Observation of the $\boldsymbol{B}_{\boldsymbol{c}}$ Meson in the Exclusive Decay $\boldsymbol{B}_{\boldsymbol{c}} \rightarrow \boldsymbol{J} / \boldsymbol{\psi} \boldsymbol{\pi}$

V. M. Abazov, ${ }^{36}$ B. Abbott, ${ }^{75}$ M. Abolins, ${ }^{65}$ B. S. Acharya, ${ }^{29}$ M. Adams, ${ }^{51}$ T. Adams, ${ }^{49}$ E. Aguilo, ${ }^{6}$ S. H. Ahn, ${ }^{31}$ M. Ahsan, ${ }^{59}$ G. D. Alexeev, ${ }^{36}$ G. Alkhazov, ${ }^{40}$ A. Alton, ${ }^{64, *}$ G. Alverson, ${ }^{63}$ G. A. Alves, ${ }^{2}$ M. Anastasoaie, ${ }^{35}$ L. S. Ancu, ${ }^{35}$ T. Andeen, ${ }^{53}$ S. Anderson, ${ }^{45}$ B. Andrieu, ${ }^{17}$ M. S. Anzelc, ${ }^{53}$ M. Aoki, ${ }^{50}$ Y. Arnoud, ${ }^{14}$ M. Arov, ${ }^{60}$ M. Arthaud, ${ }^{18}$ A. Askew, ${ }^{49}$ B. Åsman,,41 A. C. S. Assis Jesus, ${ }^{3}$ O. Atramentov, ${ }^{49}$ C. Avila, ${ }^{8}$ C. Ay, ${ }^{24}$ F. Badaud, ${ }^{13}$ A. Baden, ${ }^{61}$ L. Bagby, ${ }^{50}$ B. Baldin, ${ }^{50}$ D. V. Bandurin, ${ }^{59}$ P. Banerjee, ${ }^{29}$ S. Banerjee, ${ }^{29}$ E. Barberis, ${ }^{63}$ A.-F. Barfuss, ${ }^{15}$ P. Bargassa, ${ }^{80}$ P. Baringer, ${ }^{58}$ J. Barreto, ${ }^{2}$ J. F. Bartlett, ${ }^{50}$ U. Bassler, ${ }^{18}$ D. Bauer, ${ }^{43}$ S. Beale, ${ }^{6}$ A. Bean, ${ }^{58}$ M. Begalli, ${ }^{3}$ M. Begel, ${ }^{73}$ C. Belanger-Champagne, ${ }^{41}$ L. Bellantoni, ${ }^{50}$ A. Bellavance, ${ }^{50}$ J. A. Benitez, ${ }^{65}$ S. B. Beri, ${ }^{27}$ G. Bernardi, ${ }^{17}$ R. Bernhard, ${ }^{23}$ I. Bertram, ${ }^{42}$ M. Besançon, ${ }^{18}$ R. Beuselinck, ${ }^{43}$ V. A. Bezzubov, ${ }^{39}$ P. C. Bhat, ${ }^{50}$ V. Bhatnagar, ${ }^{27}$ C. Biscarat, ${ }^{20}$ G. Blazey, ${ }^{52}$ F. Blekman, ${ }^{43}$ S. Blessing, ${ }^{49}$ D. Bloch, ${ }^{19}$ K. Bloom, ${ }^{67}$ A. Boehnlein,,50 D. Boline, ${ }^{62}$ T. A. Bolton, ${ }^{59}$ G. Borissov, ${ }^{42}$ T. Bose, ${ }^{77}$ A. Brandt, ${ }^{78}$ R. Brock, ${ }^{65}$ G. Brooijmans, ${ }^{70}$ A. Bross, ${ }^{50}$ D. Brown, ${ }^{81}$ N. J. Buchanan, ${ }^{49}$ D. Buchholz, ${ }^{53}$ M. Buehler, ${ }^{81}$ V. Buescher, ${ }^{22}$ V. Bunichev, ${ }^{38}$ S. Burdin,,${ }^{42, \dagger}$ S. Burke, ${ }^{45}$ T. H. Burnett, ${ }^{82}$ C. P. Buszello, ${ }^{43}$ J. M. Butler, ${ }^{62}$ P. Calfayan, ${ }^{25}$ S. Calvet, ${ }^{16}$ J. Cammin, ${ }^{71}$ W. Carvalho, ${ }^{3}$ B. C. K. Casey, ${ }^{50}$ H. Castilla-Valdez, ${ }^{33}$ S. Chakrabarti, ${ }^{18}$ D. Chakraborty, ${ }^{52}$ K. Chan, ${ }^{6}$ K. M. Chan, ${ }^{55}$ A. Chandra, ${ }^{48}$ F. Charles, ${ }^{19,7}$ E. Cheu, ${ }^{45}$ F. Chevallier, ${ }^{14}$ D. K. Cho, ${ }^{62}$ S. Choi, ${ }^{32}$ B. Choudhary, ${ }^{28}$ L. Christofek, ${ }^{77}$ T. Christoudias, ${ }^{43}$ S. Cihangir, ${ }^{50}$ D. Claes, ${ }^{67}$ Y. Coadou, ${ }^{6}$ M. Cooke, ${ }^{80}$ W. E. Cooper, ${ }^{50}$ M. Corcoran, ${ }^{80}$ F. Couderc, ${ }^{18}$ M.-C. Cousinou, ${ }^{15}$ S. Crépé-Renaudin, ${ }^{14}$ D. Cutts, ${ }^{77}$ M. Ćwiok, ${ }^{30}$ H. da Motta, ${ }^{2}$ A. Das, ${ }^{45}$ G. Davies, ${ }^{43}$ K. De, ${ }^{78}$ S. J. de Jong, ${ }^{35}$ E. De La Cruz-Burelo, ${ }^{64}$ C. De Oliveira Martins, ${ }^{3}$ J. D. Degenhardt, ${ }^{64}$ F. Déliot, ${ }^{18}$ M. Demarteau, ${ }^{50}$ R. Demina, ${ }^{71}$ D. Denisov, ${ }^{50}$ S. P. Denisov, ${ }^{39}$ S. Desai, ${ }^{50}$ H. T. Diehl, ${ }^{50}$ M. Diesburg, ${ }^{50}$ A. Dominguez, ${ }^{67}$ H. Dong, ${ }^{72}$ L. V. Dudko, ${ }^{38}$ L. Duflot, ${ }^{16}$ S. R. Dugad, ${ }^{29}$ D. Duggan, ${ }^{49}$ A. Duperrin, ${ }^{15}$ J. Dyer, ${ }^{65}$ A. Dyshkant, ${ }^{52}$ M. Eads, ${ }^{67}$ D. Edmunds, ${ }^{65}$ J. Ellison, ${ }^{48}$ V. D. Elvira, ${ }^{50}$ Y. Enari, ${ }^{77}$ S. Eno, ${ }^{61}$ P. Ermolov, ${ }^{38}$ H. Evans, ${ }^{54}$ A. Evdokimov, ${ }^{73}$ V. N. Evdokimov, ${ }^{39}$ A. V. Ferapontov, ${ }^{59}$ T. Ferbel, ${ }^{71}$ F. Fiedler, ${ }^{24}$ F. Filthaut, ${ }^{35}$ W. Fisher, ${ }^{50}$ H. E. Fisk, ${ }^{50}$ M. Fortner, ${ }^{52}$ H. Fox, ${ }^{42}$ S. Fu, ${ }^{50}$ S. Fuess, ${ }^{50}$ T. Gadfort, ${ }^{70}$ C. F. Galea, ${ }^{35}$ E. Gallas, ${ }^{50}$ C. Garcia, ${ }^{71}$ A. Garcia-Bellido, ${ }^{82}$ V. Gavrilov, ${ }^{37}$ P. Gay, ${ }^{13}$ W. Geist, ${ }^{19}$ D. Gelé, ${ }^{19}$ C. E. Gerber, ${ }^{51}$ Y. Gershtein, ${ }^{49}$ D. Gillberg, ${ }^{6}$ G. Ginther, ${ }^{71}$ N. Gollub, ${ }^{41}$ B. Gómez, ${ }^{8}$ A. Goussiou, ${ }^{82}$ P. D. Grannis, ${ }^{72}$ H. Greenlee, ${ }^{50}$ Z. D. Greenwood, ${ }^{60}$ E. M. Gregores, ${ }^{4}$ G. Grenier, ${ }^{20}$ Ph. Gris, ${ }^{13}$ J.-F. Grivaz, ${ }^{16}$ A. Grohsjean, ${ }^{25}$ S. Grünendahl, ${ }^{50}$ M. W. Grünewald, ${ }^{30}$ F. Guo, ${ }^{72}$ J. Guo, ${ }^{72}$ G. Gutierrez, ${ }^{50}$ P. Gutierrez, ${ }^{75}$ A. Haas, ${ }^{70}$ N. J. Hadley, ${ }^{61}$ P. Haefner, ${ }^{25}$ S. Hagopian, ${ }^{49}$ J. Haley, ${ }^{68}$ I. Hall, ${ }^{65}$ R. E. Hall,,${ }^{47}$ L. Han, ${ }^{7}$ K. Harder, ${ }^{44}$ A. Harel, ${ }^{71}$ R. Harrington, ${ }^{63}$ J. M. Hauptman, ${ }^{57}$ R. Hauser, ${ }^{65}$ J. Hays, ${ }^{43}$ T. Hebbeker, ${ }^{21}$ D. Hedin, ${ }^{52}$ J. G. Hegeman, ${ }^{34}$ J. M. Heinmiller, ${ }^{51}$ A. P. Heinson, ${ }^{48}$ U. Heintz, ${ }^{62}$ C. Hensel, ${ }^{58}$ K. Herner, ${ }^{72}$ G. Hesketh, ${ }^{63}$ M. D. Hildreth, ${ }^{55}$ R. Hirosky, ${ }^{81}$ J. D. Hobbs, ${ }^{72}$ B. Hoeneisen, ${ }^{12}$ H. Hoeth, ${ }^{26}$ M. Hohlfeld, ${ }^{22}$ S. J. Hong, ${ }^{31}$ S. Hossain, ${ }^{75}$ P. Houben, ${ }^{34}$ Y. Hu, ${ }^{72}$ Z. Hubacek, ${ }^{10}$ V. Hynek, ${ }^{9}$ I. Iashvili, ${ }^{69}$ R. Illingworth, ${ }^{50}$ A. S. Ito, ${ }^{50}$ S. Jabeen, ${ }^{62}$ M. Jaffré, ${ }^{16}$ S. Jain, ${ }^{75}$ K. Jakobs, ${ }^{23}$ C. Jarvis, ${ }^{61}$ R. Jesik, ${ }^{43}$ K. Johns, ${ }^{45}$ C. Johnson, ${ }^{70}$ M. Johnson, ${ }^{50}$ A. Jonckheere, ${ }^{50}$ P. Jonsson, ${ }^{43}$ A. Juste, ${ }^{50}$ E. Kajfasz, ${ }^{15}$ A. M. Kalinin, ${ }^{36}$ J. M. Kalk, ${ }^{60}$ S. Kappler,,21 D. Karmanov, ${ }^{38}$ P. A. Kasper, ${ }^{50}$ I. Katsanos, ${ }^{70}$ D. Kau, ${ }^{49}$ V. Kaushik, ${ }^{78}$ R. Kehoe, ${ }^{79}$ S. Kermiche, ${ }^{15}$ N. Khalatyan, ${ }^{50}$ A. Khanov, ${ }^{76}$ A. Kharchilava, ${ }^{69}$ Y. M. Kharzheev, ${ }^{36}$ D. Khatidze, ${ }^{70}$ T. J. Kim, ${ }^{31}$ M. H. Kirby, ${ }^{53}$ M. Kirsch,,21 B. Klima, ${ }^{50}$ J. M. Kohli, ${ }^{27}$ J.-P. Konrath, ${ }^{23}$ V. M. Korablev, ${ }^{39}$ A. V. Kozelov, ${ }^{39}$ J. Kraus, ${ }^{65}$ D. Krop, ${ }^{54}$ T. Kuhl, ${ }^{24}$ A. Kumar, ${ }^{69}$ A. Kupco, ${ }^{11}$ T. Kurča, ${ }^{20}$ J. Kvita, ${ }^{9}$ F. Lacroix, ${ }^{13}$ D. Lam, ${ }^{55}$ S. Lammers, ${ }^{70}$ G. Landsberg, ${ }^{77}$ P. Lebrun, ${ }^{20}$ W. M. Lee, ${ }^{50}$ A. Leflat, ${ }^{38}$ J. Lellouch, ${ }^{17}$ J. Leveque,,${ }^{45}$ J. Li, ${ }^{78} \mathrm{~L} . \mathrm{Li},{ }^{48}$ Q. Z. Li, ${ }^{50}$ S. M. Lietti, ${ }^{5}$ J. G. R. Lima, ${ }^{52}$ D. Lincoln, ${ }^{50}$ J. Linnemann, ${ }^{65}$ V. V. Lipaev, ${ }^{39}$ R. Lipton, ${ }^{50}$ Y. Liu, ${ }^{7}$ Z. Liu, ${ }^{6}$ A. Lobodenko, ${ }^{40}$ M. Lokajicek, ${ }^{11}$ P. Love, ${ }^{42}$ H. J. Lubatti, ${ }^{82}$ R. Luna, ${ }^{3}$ A. L. Lyon, ${ }^{50}$ A. K. A. Maciel, ${ }^{2}$ D. Mackin, ${ }^{80}$ R. J. Madaras, ${ }^{46}$ P. Mättig, ${ }^{26}$ C. Magass, ${ }^{21}$ A. Magerkurth, ${ }^{64}$ P. K. Mal, ${ }^{82}$ H. B. Malbouisson, ${ }^{3}$ S. Malik, ${ }^{67}$ V. L. Malyshev, ${ }^{36}$ H. S. Mao, ${ }^{50}$ Y. Maravin, ${ }^{59}$ B. Martin, ${ }^{14}$ R. McCarthy, ${ }^{72}$ A. Melnitchouk, ${ }^{66}$ L. Mendoza, ${ }^{8}$ P. G. Mercadante, ${ }^{5}$ M. Merkin, ${ }^{38}$ K. W. Merritt,,50 A. Meyer, ${ }^{21}$ J. Meyer, ${ }^{22,8}$ T. Millet, ${ }^{20}$ J. Mitrevski, ${ }^{70}$ J. Molina, ${ }^{3}$ R. K. Mommsen, ${ }^{44}$ N. K. Mondal, ${ }^{29}$ R. W. Moore, ${ }^{6}$ T. Moulik, ${ }^{58}$ G. S. Muanza, ${ }^{20}$ M. Mulders, ${ }^{50}$ M. Mulhearn, ${ }^{70}$ O. Mundal, ${ }^{22}$ L. Mundim, ${ }^{3}$ E. Nagy, ${ }^{15}$ M. Naimuddin, ${ }^{50}$ M. Narain, ${ }^{77}$ N. A. Naumann, ${ }^{35}$ H. A. Neal, ${ }^{64}$ J. P. Negret, ${ }^{8}$ P. Neustroev, ${ }^{40}$ H. Nilsen, ${ }^{23}$ H. Nogima, ${ }^{3}$ S.F. Novaes, ${ }^{5}$ T. Nunnemann, ${ }^{25}$ V. O’Dell, ${ }^{50}$ D. C. O’Neil, ${ }^{6}$ G. Obrant, ${ }^{40}$ C. Ochando, ${ }^{16}$ D. Onoprienko, ${ }^{59}$ N. Oshima, ${ }^{50}$
N. Osman, ${ }^{43}$ J. Osta, ${ }^{55}$ R. Otec,,${ }^{10}$ G. J. Otero y Garzón, ${ }^{50}$ M. Owen, ${ }^{44}$ P. Padley, ${ }^{80}$ M. Pangilinan, ${ }^{77}$ N. Parashar, ${ }^{56}$ S.-J. Park, ${ }^{71}$ S. K. Park, ${ }^{31}$ J. Parsons, ${ }^{70}$ R. Partridge, ${ }^{77}$ N. Parua, ${ }^{54}$ A. Patwa, ${ }^{73}$ G. Pawloski, ${ }^{80}$ B. Penning, ${ }^{23}$ M. Perfilov, ${ }^{38}$ K. Peters, ${ }^{44}$ Y. Peters, ${ }^{26}$ P. Pétroff, ${ }^{16}$ M. Petteni, ${ }^{43}$ R. Piegaia, ${ }^{1}$ J. Piper, ${ }^{65}$ M.-A. Pleier, ${ }^{22}$ P. L. M. Podesta-Lerma, ${ }^{33, \|}$ V. M. Podstavkov, ${ }^{50}$ Y. Pogorelov, ${ }^{55}$ M.-E. Pol, ${ }^{2}$ P. Polozov, ${ }^{37}$ B. G. Pope, ${ }^{65}$ A. V. Popov, ${ }^{39}$ C. Potter, ${ }^{6}$ W. L. Prado da Silva, ${ }^{3}$ H. B. Prosper, ${ }^{49}$ S. Protopopescu, ${ }^{73}$ J. Qian, ${ }^{64}$ A. Quadt, ${ }^{22,8}$ B. Quinn, ${ }^{66}$ A. Rakitine, ${ }^{42}$
M. S. Rangel, ${ }^{2}$ K. Ranjan, ${ }^{28}$ P. N. Ratoff, ${ }^{42}$ P. Renkel, ${ }^{79}$ S. Reucroft, ${ }^{63}$ P. Rich, ${ }^{44}$ J. Rieger, ${ }^{54}$ M. Rijssenbeek, ${ }^{72}$ I. Ripp-Baudot, ${ }^{19}$ F. Rizatdinova, ${ }^{76}$ S. Robinson, ${ }^{43}$ R. F. Rodrigues, ${ }^{3}$ M. Rominsky, ${ }^{75}$ C. Royon,,${ }^{18}$ P. Rubinov, ${ }^{50}$ R. Ruchti, ${ }^{55}$ G. Safronov, ${ }^{37}$ G. Sajot, ${ }^{14}$ A. Sánchez-Hernández, ${ }^{33}$ M. P. Sanders, ${ }^{17}$ A. Santoro, ${ }^{3}$ G. Savage, ${ }^{50}$ L. Sawyer, ${ }^{60}$ T. Scanlon, ${ }^{43}$ D. Schaile, ${ }^{25}$ R. D. Schamberger, ${ }^{72}$ Y. Scheglov, ${ }^{40}$ H. Schellman, ${ }^{53}$ T. Schliephake, ${ }^{26}$ C. Schwanenberger, ${ }^{44}$ A. Schwartzman, ${ }^{68}$ R. Schwienhorst, ${ }^{65}$ J. Sekaric, ${ }^{49}$ H. Severini, ${ }^{75}$ E. Shabalina, ${ }^{51}$ M. Shamim, ${ }^{59}$ V. Shary, ${ }^{18}$ A. A. Shchukin, ${ }^{39}$ R. K. Shivpuri, ${ }^{28}$ V. Siccardi, ${ }^{19}$ V. Simak, ${ }^{10}$ V. Sirotenko, ${ }^{50}$ P. Skubic,,${ }^{75}$ P. Slattery, ${ }^{71}$ D. Smirnov, ${ }^{55}$ G.R. Snow, ${ }^{67}$ J. Snow, ${ }^{74}$ S. Snyder, ${ }^{73}$ S. Söldner-Rembold, ${ }^{44}$ L. Sonnenschein, ${ }^{17}$ A. Sopczak,,${ }^{42}$ M. Sosebee, ${ }^{78}$ K. Soustruznik, ${ }^{9}$ B. Spurlock, ${ }^{78}$ J. Stark, ${ }^{14}$ J. Steele, ${ }^{60}$ V. Stolin, ${ }^{37}$ D. A. Stoyanova, ${ }^{39}$ J. Strandberg, ${ }^{64}$ S. Strandberg, ${ }^{41}$ M. A. Strang, ${ }^{69}$ E. Strauss, ${ }^{72}$ M. Strauss, ${ }^{75}$ R. Ströhmer, ${ }^{25}$ D. Strom, ${ }^{53}$ L. Stutte, ${ }^{50}$ S. Sumowidagdo, ${ }^{49}$ P. Svoisky ${ }^{55}$ A. Sznajder, ${ }^{3}$ P. Tamburello, ${ }^{45}$ A. Tanasijczuk, ${ }^{1}$ W. Taylor, ${ }^{6}$ J. Temple, ${ }^{45}$ B. Tiller, ${ }^{25}$ F. Tissandier, ${ }^{13}$ M. Titov, ${ }^{18}$
V. V. Tokmenin, ${ }^{36}$ T. Toole, ${ }^{61}$ I. Torchiani, ${ }^{23}$ T. Trefzger, ${ }^{24}$ D. Tsybychev, ${ }^{72}$ B. Tuchming, ${ }^{18}$ C. Tully, ${ }^{68}$ P. M. Tuts, ${ }^{70}$ R. Unalan, ${ }^{65}$ L. Uvarov, ${ }^{40}$ S. Uvarov, ${ }^{40}$ S. Uzunyan, ${ }^{52}$ B. Vachon, ${ }^{6}$ P. J. van den Berg, ${ }^{34}$ R. Van Kooten, ${ }^{54}$ W. M. van Leeuwen, ${ }^{34}$ N. Varelas, ${ }^{51}$ E. W. Varnes, ${ }^{45}$ I. A. Vasilyev, ${ }^{39}$ M. Vaupel, ${ }^{26}$ P. Verdier,,${ }^{20}$ L. S. Vertogradov, ${ }^{36}$ M. Verzocchi, ${ }^{50}$ F. Villeneuve-Seguier, ${ }^{43}$ P. Vint ${ }^{43}$ P. Vokac, ${ }^{10}$ E. Von Toerne, ${ }^{59}$ M. Voutilainen, ${ }^{68,{ }^{511}}$ R. Wagner, ${ }^{68}$ H.D. Wahl, ${ }^{49}$ L. Wang, ${ }^{61}$ M. H.L.S. Wang, ${ }^{50}$ J. Warchol, ${ }^{55}$ G. Watts, ${ }^{82}$ M. Wayne,,${ }^{55}$ G. Weber, ${ }^{24}$ M. Weber, ${ }^{50}$ L. Welty-Rieger, ${ }^{54}$ A. Wenger,, 23,** N. Wermes, ${ }^{22}$ M. Wetstein, ${ }^{61}$ A. White, ${ }^{78}$ D. Wicke, ${ }^{26}$ G. W. Wilson, ${ }^{58}$ S. J. Wimpenny, ${ }^{48}$ M. Wobisch, ${ }^{60}$ D. R. Wood, ${ }^{63}$ T. R. Wyatt, ${ }^{44}$ Y. Xie, ${ }^{77}$ S. Yacoob, ${ }^{53}$ R. Yamada, ${ }^{50}$ M. Yan, ${ }^{61}$ T. Yasuda, ${ }^{50}$ Y. A. Yatsunenko ${ }^{36}$ K. Yip, ${ }^{73}$ H. D. Yoo, ${ }^{77}$ S. W. Youn, ${ }^{53}$ J. Yu, ${ }^{78}$ A. Zatserklyaniy, ${ }^{52}$ C. Zeitnitz, ${ }^{26}$ T. Zhao, ${ }^{82}$ B. Zhou,,${ }^{64}$ J. Zhu, ${ }^{72}$ M. Zielinski, ${ }^{71}$ D. Zieminska, ${ }^{54}$ A. Zieminski, ${ }^{54, \#}$ L. Zivkovic, ${ }^{70}$ V. Zutshi, ${ }^{52}$ and E. G. Zverev ${ }^{38}$
(D0 Collaboration)

[^0]${ }^{33}$ CINVESTAV, Mexico City, Mexico
${ }^{34}$ FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
${ }^{35}$ Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
${ }^{36}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{37}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
${ }^{38}$ Moscow State University, Moscow, Russia
${ }^{39}$ Institute for High Energy Physics, Protvino, Russia
${ }^{40}$ Petersburg Nuclear Physics Institute, St. Petersburg, Russia
${ }^{41}$ Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden
${ }^{42}$ Lancaster University, Lancaster, United Kingdom
${ }^{43}$ Imperial College, London, United Kingdom
${ }^{44}$ University of Manchester, Manchester, United Kingdom
${ }^{45}$ University of Arizona, Tucson, Arizona 85721, USA
${ }^{46}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{47}$ California State University, Fresno, California 93740, USA
${ }^{48}$ University of California, Riverside, California 92521, USA
${ }^{49}$ Florida State University, Tallahassee, Florida 32306, USA
${ }^{50}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{51}$ University of Illinois at Chicago, Chicago, Illinois 60607, USA
${ }^{52}$ Northern Illinois University, DeKalb, Illinois 60115, USA
${ }^{53}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{54}$ Indiana University, Bloomington, Indiana 47405, USA
${ }^{55}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{56}$ Purdue University Calumet, Hammond, Indiana 46323, USA
${ }^{57}$ Iowa State University, Ames, Iowa 50011, USA
${ }^{58}$ University of Kansas, Lawrence, Kansas 66045, USA
${ }^{59}$ Kansas State University, Manhattan, Kansas 66506, USA
${ }^{60}$ Louisiana Tech University, Ruston, Louisiana 71272, USA
${ }^{61}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{62}$ Boston University, Boston, Massachusetts 02215, USA
${ }^{63}$ Northeastern University, Boston, Massachusetts 02115, USA
${ }^{64}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{65}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{66}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{67}$ University of Nebraska, Lincoln, Nebraska 68588, USA
${ }^{68}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{69}$ State University of New York, Buffalo, New York 14260, USA
${ }^{70}$ Columbia University, New York, New York 10027, USA
${ }^{71}$ University of Rochester, Rochester, New York 14627, USA
${ }^{72}$ State University of New York, Stony Brook, New York 11794, USA
${ }^{73}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{74}$ Langston University, Langston, Oklahoma 73050, USA
${ }^{75}$ University of Oklahoma, Norman, Oklahoma 73019, USA
${ }^{76}$ Oklahoma State University, Stillwater, Oklahoma 74078, USA
${ }^{77}$ Brown University, Providence, Rhode Island 02912, USA
${ }^{78}$ University of Texas, Arlington, Texas 76019, USA
${ }^{79}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{80}$ Rice University, Houston, Texas 77005, USA
${ }^{81}$ University of Virginia, Charlottesville, Virginia 22901, USA
${ }^{82}$ University of Washington, Seattle, Washington 98195, USA (Received 29 February 2008; published 2 July 2008)

A fully reconstructed $B_{c} \rightarrow J / \psi \pi$ signal is observed with the D 0 detector at the Fermilab Tevatron $p \bar{p}$ collider using $1.3 \mathrm{fb}^{-1}$ of integrated luminosity. The signal consists of 54 ± 12 candidates with a significance that exceeds 5 standard deviations, and confirms earlier observations of this decay. The measured mass of the B_{c} meson is 6300 ± 14 (stat) ± 5 (syst) MeV / c^{2}.

The quark model predicts the lowest-lying bound state of a bottom antiquark and a charm quark to be an isosinglet $J^{P}=0^{-}$pseudoscalar meson denoted as B_{c}. Its properties are of special interest due to its unique status as a bound state of two heavy but (unlike quarkonia) different flavor quarks. Measurements of its mass, production, and decay therefore allow for tests of theoretical models [1] under new approximation regimes or extended validity ranges beyond quarkonia.

This analysis uses data collected by the D0 detector between April 2002 and March 2006 at the Fermilab Tevatron $p \bar{p}$ collider operating at $\sqrt{s}=1.96 \mathrm{TeV}$. The data sample corresponds to approximately $1.3 \mathrm{fb}^{-1}$ of integrated luminosity. At the Tevatron the most easily identified decay modes of the B_{c} have a J / ψ meson in the final state, such as the semileptonic mode $B_{c} \rightarrow J / \psi \ell \nu$ $(\ell=e, \mu)$, a signal with much higher statistics and thus more suitable for lifetime measurements, or the hadronic mode $B_{c} \rightarrow J / \psi \pi$, more suitable for mass measurements given its fully exclusive reconstruction without the loss of an escaping neutrino.

Initial evidence for the B_{c} meson was reported at LEP [2] with a few candidate events and marginal statistical significance. The CDF Collaboration has published results on both semileptonic and hadronic decay modes [3,4], and has recently updated the B_{c} mass measurement to $M\left(B_{c}\right)=$ 6275.6 ± 2.9 (stat) ± 2.5 (syst) MeV / c^{2} [5]. This Letter is the first report by the D0 Collaboration of a fully reconstructed hadronic decay mode of this state. The measured lifetime $[4,6]$ is consistent with the expectation of a shorter B_{c} lifetime than for other B mesons due to the presence of a charm quark. The B_{c} mass has been predicted by various theoretical models [1] and most recently [7] with a threeflavor (unquenched) lattice QCD numerical algorithm that yielded the smallest theoretical uncertainty, with the result $M\left(B_{c}\right)=6304 \pm 12_{-0}^{+18} \mathrm{MeV} / c^{2}$, where the first error is the sum in quadrature of statistical and systematic uncertainties, and the second is due to heavy quark discretization effects.

The D0 detector is described elsewhere [8], and the elements most relevant to this analysis are the tracking detectors inside a 2 T superconducting solenoidal magnet and the muon detection chambers. For enhanced preselection efficiency, no specific trigger requirements are applied, but all events satisfy one of a suite of muon triggers, typically requiring at least one muon with transverse momentum (p_{T}) above $3 \mathrm{GeV} / c$. The decay under study consists of a single detached secondary three-track vertex: $B_{c} \rightarrow J / \psi \pi \rightarrow \mu^{+} \mu^{-} \pi$ (charge conjugate modes, $\pi^{ \pm}$, are always implied). Initial track selection extends to a pseudorapidity of $|\eta|<2.0$ [where $\eta=-\ln [\tan (\theta / 2)$], and θ is the polar angle with respect to the beam line], and rejects tracks with $p_{T}<1.5 \mathrm{GeV} / c$. Selected final state tracks must satisfy quality requirements based on established minimal hit patterns and a goodness of track
fit. Tracks identified as muons must have matching hits in all three layers of the muon detector.

Event selection starts with the requirement of an opposite-charge muon pair that forms a common vertex and whose mass is consistent with that of the J / ψ meson (between 2.85 and $3.35 \mathrm{GeV} / c^{2}$). There follows a search for a third track that, together with the muons, must form a common vertex with $\chi^{2}<16.0$ for the 3 degrees of freedom. The J / ψ candidate must have $p_{T}>4 \mathrm{GeV} / c$, and the third particle is assigned the pion mass. Thus formed, the B_{c} meson candidate is required to have $p_{T}>5 \mathrm{GeV} / c$.

Further B_{c} candidate selection places constraints on quantities that proved to be strong discriminators against combinatoric backgrounds. The impact parameter (IP) significance of any particle, reconstructed either from a single track or a combination of tracks, is $I_{\text {sig }}=$ $\sqrt{\left[\epsilon_{T} / \sigma\left(\epsilon_{T}\right)\right]^{2}+\left[\epsilon_{L} / \sigma\left(\epsilon_{L}\right)\right]^{2}}$, where $\epsilon_{T}\left(\epsilon_{L}\right)$ is the transverse (longitudinal) projection (with respect to the beam direction) of that particle's IP relative to the $p \bar{p}$ primary interaction vertex, and σ is the associated uncertainty. The primary vertex is determined event by event using a method described in Ref. [9]. The transverse decay length significance of a decay (or secondary) vertex is $S_{x y}=$ $L_{x y} / \sigma\left(L_{x y}\right)$ where $L_{x y}$ is the distance separating that vertex from the beam line. The pointing cosine, $C_{x y}$, measures the alignment between $\vec{L}_{x y}$ and the transverse momentum direction of the decaying candidate particle. The isolation I of a B_{c} candidate is defined as the ratio of two p_{T} sums: that from the three candidate tracks, divided by that from all tracks with p_{T} above $0.3 \mathrm{GeV} / c$ whose momenta lie within a cone of radius $\Delta \mathcal{R}=\sqrt{(\overline{\Delta \eta})^{2}+(\overline{\Delta \phi})^{2}}=0.5$, where $\Delta \eta$ and $\Delta \phi$ are distances in pseudorapidity and azimuthal angle from the B_{c} momentum axis, respectively.

Throughout the background reduction process, a control procedure is used that tests the effect of each discriminator against a well-understood signal sample, either reconstructed $B^{ \pm} \rightarrow J / \psi K^{ \pm}$candidates in data [10] or candidates in a $B_{c}^{ \pm} \rightarrow J / \psi \pi^{ \pm}$simulated Monte Carlo sample. The latter is generated using EVTGEN [11] interfaced with PYTHIA [12], followed by full modeling of the detector response with GEANT [13] and event reconstruction exactly as in data.
J / ψ candidates are mass constrained; i.e., their daughter muon momenta are corrected to yield the Particle Data Group [14] mass value. When the third track is assumed to be a kaon, a clean, high-statistics $B^{ \pm}$signal in invariant mass is observed in the data. This decay has a topology similar to the B_{c} signal and is used as a reference in an initial round of selection cuts shown in Table I as stage 1. Here the $B^{ \pm}$signal and sideband regions are used as efficiency and rejection indicators of where to set selection thresholds. The $B^{ \pm}$study region extends from 4.98 to $5.58 \mathrm{GeV} / c^{2}$ in invariant mass, and the signal region is approximately $\pm 2 \sigma$ wide from 5.20 to $5.36 \mathrm{GeV} / c^{2}$.

TABLE I. Discriminators and their values at the two selection stages (see text). $p_{T}^{\mathrm{rel}}(\pi)$ is introduced only for the second stage and represents the transverse momentum of the pion candidate with respect to the total B_{c} candidate momentum.

Discriminator	Condition	Stage 1	Stage 2
$I_{\text {sig }}\left(B_{c}\right)$	$<$	3.5	3.5
$I_{\text {sig }}(\pi)$	$>$	3.0	3.5
$S_{x y}$	$>$	3.0	4.5
$C_{x y}$	$>$	0.95	0.95
I	$>$	0.5	0.64
$p_{T}(\pi)(\mathrm{GeV} / c)$	$>$	1.8	2.2
$p_{T}^{\text {rel }}(\pi)(\mathrm{GeV} / c)$	$>$	\cdots	1.5
$p_{T}^{\text {rel }}(\pi)(\mathrm{GeV} / c)$	$<$	\cdots	2.5

Individual cuts are required to be about 95% efficient, with typical background rejection of approximately 20%. The resulting thresholds are listed in Table I.

However, there are differences between the $B^{ \pm}$and B_{c}. Because of the lower (by about $1 \mathrm{GeV} / c^{2}$) invariant mass and the longer (b-like versus c-like) lifetime of the $B^{ \pm}$, background reduction undergoes a second stage, in which the B_{c} Monte Carlo data are used to model the signal. This second selection stage (stage 2 in Table I) aims at reoptimizing, if needed, those cuts associated with B_{c} specific decay properties. With the third track now assumed to be a pion, the range in invariant mass from 5.6 to $7.2 \mathrm{GeV} / c^{2}$ is studied. A subrange between 6.1 and $6.5 \mathrm{GeV} / c^{2}$ is treated as the B_{c} signal search window, and its invariant mass distribution in data is kept blinded throughout the analysis. This subrange is approximately $\pm 3 \sigma$ (mass resolution as determined from simulation) wide, and covers both the theory expectations for the B_{c} mass [7] as well as the observed values quoted in [3,5]. Data in mass sidebands outside this subrange are used as a model for backgrounds and to quantify background rejection. Table I lists those selections that were reoptimized [or introduced, in the case of $\left.p_{T}^{\mathrm{rel}}(\pi)\right]$ in stage 2 , and summarizes their evolution between the two selection stages. At this stage there remain no dimuon vertices with more than one candidate for the third track, and no events with more than one B_{c} candidate.

From B_{c} simulated events, the B_{c} mass signal is found to be well modeled by a Gaussian function with a width of $55 \mathrm{MeV} / c^{2}$. The mass resolution of the $B^{ \pm} \rightarrow J / \psi K^{ \pm}$ signal observed in the data under similar conditions, after all selections have been applied, reproduces the same width when scaled by the ratio of the $B^{ \pm}$and B_{c} masses.

The resulting $J / \psi \pi$ invariant mass is shown in Fig. 1 where a clear excess is observed near $6.3 \mathrm{GeV} / \mathrm{c}^{2}$. An unbinned maximum \log-likelihood (UML) fit of the $J / \psi \pi$ invariant mass distribution is performed, where the signal is modeled by a Gaussian function with width fixed to a value of $55 \mathrm{MeV} / \mathrm{c}^{2}$, and combinatoric backgrounds are modeled by a first-degree polynomial. The result of the UML fit is overlaid in Fig. 1 and yields a signal of 54 ± 12 events and a B_{c} mass value of $6300.7 \pm 13.6 \mathrm{MeV} / c^{2}$. To

FIG. 1 (color online). $\quad J / \psi \pi$ invariant mass distribution of B_{c} candidates after the final selection. A projection of the unbinned maximum likelihood fit to the distribution is shown overlaid.
estimate the signal significance, the same fit is repeated under the assumption that no signal is present. From the negative log-likelihoods of the signal plus background and background-only hypotheses, the signal significance is extracted [14] as $N_{\sigma}=\{2 \ln [\mathcal{L}(s+b) / \mathcal{L}(b)]\}^{1 / 2}=5.2$ standard deviations. For another estimate of signal significance, χ^{2} fits to data (in the $40 \mathrm{MeV} / c^{2}$ bins of Fig. 1) under both hypotheses produce an increase in fit χ^{2} of 27 units, again indicating $N_{\sigma}=5.2$ standard deviations.

Possible biases and systematic uncertainties affecting the B_{c} mass determination are estimated using both the $B^{ \pm}$signal in the data and the B_{c} signal in either the data or the simulation. Uncertainty assessments are made as these samples are refitted under various test hypotheses. Sources of systematic uncertainties are the event selection, the fitting procedure (input mass resolution and data modeling), and the reconstructed mass scale.

The fitted mass values are examined in the simulated signal sample as the value of the $p_{T}(\pi)$ threshold is varied from 1.9 to $2.5 \mathrm{GeV} / c$. No systematic mass bias is observed, but statistical fluctuations of $\pm 4.0 \mathrm{MeV} / c^{2}$ are observed and assigned as a systematic uncertainty. Similarly, the $p_{T}^{\text {rel }}$ lower threshold is varied between no cut and $2.0 \mathrm{GeV} / c$, and the resultant mass variation indicates a small upward mass bias of $0.5 \mathrm{MeV} / c^{2}$ for the cut value adopted with respect to the no cut case. The observed B_{c} mass is corrected accordingly, and a 100% uncertainty is assigned to this correction. There is no indication of a bias in mass due to the upper $p_{T}^{\text {rel }}$ limit.

The values of the selection cuts that are not directly related to the kinematics of the third particle (the pion or kaon candidates in the B_{c} or $B^{ \pm}$cases, respectively) are varied within reasonable values. No mass biases are observed, and from the range of mass values obtained, a systematic uncertainty of $\pm 2.5 \mathrm{MeV} / c^{2}$ is assigned due to the choice of these selection cuts.

To assess the systematic uncertainty due to the uncertainty of the mass resolution, the width of the Gaussian is

TABLE II. Summary of systematic uncertainties in the B_{c} mass measurement.

Source	Component	Value $\left(\mathrm{MeV} / c^{2}\right)$
Selection	π kinematics	4.0
	Other	2.5
Data modeling	Mass resolution	0.6
	Background model	0.5
	Signal shape	0.5
Mass scale		1.0
Total		4.9

allowed to float in the fit. The width input is also changed from the nominal value of $55 \mathrm{MeV} / c^{2}$ to other fixed values in the range from 45 to $65 \mathrm{MeV} / c^{2}$. From the variation of fitted mass results, a value of $\pm 0.6 \mathrm{MeV} / c^{2}$ is assigned to this uncertainty.

The background model is changed from a first-degree polynomial to a second-degree and third-degree polynomial, and to an exponential function. From the resulting change in mass observed, a systematic uncertainty of $\pm 0.5 \mathrm{MeV} / c^{2}$ is assigned due to uncertainty in the background model. The signal model is changed from a single Gaussian to a double Gaussian function, and the resulting shift of $0.5 \mathrm{MeV} / c^{2}$ is assigned as a systematic uncertainty.

Lastly, for an estimate of the mass scale uncertainty, a direct comparison is carried out between generated and reconstructed Monte Carlo masses, as well as between recent D0 mass measurements of well-known B states and the world averages of their measurements [14]. From the observed range of mass differences, a systematic uncertainty of $\pm 1.0 \mathrm{MeV} / c^{2}$ is assigned due to uncertainty in the D0 mass scale for the B_{c} decay.

A summary of all systematic uncertainties in the B_{c} mass measurement is shown in Table II. The overall systematic uncertainty is $\pm 4.9 \mathrm{MeV} / c^{2}$. The mass fit result of $6300.7 \pm 13.6 \mathrm{MeV} / c^{2}$ is corrected by $-0.5 \mathrm{MeV} / c^{2}$ for the p_{T}^{rel} bias. The final result for the B_{c} mass is $6300 \pm$ 14 (stat) ± 5 (sys) MeV / c^{2}.

In summary, using a data set corresponding to $1.3 \mathrm{fb}^{-1}$, a signal for $B_{c} \rightarrow J / \psi \pi$ has been observed with a significance higher than 5 standard deviations above background. The mass of the B_{c} meson has been measured and found to be consistent with the latest and most precise lattice QCD prediction [7]. Besides its relevance as confirmation of earlier observations and in the development and tuning of heavy-quark bound-state models, the B_{c} sample described here, with added integrated luminosity, is expected to be used in the extraction of lifetime, relative branching ratio, and production rate.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF
(U.S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation.
*Visitor from: Augustana College, Sioux Falls, SD, USA.
${ }^{\dagger}$ Visitor from: The University of Liverpool, Liverpool, United Kingdom.
${ }^{\ddagger}$ Deceased.
${ }^{\text {§ }}$ Visitor from: II. Physikalisches Institut, Georg-AugustUniversity, Göttingen, Germany.
"Visitor from: ICN-UNAM, Mexico City, Mexico.
${ }^{\text {I}}$ Visitor from: Helsinki Institute of Physics, Helsinki, Finland.
**Visitor from Universität Zürich, Zürich, Switzerland.
[1] Potential models: E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994); S.S. Gershtein et al., ibid. 51, 3613 (1995); S. Godfrey, ibid. 70, 054017 (2004); perturbative QCD: N. Brambilla, Y. Sumino, and A. Vairo, ibid. 65, 034001 (2002); lattice QCD: H.P. Shanahan et al. (UKQCD Collaboration), Phys. Lett. B 453, 289 (1999).
[2] P. Abreu et al. (DELPHI Collaboration), Phys. Lett. B 398, 207 (1997); R. Barate et al. (ALEPH Collaboration), ibid. 402, 213 (1997); K. Ackerstaff et al. (OPAL Collaboration), ibid. 420, 157 (1998).
[3] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 96, 082002 (2006).
[4] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 012002 (2006).
[5] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 100, 182002 (2008).
[6] V.M. Abazov et al. (D0 Collaboration), arXiv:0805.2614.
[7] I.F. Allison et al. (HPQCD Collaboration, Fermilab Lattice Collaboration, and UKQCD Collaboration), Phys. Rev. Lett. 94, 172001 (2005).
[8] V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).
[9] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 32, 185 (2004).
[10] See reconstructed $B^{ \pm}$sample using similar selection criteria at V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 211802 (2008).
[11] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[12] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).
[13] R. Brun and F. Carminati, CERN Program Library Long Writeup W5013, 1993 (unpublished).
[14] W.-M. Yao et al., J. Phys. G 33, 1 (2006).

[^0]: ${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina
 ${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
 ${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
 ${ }^{4}$ Universidade Federal do ABC, Santo André, Brazil
 ${ }^{5}$ Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
 ${ }^{6}$ University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
 ${ }^{7}$ University of Science and Technology of China, Hefei, People's Republic of China ${ }^{8}$ Universidad de los Andes, Bogotá, Colombia
 ${ }^{9}$ Center for Particle Physics, Charles University, Prague, Czech Republic
 ${ }^{10}$ Czech Technical University, Prague, Czech Republic
 ${ }^{11}$ Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czeech Republic, Prague, Czech Republic
 ${ }^{12}$ Universidad San Francisco de Quito, Quito, Ecuador
 ${ }^{13}$ LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
 ${ }^{14}$ LPSC, Université Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
 ${ }^{15}$ CPPM, IN2P3/CNRS, Université de la Méditerranée, Marseille, France
 ${ }^{16}$ LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
 ${ }^{17}$ LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
 ${ }^{18}$ DAPNIA/Service de Physique des Particules, CEA, Saclay, France
 ${ }^{19}$ IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
 ${ }^{20}$ IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
 ${ }^{21}$ III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
 ${ }^{22}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
 ${ }^{23}$ Physikalisches Institut, Universität Freiburg, Freiburg, Germany
 ${ }^{24}$ Institut für Physik, Universität Mainz, Mainz, Germany
 ${ }^{25}$ Ludwig-Maximilians-Universität München, München, Germany
 ${ }^{26}$ Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
 ${ }^{27}$ Panjab University, Chandigarh, India
 ${ }^{28}$ Delhi University, Delhi, India
 ${ }^{29}$ Tata Institute of Fundamental Research, Mumbai, India
 ${ }^{30}$ University College Dublin, Dublin, Ireland
 ${ }^{31}$ Korea Detector Laboratory, Korea University, Seoul, Korea
 ${ }^{32}$ SungKyunKwan University, Suwon, Korea

