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Generalized assisted inflation
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We obtain a new class of exact cosmological solutions for multiscalar fields with exponential potentials. We
generalize the assisted inflation solutions previously obtained, and demonstrate how they are modified when
there exist cross couplings between the fields, such as occur in supergravity inspired cosmological models.
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[. INTRODUCTION ber of authors as low-energy cosmologies from string or M
theory[12—15. Most “realistic” models of dimensional re-

Scalar field theory has become the generic playground fodluction lead to steep potentials, which generally do not lead
building cosmological models related to particle physics, into inflation. In this paper we consider a more general class of
particular for obtaining inflationary cosmologies. One suchexponential potentials, which can include those generally
class of models involves exponential potentialsfound in supergravity compactifications, and obtain exact
[exp(y16m/pmE )], which lead to power law inflatiora ~ cosmological solutions for them. In particular we demon-

«tP, with p>1, for sufficiently flat potentialgl—3]. A num-  Strate how difficult it is to obtain assisted inflation when
ber of related features have also been discovered for sudR€re exist cross couplings between the scalar fields in the
potentials: in a universe containing a perfect fluid and such #0tential, a result also discussed[i4] and[11]. We first
scalar field, then for a wide range of parameters the scaldcall the model discussed by LMS, before generalizing their
field “mimics” the perfect fluid, adopting its equation of Potential to exponentials involving cross-coupling terms and
state[4—6] and leading to attractor scaling solutions at lated€monstrating that the attractor behavior of the scalar fields
time [7]. These solutions offer a plausible mechanism forStill exists, leading to scaling solutions for the generalized

stabilizing the dilaton field in models of gaugino condensalPotential. We then turn our attention to the case of potentials
tion arising in supersymmetry breakifig]. involving multiple exponential terms containing the same

It is generally assumed that even if there are many scalatcalar fields, and relate the solutions to those arising in su-

fields present, only one of them will dominate the dynamicg€rgravity models.

and roll down the potential slowly. However, recently

Liddle, Mazumdar, and Schunck-MS) [9] have demon- Il. THE DYNAMICS OF ASSISTED INFLATION

strated in a particular example that multiple scalar fields, . _ . .
each with an exponential potential, can lead to inflationary Liddle etal. [9], considered n scalar fields, ¢;,i
solutions, even if the individual field potentials are too steep™ L - - -N, €ach with exponential potentials decoupled from
for inflation. There exists a cumulative effect of all the fields €ch other:

that can give rise to inflationary behavior—a result they

termed “assisted inflation.” Malik and Wands have demon- Vi( i) =Voexpaidi), @)
strated that the associated attractor solution could be identi- . o i ) ) .

fied through a rotation in field space, with a hybrid mode|wherec_ui is the slope of the individual field w!th d|menS|ons.
where the vacuum energy had an exponential dependen@é the inverse Planck mass. Althoug_h the fields are not di-
upon the dilaton field10]. Multiple exponential potentials 'ectly coupled through the potential, they are coupled

do arise in modern Kaluza-Klein theories. Indeed, they are #1rough the Friedmann equation, which implies that the com-
natural outcome of the compactification of higher dimen-Pined role of the fields affect the expansion rate of the uni-

sional theories down to-81 dimensions. With this in mind it V€rSe:

is worth investigating such potentials in a bit more detail. N

Indeed, Kanti and Olive have recently proposed a possible , 8w D 1.,

realization of assisted inflation based on the compactification H =3 = | Vi(¢i)+§¢i ' @

of a five-dimensional Kaluza-Klein modEgl1]. It also raises 3Mp

the question, could inflation arise out of the 11-dimensional dVi( &)

supergravity models compactified on squashed seven spheres éi=—3H ¢i - 3
for example? Such models have been investigated by a num- de;
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whereH =a/a is Hubble’s constant and is the scale factor
of the flat Friedmann-Robertson-Walk€FRW) universe.
The solution to this is the modified power 1d@]

a(t)otP, 4
wherep is given by
16m « 1
p=— 2 . (5)
Mp =1 a;

Inflationary solutions exist providegp>1, hence even if
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Using Egs(9) and(10) in Eq.(8), we obtain a simple scaling
solution between the two fields:

o "
- mg, a?+ g2’

e
(%) _ %) . (12)

An important problematic feature for inflationary solutions
confronts us immediately in Eq11), namely the coupling

each of thew;’s are too steep to individually satisfy the con- between the two fields reduces the rate of expansion of the
dition for inflation, as long as is large enough, the inequal- universe, a point also made [ih4,11]. We will return to this

ity p>1 can be satisfied. These solutions, and the inflationpoint again later. An alternative method which would also
ary ones we shall present below are eternal, they do ndead to Eq.(11) is described i10] in terms of field rota-
possess an exit from the inflationary epoch. Realistic modelgons, which results in the introduction of two orthogonal
would of course have to possess such an exit in order to entéields, one of which is massless and the other posseses an
the radiation- and matter-dominated epochs of our universexponential potential.

The particular example of Eq5) suggests that it is worth

Having demonstrated that it is possible to obtain a scaling

investigating whether or not such assisted inflation existsolution without using slow roll approximations, we now
with more general exponential potentials. An alternative apgeneralize this simple case to include an arbitrary number of

proach with interesting results has been adopted1it,

fields and exponential terms making up the overall potential.

where they have applied the assistance method to the case of

polynomial scalar potentials.

Exponential potentials with coupled scalar fields

General exponential potentials with coupled scalar fields

We now consider a potential where we have multiple sca-
lar fields but their corresponding exponential potentials can

To begin with we consider the most natural generalizatiorcontain arbitrary combinations of the fields with different
of the single field exponential, namely the case of twoslopes. The potential we will consider is

coupled fields:
V() =Voe PV, (6)

wherea and B are the slopes for the fields and . We see

from Eq. (2) that dimensionally, the right-hand side should With the corresponding Friedmann equation

decrease a$ 2, becauseH?xt %« V,(¢;). We further as-
sume that, for our potential E¢6),

k k
¢ efu=_F
tC tZ*C

()

wherek, , ks are dimensional constants ands a dimen-
sionless constant. Substituting the power-law solution(&q.

into EqQ. (2) we obtain
c\? 1/2—c\?
) T2\

which when coupled with Ed3) for the ¢» and ¢ fields leads
to

1

8
2_1g42t2_
P =H = VOkakﬁ+§

Mpy

. (8

(3p—1)c (3p—1)(2—c)
Vok kg=————, Vokkg=——", (9
hence
2(3p—1)
Vokakﬁ:TBz. (10)

n n ms
V=2 Vs=Vy 2, exp(z as,-¢s,-), (13)
s=1 s=1 j=1
8w N M q.
H2=—|V+ 2 > S¢%|, (14)
3mg, s1i=12

where, from now ong,r,s stands for index terms in the
potential andi,j,k,I stands for field indexes, hence;
stands for thejth field in the sth potential term. In other
words, there are a total oE,_,;mg fields distributed in
groups ofmg through the terms of the potential. We obtain
the solution to this problem by generalizing the assumption
Eq. (7). There exists an attractor region with a power-law
solution, which from Eq.(14), dimensionally satisfie$d?
«t~2xV;. Hence, we write

Ke:
easj¢sj: tc—sslj, (]_5)
Mg
;l Csj=2, (16)

wherekg; are dimensional ands; are dimensionless con-
stants, respectively. Equatiqd5), coupled with the equa-
tions of motion
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. NV
¢sj+3H s+

—=0, 1
e (17
result in
mg
(3p—Deg=agVoll ki, (19)
from which we find, using Eqg16) and(17):
m.
r 2(3p—-1)
Vok[[1 Ksk=—mm—
E aéj
j=1
2
(E)z_ - (19)
C!Sj

—/ mg 2
> ol
k
=

When substituted into Eq14) this leads to a key result, the
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IIl. EXPONENTIAL POTENTIALS INSPIRED
BY SUPERGRAVITY MODELS

To set the scene, we generalize E).to the case where
the scalar field potential takes the following form:

V(¢ ,dp)=z,e%1011 12b24 7, @021b1 a22b2 - (22)
where, ag;, are dimensional constants which can take any
real value andz;>0. The occurrence of such forms of the
potential are quite common in dimensionally reduced super-
gravity models[13,14. Remarkably we can solve this sys-
tem to obtain scaling solutions in a manner analogous to
those already presented in EG8—(11) obtaining the unique
late time scaling solution for the fields; and ¢,

B 167

2
Mpy

(az— a1+ (agp—a)?

2
(a1~ anaiy)

p (23

This simple result reduces to the particular cases we have
already investigated when the appropriate limits are taken.
For example, wher,,= a1,=0, we reproduce the result Eq.
(5). The equivalent of the assisted inflation result EGjl)

generalization of the original assisted inflation result givenfollows by settinga;,a01+ aq,a0,="0, in which case we find

by Eq. (5):

167 "

p_—
mg, s=1

1

(20

Ms

E ai,—

j=1

We also note that the generalization of the scaling solutio
found in Eq.(11), quickly follows for the case of any two
scalar fieldshs; and ¢ :

2

It is directly evident that Eq€20) and(21) reduce to Eq(5)
for the example oh exponential terms each containing just
one field, and Eq(11) for the case of one exponential term

2

‘lf’sj A
— — (22
d’ql

aq|

Mgy
e
I
gl agk

but containing two fields. We again see the inhibiting affect

that multiplicative coupling of the field§.e., mg>1) has for

obtaining inflationary solutions. However, in this case, as

with the original version of assisted inflation, this can be
compensated for if there are enough exponential term
present in the potentidl.e., if nis large enough[9].

There is another feature of the potentials we have bee
discussing so far that makes them rather unphysical in ge

eral. We have been demanding that any two fields preseﬁ

cannot be the sam@e., ¢s;# ¢q). In other words they can
only appear once in the full potential. Nearly all realistic

models which emerge from compactifications arising in su-
pergravity models have the same field appearing in at least

_ 167 1 1

2
Mp)

p (24

2. 2 2. 2
apntaypn axtay

We shall now generalize the potentialisuch exponen-
tial potentials andn combinations of linear fields in the ex-
onent[explicitly calculating for the simple case of 2 terms
2 fields of Eq.(22)]. The generalized Eq22) is then

(25

Of course, we are allowing here for the possibility tiagj
=0 for some combination o§j. We assume that for late
times the fields have an attractor solution, given by

i k
zsexp( 12,1 asjd)j) = t_: (26)
and, following Eqs(15) and(16) we write
CSj
d)j:aj—_lnt, (27)
asj

where, a; is a constant depending on the initial conditions

ﬁnde‘zlcsj:Z, s=1, ... n. Substituting Eq(27) into the

;£quation of motion Eq(3), we obtain the constraint equation

or thejth field, which follows from assuming the existence
of a power-law solution

n
CSj
3p—1)—= agiky.
(3p-1) 22 q; ai

! (29

two separate exponential terms. In the following section, we

turn our attention to this case.

Again, usingE?‘:lcij =2 we obtain
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m n
jgl asj(q}_‘,l aqjkq) =2(3p—1), (29
which is equivalent to writing
n
2, Asda=2(3p—1), (30
where
m
:2 asjaqj. (31)

Sincesis a free index, we have a setwequations that can
be written as

Ak=2(3p—1), (32
where A is the nXn matrix with elementsAgq and k

=(kq, ... k,) a column vector. For the 22 case of Eq.
(22) we obtain

ady+ad, 1101t a0
A= A (33
it axnag; astag,

The solution to this system is

k=A"12(3p-1), (34
with
AL
_1_Acor

detA’ (39

whereAl is the transpose of the cofactor matrix Af To
simplify notation we will writeB=A[, and the sum of the
elements in rows of B as BSEEgleSq, hence, eackg is

2(3p—1)
ke=—goa B™ (36)
For the 2<2 case this yields
2, 2

axtas, Q1101 )

B= 2 2 ) (37)
— @A Ay aytar,

a5+ b= aggay— appa

k;=2(3p—1) > (39
(a1025— a1oa51)

— @y — apapt @l +ald,

k,=2(3p—1) (39)

(a11a00— a1o051)

From Eqgs.(27) and (28) the late time ratio between the
kinetic terms of two different fields becomes
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n 2
¢)J qzl aquq
% =l - (40)
! 2 a’rIBr

r=1

Substitution of Eqs.(36) and (28) into the Friedmann
equation yields

n

8 10 (c- 2
P 3m,23| s 2 1'21 Asj
n 2
B
=57 1 aap-1 é : +22 —;1 -
3md, (3p—1) Y detA ' T4 detA

After some algebra, we obtain the simple result faas the
ratio between the sum of all the elements in the cofactor
matrix of A and its determinant

(41)

The reader should have no problem showing that for the 2
X 2 case this reduces to E®3).

It is instructive to rewrite Eq(41) in another form. From
Egs.(30), (36), and(41),

167

: 2 Asikq/Ks
q=1
and using Eq(31) with g=s and Eq.(36) we obtain
167 1
p=— E m n (43

mp, s=1
PLET Y a+ D ABYBS
j=1 gq#s

A number of points need to be made about E). It is
similar in form to Eq.(20), which should not be too surpris-
ing, the additional terms in the denominator arising from the
fact that we have allowed for fields to appear more than once
in the potential, hence leading effectively to ‘“self-
interaction”-type contributions. Indeed if these terms were
turned off we would reproduce the result in Eg0). In the
2X 2 case, it is the constraint leading to Eg4). Due to the
presence of these “self-interaction” ternys.could increase
above the value in Eq20) if there happened to be a com-
bination of positive and negative slopes in E43).

An issue emerges when considering these more compli-
cated potentials. For the two field, two term case of 2§),
if a11>aq, then, a necessarfput not sufficient condition
for the second term to be comparable to the first term at late
times is,a,1<ay,. By comparable we mean that the poten-
tial terms reach a constant ratio. If this were not the case,

083506-4



GENERALIZED ASSISTED INFLATION PHYSICAL REVIEW D60 083506

then one of the two terms would quickly dominate the over-exponential term tend to conspire to act against one another
all dynamics. One way to check if a combination of terms inrather than assist each other, a result also notic¢ti4ri 1].
a given potential will be comparable at late times is to useThis is the real reason why such models tend to fail to pro-
Eq. (36) to obtain the ratioks/k, for these terms. From Eq. duce inflationary solutions in supergravity models compacti-
(26) it follows that for consistency we require them to be fied on squashed seven sphef&d]. We also investigated
positive, with p>1/3. In general, the surviving tern{e.,  the case where a number of exponential terms contained the
those which remain comparableill be the ones with the same scalar fields and demonstrated that a number of novel
smallest slopes, corresponding to the largest valugs of features emerged, including the possibility of increasing the
rate of expansion when there exists a mixture of positive and
IV. CONCLUSIONS negative slopes in the potential.

In this paper we have derived a new class of exact cos-
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