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Extended inflation with an exponential potential
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In this paper we investigate extended inflation with an exponential potentialV(s)5V0e2ks, which provides
a simple cosmological scenario where the distribution of the constants of nature is mostly determined byk. In
particular, we show that this theory predicts a uniform distribution for the Planck mass at the end of inflation,
for the entire ensemble of universes that undergo stochastic inflation. Eternal inflation takes place in this
scenario for a broad family of initial conditions, all of which lead up to the same value of the Planck mass at
the end of inflation. The predicted value of the Planck mass is consistent with the observed value within a
comfortable range of values of the parameters involved.
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I. INTRODUCTION

The idea of a varyingG based on anthropic arguments,
what would eventually become concisely enunciated
thropic arguments, dates back to Dirac@1# and later Sciama
@2#. Their ideas paved the way for Brans and Dicke to f
mulate a very interesting theory of gravity@3# that is de-
scribed by the metric tensorgmn and a scalar fieldF. In their
theory the Planck mass over an ensemble of universe
given by Mp

2(F)516pF, and the Brans-Dicke~BD! cou-
pling v determines the validity of the principle of equiva
lence in gravitation. In the limitv→` and a suitably large
F, BD gravity is equivalent to general relativity~GR!. The
theory predicts very small variations ofG within the horizon,
but the value ofv is likely to leave its imprint on the cosmi
microwave background~CMB! and in the different stages o
the evolution of the Friedmann-Robertson-Walker~FRW!
universe, such as the matter-radiation transition@4#. For
larger scales, our implicit expectation is that although B
gravity is almost indistinguishable from GR in our obser
able universe, gravity may behave in a very different way
regions that are very distant from ours.

Inflation has been on its own a very important tool
describing the early universe, and combined with BD grav
it enables us to envisage a very interesting quantum cos
logical scenario where we can address the question of w
are thetypical values of the constants of nature, either
means of anthropic arguments or by choosing suitable in
tionary potentials. In chaotic inflation~for a review see e.g
@5#! the scalar field that governs inflation starts out fro
large values and its classical ‘‘slow-roll’’ motion along th
slope of the potential towards the vacuum state is combi
with quantum fluctuations. The fluctuations are stochastic@6#
and they are responsible for continuously creating regi
where inflation prevails, thus perpetuating the process ind
nitely. The BD field influences the course of inflation, a
the dynamical interplay of both scalar fields determin
therefore the different stages of inflation, such as the be
0556-2821/98/58~8!/083512~6!/$15.00 58 0835
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ning and end of inflation, the epoch when the classical d
and quantum fluctuations become comparable, etc. In
tended inflation both fields evolve stochastically and the
sulting distribution is to a large extent dependent on the
tential. It can be argued that the assumption of starting
with large scalar fields in chaotic inflation is somewhat ar
trary. It can be shown however, that even though the phy
may favor initial configurations where the fields are sm
~e.g. in the case of instanton solutions@7#!, a Gaussian dis-
tribution of initial conditions arounds'0 over a sufficiently
broad ensemble of regions will result in an inflationary u
verse dominated by the largest values ofs on the tails of this
distribution, however strongly suppressed.

Extended inflation has been investigated by a numbe
authors@8–10#, mostly in the context of first-order phas
transitions ofold inflation, where the so-calledbig-bubble
problem arises as first pointed out by Weinberg@11#. Later
papers have focused on chaotic inflation, by computing
distributions of the fields, spectrum of density fluctuation
etc.@12,13#, where transitions are second-order and there
no bubbles or discontinuous interfaces except for those
ated by quantum fluctuations.

As it has been pointed out in@14–16#, the structure of the
universe and values of the constants of nature, as der
from the distributions of the fields, depend on a very spec
and crucial feature of the inflation potential. In the pla
~s,F! it is easy to compute for each potential the end-
inflation ~EoI! and beginning-of-inflation~BoI! curves. The
region of the plane enclosed between these two curves d
mines the range of values of the fields for which inflati
will take place. The classical trajectories span from BoI a
cross EoI, but the quantum fluctuations allow jumps of t
fields between neighboring classical trajectories, and th
fore the allowed states undergoing inflation quickly spre
over the region enclosed between the curves BoI and E
The main characteristic of a potential is whether the a
enclosed between BoI and EoI is finite or infinite. In@16#,
these are namedclass Iandclass II respectively. Aclass II
© 1998 The American Physical Society12-1
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potential yields to a universe where the spectrum of per
bations is arbitrarily small and the likelihood of a finite valu
of the Planck mass is negligible. In these theories, the va
of the fields grow without limit, and any reasonable physi
prediction becomes impossible without resorting to ve
stringent anthropic arguments. On the other hand, in the
of class Ipotentials BoI and EoI cross, and it is easy to sh
that the predominant values of the fields are those co
sponding to the configuration exactly located at the cross
point. In this case, it is possible to predict values of t
constants of nature that are perfectly consistent with the
served values, and that comes out naturally from the phys
without an exaggerated use of anthropic arguments. In
paper we show that the exponential potential is aclass I
potential.

In Sec. 2 we discuss the classical trajectories of the fie
in the slow-roll approximation and the form of the BoI an
EoI curves, which are the delimiters of inflation on the~s,F!
plane. In Sec. 3 we compute the probability distributio
P(s,F), volume ratios of homogeneous hypersurfaces,
finally in Sec. 4 we derive the corresponding spectrum
density fluctuations discussing typical values of the para
eters and consistency with the astrophysical constraints.

II. CLASSICAL TRAJECTORIES

The extended inflation action is given by@8#

S5E d4xA2g FFR2
v

F
~]F!22

1

2
~]s!22V~s!G , ~1!

where R is the curvature scalar and the potential isV(s)
5V0e2ks. The couplingv plays a similar role as that of th
coupling functionsBi(C) of the dilaton fieldC in string
theory. Based on this analogy, several authors have inv
gated the so-calledhyperextended inflationmodels@9,10,14#,
wherev becomes dependent on the BD field. In this pa
however, we will merely examine thev5const model. The
BoI boundary is given byV(s)5Mp

4(F) or equivalently

F5
V0

1/2

16p
e2ks/2. ~2!

The BoI is the quantum limit where the metric fluctuatio
become significant and the inflation field cannot take
values for which the potential is above this boundary. T
EoI boundary is on the other hand

1

2
ṡ21v

Ḟ2

F
'V~s!. ~3!

The equations of motion in a flat FRW background are

S D21
1

2v
RDF50, ~4!

D2s52V8~s!, ~5!
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H21H
Ḟ

F
5

v

6
S Ḟ

F
D 2

1
1

6F F1

2
ṡ21V~s!G , ~6!

and the differential operatorD is defined

D2[] t
213H] t . ~7!

In the slow-roll approximation,F̈!HḞ!H2F and ṡ2

12vḞ2/F!2V(s), Eqs.~4!–~6! read

Ḟ

F
52

H

v
, ~8!

ṡ52
1

3H
V8~s!, ~9!

H25
1

6F
V, ~10!

and the curvature scalar is given byR5212H2. The slow-
roll equations~8! enable us to rewrite Eq.~3!:

F* 5S 32
2

v D 1

k2
, ~11!

where the* subindex denotes the value at the end of infl
tion. Hence,F* is independent ofs and, for reasonably
largev, it is solely determined by the slope of the potenti
The conditionF.0 also imposes the constraintv, as can be
seen in Fig. 1, such that the range 0,v,2/3 is excluded to
prevent imaginary values of the Planck mass. The class
trajectories of the fields are given by the following cons
vation law @14#:

d

dt FvF1E ds
V~s!

V8~s!G50, ~12!

which in the case of the exponential potential yields

F5
s

kv
1S F02

s0

kv D . ~13!

FIG. 1. BD field at EoI,F* , vs v for an arbitrary value ofk.
F* is given in units ofk22. Inflation takes place in the rangev
,0 or v>2/3.
2-2
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EXTENDED INFLATION WITH AN EXPONENTIAL POTENTIAL PHYSICAL REVIEW D 58 083512
In Fig. 2 we have put together the BoI and EoI curves a
the classical trajectories of the fields on the~s,F! plane, i.e.
Eqs. ~2!, ~11! and ~13! respectively. It can be seen in th
figure that inflation takes place in the region enclosed by
and EoI to the right of the intersection pointA. The trajec-
tories given by Eq.~13! are straight lines parallel to the se
mentBC, and the fields drift along these curves in the dire
tion B→C during the course of inflation. The regio
enclosed by BoI and EoI to the left ofA does not undergo
inflation, because the orientation of the classical trajecto
is such that the fields would move from EoI towards B
which is not an acceptable solution. In addition to the cl
sical trajectories quantum diffusion is responsible for
jumps of the fields between neighboring classical trajec
ries. It can be seen that, unlike with power-law potentials,
which s decreases asF increases during the course of infl
tion, in the case of the exponential potential both fields
crease during the slow roll.

The EoI boundary~11! gives a definite and unique predic
tion for F* , and also it implies that ifF0.F* inflation will
not occur. In the case of 0,F0&F* , inflation takes place
for values of the inflation

s0*2
2

k
logS 16pF0

V0
1/2 D . ~14!

Naturally if F05F* , then the right-hand side~RHS! of Eq.
~14! is sA , the value of the field at the intersection pointA
of BoI and EoI in Fig. 2.

It must be noted that the slow-roll approximation does
hold in the case of the exponential potential for arbitrar
large values ofs. For a given value ofk it is straightforward
to computesmax for which the potential and kinetic energ
of the fields are comparable and thus the slow-roll conditi
break down. It is easy to show from Eq.~3! that this scale is

smax'S 3v22

k D . ~15!

FIG. 2. Predicted BoI and EoI curves, dashed and thick s
curves respectively. Classical trajectories are straight lines par
to BC. At the intersection pointA the onset and end of inflation
coincide.smax determines the scale of validity of the slow-roll a
proximation. Inflation takes place within the region enclosed
BoI, EoI ands'smax.
08351
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Therefore it follows that the EoI boundary does not sp
from sA to infinity, but inflation will occur within a finite
regionsA&s&smax.

III. LIKELIHOOD RATIOS

In the framework of extended inflation we can predict t
distribution ofG in an ensemble of universes, depending
the scalar potential~see e.g.@9,10,12#!. If the likeliest values
predicted differ to a large extent from those observed in
region of the universe, then it becomes necessary to inv
the anthropic principle to justify the theory. On the oth
hand, a more optimal situation is achieved if the potentia
able to yield maxima in the distribution of the fields that a
compatible with the observed data. We have shown in
previous section that in the case of an exponential poten
the outcome at the end of inflation is simple, and regardl
of the initial conditions, a period of inflation leads to a un
form distribution ofF. As a result, regions that are still in
flating will have values of the BD field in the range 0,F
,F* , those regions where inflation has ended have inv
ably F5F* . There will be other regions whose initial con
ditions do not yield inflation~i.e. they are not located in th
region enclosed by BoI and EoI in Fig. 2!. The dominant
contribution to the total volume will be given by the region
that are still inflating or have completed inflation in the r
cent past.

It is apparent from Fig. 2 that whereas the magnitude oF
is bounded during the course of inflation, that of the inflati
scalar is not. We can thus expect that quantum fluctuati
may prolong the course of inflation by takings to arbitrarily
large values. In this section we compute the volume ratios
homogeneous hypersurfaces (s,F)5const with respect to
the total volume occupied by thermalized regions, using
results of @14#. As inflation is eternal, the volumes of th
hypersurfaces are divergent, though the volume ratios
not. These ratios give a good measure of the relative lik
hood of an arbitrary configuration~s,F! with respect to an-
other.

The comoving probabilityPc(s,F,t) is governed by the
conservation equation@6#

] tPc52]s Js2S F

2v D 1/2

]FJF , ~16!

where the probability currentJW[(Js ,JF) is given by the
slow-roll solutions in the regime where quantum diffusion
neglected:

Js'2
Mp

2~F!

4p
H21]s HPc , ~17!

JF'2
Mp

2~F!

2p S F

2v D 1/2

H21]F HPc , ~18!

where t corresponds to cosmic time. In order to solve E
~16!, it is customary to adopt the eigenvalue expansion@10#

d
lel

y
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Pc~s,F,t !5 (
n51

`

cn~s,F!e2gnt, ~19!

where g1,g2,g3, . . . , and thus the asymptotic limitt
→` yieldsPc;c1e2g1t. Substituting Eqs.~17!,~18! in ~16!,
we get@14#

Pc~s,F,t !'C0F1/2 exp~8pvg1F2g1t !, ~20!

where C0 is a normalization constant andg1 is estimated
numerically from the resulting eigenvalue equation for d
ferent values ofV0 and k. For V0;1 and 0.1Mp&k21

&10Mp , we have 2.4&g1&2.8.
The volumeV* of thermalized regions over the entir

spacetime is determined by the two-dimensional probab
flux of the fields across the EoI boundary~11!. The
line element along EoI isds and the differential flux is
ds(JW•n̂), wheren̂ is a normal vector to EoI. Hence

V* 5V0U E
0

tc
dte3tE

sA

smax
dsJFU, ~21!

whereV0 is the initial homogeneous volume,tc is a cutoff
time that we use to regularize the volumes of the hypers
faces, following the method employed in@14,17,18#. There-
fore, substituting Eq.~20! in Eq. ~18!, we get

V* 5V0S 4C0

k D F*
~2v!1/2

~smax2sA!e8pvg1F
*

e~32g1!tc

32g1
.

~22!

On the other hand, the volumeV~s,F! of arbitrary hypersur-
faces (s,F)5const that are undergoing inflation is dete
mined by the probability flux at~s,F! across a line elemen
located along the classical trajectory at that point. I
u(JW• l̂ )dtu, where l̂ is the tangent vector to Eq.~13!. The
expression is

V~s,F!5V0U E
0

tc
dte3t~JW• l̂ !U, ~23!

and thus

V~s,F!5V0

2C0k

~11v2k2!1/2
FFkvF1/21

1

k S 2

v D 1/2G
3exp~8pvg1F!

e~32g1!tc

32g1
. ~24!

Therefore the volume ratior of the hypersurface~s,F! with
respect to the thermalized regions is given by

r 5
V~s,F!

V*
}FFkvF1/21

1

k S 2

v D 1/2G
3exp@8pvg1~F2F* !#;F3/2 exp~24pvF!, ~25!

which is totally independent ofs, as are Eqs.~20!, ~24!. We
note the tendency towards larger values ofF, and indeed the
08351
y
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likeliest value that is attained isF* . The ensembles of hy
persurfacesF5const that are undergoing inflation a
equally likely and occupy the same fraction of the total v
ume. These correspond to the horizontal cross-sections in
range 0,F,F* in Fig. 2. In the limit of largev this trend
is preserved, except in the case whenv,0. In that case, Eq.
~25! yields the greatest likelihood for the smallest values
F, i.e. F'F0 .

IV. SPECTRUM OF FLUCTUATIONS

In order to calculate the resulting spectrum of fluctuatio
we need to derive the amplitudes of the typical quant
fluctuations in this model. In addition to the classical dr
given by the slow-roll solutions, the stochastic nature of
flation exerts a quantum force over distances larger thanH21

that can be described by@6#

ṡ52
1

3H
V8~s!1

H3/2

2p
z~ t ! ~26!

Ḟ52
H

v
F1

H3/2

2p S F

2v D 3/4

j~ t !, ~27!

where the Gaussian variablesz,j satisfy ^z(t1)z(t2)&
5^j(t1)j(t2)&5d(t12t2) and ^z(t1)j(t2)&50. Naturally
Eq. ~26! applies in the slow-roll regime, such thatsA&s
&smax, and for arbitrarily large fieldss@smax the classical
kinetic and potential energies are negligible, ands becomes
stationary, whereas quantum fluctuations lead to change
F. The quantum jumps~ds,d F! around an arbitrary hyper
surface~s,F! are distributed according to

dP~ds,dF!;
V~F1dF!

V~F!
dP0~ds,dF!, ~28!

wheredP0 is a Gaussian distribution

dP0~ds,dF!}expF2
~ds!2

2D1
2

2
~dF!2

2D2
2 GddsddF,

~29!

whereD1[H/2p andD2[(F/2v)1/2H/2p are the variances
of the fields and the preceding factor in the RHS of Eq.~28!
is the volume ratio that determines the relative likelihood
the configurationF1dF with respect toF. From Eq.~25!
we have

V~F1dF!

V~F!
'S 11

dF

F D 3/2

~118pvg1dF!, ~30!

and therefore the typical quantum jumps, given by the s
tionary values of Eq.~28!, are

^ds&'0, ~31!

^dF&'~g1F!1/2
H

4p
, ~32!
2-4
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where the fluctuations ins remain Gaussian whereas th
fluctuations of the BD field are not, due to the presence
the factor~30!. As we have discussed in the previous secti
in the case ofv.2/3, the largest values ofF are the likeliest
ones, reaching a maximum atF'F* . From Eq. ~32! it
follows that in this case the typical jumps are positive, a
the evolution of the field towardsF'F* is enhanced by
quantum fluctuations of order;F1/2H.

In the case ofv,0, we have seen from Eq.~25!, that the
smallest values ofF are enhanced, i.e.F'F0 , and second-
order corrections to Eq.~32! contribute to suppress quantu
jumps towards larger values ofF. The amplitude of these
corrections is;vV/F2, and it is only significant for smal
values of s and k and largev. As one departs fromF
'F0 towards larger values ofF, the leading order of the
fluctuations~32! rapidly dominates.

In the Einstein frame, the adiabatic density fluctuatio
with ^ds&'0 over distance scales ofH21 are given by

dr

r
52

12

5
Hv

Ḟ

F
S ṡ212v

Ḟ2

F
D 21

dF, ~33!

and therefore, by substituting Eq.~32! we get

K dr

r L '
1

10p

H

F1/2
, ~34!

which is to be evaluated forN565 e-foldings after crossing
EoI. The value ofF in Eq. ~34! is roughlyF'F* , as it will
not change significantly after inflation, andH is evaluated at
s'smax. If the theory is correct, then the uniformity of th
distribution~11! at EoI implies thatMp* ;1019 GeV through-
out, as in our region of the universe, andk;10218 GeV21,
and from Eq.~15! we have thatsmax;1021 GeV. From the
astrophysical constraint̂dr/r&&1024, these estimates in
y

s.

-

08351
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turn imply thatV0&1058e6v GeV4, which in practical terms
leaves V0 unconstrained for conservative values ofv
*500.

V. CONCLUSIONS

In this paper we have examined extended inflation with
exponential potential. The remarkable feature of this mo
is the prediction of a constant distribution of the Planck m
at the end of inflation, given by Eq.~11!. The parameterk of
the theory is therefore estimated via the observed Pla
mass in this region of the universe, which in turn fixes t
parametersmax that determines the range of values ofs for
which inflation takes place.

The amplitude of the potentialV0 is left unconstrained by
astrophysical bounds on the spectrum of fluctuations, as
scribed by the argument given in Sec. 4. The dynamics a
given in Sec. 2 and the likelihood distributions in Sec. 3 a
shown to be insensitive to the numerical value of this para
eter.

As is shown in Fig. 2, the BoI and EoI curves in th
model cross ats5sA and the area enclosed between them
thus infinite. However the breakdown of the slow-roll a
proximation for the exponential potential over the ranges
*smax @where smax is given by Eq.~15!# implies that in
practical terms only a finite region of the~s,F! plane under-
goes inflation. In the classification of@16# this means that the
exponential potential isclass I, i.e. the values of the fields a
EoI remain finite.
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