitesimal infinitesimal flexes evident for the regular octagon framework
and so the expectation is that the RUM spectrum is trivial or a union of proper
curves.

Returning to the 2D zeolites of Figure 5 the third of these, with external angle
8π/12, is equal to Cstar, although with a different translation group, T ′, for which
the old period vectors are rotated by π/4 and scaled by the factor

√
2. In view of

this rotation it follows that

Ω(Cstar, T ′) = {(w,w), (w,−w) :w ∈T}.
In terms of reduced wave vectors this corresponds to the subset of the unit square
[0, 1)2 given as the union of the two diagonals.

As we have noted earlier, the 4-pointed star framework is related to its 8-
pointed star companion Coct by a continuous flex. It follows that the 24 by
24 symbol matrix function Φstar(z1, z2) for the former (for T ′) is naturally
"continuously connected" to the symbol function Φoct(z1, z2) by an explicit
continuous path t→Φt(z1, z2). This in turn provides a set-valued map which
we refer to as the RUM spectrum evolution for this (periodicity-preserving) flex:

t→Ω(Φt(z)).

When this is made explicit by computation the octagon framework has exotic
(nonlinear) spectrum as indicated in Figure 8 and evolves towards the cross-
shaped spectrum of Cstar under the continuous flex.

Figure 8. The curved wave vector spectrum of Coct.

In fact one can obtain the RUM spectrum of the octagon framework completely
analytically, although with some significant algebraic complexity, as follows.
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Note first that a motif for Coct is formed by the 24 edges of the 8-ring for Fe

with Fv obtained by omitting four boundary vertices as, for example, in Figure
5. There are 8 edges with external vertices and each contributes a row to Φoct

with a simple monomial and so it follows that poct(z, w) has degree 8 at most. The
24× 24 function matrix Φoct(z) is sparse and the (at most) four nonzero functions
in each row may be conveniently normalised by dividing by the magnitude of the x-
coordinate difference for that row. The magnitudes of the nonzero nonunit entries
are then the tangents of the angles kπ/24, for k= 1, 3, 5, 7, 9, 11, all of which lie
in the field extension Q(

√
2,
√
3). The crystal polynomial can be computed and

admits an explicit factorisation as the product

poct(z, w) = p1(z, w)p2(z, w),

where

p1(z, w) = z2w − (
√
3 +

√
2)zw2 + 2(

√
3 +

√
2− 1)zw − (

√
3 +

√
2)z + w,

p2(z, w) = z2w − (
√
3−

√
2)zw2 + 2(

√
3−

√
2− 1)zw − (

√
3−

√
2)z + w.

Each of the factors is responsible for two of the four closed curves that comprise
the RUM spectrum.

Returning to the as yet unconsidered 2D zeolite of Figure 5 (the first framework
indicated, with an "8-ring of triangles encircling a square") we remark that one
can also show, by band-limited infinitesimal flex analysis, that it has standard
RUM spectrum, being the subset of the unit square [0, 1)2 given as the union of
the axes.

Each of these 2D zeolites has a 3D zeolite companion obtained by the layer
construction. The companion C̃oct for Coct also has exotic RUM spectrum and in
fact by earlier arguments contains the surface of points (z, w, u) in T3 with (z, u)
in Ω(Coct) and u any point of T.

As we have already remarked, the two-dimensional crystal framework motion
implied by Figure 5 is an example of a finite flex and continuous and smooth
flexes such as these serve to model flexibility considerations for zeolites and other
micro-porous materials. These finite motions usually take place with an associated
contraction and increase in rigid unit density. See for example the collapsing
mechanisms of Kapco et al [14] and the flexibility window determinations in Kapko
et al [12].

Example (c): A 2D zeolite with order N. Figure 9 shows a unit cell for a
2D zeolite, Cbowtie say, which is of order N . (This resolves an existence question
posed by Mike Thorpe.) To see this property one can verify that there is an
infinitesimal flex of the enclosed finite framework which assigns zero velocities to
the six boundary vertices and a nonzero vertical velocity to the central vertex.
Thus the entire framework has a local infinitesimal flex and so the RUM spectrum
is all of T2.

We remark that in general it need not be the case that an order N crystal
framework has a local infinitesimal flex internal to a unit cell. For example, one
could take a new motif and unit cell in which the central vertex is shifted to the
boundary and in this case one has to consider a threefold supercell before a local
RUM appears.
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Figure 9. A unit cell which defines Cbowtie.

Example (d): The kagome net framework CKnet and its polynomial. The
RUM spectrum of the 3D kagome net framework can be derived from that of the
2D kagome framework. The spectrum of the latter is the zero set on the torus T2

determined by the crystal polynomial, which an earlier computation showed was
equal to (z − 1)(w − 1)(z − w). One can derive this from infinitesimal flex analysis
as follows. It is elementary to show that there is no local infinitesimal flex and
so pkag(z, w) is necessarily nonzero. There are line-supported infinitesimal flexes
in the directions of the period vectors a1 and a2 so it follows from the discussion
above that (z − 1) and (w − 1) are factors. Let u be a (similar) infinitesimal flex
supported on a line in the direction a1 − a2 and consider the infinitesimal flexes

v=
∑
k∈Z

ωkT(k,0)u

for ω ∈T. In view of the triangular symmetry of Ckag in fact this flex is phase-
periodic for the phase (ω, ω) and it follows that (z − w) is necessarily a factor
of pkag(z, w). One can see, without calculation, that the total degree of this
polynomial is at most 3 and so the derivation is complete.

Moving up a dimension, a phase-periodic flex of Ckag, with phase (ω1, ω2)
say, induces a "layer-limited" infinitesimal flex of the kagome net framework
CKnet. Thus, for all ω ∈T there is an infinitesimal flex of CKnet with phase
(ω1, ω2, ω). Similar assertions hold for the other two translation group planes.
The crystal polynomial pKnet(z, w, u) has total degree at most 6 and must vanish
on the six planes z − 1 = 0, w − 1 = 0, u− 1 = 0, z − w= 0, w − u= 0, z − u= 0. It
follows that

pKnet(z, w, u) = (z − 1)(w − 1)(u− 1)(z − w)(w − u)(z − u),

for the monomial order with z >w >u.
The polynomial above was also obtained in Wegner [24] and Owen and Power

[19] by direct calculation.
The kagome net framework and its various periodic positions or placements

feature as the tetrahedral net frameworks for a range of materials and their phases.
It is the framework for β-cristobalite, for example, while a particular placement
gives the framework for tridymite. This was the first material for which curved
surfaces of RUMs were observed. (Dove et al [6].)

Example (e): Sodalite and CSOD. The framework CSOD has a symbol function
with 72 rows and columns. Indeed, it is in Maxwell counting equilibrium, being a
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3D zeolite crystal framework, and the motif set Fe consists of the edges of three
4-rings of tetrahedra. We prove that CSOD is of order N . Specifically we show,
by infinitesimal flex geometry, that there is a nonzero infinitesimal flex v of the
finite sodalite cage framework such that all the outer vertices are fixed by v. That
is, vκ,δ = 0 if pκ,δ is any of the 24 outer vertices of the cage. The "outer fixed"
sodalite cage framework has 36 free vertices with 108 degrees of freedom while
there are 144 constraining edges. Despite this considerable over-constraint there
is sufficient symmetry to allow in a proper infinitesimal flex.

We shall show that an individual 4-ring, R1 say, of the sodalite cage has an
infinitesimal flex, v(1) say, which fixes a coplanar quadruple of "outer" vertices,
such as the upper vertices of the 4-ring in Figure 4, and flexes the other quadruple
in their common plane. These four velocites have equal magnitude and in Figure
4 are directed towards two opposing corners of the imaginary cube. (See the flex
arrows in Figure 4). Taking v(1) so that these vectors have magnitude 1 it follows
that v(1) is determined up to sign and that this sign may be specified by labeling
the cube corners "a" and "r" for their attracting and repelling sense. Note that
one can label the eight corners of the imaginary cube in this manner so that no
like labels are adjacent. In this case the individual flexes v(1), . . . , v(6) of the six
4 rings of the sodalite cage have equal displacement vectors at common vertices.
This consistency shows that there is an infinitesimal flex of the entire sodalite
cage in which the outer vertices are fixed, as required.

It remains to show that there is the stated flex of the 4-ring R1. To this end
let p1, p2 be two non-opposite top vertices of R1 with intermediate vertex p3, let
p1, p3, p4 be the vertices of an inward facing face of a tetrahedron of R1 with
vertices p1, p3, p4, p5, so that the lower vertex p5 is a cube-edge midpoint. There is
a unique "inward and upward" displacement velocity u3 of the intermediate vertex
p3 which has unit length and is such (u1, u2, u3) = (0, 0, u3) is a flex for the two
edges [p1, p3], [p3, p2]. The displacement vector u3 induces a unique displacement
vector u5 which is in the direction of the cube edge and is such that

⟨u5 − u3, p5 − p3⟩= 0.

The triple u1 = 0, u3 and u5 now determine the infinitesimal motion of the
tetrahedron, with flex vector u4 for p4. However, the reversal (sign change) of
u3 induces the reversal of u5 so it is clear from the symmetric position of the
tetrahedron that u4 must be the unique unit norm "outward and downward" flex
at p4. Continuing around the ring it follows that R1 has the desired infinitesimal
flex.

One can apply similar constructive flex arguments to other zeolite frameworks
and of course to any zeolite crystal framework which contains a sodalite cage as
above, such as CLTA. Also we note (as do Kapko et al [12]) that CRWY is derived
from CSOD by replacing each tetrahedron by a rigid unit of four tetrahedra. Thus
the same infinitesimal flex geometry applies and CRWY has order N .

Example (f): Perovskite, Csq and COct. Consider the integer translation group
T and the determination of the framework through the primitive motif (Fv, Fe)
where

Fv = {0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0)}= {pκ,0 : 1≤ κ≤ 3}
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and where Fe consists of the twelve framework edges between the centres of
adjacent faces of the unit cube [0, 1]3. Thus the vertices of V (Fe)\Fv have the form
pi,γi , where γ1 = (1, 0, 0), γ2 = (0, 1, 0), γ3 = (0, 0, 1). The framework is therefore
edge rich and the matrix function ΦOct(z) is 12 by 9.

The framework COct is a 3D analogue of the 2D squares framework Csq and
may be obtained from it by a layer construction and a discarding of redundant
edges internal to the octahedra. Thus infinitesimal flexes of the 2D squares lattice
imply plane-localised flexes for COct. This observation can be made the basis for an
infinitesimal flex analysis determination of the RUM spectrum. A more algebraic
approach is possible as follows.

Performing row operations on ΦCsq(z), as given in Section 2, we see that (z, w)
is a point of the RUM spectrum if and only if the equivalent matrix

Ψ(z, w) =


1 −1 −1 1
0 −2 z − 1 z + 1
0 0 1− wz 1− wz
0 0 0 −2z + 2w
0 0 −2 + 2z 0


has rank less than 4. This occurs if and only if 1− wz 1− wz

0 −2z + 2w
−2 + 2z 0


has rank equal to 0 or 1. The rank is 0 if and only if z =w= 1, corresponding to
the two-dimensional space of rigid motions with phase (1, 1), and the rank is 1 if
and only if z =w=−1. Thus

Ω(Csq) = {(1, 1), (−1,−1)}.
The infinitesimal flex for the phase (−1,−1) is the one for which the rigid units,
in this case squares with diagonals, rotate infinitesimally in alternating senses.

The alternating rotation flex of Csq induces a plane-localised flex of COct in each
of the framework planes x= 1/2, y= 1/2, z = 1/2. It follows that Ω(COct) contains
the three sets of phases,

T× {−1} × {−1}, {−1} × T× {−1}. {−1} × {−1} × T.
That the spectrum is no more than the union of these sets and the singleton
(1, 1, 1) can be seen from a row analysis of the 12 by 9 function matrix ΦCOct

(z)
in the same style as the argument for Csq. Thus, in wave vector formalism, the
RUM spectrum of the octahedral net COct is the set of lines

(α, 1/2, 1/2), (1/2, α, 1/2), (1/2, 1/2, α)

together with the wave vector (0, 0, 0).
The corner connected octahedron net crystal framework COct is associated with

cubic perovskites, such as SiTO3, and RUM distributions have been determined
experimentally, Giddy et al [7], Dove et al [6].
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8. Appendix

The periodic floppy mode counting formula. For notational clarity we
assume that d= 3. Let r= (r1, r2, r3) and consider the finite-dimensional space
Kr

a of r-periodic complex velocity vectors.
Write k ∈ r to denote k= (k1, k2, k3) with 0≤ ki < ri. For ωl = e2πi/rl , for l=

1, 2, 3, write T3
r for "discrete torus"

T3
r = {ω= (ωk1

1 , ωk2
2 , ωk3

3 ) : k ∈ r}.

If z = (z1, z2, z3) is a point of the usual 3-torus T3 we write zk for the product
zk11 zk22 zk33 in T3. Similarly, with W1,W2,W3 defined as the shift transformations
Tγ1 , Tγ2 , Tγ3 restricted to the space Kr

a we write W k for the product W k1
1 W k2

2 W k3
3 .

In particular W r = I.
Note that if u is an r-fold periodic flex then the velocity vector

u′ =
∑
k∈r

W ku

is strictly periodic. Since R(C) commutes with the shifts the velocity vector u′ is
a sum of infinitesimal flexes and so is a strictly periodic infinitesimal flex.

Similarly, if ω ∈T3
r then

uω =
∑
k∈r

ωkW ku

is an infinitesimal flex which is phase-periodic for ω. Since we have the recovery
formula

u=
1

r1r2r3

∑
ω∈T3

r

uω

it follows that the space of r-fold periodic infinitesimal flexes is the direct sum
of the space of ω-phase periodic infinitesimal flexes. The counting formula now
follows.

Surjectivity of π : Ω(C)→Ω(C′). Similarly, let T ′ be the subgroup of the
translation group T = {Tk : k ∈Z3} for C which is associated with (r1, r2, r3), let
C′ be the associated crystal framework and suppose that u is a nonzero phase-
periodic infinitesimal flex of C′ with multi-phase η in T3.

Let T3
r,η be the set of points (z1, z2, z3) where zi ranges over the ri roots of ηi.

If ω ∈T3
r,η then the velocity vector

uω =
∑
k∈r

ωkW ku

is an infinitesimal flex for C which is phase-periodic for C, with multi-phase ω.
Also we have the recovery formula

(η1η2η3)u=
1

r1r2r3

∑
ω∈T3

r

uω.
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It follows that at least one of the flexes uω is nonzero. That is, there is an r-fold
root of η in the RUM spectrum Ω(C) and the surjectivity of the map π follows.

The existence of local infinitesimal flexes. We prove the following.

Theorem 4. Let C be a crystal framework in Rd which is of maximal order
("order N") for periodic floppy modes. Then C has a local infinitesimal flex.

Proof. Consider the vector space Vn say of n-fold periodic real velocity vectors.
This has dimension |dFv|nd as n goes to infinity. By assumption the subspaces
kerRn(C) have dimensions of order nd. Fix the motif M = (Fv, Fe) for C and
consider the natural motifs Mn for the n-fold translation group which are formed
by translates of M (nd translates in fact). (One could arrange Mn ⊆Mn+1 but this
is not necessary for the argument.) The motif Mn, which is a pair (Fv(n), Fe(n)),
has boundary vertices by which we mean the vertices of edges in Fe(n) which
are not vertices in Fv(n). Note that the cardinality of these sets gives a sequence
of order nd−1. Thus the vector subspace, Bn say, of n-fold periodic real velocity
vectors which assign zero velocities to the nonboundary vertices has dimension of
order nd−1.

Let
Pn : Vn →Bn

be linear transformations that are projections. Then, in view of the order of
dimension growth elementary linear algebra shows that there is a nonzero vector
u in kerRn(C) for some large enough n such that Pn(u) = 0.

Let u′ be the velocity vector which agrees with u for components for the
non boundary framework points of Mn and is defined to be zero for all other
coordinates.

Since the n-fold periodic flex u "vanishes on the boundary of the n-fold
supercell" in the sense above one can readily check that u′ is an infinitesimal
flex of C. Also u′ is nonzero and finitely supported, as desired. �
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