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Characterizing an ensemble of interacting oscillators: The mean-field variability index
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We introduce a way of characterizing an ensemble of interacting oscillators in terms of their mean-field
variability index κ , a dimensionless parameter defined as the variance of the oscillators’ mean field r divided by
the mean square of r . Based on the assumption that the overall mean field is the sum of a very large number of
oscillators, each giving a small contribution to the total signal, we show that κ depends on the mutual interactions
between the oscillators, independently of their number or spectral properties. For purely random phasors, or a
noninteracting ensemble of oscillators, κ converges on 0.215. Interactions push κ in different directions: lower
where there is interoscillator phase coherence, tending to zero for complete phase synchronization, or higher for
amplitude synchronization or intermittent synchronization. We calculate κ for several different cases to illustrate
its utility, using both numerically simulated data and electroencephalograph signals from the brains of human
subjects while awake, while anesthetized, and while undergoing an epileptic fit.
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I. INTRODUCTION

There exist in nature examples of cooperative systems
composed of a large number of units that mutually interact
and can exhibit a range of synchronization phenomena. The
neurons in the human brain are an obvious case in point [1] but,
quite generally, communication at the intercellular level [2]
and between subcellular components [3] is crucial to the
development and function of all multicellular organisms. Much
progress has been made in studying the associated phenomena
by investigating idealized ensembles of coupled oscillators, as
in the Kuramoto model [4]. General overviews of Kuramoto
oscillator ensembles have been provided by Acebrón et al. [5]
and by Strogatz [6]. Their use in modeling brain activity in
particular is described in Refs. [7–11].

In the case of the brain, interactions and synchronization can
occur on many different levels [12], ranging from the cellular
[8] up to the macroscopic where the huge groups of neurons
that are responsible for the different electroencephalograph
(EEG) waves observed on the scalp can themselves interact as
distinct entities both with each other [13,14] and with some of
the oscillatory processes of the cardiovascular system [15]. In
what follows we will be primarily concerned with low-level
interactions between the basic oscillators, thinking particularly
of the neurons in the brain.

Although Kuramoto models can often replicate observed
phenomena at a qualitative level, it is usually difficult to
make detailed comparisons with reality because relatively few
parameters of a real system are in practice accessible for direct
measurement. In particular the type and strength of coupling
between units may be difficult to determine. Sometimes the
characteristics of an individual oscillator, and the number of
oscillators, may be undetermined. In the case of an EEG
measurement, the collective behavior of billions of neurons
may be reduced to a univariate voltage time series [16].
Although complex nonlinear methods have been introduced
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for the study of neuronal ensembles, relevant information can
also be inferred from relatively simple statistical measures
such as the variance of an EEG signal power [17].

Recent work on more complex oscillator models has
produced examples of oscillator ensembles exhibiting par-
tial synchrony [18], multistable synchronous dynamics [19],
intermittent synchrony [20], synchronous subensembles [21],
and time variations of their parameters [22]. Temirbayev
et al. [23] describe some parameters of the ensemble that
change as the oscillators synchronize. We are motivated to
seek parameters of an oscillator ensemble system that depend
on its synchronization state, independent of the details of the
oscillators.

In this paper we will show that, by examining the
fluctuations in the strength of the mean field, we can infer
the type of interaction occurring between the oscillators,
even without knowing their number or type. We characterize
the interactions through the introduction of a measure, the
mean-field variability index (MFVI) κ , which we introduce
in Sec. II. In Sec. III we discuss κ for the case when there
are no interactions between the oscillators. The main part of
the paper, which relates to the more interesting case where
there are nonzero interoscillator interactions, and therefore
some degree of coherence, is presented in Sec. IV, consid-
ering κ for several different scenarios. Some special cases
(coherent cases with higher harmonics, complex coherence,
correlated amplitudes, and intermittency) are analyzed in
Sec. V. Section VI reveals distinct differences in the κ values
obtained from analysis of EEG data under different conditions
(wakefulness, anesthesia, and epilepsy), thus demonstrating
the potential usefulness of the MFVI. Finally, in Sec. VII we
summarize and draw conclusions.

II. THE MEAN FIELD OF AN ENSEMBLE AND THE
MEAN-FIELD VARIABILITY INDEX κ

Our approach involves investigation of the distribution of
amplitude values for a signal composed of many oscillatory
components. In the case of real signals the overall amplitude
can be determined by means of a Hilbert transform or consid-
ered as the magnitude of a wavelet transform component, or
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found in other ways [24]. Analytically, and in our oscillator
ensemble models, we calculate the magnitude of the mean
field.

Consider an ensemble of N sinusoidal oscillators repre-
sented as complex waveforms wi = ai(t)eiφi (t), with a mean
field F (t) = r(t)ei�(t), where at each instant in time

F = 1

N

N∑
i=1

wi. (1)

Note that in this representation the field is an average,
normalized by 1

N
for ease of working. The results below follow

for all large N and can thus be applied to the total field where
N is unknown. Both the amplitude and rate of phase growth
of the oscillators may vary. We can express the magnitude of
the mean field as

r =

√√√√√
(

1

N

N∑
i=1

wi

)⎛
⎝ 1

N

N∑
j=1

w∗
j

⎞
⎠. (2)

This is the square root of the sum of a Hermitian matrix of
terms. Note that r is real by definition. The terms under the
radical can be broken into diagonal and off-diagonal parts

r = 1

N

√√√√ N∑
i=1

wiw
∗
i + 2 Re

N−1∑
i=1

N∑
j=i+1

wiw
∗
j , (3)

where the asterisk denotes the complex conjugate. We define

κ = E(r2) − E(r)2

E(r2)
, (4)

where E( ) is the expectation value, or average over possibil-
ities (the expectation value is the same for all time assuming
stationarity). We will also use angular brackets to indicate
expectation values.

Evaluated by a series of complex measurements in time T ,
each oscillator has a power pi = 1

T

∑T
t=1 wi(t)wi(t)∗ and the

sum of all the powers is P = ∑N
i=1 pi . Assuming that over

time the system explores the space of all possible states, we
can estimate E(r2) by finding the power and E(r2) − E(r)2

by finding the variance of the mean-field amplitude.
We will consider three types of synchronization.
(i) In frequency synchronization the oscillators have similar

spectral characteristics but do not share phase or amplitude
information over time. It may arise as a result of coupling
between oscillators or on account of nonautonomous influ-
ences. Although not true synchronization, it can result in
the formation of clear peaks in the power spectrum of the
mean field and phase differences between oscillators that grow
exceedingly slowly.

(ii) In phase synchronization the oscillators tend to preserve
a fixed phase difference (equal to zero for a homogeneous
ensemble) [25] despite the frequency variability that can arise
in some cases [26].

(iii) In amplitude synchronization the amplitude variations
of the oscillators are correlated.

In reality these phenomena are often combined with each
other, as well as with external sources of noise, and they may
also be intermittent. Note also that in the real world, frequency

synchronization and coupling of phase or amplitude in the
time domain can result from interactions between individual
members of the ensemble and some third party influencing all
their frequencies, phases, or amplitudes together [27].

III. THE NONINTERACTING CASE κ = 0.215

We first examine the case where there are no interactions
between the oscillators. Consider a mean-field signal as arising
from the combination of a large number of complex oscillatory
signals, each making a small contribution to the ensemble, and
having uncorrelated phases and amplitudes

r(t)ei�(t) = 1

N

N∑
i=1

ai(t)e
iφi (t) = 1

N

N∑
i=1

[xi(t) + iyi(t)]. (5)

If the ensemble is composed of many noninteracting oscil-
lators, then the sum of all their values

∑N
i=1 wi(t) at any

given time is a sum of many independent random variables.
Hence

∑N
i=1 xi(t) and

∑N
i=1 yi(t) both belong to independent

Gaussian distributions with zero mean and width σ . It then
follows that the magnitude of

∑N
i=1[xi(t) + iyi(t)] is described

by a Rayleigh distribution [28] and the phase is given by a
uniform distribution over the interval [−π,π ].

Using normalized distributions, it follows that

E(r) =
∫ ∞

0
r

r

σ 2
e−r2/2σ 2

dr = σ

√
π

2
(6)

and

E(r2) =
∫ ∞

0
r2 r

σ 2
e−r2/2σ 2

dr = 2σ 2. (7)

Hence a complex Gaussian white noise signal—the maximally
desynchronized case—gives

κ = 1 − π

4
≈ 0.215, (8)

a value that is independent of both the number and amplitudes
of the oscillators that produce the signal.

Note that this case also includes ensembles exhibiting
frequency synchronization, where the oscillators have similar
spectral characteristics but without any phase or amplitude
information shared over time. To determine κ correctly, the
period of measurement must of course be sufficiently long, or
the signal sufficiently broadband, to obtain many independent
measurements of r .

IV. THE COHERENT CASE κ < 0.215

Oscillators can become phase synchronized by coupling.
It is clear that if all the oscillators have become phase
locked, the only variability in the mean field must come
from amplitude variability: If there is no amplitude variability
then κ = 0 because the mean-field amplitude is fixed. We
consider two kinds of partial phase synchronization producing
0 < κ < 0.215. The first kind involves some of the oscillators
becoming fully coherent while others remain unsynchronized;
the second involves all of the oscillators becoming partially
coherent with a mean coherence c.
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Squaring Eq. (3) we obtain

r2 = 1

N2

⎡
⎣ N∑

i=1

wiw
∗
i + 2

N−1∑
i=1

Re

⎛
⎝ N∑

j=i+1

wiw
∗
j

⎞
⎠

⎤
⎦ . (9)

For unrelated phase and amplitude data, including ensembles
of frequency-synchronized broadband oscillators

〈2
N−1∑
i=1

Re

⎛
⎝ N∑

j=i+1

wiw
∗
j

⎞
⎠〉 = 0, (10)

so that

E(r2) = P

N2
. (11)

For an ensemble of unit phasors (each of which is a complex
number whose magnitude is normalized to unity and whose
argument represents the phase of the oscillation) this reduces
to 1/N .

We represent the ith oscillator by wi = aie
iφi , thus having

an amplitude ai and a phase φi at every moment in time.
Where phase relationships are maintained between oscillators
the mean field is no longer a random walk and the expectation
value of cij = eiφi e−iφj is nonzero. We define Cij to be
〈eiφi e−iφj 〉. The phase coherence [29] of wi and wj is equal to
the magnitude of Cij .

We will illustrate various cases using a classic homoge-
neous Kuramoto model augmented by noise,

φ̇k(t) = ωk + ε

N

N∑
j=1

sin[φj (t) − φk(t)] + ηk(t),

(12)
k = 1, . . . ,N.

Here φk is the phase of the kth oscillator at time t and ωk

is its natural frequency or eigenfrequency, chosen at random
from a symmetric unimodal distribution g(ω) whose width is
characterized by a parameter γ ; we define the mean of g(ω)
to be zero by transforming to the rotating frame. There exists
all-to-all coupling between the N nodes with strength ε ∈ R+.
The noise ηk(t) (if applied) follows a Gaussian distribution
with zero mean and intensity 2D. Initially at time t = 0 all
the phases are randomly selected from a uniform distribution
[0, . . . ,2π ). The collective rhythm is quantified by

r(t)ei�(t) = 1

N

N∑
j=1

eiφj (t), (13)

where �(t) is the average phase and r(t) is the mean-field
amplitude, which also describes the synchronization: r =
0 for fully incoherent oscillators and r = 1 for the case
of complete synchronization when all the oscillators have
identical phases. The value of the mean field depends only on
the interplay between the coupling strength and the diversity
in the ensemble, described either by the width of the natural
distribution of frequencies γ or by the noise intensity D.
Hence there exists a critical value of the coupling εc above
which some of the oscillators become coherent, i.e., phase
locked with constant phase difference, resulting in a nonzero
mean field. For increasing coupling, the number of locked

oscillators increases, while the phase differences between the
locked oscillators decreases, and in the infinite limit all of
the oscillators become locked to the same mean phase. When
required all ωk are set to zero to obtain a homogeneous ensem-
ble. However, for finite-size ensembles N < ∞, the mean-field
value is fluctuating with a variance of order 1/N and for the
noncoherent case ε < εc the size of the mean field is in the
range of O(N−1/2) [5]. This is of crucial importance for our
analysis of real systems, where finite-size effects are inevitable.

The white noise case was verified numerically with
a Kuramoto ensemble of 1000 desynchronized oscillators
[Eq. (13)] for ωk = 0 ∀ k, D = 0.2. A coupling of ε = 0.01
(well below the critical coupling) yielded κ = 0.2097 with
standard deviation 0.0123 for 1-min segments from a 20-min
time series.

A. Some oscillators coherent

Consider the case where the coupling between oscillators
is sufficient to fully synchronize some of them, but not others.
Let cij = 1 for all i,j < p, the total number of synchronized
oscillators. A further q oscillators remain unsynchronized. We
assume that the phases of the synchronized oscillators are all
the same and the phases of the unsynchronized oscillators
are uniformly distributed. Note, however, that this will not be
exactly true in the case of the Kuramoto model (where the
phases of the synchronized oscillators, though locked, are not
all the same and the phases of the unsynchronized oscillators
are not uniformly distributed). We express all phases relative to
the phase of the synchronized oscillators, which is set to zero.

If phase relationships are independent of amplitude rela-
tionships,

E(r2) = 1

N2

⎛
⎝P + 2

p∑
i=2

i∑
j=1

〈aiaj 〉 + 2Re
p∑

i=2

p+q∑
j=p+1

〈aiaj 〉eiφj

+ 2Re
p+q∑

i=p+2

i∑
j=1

〈aiaj 〉cij

⎞
⎠ . (14)

If amplitude variability is also itself uncorrelated,

E(r2) = 1

N2

⎛
⎝P + 2

p∑
i=2

i∑
j=1

〈ai〉〈aj 〉

+ 2Re
p∑

i=2

p+q∑
j=p+1

〈ai〉〈aj 〉eiφj

+ 2Re
p+q∑

i=p+2

i∑
j=1

〈ai〉〈aj 〉cij

⎞
⎠ . (15)

For a population of oscillators without amplitude correlations
but with the same mean amplitude, 〈ai〉 = a, so

E(r2) = 1

N2

⎛
⎝P + 2

p∑
i=2

i∑
j=1

a2 + 2Re
p∑

i=2

p+q∑
j=p+1

a2eiφj

+ 2Re
p+q∑

i=p+2

i∑
j=1

a2cij

⎞
⎠ . (16)
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To evaluate E(r), Eq. (3) becomes [taking out a factor of√
P + p(p − 1)a2],

E(r) = 1

N〈√
(P + p(p − 1)a2)

⎡
⎣1 + 1

(P + p(p − 1)a2)

×
⎛
⎝2 Re

p∑
i=2

p+q∑
j=p+1

a2eiφj

+ 2 Re
p+q∑

i=p+2

i∑
j=1

a2cij

⎞
⎠

⎤
⎦

1/2〉. (17)

We evaluate E(r) as a Taylor expansion, setting

x = 1

P + p(p − 1)a2

×
⎛
⎝2 Re

p∑
i=2

p+q∑
j=p+1

a2eiφj + 2 Re
p+q∑

i=p+2

i∑
j=1

a2cij

⎞
⎠ ,

assuming that |x| < 1 and the quantity under the radical (the
contribution from self terms and the coherent part of the
ensemble) dominates the mean field. As a sum of random
phasors, 〈x〉 = 0, giving

E(r) ≈ 1

N

√
P + p(p − 1)a2

〈
1 − 1

8
x2 · · ·

〉
, (18)

and so Eq. (4) reduces to

κ ≈ 1 −
(

1 − 1

8
〈x2〉

)2

. (19)

We must evaluate

〈x2〉 = 1

[P + p(p − 1)a2]2

×〈⎛
⎝2 Re

p∑
i=2

p+q∑
j=p+1

a2eiφj + 2 Re
p+q∑

i=p+2

i∑
j=1

a2cij

⎞
⎠

×
⎛
⎝2 Re

p∑
k=2

p+q∑
l=p+1

a2eiφl + 2 Re
p+q∑

k=p+2

i∑
l=1

a2ckl

⎞
⎠〉.

(20)

Using the fact that all except self terms have an expectation
value of zero, we obtain

〈x2〉 = a4

[P + p(p − 1)a2]2
[2p2q + q(q − 1)]. (21)

For the canonical Kuramoto model, composed of individual
phase oscillators in the absence of noise, with a distribution
of frequencies and coupling greater than the critical value
required to synchronize some of the oscillators,

κ ≈ 1

4

1

(p2 + q)2
[2p2q + q(q − 1)]. (22)

If we take p ≈ Nr and q ≈ N (1 − r), where r is the measured
mean field of a partially synchronized N -oscillator Kuramoto
ensemble, we expect

κ ≈ 1

4

(
1

[N2r̄2 + N (1 − r̄)]2

)
×{2N3r̄2(1 − r̄) + N (1 − r̄)[N (1 − r̄) − 1]}, (23)

or to leading order in N

κ ≈ 1

2

1

Nr̄2
(1 − r̄). (24)

We have tested this estimate by running numerical simu-
lations. We set up a nonhomogeneous ensemble of 50 000
Kuramoto oscillators with γ = 0.5 and D = 0, evolving over
500 s with a time step of 0.05 s. The transient in the first 200 s
was discarded to leave 300 s of data. Each result is averaged
over 25 runs. We find εc = 2γ , and below εc incoherent
behavior is observed. For high values of the coupling ε a
large proportion of the oscillators become synchronized and r

approaches unity.
In Fig. 1(a) we see the manner in which κ falls off with

respect to coupling: With low coupling κ ∼ 0.215 (incoherent
case) and it falls towards zero for higher coupling (high degree
of coherence). In Fig. 1(b) we present the predicted κ values for
this idealized picture, alongside values generated by actually
picking rN phasors with the same phase and (1 − r)N phasors
from a uniform distribution over the interval [−π,π ] (average
of 1000 realizations for each r). We use these ideal phasors

10
0

10
1

10
−7

10
−4

10
−1

ε

κ

(a)

0 0.3 0.6 0.9

10
−7

10
−4

10
−1

r

κ

(b)

FIG. 1. (a) Relationship between κ and the coupling constant ε

(black solid line) for the classic Kuramoto model with a Lorentzian
distribution of frequencies, where γ = 0.5 and N = 50 000. The
horizontal dashed gray line indicates κ for white noise and the vertical
dashed gray line indicates εc. (b) Relationship between κ and r (N
fixed) for the classic Kuramoto model with Lorentzian (black dashed
line) and Gaussian (gray dashed line) distributions of frequencies with
a proportion of the oscillators synchronized. A simulation of ideal
phasors (black dotted line) is almost coincident with the expected κ

values (gray solid line) calculated directly from Eq. (24). These values
differ slightly from those for Kuramoto oscillators with a Lorentzian
distribution, over a range of several powers of 10 in κ .
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to represent the state of a set of oscillators in which those
oscillators that are not phase locked together have phases
completely independent of the rest. The approximation (24) is
accurate. However, in any real ensemble the phase coherence
of the synchronized oscillators is slightly less than unity and
the phase distribution of the unsynchronized oscillators is not
entirely uniform.

In Fig. 1(b) we also present a simulation in which the
distribution of oscillator natural frequencies is Gaussian rather
than Lorentzian. We see that the difference between the
idealized model (of some oscillators fully synchronized and

others fully desynchronized) and the actual results depends on
the details of the simulation used.

B. All oscillators partially coherent

In the case of a homogeneous population of unit oscillators
maintaining zero phase difference on average, Cij = 〈cij 〉 is
expected to be real and positive and thus equal to the phase
coherence. Of course, Cii is always equal to unity. We define
the mean coherence c = 〈 1

N(N−1)

∑N−1
i=1

∑N
j=i+1(cij + c∗

ij )〉 to
obtain

E(r2) = 1

N2

⎛
⎝P +

N−1∑
i=1

N∑
j=i+1

〈aiaj cij + aiaj c
∗
ij 〉

⎞
⎠ = 1

N2

⎛
⎝P + 2

N−1∑
i=1

N∑
j=i+1

〈aiaj 〉c
⎞
⎠ (25)

if phase relationships are independent of amplitude relationships. If the amplitude variability is also itself uncorrelated, then

E(r2) = 1

N2

⎛
⎝P + 2

N−1∑
i=1

N∑
j=i+1

〈ai〉〈aj 〉c
⎞
⎠ . (26)

For a population of oscillators without amplitude correlations but with the same mean amplitude, 〈ai〉 = a and so

E(r2) = 1

N2
[P + N (N − 1)a2c]. (27)

To evaluate E(r), Eq. (3) becomes

r = 1

N

⎡
⎢⎢⎢⎢⎣(P + N (N − 1)a2c) +

⎛
⎜⎜⎜⎜⎝

N∑
i=1

N∑
j=1
j 
=i

[aiaj (cij − c)]

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

1/2

. (28)

Taking out a factor of
√

P + N (N − 1)a2c, we obtain

E(r) = 1

N〈√
P + N (N − 1)a2c

⎡
⎢⎢⎢⎢⎣1 + 1

(P + N (N − 1)a2c)

⎛
⎜⎜⎜⎜⎝

N∑
i=1

N∑
j=1
j 
=i

[aiaj (cij − c)]

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

1/2

〉. (29)

We evaluate E(r) as a Taylor expansion, setting

x = 1

P + N (N − 1)a2c

⎛
⎜⎜⎜⎜⎝

N∑
i=1

N∑
j=1
j 
=i

[aiaj (cij − c)]

⎞
⎟⎟⎟⎟⎠

and assuming that |x| < 1, i.e., that the sum of all (ci,j − c)/c is a small fraction when the ensemble is fluctuating about a steady
state. By construction 〈x〉 = 0, giving

E(r) ≈ 1

N

√
P + N (N − 1)a2c

〈
1 − 1

8
x2 · · ·

〉
, (30)

and as before

κ ≈ 1 −
(

1 − 1

8
〈x2〉

)2

. (31)
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We must examine

〈x2〉 = 1

[P + N (N − 1)a2c]2〈
⎛
⎜⎜⎜⎜⎝

N∑
i=1

N∑
j=1
j 
=i

[aiaj (cij − c)]
N∑

k=1

N∑
l = 1

l 
=k

[akal(ckl − c)]

⎞
⎟⎟⎟⎟⎠〉, (32)

where there is a total of [N (N − 1)]2 terms in the numerator. The denominator also grows as N4.

The N2(N − 1)2 different

aiajakal(cij ckl − ccij − cckl + c2)

terms have different expectation values depending on whether
any of the oscillator indices is repeated. The most obvious
special cases are the N (N − 1) self terms for which i = k and
j = l, or the N (N − 1) for which i = l and j = k, in which
case

〈cij cji − ccij − ccji + c2〉 = 〈cij c
∗
ij − ccij − cc∗

ij + c2〉
= 1 − c2.

We also need to know how many terms contain i = l, i = k,
j = l, or j = k, how many terms are of the form i 
= j 
= k 
=
l, and which group of terms dominates the numerator of 〈x2〉.

We consider the population of oscillators to be homoge-
neous if 〈cij ckl〉 = c2 for i,j,k,l are all different. In this case
most terms cancel and the leading-order term in the numerator
of 〈x2〉 is of order N3 (see below). If for large N there exist
distinct groups of oscillator indices for which 〈cij ckl〉 > c2

when i,j,k,lεGm, with these groups making up a significant
proportion of the total number of oscillators, then we consider
the population to be inhomogeneous.

1. The homogeneous case

There are N (N − 1) terms of the form

aiajaiaj (cij cij − ccij − ccij + c2),

N (N − 1) terms of the form

aiajajai(cij cji − ccij − ccji + c2),

and N (N − 1)(N − 2) terms of the form

aiajakaj (cij ckj − ccij − cckj + c2)

(i.e., where j = l), and the same number for i = k, i = l, or
j = k. There remain N (N − 1)(N − 2)(N − 3) terms of the
form

aiajakal(cij ckl − ccij − cckl + c2),

where i 
= j 
= k 
= l. For a population without amplitude
correlations,

〈aiajakal〉 = 〈ai〉〈aj 〉〈ak〉〈al〉,
where i 
= j 
= k 
= l, whereas〈

a2
i a

2
j

〉 = 〈
a2

i

〉〈
a2

j

〉 = pipj ,〈
aia

2
j ak

〉 = 〈ai〉
〈
a2

j

〉〈ak〉 = 〈ai〉pj 〈ak〉,
and so on.

In Fig. 2(a) we see the dependence on N of the numbers
of the different types of terms. For large N the i 
= j 
=
k 
= l terms are most numerous, however for these terms
〈cij ckl〉 − c2 = 0. Only terms where two or more indices are
equal contribute to 〈x2〉, assuming that there are no amplitude
correlations.

The expectation values 〈cij cil〉, etc., will depend on the
details of the ensemble, but we can see that altogether there
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FIG. 2. (a) Number of terms of different types occurring in the
numerator of 〈x2〉 in Eq. (32) as functions of N . The number of
self terms i = k and j = l, or i = l and j = k, increases as N2

(dashed black line). The number of i = l, i = k, j = l, or j = k

terms increases as N3 (dotted black line) and the number of i 
= j 
=
k 
= l terms increases as N (N − 1)(N − 2)(N − 3) (gray line), i.e.,
approximately as N 4 for large N . Thus the total number of terms in the
numerator increases as N4 (solid black line), as does the denominator
of 〈x2〉. However, in the absence of amplitude correlations, only the
i = l or k and j = l or k terms produce significant net contributions
to the numerator of 〈x2〉, which falls off as 1/N . (b) Dependence
of κ on N for noisy homogeneous Kuramoto ensembles (ωk = 0)
drawn from three different distributions (different c and 〈cij ckj 〉). The
lowest coherence (smallest coupling ε = 5.0) case is shown at the
top (dotted line), the highest coherence (largest coupling ε = 6.5)
at the bottom (dashed line), and an intermediate case in the middle
(solid line). In each case the points are calculated from numerical
simulations of Eq. (13) and the lines connecting them are guides to
the eye. The gradient of the log-log plots is −1, indicating the inverse
relationship.
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are 4N (N − 1)(N − 2) terms for which i = k, j = l, i = l,
or j = k, plus 2N (N − 1) terms when i = k and j = l, or
i = l and j = k. The order N3 contribution dominates the
numerator of 〈x2〉.

When c > 0, the [N + N (N − 1)c]2 factor in the denom-
inator of Eq. (32) has an N4 dependence and thus 〈x2〉 tends
towards zero as 1/N for large N . Even if c is small in absolute
terms, if N is large enough then the mean field will always be
dominated by the directed walk in the complex plane resulting
from the agreement on a single mean phase at each point in
time.

Plugging 〈x2〉 back into Eq. (30) we see that, for large
N , both the root-mean-square field and E(r) converge on Na

times the square root of c, the mean phase coherence of a pair
of oscillators in the ensemble. Hence the mean field of all the
oscillators is proportional to the square root of the mean phase
coherence of one pair of oscillators.

The limiting case is complete phase coherence between all
oscillators in the ensemble, c = 1, E(r) = E(r2), in which
case the variance of the mean-field magnitude is zero, as is κ .
We can verify that

κ ≈ 1
4 〈x2〉

then depends on 1/N for large N . In our classic homogeneous
Kuramoto model augmented by the noise term, we use
Eq. (13) and choose ωk = 0 ∀ k. The Gaussian white noise
term amplitude is set at D = 0.2. The integration scheme
is backward finite differencing with an integration time step
0.05 s. We consider the coupling cases ε = 5.0,5.5,6.5 and
omit the first minute of data to allow for transients to
decay.

In Fig. 2(b) we plot κ as a function of N . Although
the value of κ depends on the details of the distribution of
relative phases produced by the coupling, we see that κ falls
off as 1/N with increasing N for the homogeneous case, as
expected.

2. Vanishing coherence

If we allow c values below 1/N , or c = 0, then the
approximation becomes

〈x2〉 = 1

P

1

P

⎛
⎝N−1∑

i=1

N∑
j=i+1

pipj + pjpi

⎞
⎠ , (33)

implying, in the absence of amplitude correlations, that

κ = E(r2) − E(r)2

E(r2)
≈ 1 −

(
7

8

)2

= 15

64
= 0.234. (34)

However, for c = 0 the Taylor expansion no longer converges
because the 〈xq〉 increase monotonically in magnitude as q

rises. In fact, when we perform the square root and then average
over the distribution of possible x values, we implicitly include
cases with |x| > 1, violating the condition for convergence.
For c � 1/N these cases are sufficiently rare that they only
dominate the 〈xq〉 for very high q and we can estimate E(r)
using the q = 2 term only. For c ≈ 1/N or less the state is
essentially noninteracting and the value of κ is near that for
white noise (0.215), which we evaluated above.

The addition of measurement noise to the mean field of
a coherent ensemble obviously produces a mixed value 0 <

κ < 0.215. The noise need not necessarily be white, of course.
We can consider the general case of a noise signal that is
stationary and reducible to a large number of independent
Fourier components, each providing a small contribution to the
signal. The same reasoning that we applied in Sec. III to find
κ for a large number of oscillations with independent phases
shows that κ for the noise will be the same as for white noise.
For example, a detrended Brown noise signal gives κ values
indistinguishable from white noise. However, if the signal is
contaminated by additive noise with a highly non-Gaussian
distribution of absolute values, then this may systematically
perturb κ: For example, the κ of a sinusoid is zero, so that
adding a large sinusoid to another signal might produce a near
zero κ . Thus it is desirable to filter out any such contamination
prior to the analysis.

3. An inhomogeneous case

The simplest example of an inhomogeneous case is one
in which the population can be broken down into M subpop-
ulations of size p(m)N , composed of individual oscillators
that on average exhibit high coherence c(m) with other
members of their own subpopulation, but on average low
coherence c(m1,m2) with members of the other subpopu-
lations, 〈c(m1,m2)〉 = c0. In this case it is convenient to
reexpress the mean field as the sum of the mean fields
of the individually coherent subpopulations, each of which
has magnitude p(m)N

√
c(m). We now effectively have M

oscillators instead of N . This gives

E(r2) = 1

N2

(
M∑

m1=1

[p(m1)N ]2c(m1) + 2
M−1∑
m1=1

M∑
m2=m1+1

p(m1)Np(m2)Nc0

)
(35)

and

E(r) =
√
E(r2)

⎛
⎝1 − 1

8[N2E(r2)]2

〈
2
M−1∑
m1=1

M∑
m2=m1+1

p(m1)Np(m2)N [c(m1,m2) − c0]2
M−1∑
m3=1

M∑
m4=m3+1

p(m3)Np(m4)N [c(m3,m4) − c0]

〉⎞⎠.

(36)

We can group terms as before and assume that 〈c(m1,m2)c(m3,m4)〉 = c2
0 for four different sub-populations indexed

m1,m2,m3,m4. The leading order M3 non-vanishing terms in the numerator of 〈x2〉 are of the m1 = m3,m1 = m4,m2 = m3

or m2 = m4 type, similarly to the homogenous case.
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If M is very large then we return to the coherent case for
c0 > 0 with κ tending to 0; where the number of subpopula-
tions is not very large, however, the M3 term in the numerator
of 〈x2〉 does not vanish and κ is then intermediate between
0 and 0.215. If we compare the behavior of several different-
sized ensembles made up of different numbers (different values
of M) of equivalent subpopulations (maintaining the same
internal and cross coherence) then pm = 1/M and the 〈x2〉 for
the different ensembles will be expected to be proportional
to 1/M, just as in the homogeneous case where it was
proportional to 1/N .

Where there are more complex relationships [c(m1,m2)
not purely real], the Taylor series approach may break down
altogether, e.g., in the case of two subpopulations maintaining
an antiphase relationship [negative c(1,2)]. See also the
discussion below in Sec. V B.

V. COMPLEX COHERENCE, CORRELATED
AMPLITUDES, AND INTERMITTENCY κ > 0.215

In addition to the low-κ phase-coupled ensembles described
above, there are a number of interacting cases in which the
ensemble yields κ values even higher than those for the
noninteracting case. The spread of possible mean-field values
arising from such interacting ensembles is actually greater than
that obtained when the phase distribution is entirely random.

A. Harmonics

A coherent state with higher harmonics, i.e., synchronized
nonsinusoidal oscillations, will also produce a nonconstant
mean field and intermediate values of κ . We can represent
the mean field of a nonsinusoidal oscillation by the sum of
harmonics

∑
n ane

in/2π . Unlike the homogeneous coherent
cases considered thus far, the power of the nth harmonic or
oscillator will not necessarily tend to zero as a proportion of
the total power as more harmonics are added (and the sum
of the terms converges to the waveform) so 0 < κ < 1. For a
square wave κ = 0.1135. Coherent harmonics can be reliably
detected in noisy broadband signals [30].

B. Complex coherence

Consider general complex coherence [c(m1,m2) complex,
conjugated by an exchange of subpopulations m1 and m2].
Where subpopulations making up a large fraction of the
ensemble maintain a systematic phase difference relative to
each other, the variance is in general larger than would be
expected for a coherent ensemble with the same average
mean field. For example, an ensemble composed of two
otherwise equivalent subpopulations maintaining an antiphase
relationship would have a vanishingly small mean field subject
to the variability in both populations and consequently a
relatively high κ in the range 0.215 < κ < 1.

C. Correlated amplitudes

If 〈a2
i a

2
j 〉 > pipj , 〈a2

i aj al〉 > pi〈aj 〉〈al〉, and/or
〈aia

2
j ak〉〉〈ai〉pj 〈ak〉, then, due to correlations between

aj (t) and ai(t), the assumptions made in Eq. (15) and
thereafter break down and 〈x2〉 in Eq. (32) increases. The

Taylor series approximation breaks down if the amplitude
correlations become strong because the typical |x| then
approaches or exceeds unity.

Intuitively, we can see that correlated changes in amplitude
may produce arbitrary changes in the mean field, with or
without phase coherence. Even the mean field of random
phasors will change proportionately if the amplitude of every
phasor changes simultaneously. Thus κ may in principle take
any value within 0 < κ < 1 if sufficiently strong amplitude
variability and correlations are present.

D. Intermittency

We consider a simple multistable state in which the
ensemble undergoes transitions between states with different
mean-field strengths, e.g., two states with differing coherence.
If the mean field of the less coherent state (state 1) is some
proportion ε of the mean field in the more coherent state (state
2) and the proportion of time spent in the higher mean-field
state is τ , then we can write E(r1) = εE(r2), E(r) = τE(r2) +
(1 − τ )εE(r2), and E(r2) ≈ τE(r2

2 ) + (1 − τ )ε2E(r2
2 ),

giving

κ ≈ 1 − [τ + (1 − τ )ε][τ + (1 − τ )ε]

τ + (1 − τ )ε2
. (37)

Here we assume that both states are sufficiently coherent to
approximate E(r2

i ) by E(ri)2 for both i = 1 and 2. In other
words, we neglect the fluctuations within a state as they make
a small contribution to the mean-field variance compared to
the transitions between states. If ε goes to 1, then κ goes back
to zero as expected for complete coherence but, for small ε,

κ ≈ 1 − τ. (38)

Thus, where the variability attributable to differences in mean-
field strength of the two states is larger than the variability of
either state, this is dominant and κ = 1 − τ for τ � ε. We see
that a system making transitions between two states with low
κ can have a κ value greater than that for white noise.

To model the intermittency we again use the classical
(noiseless) Kuramoto ensemble of Eq. (13), but with time-
dependent coupling ε(t), which is periodically pulsed between
two values such that at each instant in time every oscillator
in the ensemble is subjected to exactly the same value of
ε(t). We choose ε(t) to have a value well above the critical
coupling for some fraction of time less than the maximum
pulse length of 60 s; for the rest of the time, ε(t) is well below
the critical coupling. This procedure is designed to switch the
entire ensemble between the synchronized and desynchronized
states. For a signal length of 20 min and ε(t) held high for
durations of 5–55 s, the results shown in Fig. 3 confirm that
the smaller the proportion of time spent in the synchronized
state, the higher κ becomes, tending towards unity for small
τ . For this model if τ < 0.78 then κ > 0.215. Hence κ can be
larger than for the white noise case.

VI. THE MFVI OF EEG SIGNALS

We further explore models relating to brain dynamics and
intermittency, as discussed in Ref. [31]. We have investigated
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FIG. 3. Value of κ (black filled circles) as a function of inter-
mittency τ . Results were obtained using a 2000-oscillator Kuramoto
model, D = 0, a Gaussian distribution of frequencies with width
γ = 4.0, and coupling strengths 20 and 0.1. Each point was generated
from a 20-min time series. The τ value runs from 5/60 to 55/60 s.
The simulations are in good agreement with the approximation (37)
for κ (slanted gray dashed line), where ε is estimated to range from
0.02 to 0.98.

the changes in κ that occur in two nonstandard states of an
otherwise healthy human brain: anesthesia and an epileptic fit.

It is frequency synchrony between neurons that produces
the spectral peaks in the EEG as shown in Fig. 4(a). We
wish to know if the mean-field oscillations in these bands
also exhibit evidence for phase or amplitude synchrony. A
Hilbert transform of the EEG voltage time-series signal can
be used to obtain the mean field or instantaneous signal
amplitude r at each point in time, from which we can find
κ = var[g(r)]/mean[g(r2)].

A. The MFVI for anesthesia vs normal wakefulness

We have analyzed a typical pair of 20-min single-channel
EEG time series recorded from a surgical patient participating
in the BRACCIA research program. One time series was
recorded from the awake patient and the other from the same
patient after induction of general anesthesia. Finite impulse
response (FIR) filters were used to subdivide the data into
the following frequency intervals: δ (0.8–4 Hz), θ (4–7.5 Hz),
α (7.5–14 Hz), β (14–22 Hz), γ (22–40 Hz). Note that the
precise selection of the frequency intervals is important in
enabling meaningful conclusions to be drawn from the data.
Each filtered time series was split into 30 s windows and a value
of κ was calculated for each window in each band. Additionally
20-min time series of white noise were filtered in the same way
to show that the filtering does not significantly perturb the EEG
results; unfiltered white noise gives κ = 0.2146 ± 0.0007. The
κ values for bandpass-filtered EEG signals and white noise are
shown in Fig. 4(b).

A Wilcoxon test was used to evaluate the statistical
significance of the κ values. The distribution of mean κ values
obtained was also compared to time series of random noise
with identical filtering. Unpaired tests of awake vs anesthetized
show statistically significant differences in all bands apart from
θ where p = 0.3998. The test for α gives p = 0.0085 and
all the other bands have much lower values of p. Unpaired
tests of awake compared to noise show statistically significant
differences in all bands, with p = 0.04 in the γ -band and

delta theta alpha beta gamma

0.2

0.4

0.6

EEG band
κ

(c)

delta theta alpha beta gamma

0.2

0.3

0.4

0.5

EEG band

κ

(b)

(a)
)(

FIG. 4. (Color online) Applications to anesthesia and epilepsy.
(a) Wavelet transform power of the δ − γ bands (0.8 − 40 Hz) in
an EEG signal from a typical anesthetized subject shows epochs of
frequency synchronization (yellow, across whole spectrum). (b) κ

values for single-channel EEG data (duration 20 mins, windowed
into 30 s segments) from a typical subject, both anesthetized (red
lozenges) and awake (black point-up triangles). Note that the κ values
for these two states are clearly distinguishable from white noise (khaki
point-down triangles) and between themselves in certain EEG bands.
(c) κ values for EEG data from an epilepsy study [32]. The EEG from
patients in their non-seizure state (black, point-up triangles) looks
similar to white noise values (khaki point-down triangles), but it is still
statistically different. During seizure (red lozenges), however, there
is evidence for phase synchronization in the δ and especially θ bands
and for intermittent and/or amplitude synchronization in the β and γ

bands. In (b) and (c) the error bars refer to a one-standard-deviation
spread in the values computed within different windows; they are
omitted where the uncertainty is comparable with, or smaller than,
the size of the symbol. In each case the horizontal grey dashed line
indicates the value of κ = 0.215 that would be seen in the absence of
inter-oscillator interactions.

p < 0.0005 for all other bands. Unpaired tests of anesthetized
vs noise show significant differences (p < 10−10) in all bands.

The results are inconsistent with either a non-interacting
phase-desynchronized case, a fully phase-synchronized case,
or continuous partial phase coherence. They suggest either
(possibly intermittent) amplitude synchrony, or intermittent
phase coherence, or both. The discrete time-separated peaks
in the whole spectrum of the wavelet transform shown in
Fig. 4(a) suggest intermittent synchronization, where different
intermittencies [see Figs. 3 and 4(a)] lead to different values
of κ [see Figs. 3 and 4(b)].

We can compare the actual κ values obtained to those of
artificially generated surrogate signals with otherwise similar
characteristics. Surrogates that preserve the actual distribution
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of mean-field values in the signal trivially preserve κ . A
Fourier phase-shuffled surrogate [33], which preserves the
Fourier spectrum of a signal but not the distribution, fails
to preserve the high-κ value obtained for an intermittently
coupled ensemble or for a real-world EEG signal. The κ

values tend to be “whitened” in such surrogates, as a sum
of many independent Fourier components with different
amplitudes. Hence the κ values are independent of the spectral
characteristics of the signals.

B. The MFVI in an epileptic fit vs normal wakefulness

We also applied the measure to EEG data recorded for
subjects in epileptic seizure, taken from Ref. [32] [see
Fig. 4(c)]. Unpaired Wilcoxon tests were used to evaluate
the statistical significance of the κ values; κ was calculated
for 100 signals of length 23.6 s. The distribution of mean
κ values obtained for all 100 signals was compared to 100
noise cases with identical filtering. The results were that: (i)
for non-seizure vs seizure all are statistically different except
in the case of the α-band (p = 0.426), while for δ they are
borderline (p = 0.045); and (ii) for non-seizure vs noise and
seizure vs noise, they are all statistically different except for
the δ-band during seizure (p = 0.4340).

Although the results for the subjects when awake are similar
to those from the BRACCIA cohort (κ > 0.215), we see that
for the θ band during seizure, κ is actually less than for white
noise, indicating pathological phase synchronization of oscil-
lations in this band. The θ rhythm is commonly associated with
the hippocampal formation and the hippocampal formation
is associated with temporal lobe epilepsy. We speculate that
this is why we observe phase synchronization of oscillations
in this band during epileptic seizures. Furthermore, the β

and γ bands (cognitive bands) show more κ greater than
in the awake case indicating more intermittency (i.e., longer
epochs of the desynchronized state) and/or more amplitude
synchronization [34].

VII. CONCLUSION

The mean-field strength of an oscillator ensemble with
random phases has highly predictable statistics. Interactions
between the oscillators change the distribution of mean-field
values in characteristic ways. Their mean-field variability
index κ is a dimensionless parameter that quantifies the
distribution of mean-field values. Different κ values arise

TABLE I. Characteristics of oscillator ensembles corresponding
to different values of their mean-field variability index (MFVI) κ . It
is assumed that any harmonics present in the raw signal have been
removed by filtration.

MFVI State of the ensemble

κ = 0 complete phase synchronization
0 < κ < 0.215 partially phase synchronized
κ = 0.215 noninteracting (or white noise)
0.215 < κ < 1.000 complex coherence, correlated

amplitudes, or intermittency

depending on the coupling between the oscillators in an
ensemble, but independent of spectral content or filtering, as
summarized in Table I. There are three important caveats.
First, the method only works for cases where we have good a
priori reason to believe that the signal is the summed output
of many oscillators, each making a small contribution to the
total: Otherwise, we cannot expect to deduce anything from the
distribution of field values. Second, the method is best applied
in conjunction with established approaches in order to gain
deeper insight. Thus it can be combined with, for example, the
wavelet transform, or with other time-frequency analysis and
decomposition methods, to isolate particular spectral features
whose κ values can then be checked. Third, it is important to
check for harmonics in the signal [30] and, if necessary, to
filter these out because harmonics in a coherent system can
push κ above 0.215.

We can distinguish coupled from uncoupled ensembles in
the real world, using only the parameter κ and irrespective of
any other information but a series of independent measure-
ments of their mean field r . In the case of EEG signals, in
addition to the frequency synchronization evident from the
wavelet spectrum, we find evidence for interactions such as
intermittent phase coupling or amplitude coupling. It is evident
that detailed applications of these ideas to, for example, the
physiology of anesthesia or epilepsy, as well as to other aspects
of brain function, are likely to be rewarding.
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