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Minimal supersymmetric standard model flat direction as a curvaton
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We study in detail the possibility that the flat directions of the minimal supersymmetric standard model
~MSSM! could act as a curvaton and generate the observed adiabatic density perturbations. For that the flat
direction energy density has to dominate the Universe at the time when it decays. We point out that this is not
possible if the inflaton decays into MSSM degrees of freedom. If the inflaton is completely in the hidden sector,
its decay products do not couple to the flat direction, and the flat direction curvaton can dominate the energy
density. This requires the absence of a Hubble-induced mass for the curvaton, e.g. by virtue of the Heisenberg
symmetry. In the case of hidden radiation,n59 is the only admissible direction; for other hidden equations of
state, directions with lowern may also dominate. We show that the MSSM curvaton is further constrained
severely by the damping of the fluctuations, and as an example, demonstrate that in no-scale supergravity it
would fragment intoQ balls rather than decay. Damping of fluctuations can be avoided by an initial condition,
which for then59 direction would require an initial curvaton amplitude of;1022M p , thereby providing a
working example of the MSSM flat direction curvaton.
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I. INTRODUCTION

The minimal supersymmetric standard model~MSSM! is
well known to have flat directions, made up of squarks a
sleptons, along which the scalar potential vanishes above
soft supersymmetry breaking scale;1 TeV @1,2#. The
MSSM flat directions have important cosmological con
quences for the early Universe and may seed Affleck-D
baryo/leptogenesis@1,3,4#, give rise to nonthermal genera
tion of supersymmetric dark matter@5,6# or B-ball baryogen-
esis below the electroweak scale@7#, and may also act as
source for isocurvature density perturbations@8–10# ~for a
review, see@11#!.

Inflation wipes out all the inhomogeneities along a giv
flat direction, leaving only the zero mode condensate. Ho
ever, during inflation quantum fluctuations along the flat
rections impart isocurvature density perturbations on
condensate@8#. The isocurvature fluctuations can later
converted into adiabatic perturbations at the time when
flat direction decays into the radiation of the MSSM degre
of freedom @12#, provided the flat direction dominates th
energy density of the Universe at the time of the decay. O
viously, during inflation the flat direction should be subdom
nant and its mass should be smaller than the Hubble pa
eter. This is an example of the so-called curvaton scena
which in its present incarnation was first discussed in
context of pre-big bang@13# and then applied to ordinar
inflation @14#. In many early papers@14,15# the curvaton po-
tential was simply taken as a quadratic potentialV5m2f2.

For the MSSM flat direction curvaton, the potential
determined by the supersymmetry breaking but it is usu
dominated by nonrenormalizable operators at large am
tudes. There are three conditions such a potential should
isfy. First, the energy density of the flat direction must co
tribute negligibly during inflation but should dominate th
Universe at later time when the flat direction decays i
0556-2821/2003/68~10!/103507~7!/$20.00 68 1035
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radiation. Second, the flat direction field should stay in
right place to yield the right amount of~isocurvature! fluc-
tuations. Third, the fluctuations produced during inflati
must not die out during the whole process. In@12#, we have
studied the conditions for the later energy domination, a
partly the amplitude of the fluctuations during inflatio
Studying the consequences of all these constraints com
hensively is the main purpose of this article.

The structure of the paper is as follows. In Sec. II w
discuss general constraints which the flat directions nee
obey in order to be viable curvatons. In Sec. III, we follo
the dynamics of the flat direction, and study which directio
may act as a curvaton. The behavior of the fluctuations
considered in Sec. IV. In Sec. V, we study the MSSM fl
direction in no-scale supergravity, and show thatQ-ball for-
mation is inevitable. Sec. VI is devoted to our conclusion

II. FLAT DIRECTION AND INFLATION

The degeneracy of the effective potential of the MSS
flat direction is lifted by supersymmetry~SUSY! breaking
effects and some nonrenormalizable operators. In gen
we can thus write the potential as

V~f!5
1

2
mf

2 f21VNR , ~1!

VNR5
l2f2(n21)

2n21M2(n23)
, ~2!

wheremf;TeV is the soft SUSY breaking mass, and the fl
direction condensate isF5feiu/A2. M is the cutoff scale
for the low energy effective theory, usually taken to be t
Planck scaleM p.2.431018 GeV; l is a coupling constant
and n54, . . . ,9 is thedimension of the nonrenormalizabl
©2003 The American Physical Society07-1
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operator lifting the flat direction, the value of which depen
on which particular flat direction one is discussing~for de-
tails, see@11#!.

In supergravity~SUGRA! theories, the flat direction often
acquires the mass of orderH because of the SUSY breakin
effect due to the finite vacuum energy during inflation@4#. If
so, the fluctuation amplitude along the flat direction dies
completely during inflation. We thus demand that the infl
tion model is such that mass term as large asH is not in-
duced. One example is the SUSYD-term inflation, which
during inflation leads to a vanishing Hubble-induced m
term for the flat directions@16#. Another example is model
obtained from SUGRA theories with a Heisenberg symme
on the Kähler manifold @17#. These give rise to a Ka¨hler
potential of the form

G5 f ~h!1 lnuW~f i !u21g~ya!, ~3!

with h5z1z* 2f i* f i , wherez is the Polonyi field, andf i

andya are respectively the observable and hidden fields.
latter are defined as the ones that have only Plan
suppressed couplings to the observable sector. In this
there is no mass term in the tree-level potential for the
direction. No-scale models@18#, for which f (h)523 lnh,
are a particular realization of the Ka¨hler manifold Heisen-
berg symmetry. However, even with a Heisenberg symm
there will be radiatively induced mass squared which is sm
and negative withmf,e f f

2 ;21022H2 @17#. Such a small
mass term has only negligible damping effect on the fluct
tion amplitude.

In what follows we simply assume that during inflatio
the flat direction does not get any appreciable Hubb
induced mass, e.g. by virtue of the Heisenberg symmetry
by some other reasons.

In order for the curvaton scenario to work, fluctuations
the inflaton should not contribute significantly to the ad
batic density perturbations, so that the Hubble parameter
ing inflation is H* ;r in f

1/2M p,1014 GeV. ~Needless to say
the energy density of the flat direction should be negligi
compared to that of the inflaton,rf!r in f .) Then the isocur-
vature fluctuation of the flat direction isdf;H* /2p. If
df/f* ;H* /f* ;1025, wheref* is the amplitude during
inflation, obtained fromV9(f* );H

*
2 , the right amount of

density perturbation can be generated provided there is
later damping. A simple analysis shows that during inflat
the flat direction field condensate is slow-rolling in the no
renormalizable potentialVNR . Thus, the Hubble paramete
and the amplitude of the field can respectively be estima
as,

H* ;l21/(n23)d (n22)/(n23)M p , ~4!

f* ;l21/(n23)d1/(n23)M p , ~5!

whered[df/f* ;H* /f* .
After inflation, the inflaton ultimately decays into relativ

istic degrees of freedom.A priori, there are two possibilities
Because the inflaton should give rise to all the observa
baryons, conventionally one usually assumes that the infla
10350
s

t
-

s

y

e
k-
se
t

ry
ll

-

-
or

f
-
r-

e

no
n
-

d

le
on

must decay into particles of the observable sector. The o
possibility, discussed within the context of the MSSM curv
ton scenario@12#, is to assume that the inflaton decays in
the hidden sector and that the baryons originate solely fr
the flat direction curvaton decay.

If the inflaton decay products consist of~MS!SM par-
ticles, one should consider the behavior of the flat direct
in a thermal background which interacts with the condens
field. It has been argued by Postma@19# that the flat direction
condensate decays by thermal scattering before its dom
tion. However, in her analysis the thermal decay rate w
taken to be; f 4T2/m, whereas in a thermal environmentm
should be replaced byfT ( f is here some coupling!. Never-
theless, the conclusion remains essentially the same, a
now argue. The energy density~amplitude! of the flat direc-
tion field in V;T2f2 behaves asrf}a227/8(f}a221/16)
during the inflaton-oscillation dominated Universe, wh
rf}a24(f}a21) during radiation domination. In eithe
case, its energy density decreases not slower than tha
radiation, and the amplitude becomes so small that the
direction condensate cannot dominate the energy density
ter the zero temperature partmf

2 f2 becomes important.
These difficulties can be avoided if one takes the infla

sector to be completely decoupled from the observable
@12#. Indeed, there is not a single realistic particle phys
model which would embody the inflaton into the family o
the observable fields. In almost all the models the inflaton
a gauge singlet which largely lives in the isolated inflat
sector as if it were part of a hidden world. The coupling
such a singlet to the SM degrees of freedom is usually se
hand. Under such circumstances, perhaps a hidden secto
flaton would be a logical conclusion. Such an inflaton wou
decay into~light! particles in the hidden sector, but the hi
den thermal background would not interact with the flat
rection condensate. Note that the reheating of the observ
degrees of freedom in the Universe takes place due to
decay of the MSSM flat direction into the MS~SM! degrees
of freedom. The curvaton mechanism works successfull
this temperature is high enough. We will come back to t
point later.

III. LATE DOMINATION OF THE FLAT DIRECTION
ENERGY DENSITY

For a successful MSSM curvaton scenario, the ene
density of the flat direction condensate should dominate
Universe at the time of its decay. The condensate start
oscillate whenH;mf , and the amplitude at that time is

fosc;S mfMn23

l D 1/(n22)

. ~6!

If the reheating by the hidden inflaton occurs earlier, t
Universe is dominated by hidden radiation at this time. Sin
the energy density of the condensate is}a23}H23/2, we
find that
7-2
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rfuEQ;mf
2 fosc

2 S HEQ

Hosc
D 3/2

;~mfHEQ
3 !1/2S mfMn23

l D 2/(n22)

, ~7!

at the time it equals the hidden radiation densityrh

;HEQ
2 M p

2 . Thus the Hubble parameter at the equality tim
is

HEQ;mfS mfMn23

lM p
n22 D 4/(n22)

. ~8!

In order for the flat direction condensate to have a chanc
dominate the Universe,HEQ should be larger thanH at the
time the curvaton condensate decays. If the decay rat
written asGf; f 2mf , where f is some Yukawa or gaug
coupling, we have a constraint on the coupling const
which reads

f ,l22/(n22)S mf

M p
D 2/(n22)S M

M p
D 2(n23)/(n22)

. ~9!

In the opposite case, when the reheating in the hid
sector occurs after the oscillation of the flat direction start
i.e., Hosc.HRH , the energy density evolves as

rfuEQ;rfuoscS HRH

Hosc
D 2S HEQ

HRH
D 3/2

,

;S mfMn23

l D 2/(n22)S TRH
2

M p
D 1/2

HEQ
3/2 , ~10!

so that taking into accountHosc.HRH we actually get the
same constraint as in Eq.~9!.

Even for a small coupling of the order of the electr
Yukawa coupling such asf ;1026, all n<6 cases fail to
satisfy the condition Eq.~9!, whereasn57 is marginal when
l;1.

The condition Eq.~9! depends on the equation of state
the inflaton decay products in the hidden sector. Let us th
fore write the equation of state asph5wrh , and assume tha
the hidden energy has already dominated the Universe w
the oscillations along the flat direction begin. Then we obt
the ratio of the energy densities

rf

rh
;

rf

rh
U

osc
S H

Hosc
D 22w/(11w)

,

;S mf

lM p
D 2/(n22)S H

Hosc
D 22w/(11w)

. ~11!

This ratio becomes unity whenH;HEQ . Imposing HEQ
.Gf; f 2mf , we obtain

f ,F S mf

lM p
D 1/(n22)G (11w)/2w

. ~12!
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Notice that this is the same as Eq.~9! for w51/3. We show
the constraints forn54,6,7, and 9 in Fig. 1. As discussed
@12#, then59 direction is essentially the only viable optio
for the hidden radiation case, but evenn56 directions can
be acceptable if the hidden sector fluid has a stiff equation
state (w51). Notice thatn54 directions can never domi
nate the Universe at any point and are thus completely ru
out as a curvaton candidate.

IV. EVOLUTION OF PERTURBATIONS

So far we have assumed that the isocurvature perturba
created during inflation does not evolve. This is strictly tr
in the mf

2 f2 potential, since both the homogeneous and
~linear! perturbation parts obey the same equations of m
tion. Here we shall see whether this assumption holds
more general cases.

A. Slow rolling in the nonrenormalizable potential

For the MSSM curvaton scenario to work, the flat dire
tion must have a vanishing~or more precisely, negligible!
mass during inflation. In such a case, the field will be slo
rolling in the nonrenormalizable potential VNR
;l2f2(n21)/M2(n23). In addition, we assume here th
there is no Hubble-induced mass term even after inflation
that the field will continue slow-rolling inVNR down to the
amplitude fosc, which is determined byVNR(fosc)
;mf

2 fosc
2 . In general, the equations of motion for the h

mogeneous and fluctuation parts are written respectively

f̈13Hḟ1V8~f!50, ~13!

df̈k13Hdḟk1
k2

a2
dfk1V9~f!dfk50, ~14!

   
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f

w

rad stiff
n=9
n=7

n=6

n=4

10−10

10−8

10−6

10−4

10−2

1

FIG. 1. Constraint on the coupling forn54,6,7, and 9. The
allowed region is below these lines and abovef 51026.
7-3
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where the prime denotes the derivative with respect tof.
Since we are interested only in the super horizon modek
→0), using the slow roll approximation we have

3Hḟ1V8~f!50, ~15!

3Hdḟ1V9~f!df50. ~16!

Hereafter we omit the subscriptk, understanding thatdf is
for the super horizon mode. Then it is easy to obtain
evolution of the ratio of the fluctuation and the homogene
mode in aVNR}f2(n21) potential. The result is

df

f
;S df

f D
i
S f

f i
D 2(n22)

, ~17!

wherei denotes the initial values.
During inflation the homogeneous field obeys Eq.~15!,

which can be easily integrated to yield

f

f i
.S 11

1

3~2n23!

V9~f i !

H2
DND 21/2(n22)

, ~18!

whereDN is the number of e-folds. Since we are concern
with the slow-roll regime, it is reasonable to requi
V9(f i)/H

2&1. Hence we havef/f i'0.95 for the last 50
e-folds in then59 case, for example. This implies that th
amplitude of the fluctuation relative to its homogeneous p
decreases only by factor.2. Hence during this stage there
essentially no damping. Notice that the slower the cond
sate field rolls during the last 50 e-folds, the less damp
there is.

After inflation the curvaton condensate slow-rolls~albeit
marginally!, i.e., V9(f);H2, and we can still use the slow
roll approximation equations~15! and ~16!. During this
stage, the field amplitude is given by f
;(HMn23/l)1/(n22), while the Hubble parameter chang
from H* to mf . As a consequence, there is a huge damp
given by

S df

f D
osc

S df

f D
*

;S mf

H*
D 2

;l2/(n23)d22(n22)/(n23)S mf

M D 2

,

~19!

where we have usedH* ;l21/(n23)d (n22)/(n23)M in the last
equality, andd.H* /f* is the fluctuation during inflation
Even forn54, the damping factor is 10210 for M5M p and
d;1025. The situation is still worse for the directions wit
largern. Hence the primordial fluctuations of the MSSM fl
direction curvaton appear to be effectively wiped out. Ho
ever, before drawing any definite conclusions, one sho
also consider the effects of Hubble-induced mass te
which can appear after inflation. This is the case, for
ample, inD-term inflation.
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B. Positive Hubble-induced mass term

The Hubble-induced effective potential can be written

VH5
1

2
cHH2f2. ~20!

The sign of the coefficientcH is usually determined by the
higher order nonminimal Ka¨hler potential, so there are equ
possibilities for positive and negative mass terms. Let us fi
consider the positive case. When the Hubble-induced ef
tive potential dominates, the equations of motion for the h
mogeneous and the fluctuation mode have the same for

c̈13Hċ1cHH2c50, ~21!

wherec5f or df. From the viewpoint of the evolution o
the relative amplitude of the fluctuations, there is no dam
ing. However, the amplitude itself diminishes considerab
If cH.9/16, the decrease isf}H1/2. At the onset of curva-
ton oscillations, whenH;mf , the amplitude of the curvaton
is then

fosc;l21/2(n23)d2(n24)/2(n23)~mfM !1/2. ~22!

Sinced*1025, a maximum is achieved for the largestn. For
n59, fosc;102(mfM )1/2, which is just 102 times larger
than in the case ofn54, and;102 times smaller than in the
slow roll n56 case discussed in the previous subsecti
~Notice that the amplitude has the same behavior as in
slow-roll case forn54.! Thus, at the time of its decay, th
energy density of the flat direction condensate cannot do
nate the Universe.

C. Negative Hubble-induced mass term

In this case, the homogeneous field is trapped in the
stantaneous minimumfm;(HMn23/l)1/(n22)}H1/(n22).
Then, up to a numerical factor, the equation of motion for
fluctuation is identical to the positive Hubble-induced ma
case. Hence the amplitude of the fluctuation decrease
df}H1/2. Therefore, the ratio of the amplitudes of the h
mogeneous and the fluctuation modes is given by

df

f U
osc

;
df

f U
*
S mf

H*
D (n24)/2(n22)

,

;l (n24)/2(n22)(n23)d2(n24)/2(n23)

3S mf

M D (n24)/2(n22)

. ~23!

Since the field is released from the trap whenH;mf , the
subsequent energy domination condition is the same as
cussed in the previous section~see Fig. 1!. Thus, the only
viable direction isn59 ~and highly marginallyn57). We
know that for the curvaton scenarioH* ,1014 GeV so that
the fluctuations of the flat direction condensate during in
tion cannot be too large:d,3(6)31024 for n59(7). Thus,
the conclusion is that ratio of the fluctuation to the homog
7-4
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neous mode is much less than 1025 at the onset of the fla
direction condensate oscillations.

One may wonder whether the damping effect becom
any milder forucHu,9/16. Such a situation may be realize
in the context of the no-scale SUGRA. However, a sm
Hubble-induced mass term reduces to the case in Sec. I
where the field slow-rolls in a nonrenormalizable potent
Thus, the amplitude of the fluctuations will be wiped out.

D. The way out

As seen above, the energy nondomination and/or
damping of the fluctuation amplitude usually kill the MSS
flat direction curvaton scenario. Damping arises because
curvaton has to slide from the slope of the nonrenormaliza
potential down to a value at which oscillations commence
process which takes place slowly and is thus associated
a considerable redshift.

We have found that there are essentially two ways
avoid all these problems. One is that the couplingl of the
nonrenormalizable term is small enough so that the poten
is effectively of the formmf

2 f2. In this case, during inflation
the amplitude of the flat direction isf* ;M p with H*
;1013 GeV. The other possibility is that the field amplitud
at the end of inflation happens to be of the same order as
amplitudefosc. Such a situation may be realized by an e
tremely long period of inflation, or simply by chance. For t
n59 direction,fosc;1016 GeV, which is only an order of
magnitude less than the ‘‘natural’’ value forf* . It is con-
ceivable that such a low value off* could be given e.g. by
some chaotic initial conditions. Hence we may conclude t
hidden inflation with a MSSM curvaton can indeed provi
the correct adiabatic density perturbations, although w
some difficulty.

V. FRAGMENTATION OF THE FLAT DIRECTION

One should also consider the dynamics of the curva
after its oscillations begin. So far, we have not taken i
account the running of the mass of the flat direction. In g
eral, in the gravity mediated SUSY breaking case the m
term in the effective potential can be written as@6#

V~f!.mf
2 F11K logS f2

M2D Gf2, ~24!

whereK is a coefficient obtained from one-loop correction
MSSM curvaton dynamics is complicated by the fact th
when K is negative, the flat direction condensate natura
fragments intoQ balls soon after it starts the oscillation
@6,20#. Then the isocurvature fluctuations of the condens
remain trapped in theQ balls, and will only be released
through the decay of theQ balls. They will be converted into
adiabatic perturbations only if the energy density of theQ
balls dominates the Universe at the time when they deca

As a concrete example, let us consider no-scale SUG
During inflation, the Heisenberg symmetry then guarant
the vanishing of the tree-level Hubble-induced mass. Le
further assume that initiallyf* ;fosc so that the perturba
10350
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tions generated by a curvaton are not damped.K can be
computed from the renormalization group equations~RGEs!,
which to one loop has the form

]mi
2

]t
5(

g
aigmg

22(
a

ha
2S (

j
bi j mj

21Aa
2D , ~25!

whereaig andbi j are constants,mg are the gaugino masse
Aj theA-terms,ha the Yukawa couplings,t5 ln(MX /m) with
MX the GUT scale, andmi are the masses of the scal
partners. All the soft SUSY breaking scalar masses vanis
tree-level at the GUT scale except the common gaugino m
m1/2.

The full renormalization group equations are given
@21#. We neglect all the other Yukawa couplings except t
third generation. We assume that the top, bottom and
Yukawa couplings unify at the GUT scale and normalize
unified coupling through the top quark mass by

mtop~mtop!5
1

A2
htop~mtop!v sinb, ~26!

wheremtop5174.3 GeV@22#, v5246 GeV and 0,b,p/2
is a free parameter constrained by LEP as tanb.2.4 @23#.
We find that Yukawa coupling unification does not produ
the correct top-Yukawa coupling given by Eq.~26! unless
tanb*2.9. The unification is actually supported by tanb
;40250 @22#, so that our calculation clearly covers the re
evant range. In@24# tanb51 and only the top-Yukawa cou
pling was taken into account, which is applicable for sm
tanb.

The mass of the flat direction scalarf is the sum of the
masses of squark and slepton fieldsf i constituting the flat
direction, mf

2 5( i upi u2mi
2 , wherepi is the projection off

along f i , and ( i upi u251. The parameterK is then given
simply by @24#

K52
1

2mf
2

]mf
2

]t
U

t5 log(MX /m)

. ~27!

To computeK, we have to choose the scalem. The ap-
propriate scale is given by the value of the flat direction fie
when it begins to oscillate so thatm;fosc, see Eq.~6!. We
have calculatedK for two flat directions:n57 direction
LLddd ~lifted by HuLLLddd) and n59 direction QuQue
~lifted by QuQuQuHdee) @28#. We find thatK is generically
negative. In Fig. 2 we show the coefficientK plotted against
the parameter tanb for the two flat directions with different
mixtures of stop, sbottom and stau. In theQuQuedirection
there are values of tanb whereK is positive. This is due to
the fact that forn59 the scale of oscillations,fosc;1.5
31016 GeV, is very close to the GUT scaleMX;3
31016 GeV. For low tanb the Yukawa coupling at the GUT
scale is large and dominates over the gaugino terms in
renormalization group equation, driving]mi

2/]t negative and
making K positive. When the renormalization group equ
tions are run further, the Yukawa couplings become sma
7-5
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and thusK becomes negative. This is why theLLdsbdirec-
tion has a negativeK for all tanb.

Thus in most casesK,0 in no-scale SUGRA, so that th
flat direction condensates will not decay but instead fragm
into lumps which eventually formQ balls. In general, these
are long-lived and hence give rise to a reheat tempera
which is low ~see, e.g.,@11#!. If R-parity is conserved, de
caying Q balls will produce LSPs but with a low rehea
temperature, their density might come out to be too h
@6,25#. The fragmentation of the flat direction condensate
yet another complication for the MSSM curvaton scena
which we do not attempt to analyze systematically here. T
sign ofK depends on the running of the RGEs and hence
the initial conditions for the soft SUSY breaking paramete
for which there is no generic form in the class of SUGR
models with a Heisenberg symmetry.

VI. CONCLUSION

To conclude, an MSSM flat direction curvaton appears
be very much constrained, although not completely ru
out. First of all, we have argued that the constraints dep
on the inflaton sector. If the inflaton reheats the Unive
with MSSM degrees of freedom, the finite temperature
fects on both the effective potential of the flat direction a
its decay~or evaporation! process are crucial. As pointed o
in Sec. II, the energy density of the flat direction domina
by the thermal mass term cannot overcome the radiation
sity, so that the curvaton will never dominate the Univer
This seems to exclude flat direction curvatons in the prese
of MSSM radiation.

However, if the inflaton is completely in the hidden se
tor, there will be no thermal corrections to the flat directio
In this case, the curvaton has to provide both the adiab
density perturbations as well as dark and baryonic ma
The general requirement for this scenario is the energy d
sity dominance by the flat direction condensate at the tim
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its decay, while during inflation its contribution must be ne
ligible. One ingredient is that during inflation the Hubbl
induced mass term should be negligible, a situation that
curs in SUGRA models with a Heisenberg symmetry.

At large amplitudes the effective potential of the flat d
rection is dominated by nonrenormalizable terms, and he
it is important to follow the dynamics of both the homog
neous and fluctuation modes during and after inflation.
have found that there is considerable damping of the fluc
tions, and in general it is hard to obtain a successful curva
scenario. Within one particular example of the Heisenb
symmetry, the no-scale model, we have also shown that t
cally the curvaton may fragment and formQ balls rather than
decay directly, which will further complicate matters. Indee
it is not quite obvious whetherQ balls would be a help or a
hindrance.

Damping of the fluctuations may however be avoided
a class of initial values for the condensate field after infl
tion. Perhaps the most promising candidate for the hid
inflation MSSM curvaton would be then59 QuQue 3rd
generation direction with an initial amplitudef*
;1022M p , based on a SUGRA model such that there is
Q-ball formation at least in some parts of the parame
space. In such a case one recovers the hot Universe a
temperature;105 GeV, which is high enough for baryogen
esis to occur during the electroweak phase transition@26#.
Moreover, the reheat temperature is sufficiently low in ord
not to create thermal or nonthermal gravitinos@27#. More
studies are nevertheless needed to settle the open issu
more detail.

Note added in proof. After the completion of this pape
Ref. @29# appeared which also discusses the issue of
damping of the perturbations.

ACKNOWLEDGMENTS

S.K. is grateful to M. Kawasaki for useful discussion
This work has been partially supported by the Academy
Finland grant 51433.
7-6



.

ys.

l
K.

g.

s.

y,

ri,

MINIMAL SUPERSYMMETRIC STANDARD MODEL FLAT . . . PHYSICAL REVIEW D 68, 103507 ~2003!
@1# M. Dine, L. Randall, and S. Thomas, Nucl. Phys.B458, 291
~1996!.

@2# T. Gherghetta, C.F. Kolda, and S.P. Martin, Nucl. Phys.B468,
37 ~1996!.

@3# I. Affleck and M. Dine, Nucl. Phys.B249, 361 ~1985!.
@4# M. Dine, L. Randall, and S. Thomas, Phys. Rev. Lett.75, 398

~1995!.
@5# A. Kusenko and M.E. Shaposhnikov, Phys. Lett. B418, 46

~1998!.
@6# K. Enqvist and J. McDonald, Nucl. Phys.B538, 321 ~1999!.
@7# K. Enqvist and J. McDonald, Phys. Lett. B425, 309 ~1998!.
@8# K. Enqvist and J. McDonald, Phys. Rev. Lett.83, 2510~1999!.
@9# K. Enqvist and J. McDonald, Nucl. Phys.B570, 407 ~2000!.

@10# M. Kawasaki and F. Takahashi, Phys. Lett. B516, 388~2001!.
@11# K. Enqvist and A. Mazumdar, Phys. Rep.380, 99 ~2003!.
@12# K. Enqvist, S. Kasuya, and A. Mazumdar, Phys. Rev. Lett.90,

091302~2003!.
@13# K. Enqvist and M.S. Sloth, Nucl. Phys.B626, 395 ~2002!.
@14# D.H. Lyth and D. Wands, Phys. Lett. B524, 5 ~2002!; D.H.

Lyth, C. Ungarelli, and D. Wands, Phys. Rev. D67, 023503
~2003!.

@15# T. Moroi and T. Takahashi, Phys. Lett. B522, 215 ~2001!;
Phys. Rev. D66, 063501~2002!; N. Bartolo and A.R. Liddle,
ibid. 65, 121301~2002!; M.S. Sloth, Nucl. Phys.B656, 239
~2003!; K. Dimopoulos and D.H. Lyth, hep-ph/0209180; M
Bastero-Gil, V. Di Clemente, and S.F. King, Phys. Rev. D67,
103516~2003!; T. Moroi and H. Murayama, Phys. Lett. B553,
126 ~2003!; J. McDonald, Phys. Rev. D68, 043505~2003!.

@16# C.F. Kolda and J. March-Russell, Phys. Rev. D60, 023504
~1999!.
10350
@17# M.K. Gaillard, H. Murayama, and K.A. Olive, Phys. Lett. B
355, 71 ~1995!.

@18# For a review, see A.B. Lahanas and D.V. Nanopoulos, Ph
Rep.145, 1 ~1987!.

@19# M. Postma, Phys. Rev. D67, 063518~2003!.
@20# S. Kasuya and M. Kawasaki, Phys. Rev. D61, 041301~2000!;

62, 023512~2000!; S. Kasuya, inParticles, Strings and Cos-
mology: PASCOS 99, Proceedings of the 7th Internationa
Symposium, Lake Tahoe, California, 1999, edited by
Cheunget al. ~World Scientific, Singapore, 2000!, p. 301.

@21# K. Inoue, A. Kakuto, H. Komatsu, and S. Takeshita, Pro
Theor. Phys.68, 927 ~1982!; 70, 330~E! ~1983!; 71, 413
~1984!.

@22# Particle Data Group, K. Hagiwaraet al., Phys. Rev. D66,
010001~2002!.

@23# LEP Higgs Working Group Collaboration, hep-ex/0107030.
@24# K. Enqvist, A. Jokinen, and J. McDonald, Phys. Lett. B483,

191 ~2000!.
@25# M. Fujii and K. Hamaguchi, Phys. Rev. D66, 083501~2002!.
@26# V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov, Phy

Lett. B 155, 36 ~1985!.
@27# J. Ellis, J.E. Kim, and D.V. Nanopoulos, Phys. Lett.145B, 181

~1984!; J. Ellis, D.V. Nanopoulos, K.A. Olive, and S.-J. Re
Astropart. Phys.4, 371~1996!; A.L. Maroto and A. Mazumdar,
Phys. Rev. Lett.84, 1655~2000!; R. Kallosh, L. Kofman, A.D.
Linde, and A. Van Proeyen, Phys. Rev. D61, 103503~2000!;
R. Allahverdi, M. Bastero-Gil, and A. Mazumdar,ibid. 64,
023516~2001!.

@28# We denoteLLdddby LLdsbsince all the family indices inddd
have to be different.

@29# K. Dimopoulos, G. Lazarides, D. Lyth, and R. R. de Aust
Phys. Rev. D~to be published!, hep-ph/0308015.
7-7


