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Generalized assisted inflation

E. J. Copeland
Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

Anupam Mazumdar
Astrophysics Group, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

N. J. Nunes
Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

~Received 22 April 1999; published 15 September 1999!

We obtain a new class of exact cosmological solutions for multiscalar fields with exponential potentials. We
generalize the assisted inflation solutions previously obtained, and demonstrate how they are modified when
there exist cross couplings between the fields, such as occur in supergravity inspired cosmological models.
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I. INTRODUCTION

Scalar field theory has become the generic playground
building cosmological models related to particle physics,
particular for obtaining inflationary cosmologies. One su
class of models involves exponential potentia
@exp(A16p/pmPl

2 f)#, which lead to power law inflation,a
}tp, with p.1, for sufficiently flat potentials@1–3#. A num-
ber of related features have also been discovered for s
potentials: in a universe containing a perfect fluid and suc
scalar field, then for a wide range of parameters the sc
field ‘‘mimics’’ the perfect fluid, adopting its equation o
state@4–6# and leading to attractor scaling solutions at la
time @7#. These solutions offer a plausible mechanism
stabilizing the dilaton field in models of gaugino conden
tion arising in supersymmetry breaking@8#.

It is generally assumed that even if there are many sc
fields present, only one of them will dominate the dynam
and roll down the potential slowly. However, recent
Liddle, Mazumdar, and Schunck~LMS! @9# have demon-
strated in a particular example that multiple scalar fiel
each with an exponential potential, can lead to inflation
solutions, even if the individual field potentials are too ste
for inflation. There exists a cumulative effect of all the fiel
that can give rise to inflationary behavior—a result th
termed ‘‘assisted inflation.’’ Malik and Wands have demo
strated that the associated attractor solution could be ide
fied through a rotation in field space, with a hybrid mod
where the vacuum energy had an exponential depend
upon the dilaton field@10#. Multiple exponential potentials
do arise in modern Kaluza-Klein theories. Indeed, they ar
natural outcome of the compactification of higher dime
sional theories down to 311 dimensions. With this in mind it
is worth investigating such potentials in a bit more deta
Indeed, Kanti and Olive have recently proposed a poss
realization of assisted inflation based on the compactifica
of a five-dimensional Kaluza-Klein model@11#. It also raises
the question, could inflation arise out of the 11-dimensio
supergravity models compactified on squashed seven sph
for example? Such models have been investigated by a n
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ber of authors as low-energy cosmologies from string or
theory@12–15#. Most ‘‘realistic’’ models of dimensional re-
duction lead to steep potentials, which generally do not le
to inflation. In this paper we consider a more general clas
exponential potentials, which can include those gener
found in supergravity compactifications, and obtain ex
cosmological solutions for them. In particular we demo
strate how difficult it is to obtain assisted inflation whe
there exist cross couplings between the scalar fields in
potential, a result also discussed in@14# and @11#. We first
recall the model discussed by LMS, before generalizing th
potential to exponentials involving cross-coupling terms a
demonstrating that the attractor behavior of the scalar fie
still exists, leading to scaling solutions for the generaliz
potential. We then turn our attention to the case of potent
involving multiple exponential terms containing the sam
scalar fields, and relate the solutions to those arising in
pergravity models.

II. THE DYNAMICS OF ASSISTED INFLATION

Liddle et al. @9#, considered n scalar fields, f i ,i
51, . . .n, each with exponential potentials decoupled fro
each other:

Vi~f i !5V0exp~a if i !, ~1!

wherea i is the slope of the individual field with dimension
of the inverse Planck mass. Although the fields are not
rectly coupled through the potential, they are coup
through the Friedmann equation, which implies that the co
bined role of the fields affect the expansion rate of the u
verse:

H25
8p

3mPl
2 (

i 51

n FVi~f i !1
1

2
ḟ i

2G , ~2!

f̈ i523Hḟ i2
dVi~f i !

df i
, ~3!
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whereH5ȧ/a is Hubble’s constant anda is the scale factor
of the flat Friedmann-Robertson-Walker~FRW! universe.
The solution to this is the modified power law@9#

a~ t !}tp, ~4!

wherep is given by

p5
16p

mPl
2 (

i 51

n
1

a i
2

. ~5!

Inflationary solutions exist providedp.1, hence even if
each of thea i ’s are too steep to individually satisfy the co
dition for inflation, as long asn is large enough, the inequa
ity p.1 can be satisfied. These solutions, and the inflati
ary ones we shall present below are eternal, they do
possess an exit from the inflationary epoch. Realistic mod
would of course have to possess such an exit in order to e
the radiation- and matter-dominated epochs of our unive
The particular example of Eq.~5! suggests that it is worth
investigating whether or not such assisted inflation ex
with more general exponential potentials. An alternative
proach with interesting results has been adopted in@11#,
where they have applied the assistance method to the ca
polynomial scalar potentials.

Exponential potentials with coupled scalar fields

To begin with we consider the most natural generalizat
of the single field exponential, namely the case of t
coupled fields:

V~f,c!5V0eaf1bc , ~6!

wherea andb are the slopes for the fieldsf andc. We see
from Eq. ~2! that dimensionally, the right-hand side shou
decrease ast22, becauseH2}t22}Vi(f i). We further as-
sume that, for our potential Eq.~6!,

eaf5
ka

tc
, ebc5

kb

t22c
, ~7!

whereka , kb are dimensional constants andc is a dimen-
sionless constant. Substituting the power-law solution Eq.~4!
into Eq. ~2! we obtain

p25H2t25
8p

3mPl
2 FV0kakb1

1

2 S c

a D 2

1
1

2 S 22c

b D 2G , ~8!

which when coupled with Eq.~3! for thef andc fields leads
to

V0kakb5
~3p21!c

a2
, V0kakb5

~3p21!~22c!

b2
, ~9!

hence

V0kakb5
2~3p21!

a21b2
. ~10!
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Using Eqs.~9! and~10! in Eq. ~8!, we obtain a simple scaling
solution between the two fields:

p5
16p

mPl
2

1

a21b2
, ~11!

S ḟ

ċ
D 2

5S a

b D 2

. ~12!

An important problematic feature for inflationary solution
confronts us immediately in Eq.~11!, namely the coupling
between the two fields reduces the rate of expansion of
universe, a point also made in@14,11#. We will return to this
point again later. An alternative method which would al
lead to Eq.~11! is described in@10# in terms of field rota-
tions, which results in the introduction of two orthogon
fields, one of which is massless and the other possese
exponential potential.

Having demonstrated that it is possible to obtain a sca
solution without using slow roll approximations, we no
generalize this simple case to include an arbitrary numbe
fields and exponential terms making up the overall potent

General exponential potentials with coupled scalar fields

We now consider a potential where we have multiple s
lar fields but their corresponding exponential potentials c
contain arbitrary combinations of the fields with differe
slopes. The potential we will consider is

V5(
s51

n

Vs5V0(
s51

n

expS (
j 51

ms

as jfs jD , ~13!

with the corresponding Friedmann equation

H25
8p

3mPl
2 FV1(

s51

n

(
j 51

ms 1

2
ḟs j

2 G , ~14!

where, from now onq,r ,s stands for index terms in the
potential andi , j ,k,l stands for field indexes, hence,fs j
stands for thej th field in the sth potential term. In other
words, there are a total of(s51

n ms fields distributed in
groups ofms through the terms of the potential. We obta
the solution to this problem by generalizing the assumpt
Eq. ~7!. There exists an attractor region with a power-la
solution, which from Eq.~14!, dimensionally satisfiesH2

}t22}Vi . Hence, we write

eas jfs j5
ks j

tcs j
, ~15!

(
j 51

ms

cs j52, ~16!

where ks j are dimensional andcs j are dimensionless con
stants, respectively. Equation~15!, coupled with the equa-
tions of motion
6-2
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f̈s j13Hḟs j1
]V

]fs j
50, ~17!

result in

~3p21!cs j5as j
2 V0)

k51

ms

ksk , ~18!

from which we find, using Eqs.~16! and ~17!:

V0)
k51

ms

ksk5
2~3p21!

(
j 51

ms

as j
2

,

S cs j

as j
D 2

5
4as j

2

S (
k51

ms

ask
2 D 2 . ~19!

When substituted into Eq.~14! this leads to a key result, th
generalization of the original assisted inflation result giv
by Eq. ~5!:

p5
16p

mPl
2 (

s51

n
1

(
j 51

ms

as j
2

. ~20!

We also note that the generalization of the scaling solu
found in Eq.~11!, quickly follows for the case of any two
scalar fields,fs j andfql :

S ḟs j

ḟql
D 2

5S as j

aql
D 2S (

i 51

mq

aqi
2

(
k51

ms

ask
2 D 2

. ~21!

It is directly evident that Eqs.~20! and~21! reduce to Eq.~5!
for the example ofn exponential terms each containing ju
one field, and Eq.~11! for the case of one exponential ter
but containing two fields. We again see the inhibiting affe
that multiplicative coupling of the fields~i.e.,ms.1) has for
obtaining inflationary solutions. However, in this case,
with the original version of assisted inflation, this can
compensated for if there are enough exponential te
present in the potential~i.e., if n is large enough! @9#.

There is another feature of the potentials we have b
discussing so far that makes them rather unphysical in g
eral. We have been demanding that any two fields pre
cannot be the same~i.e., fs jÞfql). In other words they can
only appear once in the full potential. Nearly all realis
models which emerge from compactifications arising in
pergravity models have the same field appearing in at l
two separate exponential terms. In the following section,
turn our attention to this case.
08350
n

n

t

s

s

n
n-
nt

-
st
e

III. EXPONENTIAL POTENTIALS INSPIRED
BY SUPERGRAVITY MODELS

To set the scene, we generalize Eq.~6! to the case where
the scalar field potential takes the following form:

V~f1 ,f2!5z1ea11f11a12f21z2ea21f11a22f2, ~22!

where,as j , are dimensional constants which can take a
real value andzs.0. The occurrence of such forms of th
potential are quite common in dimensionally reduced sup
gravity models@13,14#. Remarkably we can solve this sys
tem to obtain scaling solutions in a manner analogous
those already presented in Eqs.~7!–~11! obtaining the unique
late time scaling solution for the fieldsf1 andf2,

p5
16p

mPl
2 F ~a212a11!

21~a222a12!
2

~a11a222a21a12!
2 G . ~23!

This simple result reduces to the particular cases we h
already investigated when the appropriate limits are tak
For example, whena215a1250, we reproduce the result Eq
~5!. The equivalent of the assisted inflation result Eq.~11!
follows by settinga11a211a12a2250, in which case we find

p5
16p

mPl
2 F 1

a11
2 1a12

2
1

1

a21
2 1a22

2 G . ~24!

We shall now generalize the potential ton such exponen-
tial potentials andm combinations of linear fields in the ex
ponent@explicitly calculating for the simple case of 2 term
32 fields of Eq.~22!#. The generalized Eq.~22! is then

V5(
s51

n

zsexpS (
j 51

m

as jf j D . ~25!

Of course, we are allowing here for the possibility thatas j
50 for some combination ofs j. We assume that for late
times the fields have an attractor solution, given by

zsexpS (
j 51

m

as jf j D 5
ks

t2
, ~26!

and, following Eqs.~15! and ~16! we write

f j5aj2
cs j

as j
ln t, ~27!

where,aj is a constant depending on the initial conditio
and( j 51

m cs j52, s51, . . . ,n. Substituting Eq.~27! into the
equation of motion Eq.~3!, we obtain the constraint equatio
for the j th field, which follows from assuming the existenc
of a power-law solution

~3p21!
cs j

as j
5 (

q51

n

aq jkq . ~28!

Again, using( j 51
m ci j 52 we obtain
6-3
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(
j 51

m

as jS (
q51

n

aq jkqD 52~3p21!, ~29!

which is equivalent to writing

(
q51

n

Asqkq52~3p21!, ~30!

where

Asq5(
j 51

m

as jaq j . ~31!

Sinces is a free index, we have a set ofn equations that can
be written as

Ak52~3p21!, ~32!

where A is the n3n matrix with elementsAsq and k
5(k1 , . . . ,kn) a column vector. For the 232 case of Eq.
~22! we obtain

A5S a11
2 1a12

2 a11a211a12a22

a21a111a22a12 a21
2 1a22

2 D . ~33!

The solution to this system is

k5A212~3p21!, ~34!

with

A215
ACOF

T

detA
, ~35!

whereACOF
T is the transpose of the cofactor matrix ofA. To

simplify notation we will writeB[ACOF
T and the sum of the

elements in rows of B asBs[(q51
n Bsq , hence, eachks is

ks5
2~3p21!

detA
Bs. ~36!

For the 232 case this yields

B5S a21
2 1a22

2 2a11a212a12a22

2a21a112a22a12 a11
2 1a12

2 D , ~37!

k152~3p21!
a21

2 1a22
2 2a11a212a12a22

~a11a222a12a21!
2

, ~38!

k252~3p21!
2a21a112a22a121a11

2 1a12
2

~a11a222a12a21!
2

. ~39!

From Eqs.~27! and ~28! the late time ratio between th
kinetic terms of two different fields becomes
08350
S ḟ j

ḟ l
D 2

5S (
q51

n

aq jB
q

(
r 51

n

a rl B
r D 2

. ~40!

Substitution of Eqs.~36! and ~28! into the Friedmann
equation yields

p25
8p

3mPl
2 F (

s51

n

ks1
1

2 (
j 51

m S cs j

as j
D 2G

5
8p

3mPl
2
F 2~3p21!(

s51

n
Bs

detA
12(

j 51

m S (
q51

n

aq jB
q

detA
D 2G .

After some algebra, we obtain the simple result forp as the
ratio between the sum of all the elements in the cofac
matrix of A and its determinant

p5
16p

mPl
2

(
s

n

(
q

n

Bsq

det A
. ~41!

The reader should have no problem showing that for th
32 case this reduces to Eq.~23!.

It is instructive to rewrite Eq.~41! in another form. From
Eqs.~30!, ~36!, and~41!,

p5
16p

mPl
2 (

s51

n
1

(
q51

n

Asqkq /ks

, ~42!

and using Eq.~31! with q5s and Eq.~36! we obtain

p5
16p

mPl
2 (

s51

n
1

(
j 51

m

as j
2 1(

qÞs

n

AsqB
q/Bs

. ~43!

A number of points need to be made about Eq.~43!. It is
similar in form to Eq.~20!, which should not be too surpris
ing, the additional terms in the denominator arising from t
fact that we have allowed for fields to appear more than o
in the potential, hence leading effectively to ‘‘sel
interaction’’-type contributions. Indeed if these terms we
turned off we would reproduce the result in Eq.~20!. In the
232 case, it is the constraint leading to Eq.~24!. Due to the
presence of these ‘‘self-interaction’’ terms,p could increase
above the value in Eq.~20! if there happened to be a com
bination of positive and negative slopes in Eq.~43!.

An issue emerges when considering these more com
cated potentials. For the two field, two term case of Eq.~22!,
if a11.a12 then, a necessary~but not sufficient! condition
for the second term to be comparable to the first term at
times is,a21,a22. By comparable we mean that the pote
tial terms reach a constant ratio. If this were not the ca
6-4
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then one of the two terms would quickly dominate the ov
all dynamics. One way to check if a combination of terms
a given potential will be comparable at late times is to u
Eq. ~36! to obtain the ratiosks /kq for these terms. From Eq
~26! it follows that for consistency we require them to b
positive, with p.1/3. In general, the surviving terms~i.e.,
those which remain comparable! will be the ones with the
smallest slopes, corresponding to the largest values ofp.

IV. CONCLUSIONS

In this paper we have derived a new class of exact c
mological solutions involving exponential potentials. In d
ing so we have been able to generalize the assisted infla
solutions discussed by LMS@9# to the case of multiple ex
ponential terms involving many fields. Such potentials
more likely to arise in realistic models of particle physi
where individual fields will occur in a number of separa
exponential terms, leading to cross couplings between
terms. In general, it transpires that it is more difficult
obtain assisted inflation in such models, the fields in any
08350
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exponential term tend to conspire to act against one ano
rather than assist each other, a result also noticed in@14,11#.
This is the real reason why such models tend to fail to p
duce inflationary solutions in supergravity models compa
fied on squashed seven spheres@14#. We also investigated
the case where a number of exponential terms contained
same scalar fields and demonstrated that a number of n
features emerged, including the possibility of increasing
rate of expansion when there exists a mixture of positive
negative slopes in the potential.
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