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The quasiparticle effective mass is a key quantity in the physics of electron gases, describing the renormalization
of the electron mass due to electron-electron interactions. Two-dimensional electron gases are of fundamental
importance in semiconductor physics, and there have been numerous experimental and theoretical attempts to
determine the quasiparticle effective mass in these systems. In this work we report quantum Monte Carlo results
for the quasiparticle effective mass of a two-dimensional homogeneous electron gas. Our calculations differ from
previous quantum Monte Carlo work in that much smaller statistical error bars have been achieved, allowing for
an improved treatment of finite-size effects. In some cases we have also been able to use larger system sizes than
previous calculations.
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I. INTRODUCTION

Two-dimensional (2D) electron gases are ubiquitous in
modern semiconductor devices. Surprisingly, however, there
remain significant gaps in our knowledge of the prop-
erties exhibited by these fascinating systems. In recent
years experimentalists have realized increasingly high-quality
(low-disorder) 2D homogeneous electron gases (HEGs) at
low densities in quantum-well structures1,2 and field-effect
transistors.3 As the density is lowered, correlation effects play
an ever more important role, and it is hoped that the resulting
exotic behavior could be exploited in a new generation of
electronic and spintronic devices. At very low densities the
Coulomb repulsion between the electrons dominates, and the
HEG forms a Wigner crystal.4–7 At higher densities the kinetic
energy dominates and the electrons form a Fermi fluid, in
which most properties are qualitatively (and at high densities,
quantitatively) similar to those of a free-electron gas. Fermi
liquid theory8,9 is the phenomenological framework within
which the normal behavior of Fermi fluids is understood.

According to Fermi liquid theory, low-lying excitation
energies in HEGs are free-electron-like, and the effects of
interactions are encapsulated in (i) a renormalization of the
electron mass (the quasiparticle effective mass) and (ii) a set
of parameters describing the interaction of pairs of excited
quasiparticles. In this work we use quantum Monte Carlo
(QMC) methods to determine the quasiparticle effective mass
by calculating single-particle excitation energies as differences
in the total energy when electrons are either added to or
removed from the ground state.

In our calculations we have used the variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC) methods.10

In the VMC method we take the expectation value of the
many-electron Hamiltonian with respect to a Slater-Jastrow-
backflow trial wave function,11–13 which is optimized by
minimizing first the variance of the energy,14,15 and then the
energy expectation value16 with respect to free parameters
in the wave function. In DMC calculations17 we simulate a
population of “walkers” whose dynamics are governed by the

Schrödinger equation in imaginary time in order to project
out the ground-state component of an initial wave function.
The fixed-node approximation18 is used to impose fermionic
antisymmetry. All our QMC calculations were performed
using the CASINO code.19

In Ref. 20 we presented a DMC calculation of the 2D
HEG single-particle energy band, enabling us to predict the
quasiparticle effective mass. In the present work we have
had access to the Jaguar machine at Oak Ridge Leadership
Computing Facility, enabling us to achieve higher accuracy
in our DMC calculations, and leading to a refinement of our
earlier work.

The rest of this paper is structured as follows. In Sec. II
we give an overview of the relevant aspects of Fermi liquid
theory. In Sec. III we describe our computational approach.
Our results are presented in Sec. IV. Finally, we draw our
conclusions in Sec. V. We use hartree atomic units, in which
the Dirac constant, the electronic charge and mass, and 4π

times the permittivity of free space are unity (h̄ = |e| = me =
4πε0 = 1), throughout.

II. LANDAU ENERGY FUNCTIONAL

A. Parametrization of excitation energies

According to Fermi liquid theory the total energy of a HEG
in a particular excited state is given by the Landau energy
functional9

E = E0 +
∑

k,σ

Eσ (k)δNk,σ

+ 1

2

∑

(k,σ )�=(k′,σ ′)

fσ,σ ′ (k,k′)δNk,σ δNk′,σ ′ , (1)

where δNk,σ is the change to the ground-state quasiparticle
occupation number for wave vector k and spin σ , and E0 is the
ground-state energy. The energy band Eσ (k) is the energy of
an isolated quasiparticle. Near the Fermi surface, the energy
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band may be assumed to be linear and hence we may write

Eσ (k) = EF + kF

m∗ (k − kF ), (2)

where EF is the Fermi energy, kF is the Fermi wave vector, and
m∗ is the quasiparticle effective mass. The Landau interaction
function fσ,σ ′(k,k′) describes energy contributions arising
from pairs of quasiparticles, and will not be considered further
in this paper.

The goal of this work is to obtain accurate values for the
2D HEG quasiparticle effective mass m∗ in the thermodynamic
limit at different densities and for different spin polarizations,
giving us the most important contribution to the Landau energy
functional.

B. Spin-polarization effects

Both theoretical work20,21 and experimental studies1,2 have
shown that the quasiparticle effective mass has a significant
dependence on the spin polarization of the HEG. We have
calculated the effective mass for both paramagnetic and fer-
romagnetic (fully spin-polarized) HEGs. Fully spin-polarized
HEGs are experimentally relevant because they may be created
by applying an in-plane magnetic field to a 2D electron
system. Differences in the quasiparticle effective masses of
ferromagnetic and paramagnetic HEGs result in differences
in the transport properties, which could be exploited in
electronic or spintronic applications, e.g., in devices that use
the spin-Coulomb-drag effect.22

C. Finite-size errors

The 2D HEGs encountered in real devices are sufficiently
large that they can be regarded as being of essentially infinite
extent. In QMC simulations we can study only small numbers
of electrons, however. For a HEG in a finite simulation
cell subject to periodic boundary conditions, momentum
quantization limits the available wave vectors {k} to a discrete
lattice. Furthermore, long-range Coulomb and correlation
effects cannot be treated exactly in a finite cell,23,24 giving
rise to finite-size errors in the energy band and hence effective
mass.

Fermi liquid theory is valid only for excitations near the
Fermi surface: in this region the quasiparticle lifetime becomes
large and hence the quasiparticle momentum occupancies are
good quantum numbers.9 The energy band is defined by the
Landau energy functional at all k, but does not correspond
to the quasiparticle band except in the vicinity of the Fermi
surface. In the infinite-system limit, the exact energy band is
smooth in general and, if the quasiparticle effective mass is
well defined, the band must be at least differentiable at the
Fermi surface.

III. QMC CALCULATIONS

A. Choice of simulation cell

In all our calculations the simulation cell was square and
the simulation-cell Bloch vector25,26 was ks = 0. The number
of electrons in the ground state was chosen to give a closed-
shell configuration in each case. For ferromagnetic HEGs,
our calculations were performed with N = 29, 57, and 101

electrons in the ground state. For paramagnetic HEGs our
calculations were performed with N = 26, 50, 74, 114, and
162 electrons in the ground state.

The simulation cell was identical for all excitations of
a given HEG; hence the electron density increased when
electrons were added and decreased when electrons were
removed from the ground-state configuration. This procedure
results in zero finite-size error for a free-electron gas.

B. Trial wave functions

We use real, single-determinant trial wave functions for the
closed-shell ground states, which is a computationally efficient
approach that facilitates the optimization of the wave function.
In our QMC calculations we used Slater-Jastrow-backflow trial
wave functions. The Jastrow factors consisted of polynomial
and plane-wave expansions in the interelectron distances,11

while the backflow functions consisted of polynomial ex-
pansions in the interelectron distances.13 The polynomial
expansions were cut off smoothly at the radius of the largest
circle that could be inscribed in the simulation cell. The Jastrow
factor and backflow function contained a total of 35 and 17
free parameters, respectively, for paramagnetic HEGs, and 27
and 8 free parameters, respectively, for ferromagnetic HEGs.
Extrapolation of the VMC energy with different trial wave
functions to zero energy variance20 suggests that our DMC
calculations retrieved more than 99% of the correlation energy.

For each density, system size, and spin polarization the wave
function was optimized in the ground state and the resulting
Jastrow factor and backflow function were used in all the
excited states, with the exception of a couple of test cases,
as discussed in Sec. IV A2.

C. DMC time steps, populations and equilibration periods

The DMC time steps used in our calculations were 0.04, 0.2,
and 0.4 a.u. at rs = 1, 5, and 10, respectively, for paramagnetic
HEGs, and 0.01, 0.2, and 0.4 a.u. at rs = 1, 5, and 10,
respectively, for ferromagnetic HEGs. It was verified that
halving the time step had a negligible effect on the energy band:
leading-order time-step errors cancel out of the total-energy
differences involved. The target population exceeded 1200
configurations in each case, ensuring that population-control
bias is negligible.

The number of equilibration steps discarded from the start
of each DMC calculation was sufficiently large that the root-
mean-square distance diffused by each electron in the equi-
libration period exceeded the linear size of the simulation
cell.

IV. RESULTS

A. Energy band

1. DMC results for the energy band

The DMC energy band of the paramagnetic 2D HEG,
obtained with a Slater-Jastrow-backflow trial wave function,
is shown in Fig. 1. Analogous results for a fully ferromagnetic
HEG are shown in Fig. 2.

The energy bands calculated in this work at any given
system size are in agreement with those calculated in Ref. 20,
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FIG. 1. (Color online) Energy bands E(k) for paramagnetic 2D
HEGs of density parameter (a) rs = 1, (b) rs = 5, and (c) rs = 10
at different system sizes N . For the curves labeled “reopt,” the wave
function was optimized separately in the ground state and excited
states. The free-electron and Hartree-Fock bands have been offset so
that they coincide with the DMC bands at kF . The inset to (a) shows
the energy band around k = 0 in greater detail.

but the statistical error bars in the present work are very much
smaller due to the considerably larger computational resource
available. Furthermore, the random noise in the trial wave func-
tion due to optimization by energy minimization with a finite
sampling of configuration space is greatly reduced because
of the enormous numbers of configurations that were used in
the optimizations. As a result it is now possible to discern a
systematic trend in the energy band with system size, with
the bandwidth tending to increase with system size N . This in
turn leads to a reduction in the predicted quasiparticle effective
mass in the thermodynamic limit, as discussed in Sec. IV B.

2. Effect of reoptimizing the wave function in excited states

The excitation of a single electron or pair of electrons has
no effect on the optimal Jastrow factor or backflow function
in the thermodynamic limit; hence the fact that the Jastrow
factor and backflow function can be reoptimized in an excited
state in a finite cell is simply a manifestation of finite-size
error. Reoptimizing the wave function when an electron was
subtracted from k = 0 in a 26-electron HEG at rs = 1 lowered
the DMC energy by 0.000 854(4) a.u., reducing the DMC
bandwidth and hence increasing the finite-size error, as can be
seen for N = 26 in the inset of Fig. 1(a). In our calculations
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FIG. 2. (Color online) As Fig. 1, but for ferromagnetic HEGs.

we therefore optimized the trial wave function in the ground
state and then continued to use the same Jastrow factor and
backflow function in our excited-state calculations.

B. Quasiparticle effective mass

1. Quartic fits to the energy bands

At each density, spin polarization, and system size a quartic
function E(k) = α0 + α2k

2 + α4k
4 was fitted to the DMC

energy-band values. The effective mass [defined in Eq. (2)]
was then calculated as

m∗ = kF

(dE/dk)kF

. (3)

We have investigated the dependence of the estimate of
the effective mass on the range of energy-band data used to
perform the fit. Figures 3 and 4 show the effective mass as a
function of the range �k about the Fermi wave vector over
which we perform the fit. The figures also show the effective
mass when energy-band data from within ±10% of kF are
excluded from the fit. It is clear that the effective mass becomes
pathological when �k becomes small (i.e., only excitations in
the vicinity of kF are considered), for the reasons discussed
briefly in Sec. IV B3 and at length in Ref. 20. As the width of
the region over which the fit is performed becomes larger, the
effective-mass estimates settle down to well-defined values
that behave in a systematic fashion with system size. There
is no evidence of any need to exclude data from around
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FIG. 3. (Color online) Quasiparticle effective mass m∗ against
range of wave vectors included in the quartic fit of the energy band.
Specifically, only wave vectors in the interval [kF − �k,kF + �k]
are used in the fit. For the dashed lines, wave vectors within 10% of
kF are excluded from the fit.

kF however: effectively, the fitting process averages out the
pathological behavior in the vicinity of the Fermi surface.

We have compared the VMC and DMC effective masses
of a paramagnetic HEG at rs = 5 and system size N =
50 electrons. The same Slater-Jastrow-backflow trial wave
function was used in the VMC and DMC calculations. Despite
the fact that the VMC and DMC energy bands differ somewhat,
as can be seen in Fig. 1, the VMC and DMC effective
masses [1.26(2) and 1.24(3) a.u., respectively] are in excellent
agreement. The concurrence between the effective masses
obtained with the two different levels of theory indicates that
our DMC results at a given system size are reliable.

2. Derivatives of the energy bands

Numerical derivatives of the DMC energy-band data,
together with the derivatives of the fitted quartic functions
and the free-electron and Hartree-Fock bands, are shown in
Figs. 5 and 6, for paramagnetic and ferromagnetic HEGs,
respectively. The numerical derivatives are evaluated using
the central-difference approximation. It can be seen that the
derivatives of the bands are generally well behaved, but that
the points in the immediate vicinity of the Fermi surface are
“outliers.” Within Fermi liquid theory, the energy band must
have a well-defined derivative at the Fermi surface, indicating
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FIG. 4. (Color online) As Fig. 3, but for ferromagnetic HEGs.
For N = 57 electrons, excluding wave vectors within 10% of kF

eliminates all the wave vectors above kF at which energy-band data
are available.

that these outliers are unphysical. As argued in Ref. 20, we
believe that the pathological behavior in the DMC band at
the Fermi surface is associated with the divergence of the
derivative of the Hartree-Fock band, because the DMC method
retrieves only a finite fraction of the correlation energy. Away
from the Fermi surface, the derivatives of the band appear to
be smooth (as far as can be seen, given the noise in the data).

3. Extrapolation to the thermodynamic limit

The quasiparticle effective masses are plotted against
system size in Fig. 7. A systematic trend in the effective mass
as a function of system size can be seen. Hence we are able to
extrapolate the effective mass to the thermodynamic limit,
significantly reducing finite-size errors. The effective-mass
values that we report in this work are expected to be more
accurate than those reported in Ref. 20.

The finite-size error does not show the N−1/4 behavior
predicted by Holzmann et al.23 for excitations near the Fermi
surface, presumably because we have fitted to the entire band.
(Any N−1/4 behavior in the band near the Fermi surface is
masked by the pathological behavior that is seen in Hartree-
Fock theory and hence QMC calculations.20) To investigate
the behavior of the effective mass as a function of system size,
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FIG. 5. (Color online) Derivatives of the paramagnetic HEG
energy bands shown in Fig. 1 at (a) rs = 1, (b) rs = 5, and (c) rs = 10.

we have fitted the function

m∗(N ) = m∗(∞) + bN−γ , (4)

where m∗(∞), b, and γ are fitting parameters, to the raw data
shown in Fig. 8 and we have performed repeated fits to the
data with Monte Carlo sampling of the error bars. We find that
γ = 1.8(4), 1.4(4), and 1.4(3) at rs = 1, 5, and 10, respectively.
This indicates that the optimal exponent γ is between 1 and 2.
This conclusion is reinforced by the results shown in Table I,
where we examine the χ2 values of the fits and the extrapolated
effective masses when different exponents are used in Eq. (4).
The extrapolation shown in Fig. 7 assumes an exponent of
γ = 3/2.

4. Quasiparticle effective mass as a function of density

Results for the 2D HEG quasiparticle effective mass
obtained by different authors, including the present work, are
shown in Figs. 8 and 9 for paramagnetic and fully ferromag-
netic HEGs, respectively. The present results are also given in
Table II. For ferromagnetic HEGs our revised effective masses
are in reasonable agreement with our previously published
results.20 For paramagnetic HEGs, however, the finite-size
errors are relatively large at low density, and hence finite-size
extrapolation reduces the effective masses at rs = 5 and 10 by a
significant amount. For paramagnetic HEGs we now find that
the effective mass remains close to 1 (i.e., electron-electron
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FIG. 6. (Color online) As Fig. 5, but for ferromagnetic HEGs.

interactions result in almost no renormalization of the electron
mass) at all the rs values we have considered.

Once again we emphasize that there is no significant
disagreement between the data reported in the present article
and Ref. 20. The revision of the effective mass simply results
from the fact that the random noise in our current data is much
smaller, allowing a systematic trend with system size to be
discerned and hence removed by extrapolation.

For the paramagnetic HEG, GW calculations9,28 indicate
a steep increase in the effective mass as the density is
lowered, similar to that seen in early experiments.27 However,
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FIG. 7. (Color online) Quasiparticle effective mass m∗ against
N−3/2, where N is the system size, for 2D HEGs.
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FIG. 8. (Color online) Quasiparticle effective mass m∗ against
density parameter rs for paramagnetic or partially spin-polarized
2D HEGs, as calculated or measured by different authors. The
experimental results are due to Smith and Stiles (Ref. 27), Tan et al.
(Ref. 3), and Padmanabhan et al. (Ref. 1) The GW results were
obtained using the random-phase-approximation (RPA) effective
interaction (Ref. 9) and the Kukkonen-Overhauser (KO) effective
interaction (Ref. 28) by solving the Dyson equation self-consistently
(SC) or within the on-shell approximation (OSA). We show the VMC
results of Kwon et al. (Ref. 29) [which were later confirmed at
the same system size at rs = 1 a.u. using transient-estimate DMC
calculations (Ref. 30)], the VMC results of Holzmann et al. (Ref. 23)
and the DMC results reported in our previous work (Ref. 20) as
well as the results of the present work. All the results shown are for
paramagnetic HEGs with the exception of the experimental results of
Ref. 1, which are for a partially spin-polarized HEG.

the GW results depend strongly on the choice of effective
interaction and whether or not the calculations are performed
self-consistently. At high density, e.g., rs � 1, the GW ap-
proximation might be expected to be accurate; nevertheless
the disagreement between the GW and QMC effective masses
at rs = 1 is significant. The QMC calculations of Holzmann
et al.23 give quite different results from those of either
Kwon et al.,29 our previous work,20 or the present work. The
experimental data1,3 show some evidence for enhancement of
the effective mass at low density, although we do not see this
in our present results.

TABLE I. Extrapolated quasiparticle effective mass m∗(∞) and
χ 2 value for fits to the effective-mass data as a function of system size
for paramagnetic HEGs with different exponents γ in the finite-size
fitting formula [Eq. (4)].

m∗(∞) (a.u.) χ 2 (a.u.)

γ rs = 1 rs = 5 rs = 10 rs = 1 rs = 5 rs = 10

1/4 0.88 0.3 − 0.7 21.5 9.6 12.4
1/2 0.924 0.74 0.3 16.8 5.8 7.7
1 0.947 0.97 0.85 9.1 1.11 1.52
3/2 0.955 1.04 1.03 5.2 0.28 0.32
2 0.959 1.08 1.13 5.3 2.03 3.1
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FIG. 9. (Color online) Quasiparticle effective mass m∗ against
density parameter rs for ferromagnetic 2D HEGs. The GW results
were obtained using the Kukkonen-Overhauser (KO) effective inter-
action by solving the Dyson equation self-consistently (SC) or within
the on-shell approximation (OSA) (Ref. 31). The experimental results
are due to Padmanabhan et al. (Ref. 1). We show the DMC results
reported in our earlier work (Ref. 20) in addition to our current results.

It should be noted that the 2D electron systems studied in
the experiments differ from the ideal 2D HEG assumed in our
calculations in that the experimental systems have finite widths
and are subject to disorder. It would therefore be inappropriate
to make a precise quantitative comparison of our QMC data
with the existing experimental results; nevertheless we may
compare the qualitative behavior.

For the ferromagnetic case, our effective-mass data are in
broad agreement with the experimental results of Padmanab-
han et al.,1 showing a decrease in the effective mass as the
density is lowered. GW theory31 also predicts a suppression
of the effective mass in the range of densities considered.
However, the difference between the GW results obtained self-
consistently and in the on-shell approximation is significant,
as is the difference with the present results, even at the highest
density (rs = 1) for which QMC data are available.

V. CONCLUSIONS

We have used the DMC method to calculate the single-
particle energy band and hence quasiparticle effective mass of
the 2D HEG. We have achieved sufficiently high precision
in our calculations that systematic finite-size errors in the
quasiparticle effective mass can be observed and removed by
extrapolation. This leads to a revision of the effective masses
for paramagnetic HEGs at low density compared to our earlier

TABLE II. Quasiparticle effective masses for
paramagnetic and fully ferromagnetic 2D HEGs,
extrapolated to the thermodynamic limit.

Magnetic state rs m∗ (a.u.)

Paramagnetic 1 0.955(2)
Paramagnetic 5 1.04(2)
Paramagnetic 10 1.03(4)
Ferromagnetic 1 0.851(5)
Ferromagnetic 5 0.74(1)
Ferromagnetic 10 0.70(3)
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work:20 in particular we find that there is no enhancement of
the effective mass at low density.
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