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Extended inflation with an exponential potential
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In this paper we investigate extended inflation with an exponential pot&f{iigl=Vye™ “’, which provides
a simple cosmological scenario where the distribution of the constants of nature is mostly determinéa by
particular, we show that this theory predicts a uniform distribution for the Planck mass at the end of inflation,
for the entire ensemble of universes that undergo stochastic inflation. Eternal inflation takes place in this
scenario for a broad family of initial conditions, all of which lead up to the same value of the Planck mass at
the end of inflation. The predicted value of the Planck mass is consistent with the observed value within a
comfortable range of values of the parameters involved.
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PACS numbds): 98.80.Cq

[. INTRODUCTION ning and end of inflation, the epoch when the classical drift
and quantum fluctuations become comparable, etc. In ex-

The idea of a varyin@ based on anthropic arguments, or tended inflation both fields evolve stochastically and the re-
what would eventually become concisely enunciated ansulting distribution is to a large extent dependent on the po-
thropic arguments, dates back to Difdd and later Sciama tential. It can be argued that the assumption of starting out
[2]. Their ideas paved the way for Brans and Dicke to for-with large scalar fields in chaotic inflation is somewhat arbi-
mulate a very interesting theory of gravifg] that is de- trary. It can be shown however, that even though the physics
scribed by the metric tensgyr,, and a scalar field. In their ~ may favor initial configurations where the fields are small
theory the Planck mass over an ensemble of universes jg.g. in the case of instanton solutiofd), a Gaussian dis-
given by MS(CD): 167®, and the Brans-DickéBD) cou- tribution of initial conditions around-~0 over a sufficiently
pling w determines the validity of the principle of equiva- broad ensemble of regions will result in an inflationary uni-
lence in gravitation. In the limitv—co and a suitably large verse dominated by the largest valuesrain the tails of this
@, BD gravity is equivalent to general relativifsR). The  distribution, however strongly suppressed.
theory predicts very small variations G&f within the horizon, Extended inflation has been investigated by a number of
but the value ofw is likely to leave its imprint on the cosmic authors[8—10], mostly in the context of first-order phase
microwave backgroun€CMB) and in the different stages of transitions ofold inflation, where the so-calledig-bubble
the evolution of the Friedmann-Robertson-WalK&RW) problem arises as first pointed out by Weinbgtd]. Later
universe, such as the matter-radiation transitjdh For  papers have focused on chaotic inflation, by computing the
larger scales, our implicit expectation is that although BDdistributions of the fields, spectrum of density fluctuations,
gravity is almost indistinguishable from GR in our observ- etc.[12,13, where transitions are second-order and there are
able universe, gravity may behave in a very different way inno bubbles or discontinuous interfaces except for those cre-
regions that are very distant from ours. ated by quantum fluctuations.

Inflation has been on its own a very important tool in  As it has been pointed out [14—1§, the structure of the
describing the early universe, and combined with BD gravityuniverse and values of the constants of nature, as derived
it enables us to envisage a very interesting quantum cosmdrom the distributions of the fields, depend on a very specific
logical scenario where we can address the question of whand crucial feature of the inflation potential. In the plane
are thetypical values of the constants of nature, either by(o,®) it is easy to compute for each potential the end-of-
means of anthropic arguments or by choosing suitable inflainflation (Eol) and beginning-of-inflatior{Bol) curves. The
tionary potentials. In chaotic inflatioffor a review see e.g. region of the plane enclosed between these two curves deter-
[5]) the scalar field that governs inflation starts out frommines the range of values of the fields for which inflation
large values and its classical “slow-roll” motion along the will take place. The classical trajectories span from Bol and
slope of the potential towards the vacuum state is combinedross Eol, but the quantum fluctuations allow jumps of the
with quantum fluctuations. The fluctuations are stoch4éiic fields between neighboring classical trajectories, and there-
and they are responsible for continuously creating regionfore the allowed states undergoing inflation quickly spread
where inflation prevails, thus perpetuating the process indefiever the region enclosed between the curves Bol and Eol.
nitely. The BD field influences the course of inflation, and The main characteristic of a potential is whether the area
the dynamical interplay of both scalar fields determinesenclosed between Bol and Eol is finite or infinite. [It6],
therefore the different stages of inflation, such as the begirthese are namedass landclass Il respectively. Aclass I
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potential yields to a universe where the spectrum of pertur- P K2
bations is arbitrarily small and the likelihood of a finite value *

of the Planck mass is negligible. In these theories, the values
of the fields grow without limit, and any reasonable physical
prediction becomes impossible without resorting to very
stringent anthropic arguments. On the other hand, in the case 3

of class Ipotentials Bol and Eol cross, and it is easy to show

that the predominant values of the fields are those corre-

®
sponding to the configuration exactly located at the crossing 23
point. In this case, it is possible to predict values of the
constants of nature that are perfectly consistent with the ob-
served values, and that comes out naturally from the physics,
without an exaggerated use of anthropic arguments. In this
paper we show that the exponential potential islass | FIG. 1. BD field at Eol®, , vs w for an arbitrary value ok.
potential. @, is given in units ofx 2. Inflation takes place in the range
In Sec. 2 we discuss the classical trajectories of the fieldsc0 or w=2/3.
in the slow-roll approximation and the form of the Bol and
Eol curves, which are the delimiters of inflation on tloe®) d £\ 2
- A d w|d 1.
plane. In Sec. 3 we compute the probability distributions H4H—=—| | + = |= o?+V(0)|, (6)
P(o,®), volume ratios of homogeneous hypersurfaces, and ¢ 61\ 60 |2
flnally in Sec. 4 we (_jerlve .the correspondlng spectrum Ofand the differential operatdd is defined
density fluctuations discussing typical values of the param-
eters and consistency with the astrophysical constraints. D?=4?+3Hy,. (7
Il. CLASSICAL TRAJECTORIES In the slow-roll approximation,®<H®<H2d and o>
The extended inflation action is given b§] +20®?/®<2V(0), Egs.(4)—(6) read
4 w 2 1 2 e 2 H (8
S=| d*xy—g CDR—E(MI)) —E((?O') -V(o)|, (1) @ P

whereR is the curvature scalar and the potentialMéo) o=— iv’(a), (9)
=V,e ““. The couplings plays a similar role as that of the 3H
coupling functionsB;(¥) of the dilaton field¥ in string
theory. Based on this analogy, several authors have investi- H2= iv (10)
gated the so-calledyperextended inflatiomodels[9,10,14, 6d "’

where w becomes dependent on the BD field. In this paper o )
however, we will merely examine the=const model. The @and the curvature scalar is given By= —12H<. The slow-

Bol boundary is given by/(a)=Mp(P) or equivalently roll equations(8) enable us to rewrite Ed3):
2\ 1
V2 _|a_Z) —
b= _1877- e~ K(r/2. (2) (I)* (3 w) Kz, (11)

h is th imit wh h ic . where the* subindex denotes the value at the end of infla-
The Bol is the quantum limit where the metric fuctuatlonstion. Hence,®, is independent ofr and, for reasonably

become significant and the inflation field cannot take th§yqe , it is solely determined by the slope of the potential.

values for Whl_ch the potential is above this boundary. The]’he conditiond >0 also imposes the constraiat as can be

Eol boundary is on the other hand seen in Fig. 1, such that the range:®<2/3 is excluded to
prevent imaginary values of the Planck mass. The classical

1. 2. P2 V(o) 3 trajectories of the fields are given by the following conser-
=~ 0 w——= g). ;
2 ) vation law[14]:
. L d V(o)
The equations of motion in a flat FRW background are T wq)+j do Vo) =0, (12)
D2+ iR)(I)zO (4)  which in the case of the exponential potential yields
20 '
-7 _%
D20=-V'(0), (5) = Kw | Po Kw)' (13
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® : Therefore it follows that the Eol boundary does not span
from o, to infinity, but inflation will occur within a finite
region oa=< o= onax-

™A o lll. LIKELIHOOD RATIOS
Eol

In the framework of extended inflation we can predict the
distribution of G in an ensemble of universes, depending on
the scalar potentidkee €.9[9,10,17). If the likeliest values
predicted differ to a large extent from those observed in our
region of the universe, then it becomes necessary to invoke
+ o the anthropic principle to justify the theory. On the other
Oa Oonax hand, a more optimal situation is achieved if the potential is

FIG. 2. Predicted Bol and Eol curves, dashed and thick soliol‘:"bIe to yield maxima in the distribution of the fields tha.t are
curves respectively. Classical trajectories are straight lines paralleﬁompat'ble W!th the qbserved data. We have shpwn n the
to BC. At the intersection poinA the onset and end of inflation previous section that in the_ case Of_ an exponential potential
coincide. o,y determines the scale of validity of the slow-roll ap- the out_cp_me at th_e_ end of Inf!atlon IS Slmple, and regardless
proximation. Inflation takes place within the region enclosed byOf the initial conditions, a period of inflation leads to a uni-
Bol, Eol ando~ oqy. form distribution of®. As a result, regions that are still in-

flating will have values of the BD field in the range<@

In Fig. 2 we have put together the Bol and Eol curves and<® , those regions where inflation has ended have invari-
the classical trajectories of the fields on tlae®) plane, i.e. ably®=®, . There will be other regions whose initial con-
Egs. (2), (11) and (13) respective]y_ It can be seen in the ditions do not yleld inflatior(i.e. they are not located in the
figure that inflation takes place in the region enclosed by Bofegion enclosed by Bol and Eol in Fig).2The dominant
and Eol to the right of the intersection poiAt The trajec- contribution to the total volume will be given by the regions
tories given by Eq(13) are straight lines parallel to the seg- that are still inflating or have completed inflation in the re-
mentBC, and the fields drift along these curves in the direc-Cént past.
tion B—C during the course of inflation. The region Itis apparentfrom Fig. 2 that whereas the magnitude of
enclosed by Bol and Eol to the left @ does not undergo IS bounded during the course of inflation, that of the inﬂatipn
inflation, because the orientation of the classical trajectorie§calar is not. We can thus expect that quantum fluctuations
is such that the fields would move from Eol towards Bol, May prolong the course of inflation by takigto arbitrarily
which is not an acceptable solution. In addition to the claslarge values. In this section we compute the volume ratios of
sical trajectories quantum diffusion is responsible for thehomogeneous hypersurfaces,®)=const with respect to
jumps of the fields between neighboring classical trajectothe total volume occupied by thermalized regions, using the
ries. It can be seen that, unlike with power-law potentials, foresults of[14]. As inflation is eternal, the volumes of the
which o decreases a® increases during the course of infla- hypersurfaces are divergent, though the volume ratios are
tion, in the case of the exponential potential both fields in-Not. These ratios give a good measure of the relative likeli-

- Bol

crease during the slow roll. hood of an arbitrary configuratiofor,®) with respect to an-
The Eol boundary11) gives a definite and unique predic- other. _ N _
tion for &, , and also it implies that b ,> @, inflation will The comoving probability?(o,®,t) is governed by the

not occur. In the case ofQd,<®, , inflation takes place Conservation equatioft]
for values of the inflation

2
o0= — = log

1/2
1677(1)0 ﬁtPC:_aU‘JU_<Z) &(I)Jcp ] (16)

E (14

where the probability currerﬁE(JU,Jq,) is given by the
Naturally if ®,=®, , then the right-hand sidgRHS) of Eq.  slow-roll solutions in the regime where quantum diffusion is
(14) is o, the value of the field at the intersection poikt neglected:
of Bol and Eol in Fig. 2.

It must be noted that the slow-roll approximation does not MS((I)) .
hold in the case of the exponential potential for arbitrarily Jo~= 4 —H "d,HPc, 17
large values ofr. For a given value ok it is straightforward
to computeo . for which the potential and kinetic energy ) "™
of the fields are comparable and thus the slow-roll conditions _ Mp(®) (3) H-19. HP (18)
break down. It is easy to show from E@) that this scale is @ 27 |20 ere

o ~(3“’_2> (15) wheret corresponds to cosmic time. In order to solve Eq.
max Kk ) (16), it is customary to adopt the eigenvalue expan$itij
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* likeliest value that is attained &, . The ensembles of hy-
P.(o,®,t)= E Yn(o, @)e” "t (19 persurfaces® =const that are undergoing inflation are
n=1 equally likely and occupy the same fraction of the total vol-

T ume. These correspond to the horizontal cross-sections in the
<Y< ys< ... o - :

Where. yam Y= —yit anthu; the asymptoqc limit range 6<®<d, in Fig. 2. In the limit of largew this trend

— o yieldsPe—y,e” 7+, Substituting Eqsi17),(18) in (16), is preserved, except in the case when 0. In that case, Eq
we get[14] (25) yields the greatest likelihood for the smallest values of

Po(o,®,t)~Cod? exp 8wy, ®—yit), (200 P, i.e.d~by.

where_CO is a normalizatio_n constant ang, is estimated_ IV. SPECTRUM OF FLUCTUATIONS

numerically from the resulting eigenvalue equation for dif-

ferent values ofV, and . For Vo~1 and 0.M,=< P In order to calculate the resulting spectrum of fluctuations
=<10M,, we have 2.4 y;<2.8. we need to derive the amplitudes of the typical quantum

The volumeV, of thermalized regions over the entire fluctuations in this model. In addition to the classical drift
spacetime is determined by the two-dimensional probabilitygiven by the slow-roll solutions, the stochastic nature of in-
flux of the fields across the Eol boundargll). The flation exerts a quantum force over distances larger thah
line element along Eol isle and the differential flux is that can be described %]

do(J-n), wheren is a normal vector to Eol. Hence 132

. 1
te 3t Tmax 7= 3_HV (0-) + ﬁg(t) (26)
V* :VO dte dO'\]q) s (21)
0 7A _ H H32( @ |3/
where), is the initial homogeneous volumg, is a cutoff (DZZZ(DJF 20\ 20 £, (27

time that we use to regularize the volumes of the hypersur-
faces, following the method employed [ih4,17,18. There- where the Gaussian variablegé satisfy ({(t1){(t,))

fore, substituting Eq(20) in Eq. (18), we get =(&(t) &(ty))=68(t1—t,) and ({(ty)&(t,))=0. Naturally
Eq. (26) applies in the slow-roll regime, such thah, <o
4Co\ D, e e < 0max, and for arbitrarily large fields> o, the classical
— _ v ( _ )eSﬂ'wyllI)*
* V0 (2w)*2 Tmax™ TA 3—y; kinetic and potential energies are negligible, andecomes

(22) stationary, whereas quantum fluctuations lead to changes in
®. The quantum jump$do,5P) around an arbitrary hyper-
On the other hand, the volun&o,®) of arbitrary hypersur-  surface(o,®) are distributed according to
faces ,®)=const that are undergoing inflation is deter-

mined by the probability flux ato,®) across a line element V(@)
located along the classical trajectory at that point. l.e., dP(d0,5%) V(D) dPo(d0,5P), (28)
|(3-T)dt|, wherel is the tangent vector to Eq13). The
expression is whered P, is a Gaussian distribution
fe 3ty 71 (60)%  (6P)*
V(o, @)=V, | dte’(3-1)], (23 dPo(d0,8D)xexy — —— — ——|ddod D,
and thus 29
o whereA ;=H/27 andA,=(®/20)?H/27 are the variances
V(o, @)=Y 2Cok & kwd2+ 1 E) of the fields and the preceding factor in the RHS of &§)
' 0(1+w2K2)1/2 k\lw is the volume ratio that determines the relative likelihood of
3yt the configurationd + 6® with respect tod. From Eq.(25)
e\? YVl
XexpBToyI®) 35— (24 V& have
' V(D + 5D) 5D\ 32
Therefore the volume ratip of the hypersurfacéo,®) with V@) 3| (1t8mwy60),  (30)
respect to the thermalized regions is given by
V(o ® 1 (212 and therefore the typical quantum jumps, given by the sta-
r= (o, )o@ kodl24 = _) tionary values of Eq(28), are
* K \w
X exd 8mwy, (®—d, )]~ exp(24rw®), (25 (80)~0, 3
which is totally independent af, as are Eqs20), (24). We N 1/21
- (00)~(71P) : (32)
note the tendency towards larger valuesbofand indeed the A7
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where the fluctuations ir remain Gaussian whereas the turn imply thatV,<10°8e%® GeV¥*, which in practical terms
fluctuations of the BD field are not, due to the presence ofeaves V, unconstrained for conservative values af
the factor(30). As we have discussed in the previous section=500.

in the case ofv>2/3, the largest values df are the likeliest

ones, reaching a maximum dt=®, . From Eq.(32) it

follows that in this case the typical jumps are positive, and V. CONCLUSIONS

the evolution of the field towarcli/%>~¢>* is enhanced by In this paper we have examined extended inflation with an
quantum fluctuations of order ®~*H. exponential potential. The remarkable feature of this model

In the case of»<0, we have seen from EQS), thatthe g the prediction of a constant distribution of the Planck mass
smallest values ob are enhanced, i.&~®,, and second- ¢ the end of inflation, given by E¢L1). The parametek of
order corrections to Ed32) contribute to suppress quantum e theory is therefore estimated via the observed Planck
jumps towards larger values @. The amplitude of these mass in this region of the universe, which in turn fixes the
corrections is~ wV/®2, and it is only significant for small parameteir,., that determines the range of valuescofor
values of o and « and largew. As one departs fromp which inflation takes place.

~®, towards larger values ob, the leading order of the  The amplitude of the potentia, is left unconstrained by

fluctuations(32) rapidly dominates. _ _astrophysical bounds on the spectrum of fluctuations, as de-
In the Einstein frame, the adiabatic density fluctuationsgeriped by the argument given in Sec. 4. The dynamics as is
with (6a)~0 over distance scales f * are given by given in Sec. 2 and the likelihood distributions in Sec. 3 are
shown to be insensitive to the numerical value of this param-
. C o eter.
op 12 & (., o2\ 7 As is shown in Fig. 2, the Bol and Eol curves in this
p - sHeglot 2“’3) 5P, 33 model cross atr= o4 and the area enclosed between them is
thus infinite. However the breakdown of the slow-roll ap-
proximation for the exponential potential over the range
and therefore, by substituting E(B2) we get = 0 max [Where o .y iS given by Eq.(15)] implies that in
practical terms only a finite region of tiie,®) plane under-
p\ 1 H g  9oes inflation. In the classification f6] this means that the
p| 10w g2’ (34 exponential potential islass | i.e. the values of the fields at

Eol remain finite.
which is to be evaluated fdd= 65 e-foldings after crossing
Eol. The value ofb in Eq.(34) is roughly®~®, , as it will
not change significantly after inflation, ahtlis evaluated at
o~0omax. If the theory is correct, then the uniformity of the A M. is supported by the Inlaks foundation and the ORS.
distribution(11) at Eol implies thaM;,‘~1019 GeV through-  We thank Kei-ichi Maeda, Andrew Liddle, John Barrow,
out, as in our region of the universe, are- 1018 GeV %, Dominik Schwarz, and Reza Tavakol for useful discussions,
and from Eq.(15) we have thatr,,~10? GeV. From the and A.M. acknowledges use of the Starlink computer system
astrophysical constraintdp/p)=<104, these estimates in at the University of Sussex.
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