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3-form induced potentials, dilaton stabilization, and running moduli
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We study the potential induced by imaginary self-dual 3-forms in compactifications of string theory and the
cosmological evolution associated with it. The potential contains exponentials of the volume moduli of the
compactification, and we demonstrate that the exponential form of the potential leads to a power law for the
scale factor of the universe. This power law does not support accelerated expansion. We explain this result in
terms of supersymmetry and comment on corrections to the potential that could lead to inflation or quintes-
sence.
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[. INTRODUCTION so these models have the phenomenology of the Randall-
Sundrum model$17-19. The warp factor depends on the
If we believe that string theorjor M theory) is the fun-  position of D3-branegand orientifold plangson the com-
damental description of interactions in our Universe, then wepact space and also determines the 5-form field strength. The
are obviously forced to place the basic processes of cosmotondition (1) gives rise to a potential for many of the light
ogy into a string theoretic framework. Important steps havescalars, including the dilaton generically, which vanishes at
been made in this direction by examining four dimensionalthe classical minimum and furthermore has no preferred
supergravity models for potentials that could support thecompactification volume. We will be interested in the behav-
early phase of the accelerated expansion of the Universéyr of these systems above the minimum, and the 4D metric
known as inflation, which solves some of the outstandingwill generalizes,,—g,, -
problems of the hot big bang cosmologh]. See, for recent For simplicity, we will mainly consider the case where the
examples[2,3]. Other work has identified string theory mod- internal manifold is & ®/Z, orientifold, as described if20—
els in which D-brane physics leads to inflati@6].! At the  22] (or in dual forms in[16,23). We take the torus coordi-
same time, however, it has proven challenging to incorporateates to have square periodicitied|=x"+ 2|, so that
cosmological acceleration into string theory backgrounds bethe geometric structure is encoded in the metric. On this
cause they tend to relax to supersymmetric vacu8l. In  torus, the 3-form components must satisfy the Dirac quanti-
this paper, we ask whether a stringy potential generated byation conditions
higher dimensional magnetic fields can give rise to acceler-

ated expansion. We restrict our analysis to the classical po- 1 1
i i Hmno==—bPmne:  Fmno=5—fmne:  Nmno, fmnn€ Z.
tential of supergravity. mApT 2, mnp mNp= o] MNP mnps'mnp
We study a class of exact solutions to type IIB supergrav- 3

ity that have a vacuum stafelenoted by superscrif0)]

with 3-form magnetic fluxes that satisfy a self-duality rela- Boundary conditions at the orientifold planes give large
tion Kaluza-Klein masses to many fieldgicluding the metric
components,,,, for examplg, and the remaining theory is
*O(F - C(O)H):e*q’(O)H (1) described by an effectlve 4D gaugat=4 supergravity with
completely or partially broken supersymmetry via the super-
) ) Higgs effect[24-29.
on the compact space, which should be Calabi-Y&¥) ‘|5 the following section, we discuss the dimensional re-
spacef9,10]. These vacua were described in some detail iny,ction of the type I1B superstring in toroidal compactifica-
Ell] and in dual versions i12-16. The metric is of  {jons with self-dual 3-form flux, ignoring the warp factor,
warped product” form, paying particular attention to the potential for a subset of the
light scalars. Next, in Sec. lll, we find the cosmological evo-
ds@2=ehy , dx*dx’+e gy, dy™dy", (2) lution driven by our potential based on known inflationary
models; we find that our potentials do not lead to an accel-
erating universe. Finally, in Sec. IV, we comment on the

*Electronic address: frey@vulcan.physics.ucsb.edu generalization of our results to more complicated models,

"Electronic address: anupamm@hep.physics.mcgill.ca compare our results to other models that do lead to inflation,

As did [47], which found inflation in a small region of moduli and discuss corrections to our potential that might or might
space. not lead to inflation.
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II. DIMENSIONAL REDUCTION AND POTENTIAL 1
RE+ Za,u’Ymnaﬂ'ymn

M2

Skin:ﬁj d*x —0e

Here we will review the dimensional reduction of 10D
type 1IB supergravity in compactifications with imaginary
self-dual 3-form flux on the internal manifold. For simplicity
and specificity, we will concentrate on the toroidal compac-
tifications of[ 21,22, extending our analysis to more general
cases in Sec. IV. We will ignore the warp factor, which as-
sumes that the compactification radius is large compared to
the string scalé.
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A. Kinetic terms

Here,M; is the Planck mass, and we are using a coset space

We will start with the kinetic terms, mostly following the : .
covariant derivative

analysis of [22], wusing the N=4 S06,22)
XSU(1,1)/SO(6)XSO(22)xXU(1) language because we
are studying configurations away from the moduli space at
the bottom of the potential. Our main purpose is to identify
the physical interpretation of the canonically normalized sca-
lars, so we will skip the algebraic details. which arises from the magnetic coupling of the D3-branes to
As was shown i1h22], the moduli must be tensor densities g; this is the dimensionally reduced action for the heterotic
in order to avoid double trace terms in the action, theory of[30,37, as one might expect. In deriving the ac-
tion, one needs the identity

)

1
D,B""=4,8M"+ E(a{né’#a{]— al'd,a)")

A
mn_ _ A—®dmn mn_ mnpqr
Y 2 € g ’ B 2X4' € tpqrs’ 'Ymna,u')’mn: - Ymnauymn: 6(9#(1)_4(9,uln A (8)
It is easiest to study the cosmology of canonically normal-
A= \/detg,, (4  ized scalars; so we will break down the geometric moduli.

For simplicity we will consider only the factorized ca3é
=(T?)3. We can then parametrize the metric on an indi-

along with the D-brane positiohs™=X"27l. and the 10p  Vidual 2-torus[say, the (4-7) torud as

dilaton-axion. For the purpose of cosmology, we want to
work in the 4D Einstein framénote that this is different than
in [22] because we are allowing the dilaton to vary Y

e i+efd®> —eld
—efd et

mn_ 20
=e

€)

Here, o gives the overall size of th&?, { gives the relative

9t :ée—chg (5) length of the two sides, ardicontrols the angle between the
mro 2 pre two directions of periodicity. Then the kinetic term be-
comes
From stringy dualities, it can be seen that the moduli defini- Mé 3 1
tions (4) correspond to the geometric modgl,,,Bm, in a Sin=— 16m d4x\/—gE§1 20,010" 0+ E%é“iﬁ“é“i

toroidal heterotic compactification, and the metf#g is the
4D “4canonica| metric”[30,3] in the heterotic description
[22].

The kinetic action obtained from dimensional reduction of
type IIB supergravity(SUGRA) and the D3-brane action is
then

1
+ Ea#diaﬂdi}. (10

For canonical normalization, the coefficient of the kinetic

terms should simply be-1/2, so a further rescaling is nec-

essary.
2Actually, because the warp factérscales likeR™* [14,22, the

radius need only be a few times the string scale for our approxima-

tion to be reasonable.

B. Potential

3If the D-branes are coincident, the indelabels the adjoint rep-
resentation ofJ(N); the kinetic terms remain the sarf9].

The scalar potential comes from dimensional reduction of
the background 3-form terms in the type 1IB action. After

“Strictly speaking, these are only the heterotic dual variables witlconverting to our variables, the potential for the bulk modes

vanishing fluxes; sefgl6].

is, in generality,
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2 M4
V= 2 (0t Y™ YT (F — CH) o F v0=4(8—;3h2e22m{cosr(cp—2 i
_CH)qrs+ ei(meanqrs] (11) 1 2 2.2 512

+ Eeq”zigi[cz— 2Cd,d,d;+d7dsd5+ 672{3d1d2
along with an additional term that subtracts off the vacuum
energy’ This potential was derived from dimensional reduc-  +e~2%2d?d3+ e~ 2¢1d3d3+ e~ 22~ 263d2 + e~ 261~ 243dl2
tion in [11,21], from gauged supergravity if24,28, and
from the superpotential df12]. One feature to note in this
potential is that it always hast least three flat directions at
the minimum, corresponding to the radii of factorizatith
=T?XT?XT2. Also, the moduli do not enter into the po- using again Eq(13). It is straightforward but tedious to
tential, although some become Goldstone bosons via the sghow that this potential is positive definite, and the only ex-
per Higgs effec{22,24-24. tremum is atb —,;/;=C=d;=0. As this case is nonsuper-

For cosmological purposes, we will need to have a morgymmetric, quantum mechanical corrections should lift the
explicit form of the potential in hand. Since there are 23flat directions.
scalarsy™",®,C, writing the full potential for a given set of ~ On the other end of the supersymmetry spectrum are the
3-form fluxes would be prohibitively complicated, but we A/=3 models of 22], which fix the dilaton as well as all the
can write down a few simple examples and focus on theomplex structure. If we ignor€,d; (set them to a vanishing

+e 26 20g2]— 1] (14)

universal aspects. vacuum valug we find a potential
The simplest case is to take the thiEeto be square, so
that the geometric moduli arg**=y""=e?1, etc., with all 4
others vanishing. Then, above a vacuum that satisfie§lEq. V,= P - h2e 2%i%[cosH® — {1 — {,— {3) + cosHP — ¢,
we can calculate the potential (8m)
A + o+ {3)+cosh®+ {1 — {r+ {3) +coshd+ {1+ (),
P o5 ol (O
Vgii= h%e~ %% e~ * "cos® — (?) —{3)—4]. (15)
dil 4(87)° 3

1 This again has the same cosh structure for the dilaton; the
+ Ee‘l’(c— c0)2— 1}, (12)  only difference is a factor of 4 due to the number of compo-
nents of flux in the background.
Including the non-Abelian coupling for the D3-brane sca-
) Mg sps lars a" introduces new terms in the potentiake[29] for a
h®= ghmnphqrs5 T (13 supersymmetry based approadn the absence of fluxes and
even in the ground state, this potential is monotonic and

. m : .
This potential was written explicitly ir58U(1,1) notation in simply forces th.el' to commute. Otherwise, the branes.plck
[28] and is valid for any 3-form background. The most im- up a 5-brane dipole moment and become noncommuting, as

portant feature of this potential is that there is a vanishingﬂ'scussed i35]. Writing the brane positions ds(N) ma-

vacuum energy, and, further, the radial modulfeels a po- ices, the potential is
tential only when the dilaton-axion system is excited. Since
this is the simplest potential to write down, it will be our V.=2mrM24
. . . ) A b P
primary focus in Sec. lll. It is very interesting to note that the
cosmology of this potential for the dilaton-axion has been i
discussed earlier i3,33,34 from SUGRA. Importantly, + —(detyn) Y%e® (e Ph—g(f
though, their models did not include the radial moduli or the 12
negative term that subtracts off the cosmological constant.
Adding the complex structure is more complicated and —Ch))mngtr(aMa"aP)
more model-dependent. The simplest possible case, for ex-
ample,f 56= —hgg, is nongeneric in that Ed1) is satisfied ] . .
at d—3,,,=C=d,=0, so the{; give extra moduli com- To illustrate this potentlal,_we taliesg= —h,ggas before, set
pared to other background fluxdat the classical level ~C=di=¢i=0, and considera®>%ly and a’®%=pt'??
However, we still haveb—=,¢; fixed by a cosh potential With t' a representation dgU(2). Then
with a polynomial inC,d; :

27Te(b')’mp'ynqtr([am-an][aquap])

. (16)

Vb= 2’7TMg 16’77811)(97 2(7'172(7'2_’_ 6720'1720'3_’_ e72(rz*203)p4

5This comes from the D3/O3 tension, which must cancel the h
vacuum potentlal for string tadpole conditions to be satisfied to + 7896722 ”ieq’(e*¢—1)p3 ] (17)
leading order irl. 2 i
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There are actually more terms in this potential as required by 87 1
supersymmetry; these are just the lowest order terms that HZ:—2 —
appear in the D-brane action given [86]. For example, the 3Mp 2
underlying /=4 supersymmetry gives @ term?® and there ,
is also ap? term from gravitational back reaction that has The Hubble expansion is given l&/a; an overdot denotes
been calculated using supersymmetry in one ¢see[36)); d_erivativ_e yvith r_espect to physical time and prime denotes
in any event, there is a local maximum in th§' direction. ~ differentiation with respect te. _
Like the bulk potential, this potential has exponential prefac- Note that depending upon the slopes of the fields along
tors from theo- moduli, and if the bulk scalars are away from their classical trajectories the dilaton can roll slowly com-
their minimum, there is the same ¢x{23;0:] factor. pared to the modyll, in which case we m_lght be able to_solve
The key point to take from this discussion of the potentialthe moduli equations exactiywith this simple assumption
is the exponential prefactor that appears in all terms, whethewe first consider Eqs(20),(21) with ®<o;, and V(P)
bulk or brane modes. ~V,, the latter condition is true if the dilaton time varying
VEV changes slowly. Much stronger condition can be laid on
the kinetic terms for the moduli and dilaton if we assume

ol
<1>2+§2i ol+e TUnV(d) | (21)

III. COSMOLOGICAL EVOLUTION

In this section we seek the cosmological evolution of the . MpV'(P)
dilaton and the moduli fields in a flad=4 dimensional T o (®) (22)

space time background. However, for the purpose of illustra-

tion it is prudent that we consider a toy model which illus- The above equation can be derived from EG%),(20) by

trates the behavior of the potentialg;,, V, and V3 de- b <2 e el o .

scribed in the earlier section. Esnstut?;lggl\jviglll_lggngilt;ﬁg oi and®<o, which is equiva

CSwo Now we are interested in solving the moduli field evolu-
Ve Haav(o). (18 tion without imposing slow roll conditions on them. We ar-
gue that there exists an attractor region with a power law

Let us also assume that the above potential has a globgblutiona(t)octP, which from Eq.(21), dimensionally satis-

minimum @, determined by/(®). At &, the potential van-  fies H2oct ~2ce™ Zi%i%1V/(d). Hence we write

ishes. In the aboveP mimics the dilaton andr; play the

role of moduli with various coefficients; determines the ki

slope of the potential. For generality we have assumed that etvi=— (23

[
there ard number of moduli. In our original potential all the t
slopes are fixed at;=4+/7/Mp (with normalized scalajs n
see Eq.(14). We will model Vy, by slightly different poten- 2 c=2 (24)
tial. =T

For the sake of simplicity and generality in Ed4), we
do not assume any form fat; and ¢; at the moment. It is Wherek; are dimensional and, are dimensionless constants
interesting to note that the potential EG.8) is quite ad- respectively. Equatiori23), coupled with the equations of
equate to determine the cosmological evolution if they domimotion Eq.(20) results in
nate the energy density, which is fixed by the val((&) in
our case. Further note thei(®)=(Mp)*.” Therefore, given
generic initial conditions for all the modulir,~My in the
dimensionally reduced action, we hope that the rolling
moduli could lead to the expansion of the universe. In ordefrom which we find, using Eq(24) and Eq.(20),
to see this clearly, one must obtain the equations of motion

(3p—1>ci=a?w<b>klj1 K, (25)

for both dilaton and moduli if coupled to the gravity in a 2(3p—1)
Robertson-Walker space-time metric with an expansion fac- V(q))kll kie=— '
tor a(t), wheret represents the physical time. The equations E aiz
of motion are in the Einstein frame =1
¥ 3 —Sa;oi\ /! C; 2 4a'2
$b+3HD+e i@y (D) =0, (19 (_.) _ . 26
i - n 2
R B
o;+3Hoi— a;e” “i4%V(P) =0, (20 k=1
SWe thank S. Ferrara for discussions on this point. 8We are obviously assuming priori that the dilaton is moving

"strictly speaking potential energy ought to be less tHdp)* in very slowly which may or may not be the case. Nevertheless, our
order to make sense of field theoretic description of the expandingcenario shall be able to discern some of the aspects of the actual
Universe. dynamics, such as inflationary or noninflationary.
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When substituted into Eq21) with d<o;, we obtain the One in order to be consistent with the Hubble equatiet).
key result without using any slow roll condition for the In this case, we can find the exact solution for the dilaton

moduli where the exponent of the scale facit)«tP goes

as B(t)aT, n= (3 1) (3 1)2 4c
160 1
pP=— (27
M5 S @2 Unlike the dilaton, the moduli have no minimum, and
=1 they face the usual run away moduli problem. Note that once

dilaton reaches its minimum the potential E§8) vanishes,
We also note that the scaling solution for the moduli fieldsand so the effective potential for the moduli. However, once
can be found quickly as follows for any two modudi; and  the expansion of the universe driven by the dynamics for the

oy moduli comes to an end, the dilaton settles dowsb gt then
5 the moduli still continue to evolve accordingly
: 2
T a;
(.—') :(—'> . (28 d .
Tk g a(a'ia(t)?’):O, (34)

The above equation ensures the late time attractor behavior
for all the moduli in our case, which has a similarity to the provided there is some source of energy-momentum tensor
assisted inflation discussed [[87,39. From Egs.(23),(24),  supporting the expansion of the universe. The moduli can
we can also write indeed come to rest at some finite value.
So far we have been concentrating upon the toy model
Ci with the potential Eq(18). Nevertheless, the situation re-
oi=0i(0)— ;'” t, 29 mains unchanged for the type of potentials we are interested
' in; see Eqs(12),(14),(15). Note that the dynamical behavior
where ¢;(0) is a constant depending on the initial condi- of the moduli will remain unchanged, but the dilaton may
tions. roll slow or fast depending upon the actual slope of the di-
Inflationary solutions exist provided>1, which can be laton potential. By inspecting the potentials we find the cor-
attained in our case only when the slopes are small  responding slope of the moduli, i.e;=4\7/Mp, andn
enough, or in other words the moduli should have suffi-=3. Therefore, the moduli driven expansion of the universe
ciently shallower slope. The power law solution also appliedeads to
to anyp in the range 8<p<1, where the expansion is non-
inflationary.
Note that so far we have neglected the dynamics of the
dilaton. In spite of rolling down slowlyp eventually comes
down to the bottom of the potential. So, the prime question isThe expansion is noninflationary and will not solve any of
how fast does it roll down to its minimurd,. This will the outstanding problems of the big bang cosmology. Never-
again depend on the exact slope of the potentiaM@b). theless, this expansion which is slower than either radiation
Nevertheless, if we demand that the dilaton is indeed rollinglominated or matter dominated epoch could be the precursor
down slowly such asb<3H®, then we can mimic the Or end stage of inflation in this particular model.
slow-roll regime for the dilaton, and the situation mimics Now, we briefly comment on bulk potential derived in Eq.

1
p=3<1; a(t)oct' (35)

that of soft inflation studied in Ref§39—41], (17). Note, even if the dilaton is settled down the minimum
with e"®=1, the moduli fields still contribute to the poten-
f(d)=f(dy)—plint, (300 tial. It would then be interesting to note whether we get any
expansion of the universe from the moduli driven potential.
where Further note that the structure of the potential is quite differ-
ent from Eq.(18). The potential rather follows¢taking p to
8 V(d be slowly rolling andp<<1)
f(d)=—| dP (@) . (31
M5 V(D) n m
Vp=32m2Mpp* exp( @ 0') 36
Here the subscript 0 indicates the initial value. b PP 521 121 S (36

With axtP and e ®“V(P)xH? we can then param-

etrize the dilaton equation of motion by This kind of potential has also been solved exactly without
using slow-roll conditiong38]. Of course with the possibil-
d+3HD = —cH2D, (32 ity of some ofag;=0 for some combination dd,j. Our case

Eq. (17) exemplifies withs,j=1,2,3. For Eq(36), again we
wherec is a constant factor which determines the unknowndemand that exﬁ(}llasjcrj)oclltz. The late time attractor so-
shape parameter of(®), which ought to be smaller than lution for the moduli fields can be established wjig8]
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n 2

) LR 37)
2 ay B

r=1

2 q;aqj q
5

In the above equatioBE(E?":lasjaqj)(T:OF, whereT stands
for transpose andCOF stands for the cofactor, anBS
EEglesq is the sum of elements in ro& The power law
solutiona(t)«tP can be found to bg38]

n

n
B
167725 % sd

R e (38
M,% detA

p

whereAg=32"  agjag; .

Now, we can ready; from Eq. (17). After little calcula-
tion with the normalizedrs;, we obtain the value gb from
Eq. (39

3
p=-—=<1.

16 (39
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This sort of argument based on supersymmetry is readily
generalized to the Calabi-Yau models with 3-form fluxes that
were studied in[11]. Indeed, the form of the bulk mode
potential (11) is identical, although the complex structure
decomposition of the metric will differ from case to case.
The key thing to note is that the overall scale of the internal
manifold is always a modulus, as if we set, ;= o. In fact,
it works out so that the exponential prefactor gives the same
a~t13 evolution. The potential for brane modes should also
be similar, at least for small non-Abelian parts of the brane
coordinates. Considering a more complicated CY compacti-
fication is not the route to an accelerating universe. Again,
this seems to be a feature of the broken supersymmetry.

We should contrast this case to other work that does find
inflationary physics in supergravity. In the 1980s, Refs.
[43,44 found no-scale supergravities with inflation, but they
specified the potential to give slow-roll inflation. The free-
dom to insist on inflation does not exist here. More recently,
other gauged supergravities have been found that can give at
least a give fewe-foldings of inflation[2,3,33,34, but these
do not yet have a known embedding in string theory. These
gauged supergravities are not of the no-scale type and have a
cosmological constant. Als$3,4,6 describe inflation based

n the motion of branes in a warp factor. In f4&,6] use a

Again we find that there is no accelerated expansion. Th
assisted inflation in all these cases provides expansion b
could not be used to solve inflation or even late time accel€lude the warp factor. o ,
eration during the matter dominated era. In all our examples There is clearly, then, some hope for finding acceleration
we found that the moduli trajectories follow the late time in compactifications with 3-form magnetic fields, and it is
attractor towards the supersymmetric vacuum. Finally, ePOSSib'E to think of other methods than D3-brane motion.
word upon supersymmetry breaking in the observable sectoF,0r example, the warp factor can modify the potential, al-
which will induce mass-1 TeV to the moduli and dilaton in  though it does not seem likely to change the basic features.
gravity mediation. Unless the moduli amplitude is dampedAnother possibility is that the small volume region of moduli
considerably, the large amplitude oscillations of the modulispace, where supergravity breaks down, has a different form
field will eventually be a cause for worrithrough particle  of the potential. It has been argued that some type 1IB com-
production. The late time moduli domination may lead to pactifications with flux with oneT? shrinking are dual to
the infamous moduli probler2]. heterotic compactifications with intrinsically stringy mono-
dromies[16,45, so it is conceivable that inflation could oc-
cur in such a compactification with a decelerating end stage
described by our model.

Finally, there are many possible corrections associated
e\éyith supersymmetry breaking. It is known that there should

from the 3-form mdgced potenpal. The reason seems re!at e stringy corrections to the potential in nonsupersymmetric
to comments if7,8]; exponential potentials consistent with )
ases and that these would break the no-scale structure, giv-

the constraints of supersymmetry are generically too steeﬁ. . :
Our results, then, are consistent with a generalization g9 the radial modulus madat least in the CY cas446],

many fields of the work of7,8] that a system cannot simul- and there shou_ld_ also be supergrgvity Ioop corre_ctions. It
taneously relax to a supersymmetric minimum and causé"omd be very dlffICU!t to compute this potent|al,_ but it seems
cosmological acceleration. Even though the models considikely that the potential could have a local maximum for the
ered here do not necessarily preserve supersymmetry, thggmpa}ctlflcanon. radius, allowmg.for mflgtlon. There are also
are all classically of “no-scale” structure, meaning that theyPotentials from instanton corrections, given by wrapped Eu-
all have vanishing cosmological constant and no potential foglidean D3-branef22]. Since the instanton action is propor-
the radial moduli. So even the nonsupersymmetric vacu&ional to the volume of the cycle it wraps, it would actually
have characteristics of supersymmetric cases. Furthermorgenerate a potential like the exponential of an exponential.
the potential arises from the supergravity Ward identityThis type of potential could very possibly be shallow enough
[24,28, which means it suffers from the same kind of con-to support inflation, although we have not investigated this
straints imposed by the arguments[8f8]. Heuristically, the  point.

vacua of our system give Minkowski spacetime, which is In summary, we have examined the cosmology induced
static, and there is no way to accelerate into a static state. by 3-form fluxes in type IIB superstring compactifications

ckground very similar to the one considered here but in-

IV. DISCUSSION

In this section, we would like to comment on the conclu-
sion that we cannot get power-law inflati¢or quintessenge
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and concluded that the classical bulk action does not lead to ACKNOWLEDGMENTS
inflation or quintessence because the potential contains ex-
ponential factors that are too steep, much af7i8]. How- The authors are thankful to Cliff Burgess, Ed Copeland,

ever, we have noted loopholes in our analysis which couldergio Ferrara, and Joseph Polchinski for helpful discussions
allow accelerating cosmologies. We leave the exploration oand feedback. The work of A.F. is supported by National
those loopholes for future work. Science Foundation grant PHY97-22022.
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