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In airline scheduling a variety of planning and operational decision problems have to be solved. We
consider the problems aircraft routing and crew pairing: aircraft and crew must be allocated to flights in
a schedule in a minimal cost way. Although these problems are not independent, they are usually for-
mulated as independent mathematical optimisation models and solved sequentially. This approach might
lead to a suboptimal allocation of aircraft and crew, since a solution of one of the problems may restrict
the set of feasible solutions of the problem solved later. Also, when minimal cost solutions are used in
operations, a short delay of one flight can cause very severe disruptions of the schedule later in the day.
We generate solutions that incur small costs and are also robust to typical stochastic variability in airline
operations. We solve the two original problems iteratively. Starting from a minimal cost solution, we
produce a series of solutions which are increasingly robust. Using data from domestic airline schedules
we evaluate the benefits of the approach as well as the trade-off between cost and robustness. We extend
our approach considering the aircraft routing problem together with two crew pairing problems, one for
technical crew and one for flight attendants.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A sequence of planning problems must be solved in airline
scheduling: first, marketing decisions in the schedule design problem
determine the schedule of flights the airline operates. Each flight
is specified by origin, destination, departure date, departure time
and duration. Given the set of flights in a schedule, the solution of
the fleet assignment model determines which flight is operated by
which aircraft type. The objective is to maximise profit with respect
to the number of available aircraft and other resource constraints.
Next, the aircraft routing problem seeks a minimal cost assignment
of available aircraft to the flights. A routing is assigned to each
individual aircraft such that each flight is covered by exactly one
routing. The routings must satisfy maintenance restrictions. Once
aircraft types are assigned to flights, the aircraft routing problem
can be solved for each aircraft type separately. In a similar way to
the aircraft routing problem, the crew pairing problem (or tour of
duty problem) allocates crew to flights in a minimal cost way. A set
of generic crew pairings is constructed subject to many rules so
that each flight is covered exactly once. Under the assumption that
the crew is only allowed to operate a single aircraft type (which is
usually the case for pilots, for example) the crew pairing problem
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can also be solved separately for each aircraft type. The last of the
planning problems is crew rostering. Based on the constructed crew
pairings, a line of work is assigned to each individual crew member.
The reader is referred to Klabjan [18] for a detailed description of
the various airline scheduling problems.

In this paper two of the above problems, aircraft routing and crew
pairing, are considered. The fleet assignment model is important for
large airlines with multiple aircraft types. In the context relevant for
this paper, the fleet can be regarded as homogeneous and fleet as-
signment can be omitted. The crew rostering problem can be viewed
as a separate optimisation problem with no influence on the cost of
the overall solution and is also not considered.

Traditionally, the aircraft routing problem is solved prior to the
crew pairing problem, although the two problems are interdepen-
dent. One of the important causes of delays in airline operations is
the availability of crew. This is particularly true if the crew change
from one aircraft to another during a duty period, especially if there
is minimum ground time between the flights. If the incoming flight
has been delayed for some reason, then both that aircraft and the
aircraft to which the crew are changing will depart late. This propa-
gation of delay can cause serious disruptions to the operation of the
flight schedule. Ehrgott and Ryan [10] and Yen and Birge [36] have
shown that the “robustness” of crew pairing solutions can be sig-
nificantly improved if aircraft changes (AC) are made when ground
time between the incoming and the outgoing flights is much greater
than the minimum ground time. This can be achieved in the crew
pairing problem by penalising aircraft changes when ground time is
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short. Robust crew pairing solutions then have “crew following the
same aircraft” as much as possible and changing aircraft only when
ground time between flights is much longer than the minimum. In
this sense, the robust crew pairing solution depends on the given
aircraft routing solution. It is natural to ask if it is possible to improve
the robustness of the crew pairing solution by permitting changes
to the aircraft routing solution to encourage the “aircraft to follow
the crew”. In this paper we investigate this question and show that
it is indeed possible to reduce the cost of the crew pairing solution
and simultaneously increase its robustness by considering the two
problems together.

We formulate the aircraft routing problem and the crew pairing
problem in one integratedmodel. Thismodel yields one optimal solu-
tion for the two problems where the objective function is a weighted
sum of cost and some value attached to robustness. However, the
model is very hard to solve. Integration increases the complexity of
both problems which are already NP-hard individually (Garey and
Johnson [13]). Decomposition methods are proposed in the litera-
ture to solve the integrated problem (see Mercier et al. [24]) but long
computation times are needed to solve the model to optimality.

Instead of solving the integrated model, we propose to solve the
two original problems iteratively. We start with a minimal cost crew
pairing solution without taking aircraft routings into account. Then,
in each iteration we solve the individual aircraft routing problem
first, taking into account the current crew pairing solution. Then,
given the aircraft routing solution we resolve the crew pairing prob-
lem. We only use the objective functions in both problems to pass
information from the problem solved previously to generate more
and more robust solutions. Hence the constraints are unaltered and
the complexity of the two problems is not increased. We stop the
process when the level of robustness cannot be improved any fur-
ther.

This procedure generates a series of feasible solutions for the
integrated model with varying cost and robustness measure. The
airline is not required to associate a cost with robustness but can
study the trade-off between cost and robustness and then choose a
solution they prefer to operate.

Applying this approach to various domestic airline schedules we
obtain low cost solutions that are highly robust. The solutions obey
all rules imposed by the airline and are ready to be implemented
in practice. Various crew groups such as captains, first officers and
flight attendants are required to operate an aircraft. We therefore
extend the iterative approach and consider multiple crew groups at
the same time.We generate solutions for the aircraft routing problem
together with solutions for two different crew groups and compare
these with solutions generated by applying the iterative approach to
each crew group separately.

The paper is organised as follows: In Section 2 the problems
are formally stated. We review the most recent approaches in the
literature in Section 3. In Section 4 the iterative solution approach
is presented and Section 5 concludes with numerical results.

2. Problem formulation

In this section we define the crew pairing problem and the air-
craft routing problem. We discuss how both problems can be solved
efficiently and we formulate a model that integrates the two prob-
lems. The integrated model is capable of generating solutions that
incur small costs and are also operationally robust. We start with
the crew pairing problem.

2.1. The crew pairing problem

Given a flight schedule, the crew pairing problem is defined as the
problem of assigning crews to flights in the schedule such that each

flight is operated by exactly one crew. A sequence of flights which
can be flown by a crew on one work day is called a duty period. An
alternating sequence of duty periods and rest periods is called a crew
pairing (or tour of duty). Any crew pairing must start and end at the
same crew base and is restricted by a number of rules such as rest
time regulations or flying time restrictions. Costs are associated with
each crew pairing. In the crew pairing problem we seek a minimal
cost set of pairings that partition the flights in the schedule, i.e. each
flight is contained in exactly one pairing.

The pairings can be represented as columns of a binary m × nP

matrix AP where m is the number of flights in the schedule and nP

is the number of possible pairings. Entry (aij)
P , 1� i�m, 1� j�nP

equals 1 if flight i is contained in pairing j and 0 otherwise. With this
matrix representation we formulate the crew pairing problem as a
standard set partitioning model (Wolsey [35]):

Minimise (cP)TxP

subject to APxP = 1

xP ∈ {0, 1}nP . (1)

The element cPj of cP ∈ RnP is the cost associated with pairing j. The

decision variable xPj ∈ {0, 1} is equal to 1 if pairing j is contained in the
solution and 0 otherwise. The cost of a pairing is composed of flight
time and duty time salaries, and meal, rest and travel allowances.
Base-constraints are added to the standard model to consider base
strengths at the crew bases. The base strength restricts the number of
crew pairings that can start at a crew base in a particular week or on a
particular day. With base-constraints included the model is referred
to as generalised set partitioning model since these constraints usually
have non-unit right hand sides.

Because the number of pairings nP is too large to efficiently gen-
erate all of them, column generation and branch-and-bound tech-
niques (i.e. branch-and-price) are identified in the literature as the
most successful methods to solve the problem (Barnhart et al. [1]),
which is NP-hard. Using column generation only a small fraction
of all possible pairings is considered initially and additional pairings
(columns) are generated during the execution of the algorithm.

We model the schedule as a directed flight network (Minoux [25])
where arcs represent flights and nodes represent departure or arrival
of a flight. Additionally, a connection-arc is linking the arrival of one
flight with the departure of another flight if the two flights can be
operated consecutively by the same crew. In this network each crew
pairing is represented by a path and the column generation problem
can be solved by a resource constrained shortest path problem. The
rules the pairing must obey are incorporated into the shortest path
algorithm as resource constraints. A second network type common
in the literature is the duty period network. This network consists of
an arc for each possible duty period and overnight arcs linking the
duty periods (Lavoie et al. [21]).

To solve (1), first the linear program (LP) relaxation of (1) is solved
using column generation. Fractions appearing in this solution are
caused by different crew pairings competing for the same flights.
To eliminate these fractions and obtain an integer solution for (1), a
branch-and-bound algorithm with a constraint branching strategy is
used (Ryan and Foster [29]). In this strategy two flights in the solution
are chosen that are partially covered by different crew pairings. In
one branch solutions are considered where both flights are contained
in the same crew pairing. In the other branch both flights must not
be operated by the same crew pairing. A special case of constraint
branching is follow-on branching (Ryan and Falkner [28]) where two
flights must be operated consecutively by the same crew in one
branch and must not be operated consecutively by the same crew
in the other branch.

Other approaches to solve the crew pairing problem include
Vance et al. [34] and Desaulniers et al. [9]. Vance et al. [34]
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decomposed the problem into two stages, first partitioning the flights
by duty periods and then the duty periods by pairings. Desaulniers
et al. [9] used a nonlinear multi-commodity network flow formula-
tion and solved it with a Dantzig–Wolfe decomposition method.

2.2. The aircraft routing problem

The aircraft routing problem (also referred to as tail assignment) is
the problem of assigning aircraft to a given set of flights in a schedule.
We seek one routing for each aircraft such that each flight of the
schedule is contained in exactly one routing. Each routing is subject
to maintenance requirements and other flying restrictions and the
number of available aircraft is given. Each particular aircraft must be
assigned to one specific routing, similar to the crew rostering problem
(Day and Ryan [8], Kohl and Karisch [20]) where a line of work is
assigned to a particular crew member.

In a similar way to the crew pairing problem, routings can be
represented as columns of a binary (m + a) × nR matrix AR where
m is the number of flights, a the number of available aircraft and
nR the number of possible routings. The first m rows are defined
similarly to those in AP: the element (aij)

R, 1� i�m, 1� j�nR equals
1 if flight i is contained in routing j and 0 otherwise. Additionally, the
element (am+i,j)

R, 1� i�a, 1� j�nR equals 1 if routing j is operated
by aircraft i and 0 otherwise. The last a constraints are referred to
as generalised upper bound (GUB) constraints (or aircraft convexity
constraints) and ensure that each aircraft is assigned to exactly one
routing. With this matrix representation the aircraft routing problem
can be formulated in a similar manner to the crew pairing problem:

Minimise (cR)TxR

subject to ARxR = 1

xR ∈ {0, 1}nR . (2)

The element cRj of cR ∈ RnR is the cost associated with routing j. The

decision variable xRj ∈ {0, 1} is equal to 1 if routing j is in the solu-
tion and 0 otherwise. As costs of a routing through-values are usually
considered. A through-value is revenue attached to a pair of flights if
they are operated in sequence by the same aircraft. This accounts for
passenger demand for direct connections (i.e. without the necessity
of changing aircraft) on certain itineraries. In the context of this pa-
per a set of connections that must be operated by the same aircraft
is given by the airline and hence no through-values are considered.
Since we also assume that the operational cost of all aircrafts are
identical, the aircraft routing problem reduces to a feasibility prob-
lem. We introduce penalty costs for the aircraft routings to influence
characteristics of the aircraft routing solution, see Section 4.

This form of the set partitioning model is called the rostering
model and is also NP-hard. As in the crew pairing problem, the
number of possible routings is very large and column generation
techniques are used to obtain a solution for the problem. Using the
same network formulation as the crew pairing problem, aircraft rout-
ings can also be represented as paths. The column generation prob-
lem is formulated as a resource constrained shortest path problem
where we again only generate columns which satisfy all mainte-
nance rules.

In contrast to the crew pairing problem we now branch on
aircraft–flight pairs to obtain integer solutions. In one branch a par-
ticular aircraft is forced to operate a particular flight while in the
other branch the aircraft is not allowed to operate this flight.

To justify this strategy we refer to the theory of perfect matrices
which was first proposed by Padberg [26]. For a perfect matrix A and
the problem min{cTx : Ax = 1, x�0, c ∈ Zn} there always exists an
optimal integral solution vector x. We first introduce some notation:

A graph G is called complete if every node is adjacent to every
other node. The chromatic number of G is the minimal number of

different colours needed to colour all nodes of G such that no adjacent
nodes have the same colour. A subgraph G′ of G is a subset of the
nodes of G together with all arcs of G linking nodes in the subset. A
clique is a complete subgraph. A graph G is called perfect if for every
subgraph G′ of G the chromatic number of G′ is equal to the maximal
cardinality of a clique in G′.

Let GI denote the intersection graph associated with a matrix A.
The nodes of GI correspond to columns of A and two nodes are linked
by an edge if the two corresponding columns have a common 1 in
any row. The matrix A is called perfect if the associated intersection
graph is perfect.

We investigate the submatrices of AR that consist of the columns
of AR associated with a single aircraft. The intersection graphs of
these submatrices are complete since all columns have a common
1 in the aircraft convexity constraint. Every subgraph of a complete
graph is also complete. Also, in any complete graph the chromatic
number equals the cardinality of a maximal clique which is equal
to the number of nodes in the graph. This results in the following
theorem:

Theorem 1. Each submatrix of AR, which consists of the columns asso-
ciated with a single aircraft, is perfect.

Hence, fractions in the solutions of the LP relaxation of the aircraft
routing problem are caused by different aircraft competing for the
same flight.

Like for the crew pairing problem alternative solution methods
for the aircraft routing problem include multi-commodity network
flow formulations (e.g. Cordeau et al. [6]).

2.3. Robust and integrated crew pairing and aircraft routing problem

If two flights can be operated in sequence by the same crew or
aircraft (i.e. there exists a connection-arc linking both flights), the
time between arrival of the first and departure of the second flight
is called turn-time for aircraft and sit-time for crew. In the context
of the paper arrival and departure of a flight refer to arrival at and
departure from the gate, respectively.

The minimal time required for an aircraft or crew to operate a
connection is called minimal turn-time or minimal sit-time, respec-
tively. Theminimal sit-time is always greater or equal to theminimal
turn-time. If the crew stays on the same aircraft the minimal turn-
time of the connection applies for the crew instead of the minimal
sit-time. A connection between flights i and j is called short if

(minimal turn-time)ij� (sit-time)ij < (minimal sit-time)ij,

where the first part of the inequality holds for any feasible connec-
tion. Thus, in a feasible solution, short connections are only allowed
if the crew stays on the same aircraft. If the two problems are solved
separately this condition might result in suboptimal (in case the air-
craft routing problem is solved first) or infeasible solutions (in case
the crew pairing problem is solved first).

Also, we prefer solutions where crew are not changing aircraft
when the sit-time is less than some restricted time. A connection
between two flights i and j is called restricted if

(minimal sit-time)ij� (sit-time)ij < (restricted time)ij.

The concept of restricted connections is first introduced by Mercier
et al. [24]. In contrast to short connections, crews are allowed to
change aircraft if the connection is restricted, but we try to find
solutions in which this occurs as rarely as possible. If crew change
aircraft on restricted connections we refer to these connections as
restricted aircraft changes (RAC).

It is unlikely that the schedule is operated as planned. Delays oc-
cur frequently in airline operations and can, for example, be caused
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by late passengers, unscheduled maintenance requirements or bad
weather. Small turn-times are usually used in aircraft routings to
keep costs low and connection times attractive for passengers.
Hence, if a flight is delayed, the flight operated next by the aircraft
is probably also delayed. But if the crew are also changing aircraft
on a restricted connection after the delayed flight, at least one more
flight might be affected by the initial delay. Due to the small buffer
to compensate for the delay, the crew are likely to be late for the
next flight they operate. This behaviour can propagate to a large
number of delayed flights in a short amount of time.

A solution where effects of potential delays are minimal is called
operationally robust. The concept of robust solutions is important
since an airline is interested in achieving high on-time performance
(OTP), i.e. the percentage of all flights in the schedule that depart
on-time. Bad OTP can incur large additional costs (referred to as re-
covery costs), caused by additionally required crews, compensations
for passengers affected by delayed or cancelled flights and damaged
reputation of the airline. These costs may by far exceed the sav-
ings of using a solution with less planned cost than using a solution
that is more robust. We try to identify solutions with low planned
costs which are operationally robust, i.e. where disruptions will re-
sult in minimal recovery costs. Costs listed in this paper are generally
planned costs. We refer to the sum of planned costs and recovery
costs as operational costs.

In order to integrate the concepts of short and restricted con-
nections into our formulation we enumerate all possible short
and restricted connections. We define a binary mB × nP matrix BP

where mB is the number of short connections. Each pairing is as-
sociated with one column of BP , where (bij)

P , 1� i�mB, 1� j�nP

equals 1 if short connection i is contained in pairing j and 0 oth-
erwise. Analogously for restricted connections, we define a binary
mD × nP matrix DP where mD is the number of restricted connec-
tions. (dij)

P , 1� i�mD, 1� j�nP equals 1 if restricted connection
i is contained in pairing j and 0 otherwise. For aircraft a binary
mB × nR matrix BR and a binary mD × nR matrix DR are defined in an
analogous way.

With this matrix representation the robust and integrated crew
scheduling and aircraft routing problem can be formulated as follows:

Minimise (cP)TxP + (cR)TxR + (cD)Td

subject to APxP = 1

ARxR = 1

BPxP − BRxR�0

DPxP − DRxR − d�0, (3)

where xP ∈ {0, 1}nP , xR ∈ {0, 1}nR , d ∈ {0, 1}mD
are binary variables and

cD ∈ RmD

+ is some positive penalty parameter. Variable di equals 1 if
restricted connection i is operated by a crew but no aircraft and 0
otherwise. The first two sets of constraints are identical to the orig-
inal problem formulations. The third set of constraints enforces that
short connections which are operated by some crew are also oper-
ated by some aircraft. The last set of constraints provokes additional
cost in the objective function if a restricted connection is operated
by a crew and no aircraft. In Section 5 we find solutions for the in-
tegrated model applied to schedules of dated periods of one week.

3. Literature

Airline scheduling problems have been addressed in an extensive
number of publications (see Klabjan [18] for a detailed overview).We
list selected literature addressing airline scheduling problems and
describe attempts to integrate the aircraft routing and crew pairing
problems. We conclude with recent formulations that incorporate
robustness measures.

We are not aware of contributions that discuss the schedule de-
sign problem as a single problem. Since schedule design is addressed
in combination with fleet assignment we start with the literature
on fleet assignment. The fleet assignment model has been formu-
lated by Hane et al. [17] as a multi-commodity flow problem. It
is called leg-based because revenue effects between flight-legs are
not modelled. To take such network effects into account, Barnhat
et al. [2] described an enhanced model using demand forecasts for
origin–destination pairs.

An integrated model for schedule design and fleet assignment
was presented by Barnhart [22]. They used the origin–destination
fleet assignment model and flights are chosen from an optional set
of flights to maximise profit.

The aircraft routing problem has been addressed in a number
of publications, for example, in Clarke et al. [4], Feo and Bard [12],
Daskin and Panayotopoulos [7] and Gopalan and Talluri [15] and
more recently in Grönkvist [16]. Sarac et al. [31] considered the air-
craft routing problem on an operational level rather than a planning
level. They added constraints to the set partitioning formulation to
satisfy maintenance availability at the maintenance bases. Due to
these constraints they had to alter the branching strategy, as de-
scribed in Section 2.2. They used a combination of follow-on (see
Section 2.1) and aircraft–flight pair (see Section 2.2) branching.

After fuel costs, crew salary is the second largest operational cost
an airline has to account for. Therefore finding a minimal cost so-
lution to the crew pairing problem is important. On the other hand
it is a very complicated problem due to the large number of possi-
ble pairings, the complicated rule structure and the necessity to find
integer solutions. For these reasons the crew pairing problem has
received a lot of attention in the literature, see Barnhat et al. [3] for
a detailed description of the crew pairing problem and a review of
the literature addressing the problem. Also recently, Gopalakrishnan
and Johnson [14] gave a comprehensive overview on state-of-the-art
methods to solve the crew pairing problem.

The crew rostering problem can be viewed as a separate optimi-
sation problem with no effect on the cost of the integrated solution.
We refer to Ernst et al. [11] for an annotated bibliography of roster-
ing problems.

Various combinations of airline scheduling problems have been
integrated in the literature. Here we focus on the integration of crew
pairing and aircraft routing problems.

Klabjan et al. [19] partially integrated aircraft routing, crew pair-
ing and schedule design. They reversed the order of the crew pairing
and aircraft routing problems. Plane count constraints are added to
the crew pairing problem to ensure the existence of a feasible solu-
tion for the aircraft routing problem. Plane count constraints ensure
that at most the number of available aircraft is used at any time.
Their results are based on a hub-and-spoke network. In this network
only large airports (hubs) are linked by direct flights and all smaller
airports (spokes) are only connected to one hub. Many aircraft meet
at the same hub at the same time ensuring the existence of many
feasible connections. This property leads to a much larger number of
feasible routings than in an interconnected network. In interconnected
networks many airports are linked with multiple other airports by
direct flights. To include schedule design in the model the departure
time of each flight is allowed to vary in some time window. This is
done by relaxing feasibility parameters in the crew pairing problem
and hence generating a larger set of pairings. Each feasible pairing
then has a departure time attached to each flight contained in the
pairing. Klabjan et al. [19] solved the crew pairing problem via a
linear program based branch-and-bound algorithm.

Another model to integrate aircraft routing and crew pairing was
proposed by Cordau et al. [6] and also byMercier et al. [24]. They used
Benders decomposition and branch-and-price to solve the model.
Employing the crew pairing problem as the subproblem as well as
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the master problem has been tested, the latter with better success.
Both approaches add inequalities to the set partitioning polytopes of
the problems. Cordau et al. [6] also reversed the sequential approach
and tried to solve the crew pairing problem first followed by the
aircraft routing problem as in Klabjan et al. [19]. They applied this
approach to an interconnected network but were not successful in
obtaining feasible solutions for the aircraft routing problem.

Cohn and Barnhart [5] also integrated aircraft routing and crew
pairing. They extended the crew pairing problem by using the air-
craft routing problem as a second column generator next to the crew
pairing generator. For each solution of the aircraft routing problem
one variable is added to the crew pairing problem and a convexity
constraint ensures the selection of one of the aircraft routing solu-
tions in the final solution of the problem. LP based branch-and-price
is used in this computationally expensive solution method. Mercier
et al. [24] found that their Benders decomposition approach yields
better solutions in less computation time than the extended crew
pairing model of Cohn and Barnhart [5].

Sandhu and Klabjan [30] partially integrated fleet assignment,
aircraft routing and crew pairing with a similar approach as Klabjan
et al. [19] and solved the model with both Lagrangian relaxation and
Benders decomposition.

Very recently, Mercier and Soumis [23] extended their model
(Mercier et al. [24]) and integrated aircraft routing and crew pairing
with time windows for the departure times. Flights are allowed to
depart 5min earlier or later than originally scheduled. Binary vari-
ables are used to indicate which departure time is assigned to a flight.
Equality constraints sum up the binary departure time variables for
the crew and aircraft solutions and ensure that the same departure
times are used in the solutions of both problems. Again, the authors
used Benders decomposition to solve the problem.

Models that focus purely on minimising cost tend to generate
solutions that appear brittle in operations. Such solutions incur large
recovery costs once disruptions occur in practice. In order to improve
the behaviour in operations a number of robustness measures have
been introduced.

Schaefer et al. [32] used expected operational cost for the crew
pairings instead of planned cost. Interactive effects between pairings
are ignored and a push-back strategy for recovery is used. In this
strategy the flights are delayed until crew and aircraft are available.
The authors used SimAir to estimate the costs and to evaluate the
quality of their solutions. SimAir is aMonte Carlo simulation of airline
operations that permits the evaluation of schedules and recovery
policies in operations, see Rosenberger et al. [27].

Yen and Birge [36] formulated the crew pairing problem as a
stochastic programming problem in a computationally expensive ap-
proach. Crew switching aircraft are penalised in the objective func-
tion. A similar measure of robustness was introduced by Ehrgott and
Ryan [10] in a deterministic approach. Crew pairings are penalised
where crew are changing aircraft and the sit-time of the crew is less
than the minimal sit-time plus some measure of delay of the in-
coming flight. Crew who stay on the same aircraft are not penalised.
Thus, crew connections where disruptions are likely to propagate
onto multiple flights are penalised. Robustness is treated as a sec-
ond objective function in a bicriteria approach. Mercier et al. [24]
also penalised crew changing aircraft on restricted connections (see
Section 2.3).

Most recently, Shebalov and Klabjan [33] solved the crew pairing
problem first and then maximised the number of move-up crews
without increasing the planned cost too much. Move-up crews are
crews that can potentially be swapped in case one crew is delayed.
They compared their method with the method of solving the stan-
dard crew pairing problem by simulating disruptions and found so-
lutions with significantly lower operational costs if the additional
cost allowed for move-up crews is not too high.

A direct comparison between the various approaches is difficult
due to different levels of integration, robustness measures and char-
acteristics of schedules and rule-sets used. Cordeau et al. [6] and
Mercier et al. [24] found their Benders decomposition approach su-
perior to two recent models (Klabjan et al. [19] and Cohn and Barn-
hart [5]). It is also evident that a direct solution approach to the
integrated model (3) for large scale practical problems is inferior to
decomposition techniques if not intractable (Cordeau et al. [6]).

4. Iterative solution approach

Currently, the most successful approach in the literature to solve
the integrated crew pairing and aircraft routing problem seems to
be Benders decomposition (see Mercier et al. [24]). However, large
computation time is needed and the problem is only solved to near
optimality.

We assume the aircraft routing cost to be fixed and consider the
cost of the crew pairings as the only cost of the integrated solution.
We consider a connection to be restricted, if the sit-time does not ex-
ceed the minimal sit-time by more than 30min. The non-robustness
measure (NRM) of an integrated solution is a sum of sit-time depen-
dent penalties over all restricted aircraft changes. We choose penal-
ties which increase linearly with decreasing sit-time:

NRM =
∑

ij∈RAC
(k1 − ((sit-time)ij − (minimal sit-time)ij))k2, (4)

where RAC is the set of all restricted aircraft changes. Weights k1
and k2 are chosen such that the penalty equals 7 for a restricted
aircraft change with sit-time equal to the minimal sit-time, 6 for
a restricted aircraft change with sit-time exceeding the minimal
sit-time by 5min, and so on until a weight of 1 is assigned to
a restricted aircraft change with sit-time exceeding the minimal
sit-time by 30min. Note that all departure and arrival times in
the schedules we consider are discretised in 5min intervals. A dif-
ferent set of connections (e.g. those with a larger sit-time) or a
different function of the sit-time (e.g. where weights increase expo-
nentially with decreasing sit-time) could be chosen in a straightfor-
ward way.

We search for an integrated solution with small cost and small
non-robustness measure. We do not attempt to solve the integrated
problem to optimality. Instead we propose to solve the crew pair-
ing problem and the aircraft routing problem iteratively. Initially we
solve the crew pairing problem to cost optimality without consider-
ing any aircraft routings. Not considering any aircraft routings results
in the generation of a larger set of feasible crew pairings since fea-
sibility parameters are relaxed (see Section 2.3). This solution yields
a lower bound on the cost of a feasible integrated solution. Then, in
each iteration the aircraft routing problem is solved first. We con-
sider all restricted connections operated in the current crew pairing
solution and force the aircraft routing solution to contain as many
of those connections as possible. This will enforce the “aircraft to
follow the crew” as much as possible if the connection is restricted.
In other words, we solve the aircraft routing problem using the fol-
lowing objective function:

max
∑

ij∈RCP∩RCR

(k1 − ((sit-time)ij − (minimal sit-time)ij))k2, (5)

where RCP is the set of restricted connections operated in the current
crew pairing problem and RCR the set of restricted connections used
in the aircraft routing solution and k1, k2 are chosen as above. Note
that we maximise over the set of restricted connections. This is in
contrast to the non-robustness measure (4) where we sum over the
set of restricted aircraft changes. Next we solve the crew pairing
problem to optimality for the current aircraft routing solution with
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a weighted sum objective function of crew pairing costs and non-
robustness measure:

min crewPairingCost + crewPenalty × NRM. (6)

Hence, each iteration yields a feasible solution to the integrated
problem. We start with crewPenalty equal to zero and increase this
weight in each iteration in order to increase the robustness of the
solutions we generate.

The advantages of this procedure are as follows: firstly, we can
generate solutions with small cost and small non-robustness mea-
sure in a short amount of computation time and with no increase
of complexity compared to the original problems. Secondly, we can
study the trade-off between crew pairing costs and non-robustness
measure of the solutions and the airline can choose a preferred so-
lution without attaching a cost to the non-robustness measure a pri-
ori. Finally, we obtain a lower bound for the crew pairing cost which
allows us to measure the quality of the final solution. Algorithm 1
shows the steps of the iterative approach.

Algorithm 1. Iterative algorithm

1: SET crewPenalty = 0
2: SOLVE crew pairing problem with objective function (6) {since

no aircraft routings are taken into account a larger set of feasible
pairings is generated}.

3: while crewPenalty�maxCrewPenalty do
4: SOLVE aircraft routing problem with objective function (5)

{maximise the number of restricted connections contained in the
aircraft routing solution that are operated in the current crew
pairing solution}.

5: SOLVE crew pairing problem with objective function (6)
{minimise cost and the number of restricted aircraft changes}.

6: INCREASE crewPenalty
7: BREAK if the non-robustness measure cannot be improved
8: end while

For the schedule data sets relevant to this work, it can be as-
sumed that the minimal sit-time of the crew is equal to the minimal
turn-time of aircraft. Hence no short connections are taken into ac-
count. Since we always solve the crew pairing problem for a given
aircraft routing solution, short connections can be considered by re-
moving connections in the underlying network structure of the crew
pairing problem, i.e. short connection arcs are removed that are not
operated by any aircraft. In the aircraft routing problem short con-
nections can be included by assigning very large weights to short
connections operated by the crew in objective (5). If short connec-
tions are present in the problem, Step 2 of Algorithm 1 generally
yields an infeasible solution that violates the short connection rules
(Section 2.3). The interdependence between aircraft routings and
crew pairings stated in Section 2.3 is extended by an additional rule.
We understand that this rule has been imposed by the airline in an
attempt to improve robustness. The number of times the crew are
allowed to change aircraft in a single duty period is restricted to one
for technical crew and two for flight attendants. In the following
discussion we refer to these restrictions by DPACLIM (duty period
aircraft change limit).

The cost of the crew pairing solution of Step 2 yields a lower
bound on the crew pairing costs of a feasible integrated solution since
no aircraft routings are taken into account. In our experiments, no
aircraft routing solution for the crew pairing solution of Step 2 could
be found to satisfy the DPACLIM rule. Hence, Step 2 usually yields
an infeasible solution to the integrated problem. If the DPACLIM rule
is relaxed we can find an aircraft routing solution to form a feasible
solution to the integrated problem. For the test instances, such an
integrated solution contains a large number of restricted aircraft
changes and hence accounts for a large non-robustness measure.

The DPACLIM rule is implicitly enforced by the shortest path column
generator of the crew pairing problem since we always solve the
crew pairing problem for a given aircraft routing solution.

After the initial steps of the algorithm, we obtain a feasible solu-
tion to the integrated problem in each iteration by solving the crew
pairing problem (Step 5) for a given aircraft routing solution (Step 4).
Once the integrated solution converged to a stable solution, the al-
gorithm stops. For a stable solution, successive iterations yield iden-
tical aircraft routing and crew pairing solutions, despite increasing
the crewPenalty weight. Hence, the non-robustness measure cannot
be improved. The value of maxCrewPenalty is chosen such that the
non-robustness measure dominates the crew pairing costs in func-
tion (6) in the sense that no restricted aircraft changes are contained
in the optimal solution if such a solution exists.

From a computational point of view, the main advantage of this
solution algorithm to the integrated problem is that the original set
partitioning formulations of both problems remain unchanged. This
preserves the properties of the two problems and enables us to solve
each problem efficiently with the methods described in Section 2.

If aircraft routing and crew pairing solvers are available, the im-
plementation of the iterative approach is straightforward. We influ-
ence the characteristics of the solutions to either problem via the
costs of the underlying network structure. This is easily implemented
into the shortest path computations of the column generators for
both problems: penalties are applied to restricted connections used
by the current crew solution in the network for the aircraft routing
calculations. Since there are no other costs associated with the air-
craft routings these penalties will enforce paths in the solution that
contain as many restricted crew connections as possible. Also, we
always obtain a feasible aircraft routing solution since all changes to
the problem are in the objective function. In the crew pairing prob-
lem, each restricted aircraft change will incur a penalty during the
shortest path calculation. In Section 5.4 we apply the iterative algo-
rithm to a number of different data sets.

The crew for an aircraft usually consists of multiple crew groups.
Our data sets consist of three crew groups, namely captains and first
officers (i.e. technical crew) and flight attendants. Different rules,
base strengths and pay structures apply to each group. A robust air-
craft routing and crew pairing solution for one crew group may en-
force many restricted aircraft changes in a crew pairing solution for
another crew group. Hence, considering aircraft and one crew group
might lead to a suboptimal solution. Ideally we want to consider all
crew groups and the aircraft simultaneously. To incorporate multiple
crew groups into the iterative approach we simply solve the crew
pairing problem in Step 5 for each crew group separately but use
the same common aircraft routing solution. To obtain penalties for
the restricted connections for the subsequent aircraft routing prob-
lem we weight the penalties for the restricted connections of the
different crew pairing solutions according to weights (w1 and w2 in
example (7)) chosen by the airline. For example, the aircraft routing
objective function in Step 4 for two crew groups is changed to

maxw1
∑

ij∈RCP
1∩RCR

(k1 − ((sit-time)ij − (minimal sit-time)ij))k2

+ w2
∑

ij∈RCP
2∩RCR

(k1 − ((sit-time)ij − (minimal sit-time)ij))k2, (7)

where RCP
1 and RCP

2 are the sets of restricted connections of the crew
pairing solutions for crew group 1 and crew group 2, respectively.
Weights w1 and w2 can be chosen to reflect the ratio of crew pairing
costs between both crew groups. We then generate a new aircraft
routing solution as before. The results of the iterative algorithm with
multiple crew groups are presented in Section 5.5.
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Fig. 1. Comparison of airline and iterative approach, captain solutions (DPACLIM = 1) for schedule summer 2005.

5. Computational experiments

5.1. Flight schedule

The computational experiments are performed on interconnected
flight networks corresponding to domestic airline schedules. The
schedules vary on a daily basis and we consider dated time periods
of one week. We consider three different schedules, from summer
2005, winter 2005 and summer 2006. For each schedule we com-
pute solutions to the integrated aircraft routing and crew pairing
problem for three different crew groups: captains, first officers and
flight attendants. Each crew group has three different crew bases
with different strengths at each base. Also, meal-break rules and
rest requirements as well as the pay structure vary between the
groups.

Each schedule contains approximately 750 flights and 22,000 con-
nections in one week and the fleet consists of 14 aircraft. Approxi-
mately 1200 of the connections are restricted in the sense that the
sit-time exceeds the minimal sit-time by at most 30min. All rules
and restrictions applicable to aircraft routings and crew pairings are
provided by the airline and are implemented in the algorithm. Hence,
all solutions generated satisfy these rules and are ready to be used
in practice.

Considering dated schedules of one week is in line with current
practice at the airline because resource levels at the crew bases as
well as the schedule itself change on a weekly basis. In order to com-
pare the iterative approach solutions with solutions currently op-
erated we restrict the computational experiments to dated weekly
schedules. Other problems such as the cyclic daily or weekly problem
(where pairings and routings wrap around the same day or week) or
dated monthly schedules (Klabjan [18]) can be considered by mod-
ifying the crew pairing and aircraft routing algorithms, the general
method of the iterative approach remains the same.

5.2. Crew pairing

As a measure of the cost of the integrated solution we use crew
pairing costs without added penalties (see objective function (6)). In
all figures, LP crew pairing costs rather than IP costs are presented
to obtain a more monotonic representation of the solutions. In all
calculations the observed IP-gap is very small, with an average of
0.81% over all solutions generated.

Because many of the crew pairing columns generated in each so-
lution of the iterative approach remain legal and feasible for subse-
quent crew pairing solutions, we can store the columns and simply
recalculate their objective coefficients in each iteration. Each LP com-
putation is “hot-started” from the optimal basis of the LP solution
of the previous iteration. As a result the crew pairing solutions are
obtained very efficiently during the later iterations of the algorithm
since very few new columns are generated.

5.3. Aircraft routing

In the schedules considered, aircraft maintenance is usually per-
formed at night when all aircraft are grounded at few airports. If an
aircraft stays overnight at an airport with no maintenance facility,
this aircraft must overnight at a maintenance base the next night.
Also, there is no interaction between connections performed by the
aircraft on different days. Hence, we can solve the aircraft routing
problem for each day independently taking the maintenance status
of the preceding night into account.

5.4. Iterative algorithm with one crew group

In Fig. 1 results of the captain solutions for the schedule of sum-
mer 2005 are presented. The costs and non-robustness measures of
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the solution operated by the airline and the solutions generated by
the iterative approach are compared. The airline solution is gener-
ated by solving the crew pairing problem to cost optimality for the
aircraft routing that was operated by the airline. The figure shows
the non-robustness measure (see Section 4) plotted against the opti-
mal LP crew pairing cost. In addition we list the number of restricted
aircraft changes for each solution. The solutions generated by the
iterative approach yield better costs and non-robustness measures
than the airline solution. These results seem surprising since we
expect to generate solutions that are more robust but not cheaper
than the airline solution. The same crew pairing optimiser is used
for airline solution and iterative approach solutions and the only dif-
ferences between them are the aircraft routings used as input. The
airline solution uses an aircraft routing solution that is constructed
manually with no relation to the crew pairing problem. In the itera-
tive approach the aircraft routing solutions are fitted closely to the
cheapest possible crew pairing solution (from Step 2 of Algorithm
1). These aircraft routing solutions permit the construction of crew
pairing solutions that are cheaper and more robust than the solution
that is currently used by the airline because many characteristics of
cheap crew pairing solutions are incorporated in these aircraft rout-
ing solutions.

The data shown in Fig. 1 is given in more detail in Table 1. For
each iteration we list the LP crew pairing cost and the improvement
compared to the LP crew pairing cost of the airline solution in per-
cent. We also list the IP crew pairing costs and the IP-gaps. Note that
the crew pairing LP uses a weighted sum objective of crew pairing
costs and penalties (see objective function (6)). The ratio of costs and
penalties in the solution value of LP and corresponding IP solution
can differ. When we subtract the penalties from the solution val-
ues we may obtain an IP solution that incurs less crew pairing cost
than the LP solution. Additionally, the non-robustness measures and
the improvements relative to the airline solution are shown. We do
not show any non-robustness measure for the lower bound solution
since we cannot find an integrated solution satisfying the DPACLIM
rule. Finally, CPU times are shown for each iteration. All experiments
are performed on a Pentium 4, 2.6GHz computer. For all solutions
only the time for solving the crew pairing problem is shown since
the aircraft routing problem is always solved in less than 5 s due to
the applied decomposition described in Section 5.3. We can observe
that the time needed for the later iterations is significantly smaller
than for the early iterations. This speed-up is caused by using previ-
ously generated crew pairings and hot-starting from a previous basis
solution.

The cost of the crew pairing solution obtained in Step 2 of Algo-
rithm 1 is a lower bound for the cost of the optimal solution value.
In Table 1 we can observe for the captain solutions, which this lower
bound solution incurs 2.08% less cost than the airline solution. The
solution is infeasible since we cannot find aircraft routings to satisfy
the DPACLIM rule. Here, only one aircraft change is allowed during
each duty period. The cheapest feasible solution we find (iteration
1) incurs 1.24% less cost than the airline solution and is only 0.85%
more expensive than the value of the lower bound. Also, the non-
robustness measure of this solution is only 165 compared to 371 for
the airline solution which is an improvement of 55.53%. The most ro-
bust solution that is still cheaper than the airline solution improves
the non-robustness measure by 92.18% (iteration 6). For first offi-
cers results look very similar (see Table 1). Here the non-robustness
measure can be improved by 97.09% (iteration 7) without increasing
the cost of the airline solution.

In Fig. 2 we demonstrate the benefit of relaxing the DPACLIM
rule allowing at most two aircraft changes per duty period instead
of just one. We find solutions with costs effectively on the lower
bound (costs increase by 0.05% for iterations 1 and 2) that are also
very robust. In Table 2 we list details for both DPACLIM settings.

We list the number of duty periods containing one (DPAC1) and two
(DPAC2) aircraft changes, respectively. We also list the number of
aircraft changes occurring in these duty periods and how many of
those are restricted aircraft changes. We complement these figures
with the corresponding LP crew pairing costs and non-robustness
measures. We observe that the reduction in the cost objective is
achieved with an increased number of duty periods with two aircraft
changes. However, the non-robustness measure of these solutions
does not increase significantly. In iteration 6, for example, the solu-
tion with one allowed aircraft change has a non-robustness measure
of 29 and 14 restricted aircraft changes, while the solution with two
allowed aircraft changes per duty period has a non-robustness mea-
sure of 32 and also 14 restricted aircraft changes. The latter solution
incurs 0.76% less costs but contains nine duty periods with two air-
craft changes. This shows that we can achieve a better cost and more
robust

In Tables 3–5 we present further results for technical crew and
flight attendants for schedules of summer 2005 and 2006, and win-
ter 2005, respectively. The overall trend is similar to the captain so-
lutions for summer 2005 shown in Table 1. We find solutions that
are much more robust than the airline solution and incur less or only
slightly more cost. We find that for the flight attendant solutions for
summer 2006 the non-robustness measure does not decrease below
50 (see Table 5). This is due to restrictive base constraints. In exper-
iments where the base constraints are relaxed and the number of
available crew is increased by 2%, solutions with a non-robustness
measure of zero can be obtained. Note also that for the schedules of
summer 2006 there exists only one set of results for technical crew
since the rule-sets for captains and first officers are identical for this
period. Additionally, the costs of the iterative solutions and of the
airline solution are much closer to the lower bound for flight atten-
dants than for technical crew. This is because of the relaxed DPA-
CLIM rule for flight attendants where two aircraft changes in each
duty period are allowed by the airline. Finally, we observe in Table
3 large computation times in iterations 3 and 7 for the first officer
scenario. In both cases the branch-and-bound search in the crew
pairing problem is stopped after 1000 nodes. The integer solutions
shown are found in an early stage of the search but their solution
values exceed the bound gap.

It is desirable to compare the performance of the iterative solution
approach with a direct solution method for the integrated model
(3) as well as other decomposition approaches. We omit the direct
solution method since it is commonly believed in the literature that
decomposition methods outperform a direct solution approach for
large scale practical problems (Cordau et al. [6]). A comparison with
other decomposition approaches is complicated by different types
of schedules and rule-sets used in the various publications and not
included in the paper.

5.5. Iterative algorithm with multiple crew groups

We extend the iterative algorithm to solve the aircraft routing
problem together with the crew pairing problems for technical crew
and flight attendants. The goal is to show that the benefits of solving
one crew group together with the aircraft are not lost if we add
another crew group. Clearly, using a solution that is very robust for
one crew group but results in many restricted aircraft changes for
another crew group is not desirable. Figs. 3 and 4 summarise the
results. We choose the schedule of summer 2006 since this schedule
only contains two different crew groups, technical crew and flight
attendants. In Fig. 3 the results of applying the iterative algorithm
to technical crew only are shown in grey. Similarly, in Fig. 4 the
results of considering flight attendants only are also marked in grey.
Additionally, we can solve the technical crew as before and in each
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Table 1
Results for technical crew, schedule summer 2005.

Captain, schedule summer 2005 First officer, schedule summer 2005

LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time* LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time*

Airline 176,074.88 – 177,647.70 0.89 371 – 605 172,510.58 – 173,176.49 0.38 344 – 408
Bound 172,420.84 2.08 173,854.41 0.82 – – 724 168,419.26 2.37 170,560.04 1.26 – – 538
Iter. 1 173,892.64 1.24 175,722.08 1.04 165 55.53 420 170,079.29 1.41 171,978.93 1.10 208 39.53 413
Iter. 2 174,209.43 1.06 175,626.14 0.81 144 61.19 170 170,274.45 1.30 171,831.82 0.91 165 52.03 387
Iter. 3 174,217.90 1.05 175,187.69 0.55 119 67.92 360 170,544.68 1.14 171,232.97 0.40 113 67.15 257
Iter. 4 174,260.14 1.03 174,984.87 0.41 70 81.13 227 170,260.76 1.30 170,695.24 0.25 73 78.78 223
Iter. 5 174,715.69 0.77 175,707.72 0.56 53 85.71 275 170,388.66 1.23 170,908.26 0.30 30 91.28 233
Iter. 6 175,602.27 0.27 176,311.24 0.40 29 92.18 306 170,941.18 0.91 171,527.42 0.34 17 95.06 193
Iter. 7 176,841.56 −0.44 177,265.20 0.24 5 98.65 188 172,009.62 0.29 172,418.49 0.24 10 97.09 222
Iter. 8 177,695.51 −0.92 178,066.47 0.21 0 100.00 256 173,395.12 −0.51 173,329.55 −0.04 2 99.42 245
Iter. 9 173,909.61 −0.81 174,183.32 0.16 0 100.00 194

*For solving the crew pairing problem; all times in seconds.

Fig. 2. Variation of DPACLIM settings (black = 1;white = 2), captain solutions for schedule summer 2005.

Table 2
Impact of allowed aircraft changes per duty period (DPACLIM) for captain solutions, schedule summer 2005.

Allow one aircraft change Allow two aircraft changes

DPAC1* AC* RAC* LP cost NRM* DPAC1 AC RAC DPAC2* AC RAC LP cost NRM

Airline 103 103 66 176,074.88 371 76 76 55 52 104 67 172,935.52 560
Iter. 1 85 85 34 173,892.64 165 73 73 36 25 50 27 172,524.21 302
Iter. 2 80 80 36 174,209.43 144 59 59 20 21 42 19 172,512.80 176
Iter. 3 83 83 32 174,217.90 119 69 69 24 16 32 12 172,723.57 143
Iter. 4 76 76 22 174,260.14 70 58 58 18 14 28 12 172,825.09 101
Iter. 5 63 63 17 174,715.69 53 55 55 15 8 16 8 173,503.36 78
Iter. 6 70 70 14 175,602.27 29 66 66 8 9 18 6 174,268.66 32
Iter. 7 71 71 3 176,841.56 5 55 55 3 14 28 4 175,617.27 18
Iter. 8 71 71 0 177,695.51 0 60 60 0 15 30 0 177,341.25 0

*DPAC1—duty periods with one aircraft change; DPAC2—duty periods with two aircraft changes; AC—aircraft changes; RAC—restricted aircraft changes; NRM—non-robustness
measure.
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Fig. 3. Results for technical crew, schedule summer 2006, with flight attendants solved simultaneously.

Fig. 4. Results for flight attendants, schedule summer 2006, with technical crew solved simultaneously.
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Table 3
Results for technical crew, schedule winter 2005.

Captain, schedule winter 2005 First officer, schedule summer 2005

LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time* LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time*

Airline 170,767.52 – 171,428.20 0.39 443 – 632 166,361.00 – 168,440.67 1.23 374 – 420
Bound 168,153.35 1.53 168,765.37 0.36 – – 805 162,590.00 2.27 163,235.40 0.40 – – 612
Iter. 1 169,584.85 0.69 170,965.03 0.81 267 39.73 507 165,005.84 0.81 165,997.41 0.60 199 46.79 335
Iter. 2 169,542.08 0.72 170,473.83 0.55 148 66.59 350 164,591.74 1.06 164,824.08 0.14 146 60.96 227
Iter. 3 169,696.28 0.63 169,922.62 0.13 121 72.69 255 164,677.32 1.01 168,909.76 2.51 97 74.06 3996
Iter. 4 169,838.21 0.54 170,471.04 0.37 91 79.46 264 165,116.48 0.75 166,160.70 0.63 86 77.01 292
Iter. 5 169,956.76 0.47 170,514.41 0.33 76 82.84 343 165,500.89 0.52 167,020.75 0.91 65 82.62 350
Iter. 6 171,045.32 −0.16 171,700.82 0.38 24 94.58 349 166,284.73 0.05 166,351.09 0.04 41 89.04 255
Iter. 7 172,390.64 −0.95 172,879.06 0.28 19 95.71 394 166,966.68 −0.36 167,824.08 0.51 23 93.85 2386
Iter. 8 172,787.03 −1.18 174,345.83 0.89 1 99.77 440 168,875.44 −1.51 170,254.06 0.81 4 98.93 397
Iter. 9 173,217.90 −1.43 173,502.53 0.16 1 99.77 227 169,788.78 −2.06 170,915.92 0.66 2 99.47 351
Iter. 10 173,201.64 −1.43 173,813.00 0.35 1 99.77 296 170,249.68 −2.34 170,585.82 0.20 1 99.73 216

*For solving the crew pairing problem; all times in seconds.

Table 4
Results for flight attendants, schedules summer and winter 2005.

Flight attendants, schedule summer 2005 Flight attendants, schedule winter 2005

LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time* LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time*

Airline 68,787.11 – 69,833.49 1.50 497 – 146 68,425.19 – 70,046.91 2.32 511 – 484
Bound 68,671.77 0.17 69,547.70 1.26 – – 138 67,909.60 0.75 70,780.45 4.06 – – 1945
Iter. 1 68,749.99 0.05 70,331.80 2.25 256 48.49 109 68,142.56 0.41 70,175.15 2.90 181 64.58 2514
Iter. 2 68,834.40 −0.07 70,285.10 2.06 129 74.04 89 68,214.09 0.31 69,025.95 1.18 149 70.84 84
Iter. 3 68,969.46 −0.27 69,689.90 1.03 115 76.86 83 68,302.00 0.18 69,529.05 1.76 127 75.15 70
Iter. 4 69,161.13 −0.54 70,263.65 1.57 75 84.91 82 68,555.44 −0.19 69,623.45 1.53 95 81.41 112
Iter. 5 69,473.98 −1.00 69,750.55 0.40 45 90.95 207 68,778.60 −0.52 69,837.30 1.52 92 82.00 92
Iter. 6 70,230.34 −2.10 71,525.90 1.81 35 92.96 104 70,683.56 −3.30 71,186.90 0.71 62 87.87 72
Iter. 7 71,926.64 −4.56 72,857.50 1.28 9 98.19 88 71,549.44 −4.57 73,300.70 2.39 28 94.52 606
Iter. 8 73,313.53 −6.58 73,988.75 0.91 1 99.80 84 74,702.32 −9.17 75,125.70 0.56 10 98.04 154
Iter. 9 73,289.27 −6.55 74,495.55 1.62 0 100.00 75 74,827.86 −9.36 75,983.30 1.52 6 98.83 82
Iter. 10 75,073.00 −9.72 75,321.95 0.33 5 99.02 615

*For solving the crew pairing problem; all times in seconds.

Table 5
Results for technical crew and flight attendants, schedule summer 2006.

Technical crew, schedule summer 2006 Fight attendants, schedule summer 2006

LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time* LP cost Imp. (%) IP cost Gap (%) NRM Imp. (%) CPU time*

Airline 164,416.19 – 167,319.42 1.74 385 – 378 69,634.79 – 70,905.51 1.79 653 – 143
Bound 161,398.87 1.84 161,514.29 0.07 – – 413 68,440.59 1.71 68,795.93 0.52 – – 140
Iter. 1 162,576.29 1.12 163,529.97 0.58 175 54.55 240 69,219.33 0.60 70,236.23 1.45 306 53.14 83
Iter. 2 162,769.47 1.00 165,425.37 1.61 140 63.64 291 69,376.38 0.37 70,044.08 0.95 281 56.97 65
Iter. 3 162,815.10 0.97 164,138.50 0.81 82 78.70 282 69,477.70 0.23 70,234.78 1.08 213 67.38 58
Iter. 4 162,896.94 0.92 163,631.86 0.45 51 86.75 175 69,458.04 0.25 69,919.93 0.66 197 69.83 53
Iter. 5 163,283.65 0.69 164,386.92 6.57 34 91.17 212 70,531.49 −1.29 70,393.98 −0.20 153 76.57 58
Iter. 6 163,869.72 0.33 164,330.03 0.28 14 96.36 139 71,514.31 −2.70 71,535.83 0.03 121 81.47 71
Iter. 7 163,910.29 0.31 164,187.37 0.17 10 97.40 172 73,368.54 −5.36 73,085.18 −0.39 84 87.14 73
Iter. 8 165,499.07 −0.66 166,085.32 0.35 0 100.00 225 75,733.24 −8.76 76,139.23 0.53 53 91.88 64
Iter. 9 76,097.23 −9.28 76,097.23 0.00 52 92.04 45

*For solving the crew pairing problem; all times in seconds.

iteration uses the aircraft routing solution to generate solutions for
the flight attendant problem. The results are shown in white in Fig. 4.
This corresponds to setting w1 = 1 and w2 = 0 in objective function
(7). The solutions are more expensive and less robust than the solu-
tions obtained from focusing on flight attendants and aircraft only.
But the solutions follow the same pattern and are of good quality
compared to the airline solution. Hence we do not need to sacrifice
solution quality of the flight attendant problem in order to improve
the technical crew solution and hence improve the overall solution
to the integrated problem.

In a second experiment we again solve two crew pairing prob-
lems in each iteration but we now use feedback information from

the technical crew problem as well as the flight attendant problem
to generate the aircraft routing solution. In the aircraft routing prob-
lem we weight the penalties for the restricted connections of the
technical crew solution with a factor of 2 and the penalties for the
restricted connections of the flight attendant solution with a factor
of 1. This corresponds to setting w1 =2 and w2 =1 in objective func-
tion (7). We then generate aircraft routings subject to this objective
function. The according solutions are represented in black in both
figures. We observe that the technical crew solutions deteriorate
slightly from the best solutions (grey). The solutions for the flight
attendants are also not as good as the best flight attendant solu-
tions (grey) but better than the solutions generated by not using any
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feedback from the flight attendant solutions (white). Note that in
these solutions both crew groups rarely change aircraft if the con-
nection is restricted. This also implies that both crew groups usually
stay together on restricted connections. This is of great advantage
not only from a robustness point of view but also from an opera-
tional point of view. The solutions satisfy this property without the
need to focus on the property in the algorithm. Since the technical
crew solution usually incurs more cost than the flight attendant so-
lution we only consider examples where the weight for the technical
crew exceeds the weight for the flight attendants. The weights can
be adjusted according to the airline's preferences. We can now gen-
erate solutions for the aircraft routing and two crew pairing prob-
lems in one integrated procedure. Likewise, additional crew groups
or multiple aircraft types can be added.

6. Conclusion

Solving the integrated aircraft routing and crew pairing problem
to optimality is computationally expensive. Also, to identify a ro-
bust solution, costs must be associated with non-robustness. In this
paper we show that by heuristically coupling the two problems we
can quickly generate a series of good quality solutions and do not
need to attach costs to the non-robustness measure. Although op-
timality of the solutions cannot be guaranteed, we obtain solutions
that incur less costs and are significantly more robust than solutions
currently used in practice. We also find that the airline can operate
cheaper and more robust solutions if two aircraft changes per duty
period are allowed for technical crew. Additionally, we are able to
consider multiple crew groups with only a minor modification of the
algorithm.

Future research includes a comparison of the iterative approach
with other approaches in the literature and the substitution of the
crew pairing formulation with weighted sum objective by a superior
bicriteria crew pairing approach (Ehrgott and Ryan [10]). We also
plan to investigate solving the integrated problem to optimality and
allow departure time windows for the flights to include schedule
design decisions into the formulation. Departure times of the flights
are allowed to vary in some window to create more flexibility for the
generation of crew pairings and aircraft routings. This is expected to
further improve cost and robustness of the integrated solution. To
ensure that the same departure times are used by crew and aircraft
and the set partitioning formulations are not disturbed we branch
on the time windows which can be incorporated into the network
structures of both problems.
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