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Noise-induced escape in an excitable system
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We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal
model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an
example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based
on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the
excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal)
fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We
compare the responses of a monostable resonator and monostable integrator to stochastic input signals and
to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state,
our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical
simulations of the Langevin equation.
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I. INTRODUCTION

Stochastic excitable dynamics of the type exhibited by
the FitzHugh-Nagumo (FHN) model underlies many systems
in biology, especially in neuroscience [1,2]. Nonbiological
systems, e.g., lasers and semiconductors [3–7], also display
excitable behavior, and it has come to be appreciated that
excitable systems can usefully be considered as forming a
distinct class characterized by their own particular modes of
behavior.

The key feature of excitability observed experimentally is
that the system under study exhibits qualitatively different
responses to two stimuli that differ only slightly in magnitude:
For example, a neuron may produce either spikes of large
amplitude or small oscillations about an equilibrium; the shape
of a spike does not depend on the stimulus. This leads to the
widely accepted concept of a threshold, even though, in many
cases, there is no saddle state forming the threshold. However,
the detailed definition of excitability, even for neurons, remains
vague. The reason is arguably the difficulty of providing
a simplified model that accommodates, simultaneously, a
diversity of neuronal structures and types of stimuli and
responses. For example, neuroscience textbooks present the
neuron as an integrator with a very well defined threshold,
whereas Izhikevich [8] provides a definition based on dynam-
ical systems theory in the form “neurons are excitable because
they are near a transition, called a bifurcation, from resting to
sustained spiking activity”; he stresses that, in general, there
is no very well defined threshold. If we were to try to define
excitability in terms of the neural response to a stochastic
stimulus, then there would be yet another definition. Note that
multistable systems are often called excitable on the basis that
the system can be “excited” to perform a transition between
states. In contrast, we distinguish between multistablity and
excitablity by pointing out that the latter implies the recurrence
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of an initial state after noise-induced motion, whereas the
former assumes a transition from an initial state to another
state. For topological reasons [9], a minimal system dimension
of 2 is needed for such recurrence.

The choice of definition is not the end of the story,
however, because excitability itself can also be classified, and
in a manner that is important for neuroscience. Hodgkin’s
classification [10] was based on experimental observations of
how a neuron reacts to an increase of the constant current bias.
Later, this classification was connected to the bifurcations that
can occur in two-dimensional neuronal models [11]. Note that
there is some confusion in the bifurcational classifications of
excitability and that the issue has been extensively discussed by
Izhikevich [8]. He suggested a new classification based on the
dynamic description of two-dimensional neuronal models. He
considers four types of excitable behavior related to different
bifurcations of an equilibrium state involving a transition
from the resting (fixed point) to periodic spiking (limit cycle)
behavior of neurons. His bifurcational (local) classification
uses two independent criteria (which is what leads to four
classes): (i) the number of steady sets (fixed points and cycles)
and (ii) the character of the stability (node or focus) of the
stable state (fixed point). Therefore, a two-dimensional neuron
model can be either an integrator (node) or a resonator (focus),
with either bistable (fixed points or cycles) or monostable
activity [8]. We adopt this classification in what follows below
but relax the close connection with bifurcations.

We point out that, although Izhikevich provides [8] a com-
prehensive discussion and justification of such a classification,
the main object of discussion was a deterministic neuron model
and nearly all the supportive experimental results were based
on a constant applied bias. In reality, however, a typical neuron
receives stochastic and/or time-variable stimuli and, therefore,
requires the use of a stochastic model. Due to the noise, the
nonoscillatory neuron with a stable state changes into a system
exhibiting both oscillatory and excitatory properties [12]. In
the latter case, the question of a threshold is much more
important than in the deterministic one because its structure
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defines an activation process from a steady state to an excitable
one, i.e., to a state capable of producing a spike.

Currently, approaches to the analysis of noise-induced
escape in excitable systems are based on a fast-slow decom-
position [1,13,14]. It leads to a one-dimensional (potential)
problem where the threshold is introduced explicitly either as a
saddle state or as a particular value of a coordinate. In the latter
case, the fold point of the nullcline is often used [13]. In other
words, the threshold is created artificially without any direct
reference to the actual threshold structure of the initial system.
Additionally, the decomposition assumes a small parameter
(since it is based on an asymptotic deterministic description
of excitability) so it is not applicable in all cases, e.g., the
resonator case. Thus, the decomposition approach involves
strong limitations in terms of system parameters, whereas the
role of the threshold structure during noise-induced escape
remains unclear.

Another problem of the fast-slow decomposition approach
lies in the fact that the simultaneous consideration of noise
sources in both the fast and slow variables is inherently difficult
[13]. In neuroscience, noise in the fast variable of the neuron
is typically considered as corresponding to the synaptic inputs
arriving from other neurons. Noise in the slow variable is
taken to arise from the intracell intrinsic dynamics, e.g., the
fluctuations of currents in ion channels. The latter noise has
attracted less attention, even though it appears explicitly in
the archetypical Hodgkin-Huxley model [15,16] and there is
evidence that it plays an important role in neural regulatory
networks [17]. Note that, in excitable lasers [5,7], noise is
present in both the fast and slow variables.

In this paper, we overcome the limitations of the de-
composition approach and discuss the stochastic dynamics
of an excitable system for particular classes of excitability.
We develop a nonlinear (nonlocal) approach to describe
noise-induced escape and the role of the threshold structure in
escape processes. The approach is based on the theory of large
fluctuations [18]. It involves no limitations in terms of system
parameters, but it assumes the small noise limit. Nonetheless,
as we show below, it is actually applicable over a wide range
of noise intensities. A condition of applicability is that the
noise-induced excitation has an activation character, that is,
the activation time must be longer than the time of relaxation
to equilibrium. The approach developed is also applicable to
the case when noises are acting in both the slow and fast
variables. It takes account of finite noise intensity and allows
us to calculate the exit location distribution analytically. We
compare the predictions of the deterministic (local) approach
[8] with the nonlocal approach that we develop. We do so
by analyzing the responses of a monostable resonator and
a monostable integrator to stochastic input signals and to
a mixture of periodic and stochastic stimuli. We consider
specifically the FHN neuron model, but we expect that
the results can readily be extended for application to other
models.

In Sec. II we discuss the excitability property and provide
some heuristic comments on the existence of a threshold in
the monostable case. Then, in Sec. III, we demonstrate the
existence of a threshold via theoretical calculations of the
most probable (optimal) escape path. Noise sources in both
the slow and fast variables are considered. We also test the

theoretical conclusions against direct numerical simulations of
the Langevin equation and discuss the threshold structure and
its role in the noise activation process. In Sec. IV we compare
activation paths for an integrator and a resonator by analysis of
the optimal activation (escape) path and optimal fluctuational
force, and we consider the effect of weak periodic driving
on noise-induced spike generation for both the integrator and
the resonator cases. Our main conclusions are summarized in
Sec. V.

II. THE “GHOST” SEPARATRIX

In the present case we define an excitable system as one
that is able to produce a spike in response to an external
stimulus. The spike properties depend only insignificantly on
the external stimulus, and the spikes are only observed for
some nonzero stimulus amplitude, i.e., the external stimulus
must exceed a threshold in order to excite a spike.

Note that, although the above definition is not universal,
it describes well the excitable property of many systems,
including that of the FHN system,

u̇ = F (u,v) = u − u3

3
− v,

(1)
v̇ = εG(u,v) = ε[u + a].

Here u(t) and v(t) represent the fast and slow variables,
which may correspond, e.g., to the membrane potential and
slow recovery of a neuron, respectively. The parameter ε

describes the difference in time scales between the fast and
slow variables, and the parameter a defines the regimes
(bifurcations) of system (1).

We now consider the dynamics of (1) for the fixed values
a = 1.05 and ε = 0.05. The two curves given in Fig. 1,
F (u,v) = 0 and G(u,v) = 0 [G(u) = 0 here], are nullclines
i.e., boundaries between regions where the derivatives u̇ and
v̇ are of opposite sign. The point of intersection of the
nullclines is determined by the parameter a and corresponds
to a fixed point of system (1). The nullcline F (u,v) = 0 forms
a nonmonotonic curve that can be divided into three branches:
The right Fr (u,v) and left Fl(u,v) branches and the middle
branch Fm(u,v) are shown in Fig. 1(a). The fixed point is
located on the left branch Fl(u,v).

Depending on the amplitude of an applied perturbation
f (t), added, e.g., in the second equation as v̇ = ε(u + a) +
f (t), the system can respond in two different ways. It either
makes small oscillations in the vicinity of the fixed point [dash-
dotted line in Fig. 1(a)] or, for a slightly greater perturbation, it
can make a large excursion from the left branch Fl(u,v) to the
right branch Fr (u,v) and back [creating a spike, as shown by
the dotted line in Fig. 1(a)]. Thus, the presence of excitability
can easily be established by this simple test. It leads to the
conclusion that there must exist a boundary (threshold) in the
u-v phase space of the FHN system. However, this test says
nothing about the structure of the threshold, which we now
discuss.

Usually the presence of any threshold is related to the
existence of saddle states (sets), e.g., a saddle point in the
bistable Duffing oscillator (ẍ + αẋ + x3 − x = 0, where x is
a variable and α is the damping coefficient) and its stable
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FIG. 1. (Color online) The u-v phase plane of the FHN system
and the responses to the external force f (t) (dimensionless units).
(a) The left, middle, and right parts of the nullcline F (u,v) are denoted
as Fl(u,v), Fm(u,v), and Fr (u,v), respectively. The inset shows an
enlarged area of the phase plane in the close vicinity of the fixed
point. The dashed (black) line corresponds to the boundary curve. The
dotted and dash-dotted lines represent, respectively, the responses of
the FHN system to the corresponding external forces shown in (b).
Time realizations of the u coordinate are shown in (c). The parameters
of the FHN system (1) are a = 1.05 and ε = 0.05.

manifolds define the boundary between two stable states. In
the FHN system there is no saddle state, but the threshold
reveals itself when we consider the evolution of the system
from different initial conditions. Depending on what these are,
the trajectory goes initially to the left or right, in the direction
of the left Fl(u,v) or right Fr (u,v) branches, and then it goes
to the stable state. If the trajectory reaches the right branch
Fr (u,v), then a spike is generated. Thus, considering different
initial conditions, we can specify a boundary between two
different regions of the phase plane [the black dashed line
in Fig. 1 (a)]. Note that the boundary itself corresponds to a
trajectory of the system (1), i.e., if we specify initial conditions
(u0,v0) on the boundary, then the trajectory corresponding to
the solution of Eq. (1) follows the boundary.

The origin of the boundary can be understood by consid-
eration of the singular limit ε → 0 [19,20] where the two
branches Fr (u,v) and Fl(u,v) are regarded as attractors; there
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FIG. 2. (Color online) The boundary structures in the singular
limit ε → 0 (dashed line) and for the finite value of ε = 0.05 (solid
lines) are shown in the u-v phase plane (dimensionless units). The
nullcline G(u) and the branches Fl(u,v) and Fr (u,v) are shown by
solid lines and the branch Fm(u,v) is shown by the dashed line. The
trajectories for finite ε correspond to solutions of an initial value
problem, i.e., they were calculated by integrating Eq. (1) directly in
time for specified initial conditions (u0,v0): for the curves shown,
u0 = −3 and v0 has been varied. The parameters of the FHN system
(1) are a = 1.05 and ε = 0.05.

is a separatrix that includes the middle branch Fm(u,v), and
two rays v = −2/3, u ∈ (−∞,−1] and v = 2/3, u ∈ [1,∞),
which start in the fold points ∂F (u,v)/∂u = 0, i.e., u = ±1
and v = ±2/3 (Fig. 2). It has been shown [20] that for finite
ε a particular line (separatrix) does not exist, and an infinite
number of lines, a layer, can be specified (see the solid lines in
Fig. 2), but within a distance r � ε from the fold point (1,2/3)
the layer tends to one line and forms a boundary similar to
the singular limit ε → 0, forming the boundary layer seen in
Fig. 2. Therefore, we can reasonably refer to this boundary
(for finite ε) as the “ghost separatrix” of the singular limit.
Note that for finite ε the boundary does not coincide with the
middle branch, Fm(u,v).

Another way of illustrating the origin of the boundary under
discussion is to consider an FHN system with three fixed
points. This illustration is in line with the usual analysis of
a transition to excitability via a saddle-node bifurcation [8],
but the difference is that here we consider such a transition for
a saddle point and it does not change the stability of the stable
fixed point. Let us modify Eq. (1) in the following way:

u̇ = u − u3/3 − v,
(2)

v̇ = ε[u − cv + a].

Here we introduce the new parameter c, and we set a = 1.05,
ε = 0.05. Depending on the value of c, system (2) can have
one fixed point [in which case Eq. (2) is excitable], two points
at the tangent bifurcation point [21], or three points [in which
case Eq. (2) becomes bistable]; the coordinates of these points
are determined by intersections of the nullclines v = u − u3/3
and v = (u + a)/c (Fig. 3). Where there are three fixed points
(c = 3), the manifolds of the middle (saddle) point form the
boundary between the other two states. The left branch of
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FIG. 3. (Color online) The left branch of the manifold of the
middle point is shown by the solid (red) line in the u-v phase plane
(dimensionless units). It was calculated from initial conditions on the
eigenvector of the middle (saddle) point for c = 3. The boundary in
the excitable regime (c = 2.8) is shown by the dotted (black) line. The
nullclines are shown as dashed lines. The symbols • and � indicate
the coordinates of fixed points, with � indicating the saddle point.
The parameters of the FHN system (2) are a = 1.05 and ε = 0.05.

the manifolds of the middle point is shown by the solid line in
Fig. 3. The boundary in the excitable case (c = 2.8) when there
is no saddle point is shown by the dotted line. The behavior
illustrated in Fig. 2 allows us to say that the boundary in the
excitable regime is a “ghost” of the manifold of the disappeared
saddle point.

This last illustration, and analysis [20] using the singular
limit, demonstrate the existence of a boundary area that can be
considered as being indistinguishable from a line (separatrix)
far from the fold point, but there is no corresponding unstable
state. It is obvious that this unusual phase-space structure
requires careful analysis of the escape process.

III. LARGE FLUCTUATIONS APPROACH

A. Optimal escape path and the boundary

Noise-induced escape is usually described as a transition
from a stable state to a saddle (boundary) state, and it is inferred
that an escape trajectory passes via (nearby) the saddle state.
Such a picture has a rigorous basis in the theory of large
fluctuations [18] and it has been confirmed in many examples
ranging from a simple overdamped bistable system [22] to
systems with chaotic dynamics [23–26]. The saddle state is
considered as the transition state and is used for calculation of
the escape rate.

The fact that there is no saddle state in the excitable
regime of the FHN system (1) leads us to consider a more
general problem of noise-induced boundary crossing. Note
that in the previous section we showed that there exists a
boundary between the right Fr (u,v) and left Fl(u,v) branches
of the nullcline F (u,v) = 0, and we discussed this boundary as
forming a “ghost” manifold. The latter perception suggests that
the boundary should possess some of the properties exhibited
by the manifold of a dynamical system. One important property
[18] is that the optimal escape path must not cross the manifold.

Thus, the behavior of the escape path can reveal both the
boundary and its properties.

Let us consider a stochastic version of (1) in the following
form:

u̇ = u − u3

3
− v + ξu(t),

(3)
v̇ = ε [u + a] + ξv(t),

with two additive white noise sources ξu(t) and ξv(t) of inten-
sity Du and Dv , respectively; 〈ξu,v(t)〉 = 0 and 〈ξu(t)ξv(t)〉 =
0. The noise ξu(t) can be interpreted as external inputs arriving
to the neuron (e.g., spikes from other neurons), whereas
the noise ξv(t) reflects internal fluctuations in the currents,
e.g., through the ion channels of the neuron [27]. The noise
intensities can be represented as Du = ruD and Dv = rvD

and the coefficients ru and rv determine which noise source is
the more significant. For zero noise intensity D = 0 there is
one stable point (us,vs), us = −a and vs = −a(1 − a2/3) for
a > 1, and system (3) is in its excitable regime.

The Fokker-Plank equation describing the probability
density P (u,v,t) corresponding to the Langevin equation (3)
takes the form [28]

∂P

∂t
= ∂

∂u

[
−

(
u − u3

3
− v

)
P

]
+ ∂

∂v
[−ε(u + a)P ]

+ ruD
∂2P

∂u2
+ rvD

∂2P

∂v2
. (4)

An equilibrium solution of (4) can be written in the WKB-like
approximate form [18,29–31]

P (u,v) = Z(u,v) exp[−S(u,v)/D], (5)

where Z is a prefactor and the action S can be considered
as a quasipotential of (3) [32]. Inserting the expression (5)
into (4), and expanding in powers of D, allows one to obtain
the equations for the action S and for the prefactor Z in
the leading (D → 0) and next-to-leading (finite D) orders of
approximation respectively [18,29–31,33].

The leading order [18] results in the following extended
system:

u̇ = ∂H

∂pu

, v̇ = ∂H

∂pv

, ṗu = −∂H

∂u
, ṗv = −∂H

∂v
, (6)

which has the Wentzel-Freidlin Hamiltonian

H = pu

(
u − u3

3
− v

)
+ pvε[u + a] + ru

2
p2

u + rv

2
p2

v ≡ 0,

(7)

where pu and pv are conjugate momenta. The system
determines the most probable trajectories of (3) connecting
the initial (u(ti),v(ti)) and final (u(tf ),v(tf )) states, i.e.,
trajectories driven by noise realizations having the minimal
action (energy)

S = min
∫ tf

ti

dt
[
ξ 2
u (t) + ξ 2

v (t)
]

=
∫ tf

ti

dt
1

2

[
rup

2
u + rvp

2
v

]
. (8)
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Because the trajectory probabilities are determined as P ∝
exp(−S/D), these trajectories are the most probable paths.
To determine the optimal escape path, i.e., the trajectory
connecting the stable state (us,vs) of (3) to the boundary
(ub,vb), we have to perform an additional minimization and
find the trajectory with minimal action S = Smin. Thus, we
have formulated the boundary problem for (6) with two
boundary conditions [us(ti),vs(ti),pu(ti) = 0,pv(ti) = 0] and
[ub(tf ),vb(tf ),pu(tf ) = 0,pv(tf ) = 0], with ti → −∞ and tf
unspecified. To solve the boundary problem we follow the
method described in Ref. [34]. It leads to a shooting approach,
i.e., to finding a solution by consideration of different initial
guesses leading to trajectories from behind the boundary to the
branch Fr (u,v). For the system considered (6), the shooting
problem is effectively one-dimensional (there is one parameter,
x, that specifies all possible initial conditions) and we are able
to find the optimal escape path by considering the dependence
on x of the action S. A minimum in this dependence
specifies the desired path. We stress that we do not specify
explicitly the second boundary condition (ub(tf ),vb(tf )); we
consider trajectories coming to the branch Fr (u,v) and use the
condition [pu(tf ) = 0,pv(tf ) = 0] to verify the correctness of
the calculated path. Note that in the integrator case [when the
stable state of (3) is a node] it is possible to specify initial
conditions explicitly on the minimal-action trajectory, which
corresponds to the nonleading one-dimensional manifold of
system (6).

Solutions of the boundary problem corresponding to opti-
mal escape paths are shown in Fig. 4 for different values of the
coefficients ru and rv and two different values of the parameter
a. The optimal paths approach the boundary without crossing it
and, consequently, without reaching the right branch Fr (u,v).
It can be seen that noises in the fast and slow variables produce
quite distinctive patterns in the phase space and that these
patterns depend strongly on the system and noise parameters.

The results presented in Fig. 4 demonstrate the existence of
optimal paths in the FHN system within the excitable regime
and thus support the conclusions drawn in Sec. II about the
boundary structure.

B. Escape rate

An important measure of system stability is the escape
rate, or the mean escape time T . The escape rate allows
us to verify the values of the action S corresponding to
optimal paths. We simulated the Langevin equations (3)
numerically and estimated the time interval τ to reach the
right branch Fr (u,v) from initial conditions in the stable
state (us,vs). By repeating the simulations we collected an
ensemble of intervals τi and estimated the mean escape rate as
T = 1

N

∑N
i=1 τi , N = 20 000. The value of T can be estimated

from the action S corresponding to the optimal path, because
S defines a quasipotential of system (3) and the value of
S on the boundary (for the optimal path) corresponds to
the quasipotential barrier. It means that we may expect that
T ∝ exp(S/D). The calculated optimal paths yield estimates
of the escape threshold S that are in excellent agreement
with those derived from Eqs. (6)–(8), as shown in Fig. 5.
Disagreement between the numerical results and theoretical
predictions is observed only for large noise, when the mean

−1.1 −1 −0.9 −0.8 −0.7

−0.7

−0.68

−0.66

−0.64

−0.62

−0.6

 u 

 v
 

 (a)

−1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 u 

 v
 

 (b)

FIG. 4. (Color online) Optimal paths in the u-v phase-plane for
different sets of parameters (dimensionless units): (a) ε = 0.05, a =
1.05 and (b) ε = 0.05, a = 1.5. The nullcline F (u,v) and boundary
are shown by the thin (black) solid and dashed lines, respectively.
The symbol • indicates the fixed point. The thick solid (green), dotted
(red), and dash-dotted (blue) lines correspond to the cases ru = 1 and
rv = 0, ru = 0 and rv = 1, and ru = 1 and rv = ε.

escape time T becomes comparable to the relaxation time [35]
of system (1). These results evince that, although the large
fluctuation approach is based on the asymptotic limit D → 0,
its predictions remain valid over a wide range of small finite
values of noise intensity.

C. Exit location distribution

We now compare the noise-induced escape trajectories of
system (3) found by numerical simulation with the optimal
paths shown in Fig. 4. The escape trajectories are shown in
Fig. 6(a) together with the optimal path. It is evident that
the escape trajectories approach the optimal path, but that
they differ markedly from it near the boundary and cross
the boundary rather than running along it. Such a situation
was observed earlier (see Ref. [36] and references therein).
It is known as saddle-point avoidance and characterized by
the exit location distribution (ELD). The difference here,
however, is that there is no saddle point, so existing theoretical
approaches [31,36] for calculating the ELD are inapplicable.
Note, however, that the optimal path was calculated in the
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FIG. 5. The calculated mean escape times T are plotted as a
function of inverse noise intensity 1/D for the cases (dimensionless
units): ◦ ru = 1 and rv = 0; � ru = 0 and rv = ε; + ru = 1 and
rv = ε. The parameters are ε = 0.05 and a = 1.05. The vertical axis
is logarithmic. The dashed lines correspond to the approximation T ∝
exp( S

D
), where S corresponds to the optimal path, i.e., the solution

of the boundary value problem for Eq. (6). The inset shows the
dependence T (1/D) for large values of noise intensity.

limit of zero noise intensity and that the noise intensity
is not included as a parameter during the calculation. This
strongly suggests that the observed difference [Fig. 6(a)] may
be attributable to the finiteness of the noise intensity. We can
take this into account by consideration of the prefactor Z in
(5) [29–31,33].

The prefactor Z can be calculated via the next-to-leading-
order (finite D) approximation of the Fokker-Plank equation
(4). It leads to an extension of system (6) by addition of
the differential equations for the prefactor Z and the Hessian
matrix W, which corresponds to a matrix of the second-order
derivatives of the action S with respect to system coordinates u

and v. Details can be found in Refs. [31,33]. We now consider
further the case where ru = 1 and rv = 0.

The ELD describes the distribution of points corresponding
to crossing points of escape trajectories over the boundary B

of some domain. The separatrix discussed in Sec. II forms this
boundary and, since it is a monotonic curve (see Fig. 4, for
example), the boundary, and, consequently, the ELD, can be
parameterized by one variable only, i.e., B = B(u). The ELD
ρB(u) of exit points on B can be determined from the solution
of the stationary Fokker-Plank equation (4) with a unit source
at the stable point (us,vs) and an absorbing boundary condition
on B [31,37,38]. The ELD is related to the probability flux via
an elementary segment dl(u) of B(u) [31] leading to

ρB(u) = Dru

N

∂P (u,v)

∂u
(n,eu), (9)

where we take into account that B(u) corresponds to the
separatrix, which is a solution of the deterministic system
(1); n is the outward normal to B at (u,v), eu is a unit
vector in the u direction, and N is the normalization constant.
Using the ansatz (5), the ELD is represented in terms of Z
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FIG. 6. (Color online) (a) Ten escape trajectories obtained by
numerical simulation of (3) are shown by jagged (green) lines
(dimensionless units). The optimal path is shown by the thick (black)
solid line and the boundary by the dashed (red) line. (b) The escape
location distribution ρB (u) calculated via (10), and obtained by
numerical simulations of (3), are shown by the solid (black) line and
the (green) histogram bars, respectively. The parameters of Eq. (3)
are D = 3.25 × 10−4, ε = 0.05, a = 1.05, ru = 1, and rv = 0.

and S as

ρB(u) = Dru

N
pu(u,v)Z(u,v) exp

{−S(u,v)

D

}
(n,eu). (10)

Values of momentum pu, action S, and prefactor Z can be
found by numerical solution of the boundary value problem
with initial conditions on the stable state (us,vs) and second
condition on the boundary B(u); the product (n,eu) can also
be calculated numerically from the known coordinates of the
boundary. The ELDs calculated from (10), and by simulation
of the stochastic equation (3), are compared in Fig. 6(b). The
agreement is excellent, showing that inclusion of the prefactor
Z provides a satisfactory description of finite-noise effects.
We stress that the technique described can also be applied
straightforwardly to the case when there is a saddle point.

According to the duality between the Wentzel-Freidlin
Hamiltonian formalism of large fluctuations and the Pontrya-
gin Hamiltonian formalism of optimal control [23,25,39], the
momenta pu and pv define the optimal fluctuational force
and, equivalently, the deterministic control force that induces
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FIG. 7. (Color online) Time realizations of the optimal path and
the optimal force are superimposed on numerical realizations of
an escape trajectory (a) and of a noise realization (b), respectively
(dimensionless units). In (a) the dashed and solid lines correspond
to the coordinates u and v, respectively; the thick lines correspond
to the optimal paths, whereas the thin lines show the coordinates of
an escape trajectory. In (b) the thick line corresponds to the optimal
force pu, whereas the thin line shows the noise realization ξu. The
parameters of system (3) are ε = 0.05, a = 1.05, ru = 1 and rv = 0,
D = 3.25 × 10−4.

the transition between states with minimal applied energy S.
The above results show that the theory of large fluctuations
provides a sufficient description of the fluctuational dynamics
and can describe the behavior of stochastic escape trajectories.
We will demonstrate below how the optimal force defined
by the momenta pu and pv can also be used to predict the
response of the system to a stimulus. First, however, we will
consider the following question: Should we expect that the
noise realizations leading to escape will correspond closely to
the optimal fluctuational force? In Fig. 7 the coordinates of an
escape trajectory and the optimal force are shown together with
corresponding noise realization ξu(t) and momentum pu(t).
The latter corresponds to the optimal fluctuational force. It can
be seen that the noise realization does not have any specific
patterns, unlike the escape trajectories. Therefore, the answer
to the question formulated above is that the optimal force is
hidden within the noisy background, whereas the actual escape
trajectory follows the theoretical path.

IV. LOCAL VERSUS NONLOCAL APPROACHES TO
STABILITY ANALYSIS

A. Noise-induced escape in a resonator and an integrator

Currently, the main approach for analyzing the properties
of a neuron (summarized in Ref. [8]) is based on (i) a purely
deterministic picture and (ii) a local analysis of fixed points
and the associated bifurcations. The approach that we present
here corresponds to an alternative description of the neuron’s
properties, and it can be considered as an additional nonlinear
(nonlocal) stability analysis. We stress that we consider our
approach as being complementary to the existing one.

In the Izhikevich classification discussed above there is a
classification property related to the character of the stability
at a fixed point (node or focus), leading to an integrator or
a resonator, respectively. In chapter 7 of Ref. [8] there is a
summary of theoretical and experimental results to support
such a classification. For example, there is a statement that
one can expect frequency preference in the resonator case and
an absence of frequency preference for the integrator.

Let us consider the difference in noise-activated spiking in
the excitable regime of the FHN system (3) for two cases when
the fixed point is either a node or a focus, i.e., an integrator
or resonator. If we fix the parameter ε = 0.05, the stability
of the fixed point (us,vs) is then defined by the parameter
a. The eigenvalues of the fixed points are defined by the
expressions λ1,2 = 0.5[(1 − a2) ±

√
(1 − a2)2 − 4ε]. In the

noise-free case system (3) undergoes a Hopf bifurcation at
a = 1, when the eigenvalues λ1,2 of the fixed point are λ1,2 =
0 ± i0.2236, where i = √−1. The value of the imaginary parts
of λ1,2 defines the frequency ω0 = 0.5[

√
(1 − a2)2 − 4ε] of

self-oscillation after the Hopf bifurcation or the frequency of
underdamped oscillation before the bifurcation. In the range
a ∈ (1:1.203) the eigenvalues λ1,2 are complex conjugate with
negative real parts, i.e., the fixed point is a focus, and the
point becomes a node for a > 1.203, when λ1,2 are real. Since
the local approach [8] is based on bifurcations, its predictions
include the existence of a preferred frequency 
H � 0.2236 in
the resonator case, and the absence of any such frequency for
the integrator. In comparing these predictions with nonlocal
analysis and numerical simulations of (3) we consider three
cases corresponding to three different values of the parameter
a as follows:

(1) a = 1.05. This value is very close to the Hopf bifur-
cation. The fixed point is a focus with eigenvalues λ1,2 =
−0.0513 ± i0.2177. The expected preferred frequency is ω0 =
0.2177, which is close to 
H . This is the resonator case.

(2) a = 1.15. The fixed point is a focus with eigenvalues
λ1,2 = −0.1612 ± i0.1549 and ω0 = 0.1549. This is the res-
onator case.

(3) a = 1.25. The fixed point is a node with eigenvalues
λ1 = −0.4518 and λ2 = −0.1107. There is no preferred
frequency according to the local approach, so ω0 = 0.0. This
is the integrator case.

We recall that there is one fixed point of (3) for all these
values of a. We now consider the two extreme cases where
noise enters either the fast variable only (ru = 1 and rv = 0)
or the slow variable only (ru = 0 and rv = 1).

First, we compare the optimal paths for the above three
values of a (Fig. 8). For both types of noise the patterns
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FIG. 8. (Color online) Optimal paths in the u-v phase-plane with
noises in (a) the fast and (b) the slow variables for different values of
the parameter a (dimensionless units): the solid (red) line corresponds
to a = 1.05, the dashed (green) line to a = 1.15, and the dotted (blue)
line to a = 1.25. The location of the fixed point is marked in each
case by a small filled circle •. The parameter ε = 0.05. The crosses
and pluses in (a) and (b) mark coordinates corresponding to maximal
absolute values (around t = 100) of the optimal forces shown in
Fig. 9.

of paths are similar when the system is close to the Hopf
bifurcation a = 1.05, which is in line with the predictions of
the local approach. However, for either type of noise (i.e., in
the fast or slow variables) the path does not demonstrate a
clear oscillatory component for the resonator (dashed green
curves in Fig. 8) when a = 1.15. Moreover, the paths for the
resonator (a = 1.15) and the integrator (a = 1.25) cases are
similar, and the difference between them for noises in the
fast and slow variables is much more significant than that
between the paths for the resonator and the integrator. Such a
picture shows that conclusions based on a local analysis are
applicable in a small vicinity of the bifurcation, and both the
resonator and the integrator may exhibit similar noise-induced
dynamics. The reason for this behavior can be understood
by consideration of the optimal forces shown in Fig. 9. For
comparison, the forces are normalized to maximal absolute
values. When the system is close to a Hopf bifurcation, the
optimal force shows a similar oscillatory pattern regardless
of the variable (fast or slow) to which the noise is added.
Further from the bifurcation point a = 1, a difference between

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

 t 

 p
u /p

um

 (a)

0 20 40 60 80 100 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 t 

 p
v /p

vm

 (b)

FIG. 9. (Color online) Optimal forces as functions of time t for
(a) the fast, pu, and (b) the slow, pv , variables for different values of the
parameter a (dimensionless units): The solid (red) line corresponds
to a = 1.05; the dashed (green) line to a = 1.15; and the dotted
(blue) line to a = 1.25. The forces are normalized by their maximal
absolute values pm. They correspond to solutions of the boundary
value problem for system (6). The parameter ε = 0.05.

the results of noises in the fast and slow variables becomes
evident. In the case of noise in the slow variable [Fig. 9(b)]
the forces differ slightly during the initial part, but they nearly
coincide over the final large amplitude part when we compare
the forces for different values of the parameter a. The optimal
force changes significantly with increase of the parameter a

in the case of noise in the fast variable, where the final large
amplitude part changes sign [Fig. 9(a)].

B. Periodic driving

The description of noise-induced spikes in terms of the
theory of large fluctuations (see above) allows us to reveal
properties of the system and to address the question: “What
kind of stimulus is needed to make a given neuron fire?”
The answer lies in the optimal fluctuational forces shown
in Fig. 9: Each force defines a deterministic stimulus which
induces a spike by applying the minimal-energy force. These
forces can also be used to describe noise-induced spikes in
the presence of weak subthreshold perturbations, for example,
a harmonic signal. In particular, they allow us to identify a
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preferred frequency for which the spikes are most probable.
The existence of such a frequency of excitation has been
considered in [8] using a local bifurcational analysis to account
for the experimental results [40]. Here we consider this same
question but within the framework of our nonlocal approach.
We therefore add a weak harmonic drive f (t) = A sin(
t)
to system (3) and consider the behavior of the action S that
specifies the spiking rate (cf. discussion above in Sec. III).

The optimal force can be used to predict the spiking
rate of the FHN system in the presence of f (t) via the
so-called logarithmic susceptibility [41]. The latter provides
a correction, �S, to the action (8) obtained in the absence
of driving. The modified action Sm = S − �S specifies the
noise-induced spiking rate T ∝ exp(Sm/D) in the presence of
f (t). The correction �S depends on the value of 
 and is
defined [41] as

�S = A

√
B2

r + B2
i ,

Bi = 1

2π

∫ Tp

0
dt p(t) cos(
t), (11)

Br = 1

2π

∫ Tp

0
dt p(t) sin(
t).

Here p(t) is the optimal force coming from (6) and Tp is the
duration of the force.

We consider two situations where the driving f (t) and noise
ξ (t) are both added either to the first equation or to the second
equation of system (3), respectively. The theoretical values of
Sm are compared in Fig. 10 with those obtained from numerical
simulations; the modified action Sm is normalized by the action
S in the absence of harmonic driving f (t), that is, for A = 0.
Near the Hopf bifurcation a = 1.05, the dependence of Sm

on 
 clearly shows the existence of a preferred frequency
whose value is close to the prediction of the local approach
ω0 = 0.2177: The value of the modified action Sm has a
minimum near ω0 = 0.2177. With increase of a, the behavior
of Sm(
) changes, showing different patterns depending on
whether the noise is in the fast or slow variable. There is a
nonzero preferred frequency for the case of noise in the fast
variable, and it depends weakly on the parameter a. For the case
of noise in the slow variable the minimal action is observed for
zero frequency. Remarkably, even close to the Hopf bifurcation
a = 1.05 there are significant differences between Sm(
) in
Figs. 10(a) and 10(b): There is a maximum of Sm for nonzero
frequency 
 separating the areas near two minima in the
case of noise in slow variable. Note that the existence of a
pronounced minimum (minima) in the dependencies Sm(
)
indicates resonant activation, i.e., the existence of a driving
frequency 
m that provides minimal mean activation time of
the metastable state (see Refs. [42–46] and references therein
for details).

In the modified action Sm, the correction �S is a function
of 
 only and, in accordance with (11), the value of �S is
proportional to the amplitude spectrum of the optimal force
p(t). Therefore, extrema in the dependence Sm(
) coincide
with extrema in the spectrum of p(t), whereas changes in the
locations and number of extrema reflect changes in the shape of
the optimal force p(t) (see Fig. 9). We emphasize that values of
frequency corresponding to extrema do not, in general, depend
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FIG. 10. (Color online) The normalized modified action Sm/S

as a function of the driving frequency 
 for the combination of
noise plus periodic driving in (a) the fast variable and (b) the slow
variable for different values of the parameter a (dimensionless units):
The solid (red) line corresponds to a = 1.05; the dashed (green)
line to a = 1.15; and the dotted (blue) line to a = 1.25. The circles
(a = 1.05), squares (a = 1.15), and crosses (a = 1.25) indicate the
results of the corresponding numerical simulations of (3). For each
value of 
, a range of noise intensity in the simulations was selected in
such a way that the mean escape times T ∈ [104:105]. The parameter
ε = 0.05.

either on the eigenvalues of the linearized system or on the type
of steady state. The latter feature evidently follows from the
fact that the nature of the external signal (constant value or
harmonic signal at fixed frequency) is significant at all stages
of escape, including the final stage of boundary crossing.

Finally, let us analyze the influence of the parameters a

and ε on the values of the preferred frequency 
m, that is, on
the frequency 
 of harmonic driving f (t) corresponding to
minimal action Sm. Using our nonlocal approach, the depen-
dence Sm(
) was calculated and the corresponding 
m was
identified for different combinations of a and ε. In Fig. 11(a)
the resultant 
m (symbols) are compared with ω0 (dashed
curve) computed using the local bifurcational approach for the
two cases, when both noise and f (t) are acting on the fast
or slow variables, respectively. The difference between these
cases increases with distance from the bifurcation point a = 1
[Fig. 11(a)]. However, the difference also increases with a
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FIG. 11. (Color online) The preferred frequencies 
m (points)
and ω0 (dashed lines) (a) as functions of the parameter a and (b) as
function of ε. The results corresponding to the combination of noise
in the fast variable plus periodic driving, and the combination of noise
in the slow variable plus periodic driving, are shown by the symbols
◦ and �, respectively. In (a) ε = 0.05, and in (b) a = 1.05.

decrease of the parameter ε, that is, as the time-scale separation
between the fast and slow variables increases [Fig. 11(b)].

The results of this section show that a deterministic
classification based on local analysis of the fixed point can
predict the noise-induced response and, in particular, a possible
preferred frequency of the external driving, if the system is
close to a bifurcation point. In the general case, however,
such predictions are impossible. It then becomes necessary
to consider the nonlocal (nonlinear) response based on the
technique described in Secs. III and IV.

V. CONCLUSION

We have discussed the threshold structure in the excitable
regime of the FHN system, when there is one fixed point
only. We provided some heuristic deterministic arguments
to demonstrate the presence of a threshold, and then we
showed that the threshold can be revealed via analysis of the
optimal fluctuational path. Further, we discussed the role of
the threshold in noise-induced escape (spike generation) via
analysis of the exit location distribution and a comparison

of actual escape trajectories and noise realizations with the
theoretical optimal paths and forces. This approach allowed
us to estimate the escape rate. An approach was developed to
take account of finite noise intensity, enabling us to suggest
a new technique for analytic calculation of the exit location
distribution. We obtained theoretical results that are in good
agreement with numerical simulations.

A comparison of the noise-induced spiking statistics with
predictions based on a local analysis of the stable state, which
is currently the dominant approach in neuroscience, has clearly
shown that, in general, such predictions for noise-induced
dynamics are not efficient. There is relatively little difference
between the resonator and integrator regimes of the FHN
system and, consequently, the utility of classifying them in this
way is questionable for describing noise-induced dynamics,
although it is clearly important for the purely deterministic
case.

It was found that frequencies 
m corresponding to extrema
of the action can differ drastically from the eigenfrequency of
damped oscillations near the steady state and, furthermore,
that they are weakly sensitive to the type of steady state.
This peculiarity can be accounted for in terms of the nonlocal
influence of the external signal over the whole escape path
from the area of the metastable state’s attraction. Values of the
extremal frequencies coincide with locations of the extrema in
the amplitude spectrum of the optimal force p(t).

Our results demonstrate significant differences between the
effects of noise in the fast and slow variables. They lead to
different fluctuational paths in the phase space of the FHN
system and they have different preferred frequencies for cases
where harmonic driving is present as well as noise. The
existence of such different responses can be explained on the
basis of the optimal forces characterized by different patterns.
The values of preferred frequency corresponding to resonant
activation change significantly with variation in the system’s
parameters, specifying them in terms of the distance from the
the bifurcation point and the difference between the fast and
slow time scales.

We believe that these conclusions are applicable, at least
qualitatively, to other excitable systems. Note, however,
that details will vary from system to system because our
conclusions are based on a nonlinear analysis of the FHN,
and the nonlinear response will depend significantly on the
system considered.

The approach presented is based on the theory of large
fluctuations which assumes the asymptotic limit of small noise
but, as we have shown above, the approach is applicable far
beyond the asymptotic regime for analysis of noise-induced
escape. It can be extended to encompass color and other types
of noise if each fluctuation term can be represented as a variable
in a Langevin equation (or equations) with a white Gaussian
noise source. Recently, a modified version of the Hamiltonian
(7) was suggested for the case of non-Gaussian noise with
finite variance (see Ref. [47] and references therein). However,
if the variance is not finite, as, for example, for Levy (stable
non-Gaussian) noise [48,49] then a different approach [50]
must be used.

Finally, we emphasize again that the approach described
in Sec. III provides an alternative way of characterizing and
predicting the response of an excitable system to fluctuations
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and to a mixture of periodic and stochastic stimuli. We consider
it to be a further (complementary) development of the local
analysis described in Ref. [8].
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