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3-form induced potentials, dilaton stabilization, and running moduli
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We study the potential induced by imaginary self-dual 3-forms in compactifications of string theory and the
cosmological evolution associated with it. The potential contains exponentials of the volume moduli of the
compactification, and we demonstrate that the exponential form of the potential leads to a power law for the
scale factor of the universe. This power law does not support accelerated expansion. We explain this result in
terms of supersymmetry and comment on corrections to the potential that could lead to inflation or quintes-
sence.
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I. INTRODUCTION

If we believe that string theory~or M theory! is the fun-
damental description of interactions in our Universe, then
are obviously forced to place the basic processes of cos
ogy into a string theoretic framework. Important steps ha
been made in this direction by examining four dimensio
supergravity models for potentials that could support
early phase of the accelerated expansion of the Unive
known as inflation, which solves some of the outstand
problems of the hot big bang cosmology@1#. See, for recent
examples,@2,3#. Other work has identified string theory mod
els in which D-brane physics leads to inflation@3–6#.1 At the
same time, however, it has proven challenging to incorpo
cosmological acceleration into string theory backgrounds
cause they tend to relax to supersymmetric vacua@7,8#. In
this paper, we ask whether a stringy potential generated
higher dimensional magnetic fields can give rise to acce
ated expansion. We restrict our analysis to the classical
tential of supergravity.

We study a class of exact solutions to type IIB supergr
ity that have a vacuum state@denoted by superscript(0)]
with 3-form magnetic fluxes that satisfy a self-duality re
tion

!6
(0)~F2C(0)H !5e2F(0)

H ~1!

on the compact space, which should be Calabi-Yau~CY!
space@9,10#. These vacua were described in some detai
@11# and in dual versions in@12–16#. The metric is of
‘‘warped product’’ form,

ds(0)25eAhmndxmdxn1e2Agmndymdyn, ~2!

*Electronic address: frey@vulcan.physics.ucsb.edu
†Electronic address: anupamm@hep.physics.mcgill.ca
1As did @47#, which found inflation in a small region of modu

space.
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so these models have the phenomenology of the Ran
Sundrum models@17–19#. The warp factor depends on th
position of D3-branes~and orientifold planes! on the com-
pact space and also determines the 5-form field strength.
condition ~1! gives rise to a potential for many of the ligh
scalars, including the dilaton generically, which vanishes
the classical minimum and furthermore has no prefer
compactification volume. We will be interested in the beha
ior of these systems above the minimum, and the 4D me
will generalizehmn→gmn .

For simplicity, we will mainly consider the case where th
internal manifold is aT6/Z2 orientifold, as described in@20–
22# ~or in dual forms in@16,23#!. We take the torus coordi
nates to have square periodicities,xm.xm12p l s , so that
the geometric structure is encoded in the metric. On t
torus, the 3-form components must satisfy the Dirac qua
zation conditions

Hmnp5
1

2p l s
hmnp, Fmnp5

1

2p l s
f mnp, hmnp, f mnpPZ.

~3!

Boundary conditions at the orientifold planes give lar
Kaluza-Klein masses to many fields~including the metric
componentsgmm , for example!, and the remaining theory is
described by an effective 4D gaugedN54 supergravity with
completely or partially broken supersymmetry via the sup
Higgs effect@24–29#.

In the following section, we discuss the dimensional
duction of the type IIB superstring in toroidal compactific
tions with self-dual 3-form flux, ignoring the warp facto
paying particular attention to the potential for a subset of
light scalars. Next, in Sec. III, we find the cosmological ev
lution driven by our potential based on known inflationa
models; we find that our potentials do not lead to an acc
erating universe. Finally, in Sec. IV, we comment on t
generalization of our results to more complicated mode
compare our results to other models that do lead to inflat
and discuss corrections to our potential that might or mi
not lead to inflation.
©2003 The American Physical Society06-1
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II. DIMENSIONAL REDUCTION AND POTENTIAL

Here we will review the dimensional reduction of 10
type IIB supergravity in compactifications with imagina
self-dual 3-form flux on the internal manifold. For simplicit
and specificity, we will concentrate on the toroidal compa
tifications of@21,22#, extending our analysis to more gener
cases in Sec. IV. We will ignore the warp factor, which a
sumes that the compactification radius is large compare
the string scale.2

A. Kinetic terms

We will start with the kinetic terms, mostly following th
analysis of @22#, using the N54 SO(6,22)
3SU(1,1)/SO(6)3SO(22)3U(1) language because w
are studying configurations away from the moduli space
the bottom of the potential. Our main purpose is to ident
the physical interpretation of the canonically normalized s
lars, so we will skip the algebraic details.

As was shown in@22#, the moduli must be tensor densitie
in order to avoid double trace terms in the action,

gmn5
D

2
e2Fgmn, bmn5

D

234!
emnpqrsCpqrs ,

D[Adetgmn, ~4!

along with the D-brane positions3 a I
m5XI

m/2p l s and the 10D
dilaton-axion. For the purpose of cosmology, we want
work in the 4D Einstein frame~note that this is different than
in @22# because we are allowing the dilaton to vary!

gmn
E 5

D

2
e22Fgmn . ~5!

From stringy dualities, it can be seen that the moduli defi
tions ~4! correspond to the geometric moduligmn ,Bmn in a
toroidal heterotic compactification, and the metric~5! is the
4D ‘‘canonical metric’’ @30,31# in the heterotic description
@22#.4

The kinetic action obtained from dimensional reduction
type IIB supergravity~SUGRA! and the D3-brane action i
then

2Actually, because the warp factorA scales likeR24 @14,22#, the
radius need only be a few times the string scale for our approxi
tion to be reasonable.

3If the D-branes are coincident, the indexI labels the adjoint rep-
resentation ofU(N); the kinetic terms remain the same@29#.

4Strictly speaking, these are only the heterotic dual variables w
vanishing fluxes; see@16#.
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Skin5
M P

2

16pE d4xA2gEFRE1
1

4
]mgmn]

mgmn

1
1

4
gmpgnqDmbmnDmbqp2

1

2
gmn]ma I

m]ma I
n

2
1

2
]mF]mF2

1

2
e2F]mC]mCG ,

M P
2 5

1

8p2l s
2

. ~6!

Here,M P is the Planck mass, and we are using a coset sp
covariant derivative

Dmbmn[]mbmn1
1

2
~a I

m]ma I
n2a I

n]ma I
m! ~7!

which arises from the magnetic coupling of the D3-branes
b; this is the dimensionally reduced action for the hetero
theory of @30,32#, as one might expect. In deriving the a
tion, one needs the identity

gmn]mgmn52gmn]mgmn56]mF24]mln D. ~8!

It is easiest to study the cosmology of canonically norm
ized scalars; so we will break down the geometric mod
For simplicity we will consider only the factorized caseT6

5(T2)3. We can then parametrize the metric on an in
vidual 2-torus@say, the (427) torus# as

gmn5e2sFe2z1ezd2 2ezd

2ezd ez G . ~9!

Here,s gives the overall size of theT2, z gives the relative
length of the two sides, andd controls the angle between th
two directions of periodicity. Then theg kinetic term be-
comes

Skin52
M P

2

16pE d4xA2gE(
i 51

3 F2]ms i]
ms i1

1

2
]mz i]

mz i

1
1

2
]mdi]

mdi G . ~10!

For canonical normalization, the coefficient of the kine
terms should simply be21/2, so a further rescaling is nec
essary.

B. Potential

The scalar potential comes from dimensional reduction
the background 3-form terms in the type IIB action. Aft
converting to our variables, the potential for the bulk mod
is, in generality,

a-

h
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V5
M P

2

4!332p
~detgmn!g

mqgnrgps@eF~F2CH!mnp~F

2CH!qrs1e2FHmnpHqrs# ~11!

along with an additional term that subtracts off the vacu
energy.5 This potential was derived from dimensional redu
tion in @11,21#, from gauged supergravity in@24,28#, and
from the superpotential of@12#. One feature to note in this
potential is that it always has~at least! three flat directions a
the minimum, corresponding to the radii of factorizationT6

5T23T23T2. Also, theb moduli do not enter into the po
tential, although some become Goldstone bosons via the
per Higgs effect@22,24–26#.

For cosmological purposes, we will need to have a m
explicit form of the potential in hand. Since there are
scalarsgmn,F,C, writing the full potential for a given set o
3-form fluxes would be prohibitively complicated, but w
can write down a few simple examples and focus on
universal aspects.

The simplest case is to take the threeT2 to be square, so
that the geometric moduli areg445g775e2s1, etc., with all
others vanishing. Then, above a vacuum that satisfies Eq~1!,
we can calculate the potential

Vdil5
M P

4

4~8p!3
h2e22( is iFe2F(0)

cosh~F2F (0)!

1
1

2
eF~C2C(0)!221G , ~12!

h25
1

6
hmnphqrsd

mqdnrdps. ~13!

This potential was written explicitly inSU(1,1) notation in
@28# and is valid for any 3-form background. The most im
portant feature of this potential is that there is a vanish
vacuum energy, and, further, the radial modulis feels a po-
tential only when the dilaton-axion system is excited. Sin
this is the simplest potential to write down, it will be ou
primary focus in Sec. III. It is very interesting to note that t
cosmology of this potential for the dilaton-axion has be
discussed earlier in@3,33,34# from SUGRA. Importantly,
though, their models did not include the radial moduli or t
negative term that subtracts off the cosmological constan

Adding the complex structure is more complicated a
more model-dependent. The simplest possible case, for
ample,f 45652h789, is nongeneric in that Eq.~1! is satisfied
at F2( iz i5C5di50, so thez i give extra moduli com-
pared to other background fluxes~at the classical level!.
However, we still haveF2( iz i fixed by a cosh potentia
with a polynomial inC,di :

5This comes from the D3/O3 tension, which must cancel
vacuum potential for string tadpole conditions to be satisfied
leading order inl s .
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M P

4

4~8p!3
h2e22( is iH coshS F2(

i
z i D

1
1

2
eF1( iz i@C222Cd1d2d31d1

2d2
2d3

21e22z3d1
2d2

2

1e22z2d1
2d3

21e22z1d2
2d3

21e22z222z3d1
21e22z122z3d2

2

1e22z122z2d3
2#21J ~14!

using again Eq.~13!. It is straightforward but tedious to
show that this potential is positive definite, and the only e
tremum is atF2( iz i5C5di50. As this case is nonsuper
symmetric, quantum mechanical corrections should lift
flat directions.

On the other end of the supersymmetry spectrum are
N53 models of@22#, which fix the dilaton as well as all the
complex structure. If we ignoreC,di ~set them to a vanishing
vacuum value!, we find a potential

V35
M P

4

~8p!3
h2e22( is i@cosh~F2z12z22z3!1cosh~F2z1

1z21z3!1cosh~F1z12z21z3!1cosh~F1z11z2

2z3!24#. ~15!

This again has the same cosh structure for the dilaton;
only difference is a factor of 4 due to the number of comp
nents of flux in the background.

Including the non-Abelian coupling for the D3-brane sc
lars a I

m introduces new terms in the potential~see@29# for a
supersymmetry based approach!. In the absence of fluxes an
even in the ground state, this potential is monotonic a
simply forces thea I

m to commute. Otherwise, the branes pi
up a 5-brane dipole moment and become noncommuting
discussed in@35#. Writing the brane positions asU(N) ma-
trices, the potential is

Vb52pM P
4 F2peFgmpgnqtr~@am,an#@aq,ap# !

1
i

12
~detgmn!

1/2eF
„e2Fh2!6~ f

2Ch!…mnptr~amanap!G . ~16!

To illustrate this potential, we takef 45652h789 as before, set
C5di5z i50, and considera4,5,6}I N and a7,8,95rt1,2,3

with t i a representation ofSU(2). Then

Vb52pM P
4 F16peF~e22s122s21e22s122s31e22s222s3!r4

1
h789

2
e22(

i
s ieF~e2F21!r3G . ~17!

e
o
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There are actually more terms in this potential as required
supersymmetry; these are just the lowest order terms
appear in the D-brane action given by@35#. For example, the
underlyingN54 supersymmetry gives ar6 term,6 and there
is also ar2 term from gravitational back reaction that h
been calculated using supersymmetry in one case~see@36#!;
in any event, there is a local maximum in thea I

m direction.
Like the bulk potential, this potential has exponential pref
tors from thes moduli, and if the bulk scalars are away fro
their minimum, there is the same exp@22(isi# factor.

The key point to take from this discussion of the poten
is the exponential prefactor that appears in all terms, whe
bulk or brane modes.

III. COSMOLOGICAL EVOLUTION

In this section we seek the cosmological evolution of
dilaton and the moduli fields in a flatd54 dimensional
space time background. However, for the purpose of illus
tion it is prudent that we consider a toy model which illu
trates the behavior of the potentialsVdil , V0 and V3 de-
scribed in the earlier section.

V'e2( ia is iV~F!. ~18!

Let us also assume that the above potential has a gl
minimumF0 determined byV(F). At F0 the potential van-
ishes. In the above,F mimics the dilaton ands i play the
role of moduli with various coefficientsa i determines the
slope of the potential. For generality we have assumed
there arei number of moduli. In our original potential all th
slopes are fixed ata i54Ap/M P ~with normalized scalars!,
see Eq.~14!. We will model Vb by slightly different poten-
tial.

For the sake of simplicity and generality in Eq.~14!, we
do not assume any form fordi and z i at the moment. It is
interesting to note that the potential Eq.~18! is quite ad-
equate to determine the cosmological evolution if they do
nate the energy density, which is fixed by the valueV(F) in
our case. Further note thatV(F)}(M P)4.7 Therefore, given
generic initial conditions for all the modulis i;M P in the
dimensionally reduced action, we hope that the rolli
moduli could lead to the expansion of the universe. In or
to see this clearly, one must obtain the equations of mo
for both dilaton and moduli if coupled to the gravity in
Robertson-Walker space-time metric with an expansion
tor a(t), wheret represents the physical time. The equatio
of motion are in the Einstein frame

F̈13HḞ1e2( ia is iV8~F!50, ~19!

s̈ i13Hṡ i2a ie
2( ia is iV~F!50, ~20!

6We thank S. Ferrara for discussions on this point.
7Strictly speaking potential energy ought to be less than (M P)4 in

order to make sense of field theoretic description of the expan
Universe.
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8p

3MP
2 F1

2
Ḟ21

1

2 (
i

ṡ i
21e2( ia is iV~F!G . ~21!

The Hubble expansion is given byȧ/a; an overdot denotes
derivative with respect to physical time and prime deno
differentiation with respect toF.

Note that depending upon the slopes of the fields alo
their classical trajectories the dilaton can roll slowly com
pared to the moduli, in which case we might be able to so
the moduli equations exactly.8 With this simple assumption
we first consider Eqs.~20!,~21! with Ḟ!ṡ i , and V(F)
;V0, the latter condition is true if the dilaton time varyin
VEV changes slowly. Much stronger condition can be laid
the kinetic terms for the moduli and dilaton if we assume

ṡ i@
M PV8~F!

2A2pa iV~F!
Ḟ. ~22!

The above equation can be derived from Eqs.~19!,~20! by
assumingF̈!3HḞ, s̈ i!3Hṡ i andḞ!ṡ, which is equiva-
lent to slow-roll conditions.

Now we are interested in solving the moduli field evol
tion without imposing slow roll conditions on them. We a
gue that there exists an attractor region with a power
solutiona(t)}tp, which from Eq.~21!, dimensionally satis-
fies H2}t22}e2( ia is iV(F). Hence we write

ea is i5
ki

tci
, ~23!

(
i 51

n

ci52, ~24!

whereki are dimensional andci are dimensionless constan
respectively. Equation~23!, coupled with the equations o
motion Eq.~20! results in

~3p21!ci5a i
2V~F!)

k51

n

kk , ~25!

from which we find, using Eq.~24! and Eq.~20!,

V~F!)
k51

n

kk5
2~3p21!

(
i 51

n

a i
2

,

S ci

a i
D 2

5
4a i

2

S (
k51

n

ak
2D 2 . ~26!

g

8We are obviously assuminga priori that the dilaton is moving
very slowly which may or may not be the case. Nevertheless,
scenario shall be able to discern some of the aspects of the a
dynamics, such as inflationary or noninflationary.
6-4
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When substituted into Eq.~21! with Ḟ!ṡ i , we obtain the
key result without using any slow roll condition for th
moduli where the exponent of the scale factora(t)}tp goes
as

p5
16p

M P
2

1

(
j 51

n

a j
2

. ~27!

We also note that the scaling solution for the moduli fie
can be found quickly as follows for any two moduli,s i and
sk :

S ṡ i

ṡk
D 2

5S a i

ak
D 2

. ~28!

The above equation ensures the late time attractor beha
for all the moduli in our case, which has a similarity to th
assisted inflation discussed in@37,38#. From Eqs.~23!,~24!,
we can also write

s i5s i~0!2
ci

a i
ln t, ~29!

where s i(0) is a constant depending on the initial cond
tions.

Inflationary solutions exist providedp.1, which can be
attained in our case only when the slopesa i are small
enough, or in other words the moduli should have su
ciently shallower slope. The power law solution also appl
to anyp in the range 0,p,1, where the expansion is non
inflationary.

Note that so far we have neglected the dynamics of
dilaton. In spite of rolling down slowly,F eventually comes
down to the bottom of the potential. So, the prime questio
how fast does it roll down to its minimumF0. This will
again depend on the exact slope of the potential forV(F).
Nevertheless, if we demand that the dilaton is indeed roll
down slowly such asF̈!3HḞ, then we can mimic the
slow-roll regime for the dilaton, and the situation mimi
that of soft inflation studied in Refs.@39–41#,

f ~F!5 f ~F0!2p ln t, ~30!

where

f ~F![
8p

M P
2E dF

V~F!

V8~F!
. ~31!

Here the subscript 0 indicates the initial value.
With a}tp and e2a is iV(F)}H2, we can then param

etrize the dilaton equation of motion by

F̈13HḞ52cH2F, ~32!

wherec is a constant factor which determines the unkno
shape parameter ofV(F), which ought to be smaller tha
04600
s
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-
s

e
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g

n

one in order to be consistent with the Hubble equation~21!.
In this case, we can find the exact solution for the dilaton

F~ t !}a2h; h5
1

2 F S 32
1

pD2AS 32
1

pD 2

24cG .
~33!

Unlike the dilaton, the moduli have no minimum, an
they face the usual run away moduli problem. Note that o
dilaton reaches its minimum the potential Eq.~18! vanishes,
and so the effective potential for the moduli. However, on
the expansion of the universe driven by the dynamics for
moduli comes to an end, the dilaton settles down atF0, then
the moduli still continue to evolve accordingly

d

dt
„ṡ ia~ t !3

…50, ~34!

provided there is some source of energy-momentum ten
supporting the expansion of the universe. The moduli c
indeed come to rest at some finite value.

So far we have been concentrating upon the toy mo
with the potential Eq.~18!. Nevertheless, the situation re
mains unchanged for the type of potentials we are intere
in; see Eqs.~12!,~14!,~15!. Note that the dynamical behavio
of the moduli will remain unchanged, but the dilaton m
roll slow or fast depending upon the actual slope of the
laton potential. By inspecting the potentials we find the c
responding slope of the moduli, i.e.a i54Ap/M P , and n
53. Therefore, the moduli driven expansion of the unive
leads to

p5
1

3
,1; a~ t !}t1/3. ~35!

The expansion is noninflationary and will not solve any
the outstanding problems of the big bang cosmology. Nev
theless, this expansion which is slower than either radia
dominated or matter dominated epoch could be the precu
or end stage of inflation in this particular model.

Now, we briefly comment on bulk potential derived in E
~17!. Note, even if the dilaton is settled down the minimu
with e2F51, the moduli fields still contribute to the poten
tial. It would then be interesting to note whether we get a
expansion of the universe from the moduli driven potent
Further note that the structure of the potential is quite diff
ent from Eq.~18!. The potential rather follows~taking r to
be slowly rolling andr!1)

Vb532p2M P
4r4(

s51

n

expS (
j 51

m

as js j D . ~36!

This kind of potential has also been solved exactly witho
using slow-roll conditions@38#. Of course with the possibil-
ity of some ofas j50 for some combination ofs, j . Our case
Eq. ~17! exemplifies withs, j 51,2,3. For Eq.~36!, again we
demand that exp((j51

m asjsj)}1/t2. The late time attractor so
lution for the moduli fields can be established with@38#
6-5
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S ṡ j

ṡ l
D 2

5S (
q51

n

aq jB
q

(
r 51

n

a rl B
r D 2

. ~37!

In the above equationB[(( j 51
m as jaq j)COF

T , whereT stands
for transpose andCOF stands for the cofactor, andBs

[(q51
n Bsq is the sum of elements in rows. The power law

solutiona(t)}tp can be found to be@38#

p5
16p

M P
2

(
s

n

(
q

n

Bsq

det A
, ~38!

whereAsq5( j 51
m as jaq j .

Now, we can readas j from Eq. ~17!. After little calcula-
tion with the normalizedas j , we obtain the value ofp from
Eq. ~38!

p5
3

16
!1. ~39!

Again we find that there is no accelerated expansion.
assisted inflation in all these cases provides expansion
could not be used to solve inflation or even late time acc
eration during the matter dominated era. In all our examp
we found that the moduli trajectories follow the late tim
attractor towards the supersymmetric vacuum. Finally
word upon supersymmetry breaking in the observable se
which will induce mass;1 TeV to the moduli and dilaton in
gravity mediation. Unless the moduli amplitude is damp
considerably, the large amplitude oscillations of the mod
field will eventually be a cause for worry~through particle
production!. The late time moduli domination may lead
the infamous moduli problem@42#.

IV. DISCUSSION

In this section, we would like to comment on the conc
sion that we cannot get power-law inflation~or quintessence!
from the 3-form induced potential. The reason seems rela
to comments in@7,8#; exponential potentials consistent wi
the constraints of supersymmetry are generically too ste
Our results, then, are consistent with a generalization
many fields of the work of@7,8# that a system cannot simu
taneously relax to a supersymmetric minimum and ca
cosmological acceleration. Even though the models con
ered here do not necessarily preserve supersymmetry,
are all classically of ‘‘no-scale’’ structure, meaning that th
all have vanishing cosmological constant and no potential
the radial moduli. So even the nonsupersymmetric va
have characteristics of supersymmetric cases. Furtherm
the potential arises from the supergravity Ward iden
@24,28#, which means it suffers from the same kind of co
straints imposed by the arguments of@7,8#. Heuristically, the
vacua of our system give Minkowski spacetime, which
static, and there is no way to accelerate into a static sta
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This sort of argument based on supersymmetry is rea
generalized to the Calabi-Yau models with 3-form fluxes t
were studied in@11#. Indeed, the form of the bulk mod
potential ~11! is identical, although the complex structu
decomposition of the metric will differ from case to cas
The key thing to note is that the overall scale of the inter
manifold is always a modulus, as if we sets1,2,35s. In fact,
it works out so that the exponential prefactor gives the sa
a;t1/3 evolution. The potential for brane modes should a
be similar, at least for small non-Abelian parts of the bra
coordinates. Considering a more complicated CY compa
fication is not the route to an accelerating universe. Aga
this seems to be a feature of the broken supersymmetry

We should contrast this case to other work that does
inflationary physics in supergravity. In the 1980s, Re
@43,44# found no-scale supergravities with inflation, but th
specified the potential to give slow-roll inflation. The fre
dom to insist on inflation does not exist here. More recen
other gauged supergravities have been found that can giv
least a give fewe-foldings of inflation@2,3,33,34#, but these
do not yet have a known embedding in string theory. Th
gauged supergravities are not of the no-scale type and ha
cosmological constant. Also,@3,4,6# describe inflation based
on the motion of branes in a warp factor. In fact,@3,6# use a
background very similar to the one considered here but
clude the warp factor.

There is clearly, then, some hope for finding accelerat
in compactifications with 3-form magnetic fields, and it
possible to think of other methods than D3-brane moti
For example, the warp factor can modify the potential,
though it does not seem likely to change the basic featu
Another possibility is that the small volume region of modu
space, where supergravity breaks down, has a different f
of the potential. It has been argued that some type IIB co
pactifications with flux with oneT2 shrinking are dual to
heterotic compactifications with intrinsically stringy mon
dromies@16,45#, so it is conceivable that inflation could oc
cur in such a compactification with a decelerating end st
described by our model.

Finally, there are many possible corrections associa
with supersymmetry breaking. It is known that there sho
be stringy corrections to the potential in nonsupersymme
cases and that these would break the no-scale structure,
ing the radial modulus mass~at least in the CY case! @46#,
and there should also be supergravity loop corrections
would be very difficult to compute this potential, but it seem
likely that the potential could have a local maximum for t
compactification radius, allowing for inflation. There are al
potentials from instanton corrections, given by wrapped E
clidean D3-branes@22#. Since the instanton action is propo
tional to the volume of the cycle it wraps, it would actual
generate a potential like the exponential of an exponen
This type of potential could very possibly be shallow enou
to support inflation, although we have not investigated t
point.

In summary, we have examined the cosmology induc
by 3-form fluxes in type IIB superstring compactification
6-6
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and concluded that the classical bulk action does not lea
inflation or quintessence because the potential contains
ponential factors that are too steep, much as in@7,8#. How-
ever, we have noted loopholes in our analysis which co
allow accelerating cosmologies. We leave the exploration
those loopholes for future work.
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