Lancaster University Management School

Economics Working Paper Series

2013/002

Technical Appendix to: A New Look at Variation in Employment Growth in Canada: The Role of Industry, Provincial, National and External Factors.

Michele Campolieti, Deborah Gefang and Gary Koop

The Department of Economics
Lancaster University Management School
Lancaster LA1 4YX
UK
© Authors
All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission, provided that full acknowledgement is given.

Technical Appendix to: A New Look at Variation in Employment Growth in Canada: The Role of Industry, Provincial, National and External Factors

Michele Campolieti*
Department of Management, University of Toronto Scarborough Centre for Industrial Relations, University of Toronto
Deborah Gefang
Department of Economics, Lancaster University
Gary Koop
Department of Economics, University of Strathclyde

February 1, 2013

[^0]
1 Priors, Posteriors and MCMC algorithms

The models listed in Table 1 of the main paper can each be estimated using MCMC. Depending on the assumptions of a model, we can use a selection of the Gibbs blocks described in the rest of the section to form a full conditional Gibbs sampler that is suitable for its estimation.

The following notations are used in various Gibbs blocks when necessary:

- $Y_{i p t}$ denotes the growth rate of industry i in province p at time t;
- $\varepsilon_{i p t}$ denotes the error term in the equation associated with $Y_{i p t}$;
- $h_{i p}$ denotes the precision of the i.i.d. errors in the equation associated with $Y_{i p t}$;
- $\lambda_{i p}, \beta_{0, i p}$, and $\beta_{1, i p}$ are the constant and the coefficients of lagged US growth rates in the equation associated with $Y_{i p t}$;
- $\Lambda_{i p, k}$ denotes the element at the $n^{\text {th }}$ row and $k^{\text {th }}$ column of Λ, note that the $n^{t h}$ row is directly associated with $Y_{i p t}$;
- $f_{t}^{N}, f_{p t}^{P}$ and $f_{i t}^{I}$ denote the national factor, the provincial factor for province p, and the industrial factor for industry i at time $t ;$
- $\gamma_{i p}^{N}, \gamma_{i p}^{P}$, and $\gamma_{i p}^{I}$ are the factor loadings for $f_{t}^{N}, f_{p t}^{P}$ and $f_{i t}^{I}$, respectively, in the equation associated with $Y_{i p t}$;
- Y_{t}^{i}, Y_{t}^{p}, and Y_{t}^{N} denote the weighted averaged growth rates for industry i, province p, and the whole country;
- $\Lambda_{i p}^{i}, \Lambda_{i p}^{p}$, and $\Lambda_{i p}^{N}$ denote the coefficients of lagged Y_{t}^{i}, Y_{t}^{p}, and Y_{t}^{N}, respectively, in the equation associated with $Y_{i p t}$.

1.1 Conditional Posteriors for $\lambda, \Lambda, \beta_{0}$, and β_{1}

1.1.1 Models without lagged ε_{t}

1.1.1.1 Lagged $Y_{t} \mathrm{~s}$ do not enter the model

Let $Y_{i p t}^{\dagger}=Y_{i p t}-\left(\gamma_{i p}^{I} f_{i t}^{I}+\gamma_{i p}^{P} f_{p t}^{P}+\gamma_{i p}^{N} f_{t}^{N}\right)$, we have

$$
\begin{equation*}
Y_{i p t}^{\dagger}=X_{t}^{\dagger} b_{i p}^{\dagger}+\varepsilon_{i p t} \tag{1}
\end{equation*}
$$

where $b_{i p}^{\dagger}=\left(\lambda_{i p}, \beta_{0, i p}, \beta_{1, i p}\right)^{\prime}$ and $X_{t}^{\dagger}=\left(1, D G D P_{t}^{U S}, D G D P_{t-1}^{U S}\right)$.
Let $Y_{i p}^{\dagger}=\left(Y_{i p, 1}^{\dagger}, Y_{i p, 2}^{\dagger}, \ldots, Y_{i p, T}^{\dagger}\right)^{\prime}, E_{i p}=\left(\varepsilon_{i p, 1}, \varepsilon_{i p, 2}, \ldots, \varepsilon_{i p, T}\right)$, and X^{\dagger} be a $T \times 3$ matrix with the $t^{t h}$ row given by $X_{t}^{\dagger^{\prime}}$. In matrix form, we rewrite equation (1) as

$$
\begin{equation*}
Y_{i p}^{\dagger}=X^{\dagger} b_{i p}^{\dagger}+E_{i p} \tag{2}
\end{equation*}
$$

where $\operatorname{var}\left(E_{i p}\right)=h_{i p}^{-1} I_{T}$.
We elicit Normal prior for $b_{i p}^{\dagger}$ as:

$$
b_{i p}^{\dagger} \sim N\left(\underline{b}^{\dagger}, \underline{V}_{b}^{\dagger}\right)
$$

for $i=1,2, \ldots, I$ and $p=1,2, \ldots, P$.
The conditional posterior for $b_{i p}^{\dagger}$ thus takes the following form

$$
b_{i p}^{\dagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\dagger}, \bar{V}_{b_{i p}}^{\dagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\dagger}=\left(\underline{V}_{b}^{\dagger^{-1}}+h_{i p} X^{\dagger^{\prime}} X^{\dagger^{-1}}\right) \\
\bar{b}_{i p}^{\dagger}=\bar{V}_{b_{i p}}^{\dagger}\left(\underline{V}_{b}^{\dagger^{-1}} \underline{b}^{\dagger}+h_{i p} X^{\dagger^{\prime}} Y_{i p}^{\dagger}\right)
\end{gathered}
$$

In empirical work, we set $\underline{b}^{\dagger}=0, \underline{V}_{b}^{\dagger}=\left(\begin{array}{ccc}10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
1.1.1.2 Λ Restricted ${ }^{*}=$ only the weighted averaged lagged Y_{t} s enter the model

Let $Y_{i p t}^{\dagger}=Y_{i p t}-\left(\gamma_{i p}^{I} f_{i t}^{I}+\gamma_{i p}^{P} f_{p t}^{P}+\gamma_{i p}^{N} f_{t}^{N}\right)$, we have

$$
\begin{equation*}
Y_{i p t}^{\dagger}=X_{t}^{\dagger} b_{i p}^{\dagger}+\varepsilon_{i p t} \tag{3}
\end{equation*}
$$

where $b_{i p}^{\dagger}=\left(\lambda_{i p}, \beta_{0, i p}, \beta_{1, i p}, \Lambda_{i p}^{I}, \Lambda_{i p}^{P}, \Lambda_{i p}^{N}\right)^{\prime}$ and $X_{t}^{\dagger}=\left(1, D G D P_{t}^{U S}, D G D P_{t-1}^{U S}, Y_{t-1}^{i}, Y_{t-1}^{p}, Y_{t-1}^{N}\right)$.
Let $Y_{i p}^{\dagger}=\left(Y_{i p, 1}^{\dagger}, Y_{i p, 2}^{\dagger}, \ldots, Y_{i p, T}^{\dagger}\right)^{\prime}, E_{i p}=\left(\varepsilon_{i p, 1}, \varepsilon_{i p, 2}, \ldots, \varepsilon_{i p, T}\right)$, and X^{\dagger} be a $T \times 6$ matrix with the $t^{t h}$ row given by $X_{t}^{\dagger^{\prime}}$. In matrix form, we rewrite equation (3) as

$$
\begin{equation*}
Y_{i p}^{\dagger}=X^{\dagger} b_{i p}^{\dagger}+E_{i p} \tag{4}
\end{equation*}
$$

where $\operatorname{var}\left(E_{i p}\right)=h_{i p}^{-1} I_{T}$.
We elicit Normal prior for $b_{i p}^{\dagger}$ as:

$$
b_{i p}^{\dagger} \sim N\left(\underline{b}^{\dagger}, \underline{V}_{b}^{\dagger}\right)
$$

for $i=1,2, \ldots, I$ and $p=1,2, \ldots, P$.
The conditional posterior for $b_{i p}^{\dagger}$ thus takes the following form

$$
b_{i p}^{\dagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\dagger}, \bar{V}_{b_{i p}}^{\dagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\dagger}=\left(\underline{V}_{b}^{\dagger^{-1}}+h_{i p} X^{\dagger^{\prime}} X^{\dagger^{-1}}\right) \\
\bar{b}_{i p}^{\dagger}=\bar{V}_{b_{i p}}^{\dagger}\left(\underline{V}_{b}^{\dagger^{-1}} \underline{b}^{\dagger}+h_{i p} X^{\dagger^{\prime}} Y_{i p}^{\dagger}\right)
\end{gathered}
$$

In empirical work, we set $\underline{b}^{\dagger}=0, \underline{V}_{b}^{\dagger}=10 * I_{6}$.

1.1.1.3 Λ Restricted ${ }^{* *}=$ only own lag coefficients are non-zero

Let $Y_{i p t}^{\dagger}=Y_{i p t}-\left(\gamma_{i p}^{I} f_{i t}^{I}+\gamma_{i p}^{P} f_{p t}^{P}+\gamma_{i p}^{N} f_{t}^{N}\right)$, we have

$$
\begin{equation*}
Y_{i p t}^{\dagger}=X_{t}^{\dagger} b_{i p}^{\dagger}+\varepsilon_{i p t} \tag{5}
\end{equation*}
$$

where $b_{i p}^{\dagger}=\left(\lambda_{i p}, \Lambda_{i p, i p}, \beta_{0, i p}, \beta_{1, i p}\right)^{\prime}$ and $X_{t}^{\dagger}=\left(1, Y_{i p, t-1}, D G D P_{t}^{U S}, D G D P_{t-1}^{U S}\right)$.
Let $Y_{i p}^{\dagger}=\left(Y_{i p 1}^{\dagger}, Y_{i p 2}^{\dagger}, \ldots, Y_{i p T}^{\dagger}\right)^{\prime}, E_{i p}=\left(\varepsilon_{i p 1}, \varepsilon_{i p 2}, \ldots, \varepsilon_{i p T}\right)$, and X^{\dagger} be a $T \times 4$ matrix with the t th row given by X_{t}^{\dagger}. In matrix form, we rewrite equation (5) as

$$
\begin{equation*}
Y_{i p}^{\dagger}=X^{\dagger} b_{i p}^{\dagger}+E_{i p} \tag{6}
\end{equation*}
$$

where $\operatorname{var}\left(E_{i p}\right)=h_{i p}^{-1} I_{T}$.
We elicit Normal prior for $b_{i p}^{\dagger}$ as:

$$
b_{i p}^{\dagger} \sim N\left(\underline{b}^{\dagger}, \underline{V}_{b}^{\dagger}\right) .
$$

The conditional posterior for $b_{i p}^{\dagger}$ thus takes the following form

$$
b_{i p}^{\dagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\dagger}, \bar{V}_{b_{i p}}^{\dagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\dagger}=\left(\underline{V}_{b}^{\dagger^{-1}}+h_{i p} X^{\dagger^{\prime}} X^{\dagger^{-1}}\right) \\
\bar{b}_{i p}^{\dagger}=\bar{V}_{b_{i p}}^{\dagger}\left(\underline{V}_{b}^{\dagger^{-1}} \underline{b}^{\dagger}+h_{i p} X^{\dagger^{\prime}} Y_{i p}^{\dagger}\right)
\end{gathered}
$$

In empirical work, we set $\underline{b}^{\dagger}=0, \underline{V}_{b}^{\dagger}=\left(\begin{array}{cccc}10 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

1.1.1.4 Λ Unrestricted

Let $Y_{i p t}^{\dagger}$ be the difference between $Y_{i p t}$ and $\left(\gamma_{i p}^{I} f_{i t}^{I}+\gamma_{i p}^{P} f_{p t}^{P}+\gamma_{i p}^{N} f_{t}^{N}\right)$. We have

$$
\begin{equation*}
Y_{i p t}^{\dagger}=X_{t}^{\dagger} b_{i p}^{\dagger}+\varepsilon_{i p t} \tag{7}
\end{equation*}
$$

where $b_{i p}^{\dagger}=\left(\lambda_{i p}, \Lambda_{i p, 1}, \Lambda_{i p, 2}, \ldots, \Lambda_{i p, N}, \beta_{0, i p}, \beta_{1, i p}\right)^{\prime}$ and $X_{t}^{\dagger}=\left(1, Y_{11, t-1}, Y_{12, t-1}, \ldots\right.$, $\left.+Y_{I P, t-1}, D G D P_{t}^{U S}, D G D P_{t-1}^{U S}\right)$.

Let $Y_{i p}^{\dagger}=\left(Y_{i p 1}^{\dagger}, Y_{i p 2}^{\dagger}, \ldots, Y_{i p T}^{\dagger}\right)^{\prime}, E_{i p}=\left(\varepsilon_{i p 1}, \varepsilon_{i p 2}, \ldots, \varepsilon_{i p T}\right)$, and X^{\dagger} be a $T \times$ $(I P+3)$ matrix with the $t^{t h}$ row given by X_{t}^{\dagger}. In matrix form, we rewrite equation (7) as

$$
\begin{equation*}
Y_{i p}^{\dagger}=X^{\dagger} b_{i p}^{\dagger}+E_{i p} \tag{8}
\end{equation*}
$$

where $\operatorname{var}\left(E_{i p}\right)=h_{i p}^{-1} I_{T}$
Because in equation (8) the number of parameters is greater than the number of observations, we elicit the Minnesota prior for $b_{i p}^{\dagger}$ as:

$$
b_{i p}^{\dagger} \sim N\left(\underline{b}^{\dagger}, \underline{V}_{b}^{\dagger}\right) .
$$

Note that $\underline{V}_{b}^{\dagger}$ is a diagonal matrix with the diagonal elements given by
$\underline{V}_{b_{j, j}}^{\dagger}= \begin{cases}\pi_{1}, & \text { for parameter on own lag; } \\ \pi_{2} \sigma_{i p} / \sigma_{-i p}, & \text { for parameters on other lags; } \\ \pi_{3} \sigma_{i p}, & \text { for parameters on exogeneous/deterministic variables. }\end{cases}$
where $\sigma_{i p}$ is the standard OLS estimate of the error variance in the equation
associated with $Y_{i p t}$, and $\sigma_{-i p}$ is the standard OLS estimate of the error variance in the equation associated with the growth rate that is not $Y_{i p t .}{ }^{1}$

The conditional posterior for $b_{i p}^{\dagger}$ thus takes the following form

$$
b_{i p}^{\dagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\dagger}, \bar{V}_{b_{i p}}^{\dagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\dagger}=\left(\underline{V}_{b}^{\dagger^{-1}}+h_{i p} X^{\dagger^{\prime}} X^{\dagger^{-1}}\right) \\
\bar{b}_{i p}^{\dagger}=\bar{V}_{b_{i p}}^{\dagger}\left(\underline{V}_{b}^{\dagger^{-1}} \underline{b}^{\dagger}+h_{i p} X^{\dagger^{\prime}} Y_{i p}^{\dagger}\right)
\end{gathered}
$$

In empirical work, we set $\pi_{1}=0.05, \pi_{2}=0.005$, and $\pi_{3}=1000$.

1.1.2 Models with lagged ε_{t}

1.1.2.1 Υ Diagonal

Here we assume that $\varepsilon_{i p, t}$ follows a stationary $\mathrm{AR}(1)$ process:

$$
\varepsilon_{i p, t}=\rho_{i p} \varepsilon_{i p, t-1}+\epsilon_{i p, t}
$$

where ϵ_{t} is i.i.d. $N\left(0,1 / h_{i p}\right)$.
Let $Y_{i p, t}^{\dagger}=\left(1-\rho_{i p} L\right)\left[Y_{i p, t}-\left(\gamma_{i p}^{I} f_{i t}^{I}+\gamma_{i p}^{P} f_{p t}^{P}+\gamma_{i p}^{N} f_{t}^{N}\right)\right]$, we have

$$
\begin{equation*}
Y_{i p, t}^{\dagger}=X_{t}^{\dagger} b_{i p}^{\dagger}+\epsilon_{i p, t}, \tag{9}
\end{equation*}
$$

where $b_{i p}^{\dagger}=\left(\lambda_{i p}, \beta_{0, i p}, \beta_{1, i p}\right)^{\prime}$ and $X_{t}^{\dagger}=\left(1-\rho_{i p} L\right)\left(1, D G D P_{t}^{U S}, D G D P_{t-1}^{U S}\right)$.
Note that L is the lag operator.

[^1]Let $Y_{i p}^{\dagger}=\left(Y_{i p, 1}^{\dagger}, Y_{i p, 2}^{\dagger}, \ldots, Y_{i p, T}^{\dagger}\right)^{\prime}, E_{i p}=\left(\varepsilon_{i p, 1}, \varepsilon_{i p, 2}, \ldots, \varepsilon_{i p, T}\right)$, and X^{\dagger} be a $T \times 3$ matrix with the $t^{t h}$ row given by X_{t}^{\dagger}. In matrix form, we rewrite equation (9) as

$$
\begin{equation*}
Y_{i p}^{\dagger}=X^{\dagger} b_{i p}^{\dagger}+E_{i p} \tag{10}
\end{equation*}
$$

where $\operatorname{var}\left(E_{i p}\right)=h_{i p}^{-1} I_{T}$, with I_{T} be the $T \times T$ identity matrix.
We elicit Normal prior for $b_{i p}^{\dagger}$ as:

$$
b_{i p}^{\dagger} \sim N\left(\underline{b}^{\dagger}, \underline{V}_{b}^{\dagger}\right)
$$

for $i=1,2, \ldots, I$ and $p=1,2, \ldots, P$.
The conditional posterior for $b_{i p}^{\dagger}$ thus takes the following form

$$
b_{i p}^{\dagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\dagger}, \bar{V}_{b_{i p}}^{\dagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\dagger}=\left(\underline{V}_{b}^{\dagger^{-1}}+h_{i p} X^{\dagger^{\prime}} X^{\dagger^{-1}}\right) \\
\bar{b}_{i p}^{\dagger}=\bar{V}_{b_{i p}}^{\dagger}\left(\underline{V}_{b}^{\dagger^{-1}} \underline{b}^{\dagger}+h_{i p} X^{\dagger^{\prime}} Y_{i p}^{\dagger}\right)
\end{gathered}
$$

In empirical work, we set $\underline{b}^{\dagger}=0$ and $\underline{V}_{b}^{\dagger}=\left(\begin{array}{ccc}10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

1.1.2.2 Υ Unrestricted

The $N \times 1$ vector ε_{t} is assumed to follow a stationary $\operatorname{VAR}(1)$ process:

$$
\varepsilon_{t}=\Upsilon \varepsilon_{t-1}+\epsilon_{t}
$$

where ϵ_{t} is i.i.d. $N(0, \Sigma) . \Sigma$ is a $N \times N$ diagonal matrix with the diagonal element that corresponds to $\varepsilon_{i p t}$ given by $1 / h_{i p}$.

Let the $Y_{t}^{\dagger}=Y_{t}-\left(\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}\right)$, we have

$$
\begin{equation*}
Y_{t}^{\dagger}=B X_{t}^{\dagger}+\varepsilon_{t} \tag{11}
\end{equation*}
$$

where B is an $N \times 3$ coefficients matrix with the row associated with $Y_{i p, t}$ given by $\left(\lambda_{i p}, \beta_{0, i p}, \beta_{1, i p}\right), X_{t}^{\dagger}=\left(1, D G D P_{t}^{U S}, D G D P_{t-1}^{U S}\right)^{\prime}$.

Let $Y^{b}=\left(Y_{1}^{\dagger}, Y_{2}^{\dagger}, \ldots, Y_{T}^{\dagger}\right)^{\prime}-\left(Y_{0}^{\dagger}, Y_{1}^{\dagger}, \ldots, Y_{T-1}^{\dagger}\right)^{\prime} \Upsilon, X^{b}=I_{N} \otimes X_{a}^{\dagger}-\Upsilon^{\prime} \otimes X_{b}^{\dagger}$, where X_{a}^{\dagger} be a $T \times 3$ matrix with the $t^{t h}$ row given by $X_{t}^{\dagger^{\prime}}, X_{b}^{\dagger}$ be a $T \times 3$ matrix with the $t^{t h}$ row given by $X_{t}^{\dagger^{\prime}}$, and $E=\left(\epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}, \ldots, \epsilon_{T}^{\prime}\right)$. Then we have

$$
\begin{equation*}
y^{b}=X^{b} b+e \tag{12}
\end{equation*}
$$

where $y^{b}=\operatorname{vec}\left(Y^{b}\right), b=\operatorname{vec}(B)$, and $e=\operatorname{vec}(E)$. Note that $\operatorname{var}(e)=I_{T} \otimes \Sigma$. For notational convenience, we use Ξ to denote $\operatorname{var}(e)$.

We elicit Normal prior for b as:

$$
b \sim N\left(\underline{b}, \underline{V}_{b}\right)
$$

The conditional posterior for b thus takes the following form

$$
b \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}, \bar{V}_{b}\right)
$$

where

$$
\begin{aligned}
\bar{V}_{b} & =\left(\underline{V}_{b}^{-1}+X^{b^{\prime}} \Xi^{-1} X^{b^{-1}}\right)^{-1} \\
\bar{b} & =\bar{V}_{b}\left(\underline{V}_{b} \underline{b}+X^{b^{\prime}} \Xi^{-1} y^{b}\right)
\end{aligned}
$$

In empirical work, we set $\underline{b}^{\dagger}=0$ and $\underline{V}_{b}^{\dagger}=\left(\begin{array}{ccc}10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

1.2 Conditional Posteriors for γ^{I}, γ^{P}, and γ^{N}

1.2.1 Models without lagged ε_{t}

Conditional on $\lambda, \beta_{0}, \beta_{1}$, and the factors, we can estimate the elements in γ^{I}, γ^{P}, and γ^{N} equation by equation. Let $Y_{i p t}^{\ddagger}=Y_{i p t}-\left(\lambda_{i p}+\beta_{i p, 0} D G D P_{t}^{U S}+\right.$ $\left.\beta_{i p, 1} D G D P_{t-1}^{U S}\right)$, we have

$$
\begin{equation*}
Y_{i p t}^{\ddagger}=X_{t}^{\ddagger} b_{i p}^{\ddagger}+\varepsilon_{i p t}, \tag{13}
\end{equation*}
$$

where $b_{i p}^{\ddagger}=\left(\gamma_{i p}^{I}, \gamma_{i p}^{P}, \gamma_{i p}^{N}\right)^{\prime}$ and $X_{t}^{\ddagger}=\left(f_{i t}^{I}, f_{p t}^{P}, f_{t}^{N}\right)$.
Let $Y_{i p}^{\ddagger}=\left(Y_{i p 1}^{\ddagger}, Y_{i p 2}^{\ddagger}, \ldots, Y_{i p T}^{\ddagger}\right)^{\prime}, E_{i p}=\left(\varepsilon_{i p 1}, \varepsilon_{i p 2}, \ldots, \varepsilon_{i p T}\right)$, and X^{\ddagger} be a $T \times 3$ matrix with the $t^{t h}$ row given by X_{t}^{\ddagger}. In matrix form, we rewrite equation (13)
as

$$
\begin{equation*}
Y_{i p}^{\ddagger}=X^{\ddagger} b_{i p}^{\ddagger}+E_{i p} \tag{14}
\end{equation*}
$$

where $\operatorname{var}\left(E_{i p}\right)=h_{i p}^{-1} I_{T}$.
We elicit Normal prior for $b_{i p}^{\ddagger}$ as:

$$
b_{i p}^{\ddagger} \sim N\left(\underline{b}^{\ddagger}, \underline{V}_{b}^{\ddagger}\right)
$$

for $i=1,2, \ldots, I$ and $p=1,2, \ldots, P$.
The conditional posterior for $b_{i p}^{\ddagger}$ thus takes the following form

$$
b_{i p}^{\ddagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\ddagger}, \bar{V}_{b_{i p}}^{\ddagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\ddagger}=\left(\underline{V}_{b}^{\ddagger^{-1}}+h_{i p} X^{\ddagger^{\prime}} X^{\ddagger^{-1}}\right) \\
\bar{b}_{i p}^{\ddagger}=\bar{V}_{b_{i p}}^{\ddagger}\left(\underline{V}_{b}^{\ddagger^{-1}} \underline{b}^{\ddagger}+h_{i p} X^{\ddagger^{\prime}} Y_{i p}^{\ddagger}\right)
\end{gathered}
$$

In empirical work, we set $\underline{b}^{\ddagger}=0$ and $\underline{V}_{b}^{\ddagger}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

1.2.2 Models with lagged ε_{t}

1.2.2.1 Υ Diagonal

Here we assume that $\varepsilon_{i p, t}$ follows a stationary $\operatorname{AR}(1)$ process:

$$
\varepsilon_{i p, t}=\rho_{i p} \varepsilon_{i p, t-1}+\epsilon_{i p, t}
$$

where ϵ_{t} is i.i.d. $N\left(0,1 / h_{i p}\right)$. Let $Y_{i p, t}^{\ddagger}=\left(1-\rho_{i p} L\right)\left[Y_{i p, t}-\left(\lambda_{i p}+\beta_{i p, 0} D G D P_{t}^{U S}+\right.\right.$ $\left.\left.\beta_{i p, 1} D G D P_{t-1}^{U S}\right)\right]$, we have

$$
\begin{equation*}
Y_{i p t}^{\ddagger}=X_{t}^{\ddagger} b_{i p}^{\ddagger}+\epsilon_{i p t}, \tag{15}
\end{equation*}
$$

where $b_{i p}^{\ddagger}=\left(\gamma_{i p}^{I}, \gamma_{i p}^{P}, \gamma_{i p}^{N}\right)^{\prime}$ and $X_{t}^{\ddagger}=\left(1-\rho_{i p} L\right)\left(f_{i t}^{I}, f_{p t}^{P}, f_{t}^{N}\right)$.
Let $Y_{i p}^{\ddagger}=\left(Y_{i p, 1}^{\ddagger}, Y_{i p, 2}^{\ddagger}, \ldots, Y_{i p, T}^{\ddagger}\right)^{\prime}, \epsilon_{i p}=\left(\epsilon_{i p, 1}, \epsilon_{i p, 2}, \ldots, \epsilon_{i p, T}\right)$, and X^{\ddagger} be a $T \times 3$ matrix with the $t^{t h}$ row given by $X_{t}^{\ddagger^{\prime}}$. In matrix form, we rewrite equation (15) as

$$
\begin{equation*}
Y_{i p}^{\ddagger}=X^{\ddagger} b_{i p}^{\ddagger}+\epsilon_{i p} \tag{16}
\end{equation*}
$$

where $\operatorname{var}\left(\epsilon_{i p}\right)=h_{i p}^{-1} I_{T}$
We elicit Normal prior for $b_{i p}^{\ddagger}$ as:

$$
b_{i p}^{\ddagger} \sim N\left(\underline{b}^{\ddagger}, \underline{V}_{b}^{\ddagger}\right)
$$

for $i=1,2, \ldots, I$ and $p=1,2, \ldots, P$.

The conditional posterior for $b_{i p}^{\ddagger}$ thus takes the following form

$$
b_{i p}^{\ddagger} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{b}_{i p}^{\ddagger}, \bar{V}_{b_{i p}}^{\ddagger}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\ddagger}=\left(\underline{V}_{b}^{\ddagger^{-1}}+h_{i p} X^{\ddagger^{\prime}} X^{\ddagger^{-1}}\right) \\
\bar{b}_{i p}^{\ddagger}=\bar{V}_{b_{i p}}^{\ddagger}\left(\underline{b}_{b}^{\ddagger^{-1}} \underline{b}^{\ddagger}+h_{i p} X^{\ddagger^{\prime}} Y_{i p}^{\ddagger}\right)
\end{gathered}
$$

In empirical work, we set $\underline{b}^{\ddagger}=0$ and $\underline{V}_{b}^{\ddagger}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

1.2.2.2 Υ Unrestricted

Here $\varepsilon_{t} \mathrm{~s}$ are assumed to follow a stationary $\operatorname{VAR}(1)$ process:

$$
\varepsilon_{t}=\Upsilon \varepsilon_{t-1}+\epsilon_{t}
$$

where ϵ_{t} is i.i.d. $N(0, \Sigma) . \Sigma$ is a diagonal matrix with the diagonal element that corresponds to $\varepsilon_{i p t}$ given by $1 / h_{i p}$.

First let $Y_{t}^{\ddagger}=Y_{t}-\left(\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}\right), Y_{a}^{\ddagger}=\left(Y_{1}^{\ddagger}, Y_{2}^{\ddagger}, \ldots, Y_{T}^{\ddagger}\right)^{\prime}$, and $Y_{b}^{\ddagger}=\left(Y_{0}^{\ddagger}, Y_{1}^{\ddagger}, \ldots, Y_{T-1}^{\ddagger}\right)^{\prime}$. We use Y^{\ddagger} to denote the difference between Y_{a}^{\ddagger} and $Y_{b}^{\ddagger} \Upsilon$. Next let $X_{i p, t}^{\ddagger}=\left(f_{i t}^{I}, f_{p t}^{P}, f_{t}^{N}\right)$, we construct two $T \times 3 N$ matrices: X_{a}^{\ddagger} with the $t^{\text {th }}$ row given by $\left(X_{1, t}^{\ddagger}, X_{2, t}^{\ddagger}, \ldots, X_{I P, t}^{\ddagger}\right)$, and X_{b}^{\ddagger} with the $t^{\text {th }}$ row given by $\left(X_{1, t-1}^{\ddagger}, X_{2, t-1}^{\ddagger}, \ldots, X_{I P, t-1}^{\ddagger}\right)$. Finally we have $X^{\ddagger}=I_{N} \otimes X_{a}^{\ddagger}-\Upsilon^{\prime} \otimes X_{b}^{\ddagger}$.

Now the model can be written as

$$
\begin{equation*}
y^{\ddagger}=X^{\ddagger} b^{\ddagger}+e, \tag{17}
\end{equation*}
$$

where $y^{\ddagger}=\operatorname{vec}\left(Y^{\ddagger}\right), b^{\ddagger}=\operatorname{vec}\left(B^{\ddagger}\right)$, and B^{\ddagger} be the $3 \times N$ coefficient matrix. In B^{\ddagger},
the column that associated with the equation of $Y_{i p t}$ is given by $\left(\gamma_{i p}^{I}, \gamma_{i p}^{P}, \gamma_{i p}^{N}\right)^{\prime}$.
We elicit Normal prior for b^{\ddagger} as:

$$
b^{\ddagger} \sim N\left(\underline{b}, \underline{V}_{b}\right)
$$

The conditional posterior for b^{\ddagger} thus takes the following form

$$
b^{\ddagger} \mid Y, \Sigma, F, \Gamma, \Upsilon \sim N\left(\bar{b}^{\ddagger}, \bar{V}_{b}^{\ddagger}\right)
$$

where

$$
\begin{aligned}
& \bar{V}_{b}^{\ddagger}=\left(\underline{V}_{b}^{\ddagger^{-1}}+X^{\ddagger^{\prime}} \Xi^{-1} X^{\ddagger}\right)^{-1} \\
& \bar{b}^{\ddagger}=\bar{V}_{b}^{\ddagger}\left(\underline{V}_{b}^{\ddagger^{-1}} \underline{b}^{\ddagger}+X^{\ddagger^{\prime}} \Xi^{-1} y^{\ddagger}\right)
\end{aligned}
$$

where $\Xi=\operatorname{var}(e)$.
In empirical work, we set $\underline{b}^{\ddagger}=0$ and $\underline{V}_{b}^{\ddagger}=I_{3 * N}$.

1.3 Conditional Posteriors for the Factors

Let Y_{t}^{\natural} be the difference between Y_{t} and the sum of $\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}$ and any other deterministic terms that associated with lagged Y_{t}, if the latter exist, we have

$$
\begin{equation*}
Y_{t}^{\natural}=\Gamma F_{t}+\varepsilon_{t}, \tag{18}
\end{equation*}
$$

where $F_{t}=\left(f_{t}^{I} f_{t}^{P} f_{t}^{N}\right)$, and $\operatorname{var}\left(\varepsilon_{t}\right)=\Omega$. When $\varepsilon_{t} \mathrm{~s}$ are assumed to be i.i.d., we have $\Omega=\Sigma$; when $\varepsilon_{i p t}$ s are assumed follow an $\operatorname{AR}(1)$ process, $\Omega_{i p, i p}=\frac{1}{h_{i p}\left(1-\rho_{i p}^{2}\right)}$; when $\varepsilon_{i p t} \mathrm{~s}$ are assumed follow an $\operatorname{VAR}(1)$ process with Υ unrestricted, $v e c(\Omega)=$ $\operatorname{vec}\left[\left(I_{N^{2}}-\Upsilon \otimes \Upsilon\right) \operatorname{vec}(\Sigma)\right] . \Gamma$ is the matrix of factor loadings. The dimension of F_{t} and Γ are $(I+P+1) \times 1$ and $N \times(I+P+1)$, respectively.

1.3.1 Static Factor Models

For static factor models, as shown in Lopes and West (2004), the conditional posteriors for F can be factored into independent normal distributions for F_{t},

$$
F_{t} \mid \Sigma, \lambda, \beta_{0}, \beta_{1}, \gamma^{I}, \gamma^{P}, \gamma^{N} \sim N\left[\left(I_{I P}+\Gamma^{\prime} \Sigma^{-1} \Gamma\right)^{-1} \Gamma^{\prime} \Sigma^{-1} Y_{t}^{\natural},\left(I_{I P}+\Gamma^{\prime} \Omega^{-1} \Gamma\right)^{-1}\right]
$$

1.3.2 Dynamic Factor Models

For dynamic factor models, we can rewrite the model into a state-space form, where the measurement equation is equation (18), and the transition equation is the following:

$$
\begin{equation*}
F_{t}=\Phi F_{t}+\nu_{t} \tag{19}
\end{equation*}
$$

where $\operatorname{var}\left(\nu_{t}\right)=I_{I+P+1}$.
Let $\widetilde{Y}_{t}^{\natural}=\left(Y_{1}^{\natural}, Y_{2}^{\natural}, \ldots, Y_{t}^{\natural}\right)^{\prime}$. Following Kim and Nelson (1999, Ch. 8), conditional on Φ and Γ, we can draw the latent factors in the following steps.

First run Kalman filter to calculate $F_{t \mid t}=E\left(F_{t} \mid \widetilde{Y}_{t}^{\natural}\right)$ and $P_{t \mid t}=\operatorname{Cov}\left(F_{t} \mid \widetilde{Y}_{t}^{\natural}\right)$ for $t=1,2, \ldots, T$:

$$
\begin{gathered}
F_{t \mid t-1}=\Phi F_{t-1} \\
P_{t \mid t-1}=\Phi P_{t \mid t-1} \Phi^{\prime}+I_{I+P+1} \\
F_{t \mid t}=F_{t \mid t-1}+P_{t \mid t-1} \Gamma^{\prime}\left(\Gamma P_{t \mid t-1} \Gamma^{\prime}+\Omega\right)^{-1}\left(Y_{t}^{\natural}-\Gamma F_{t \mid t-1}\right) \\
P_{t \mid t}=P_{t \mid t-1}-P_{t \mid t-1} \Gamma^{\prime}\left(\Gamma P_{t \mid t-1} \Gamma^{\prime}+\Omega\right)^{-1} \Gamma P_{t \mid t-1}
\end{gathered}
$$

Next, we draw F_{T} based on the last iteration of the Kalman filter:

$$
F_{T} \mid \widetilde{Y}_{T}^{\natural} \sim N\left(F_{T \mid T}, P_{T \mid T}\right)
$$

Then we derive $F_{t \mid \widetilde{Y}_{T}^{\natural}}$ backward for $t=T-1, T-2, \ldots, 1$:

$$
F_{t} \mid Y_{t}^{\natural}, F_{t+1} \sim N\left(F_{t \mid t, F_{t+1}}, P_{t \mid t, F_{t+1}}\right)
$$

where

$$
\begin{gathered}
F_{t \mid t, F_{t+1}}=F_{t \mid t}+P_{t \mid t} \Phi^{\prime}\left\{\Phi P_{t \mid t} \Phi^{\prime}+I_{3}\right\}^{-1}\left(F_{t+1}-\Phi F_{t \mid t}\right) \\
P_{t \mid t, F_{t+1}}=P_{t \mid t}-P_{t \mid t} \Phi^{\prime}\left\{\Phi P_{t \mid t} \Phi^{\prime}+I_{3}\right\}^{-1} \Phi P_{t \mid t}
\end{gathered}
$$

1.4 Conditional Posteriors for $h_{i p}$

We set Gamma prior for $h_{i p}$ as $G\left(\underline{s}^{-2}, \underline{\nu}\right)$. Let $\epsilon_{i p t}$ be the i.i.d. error term in the equation associated with $Y_{i p t}$ and $\epsilon_{i p}=\left(\epsilon_{i p, 1}, \epsilon_{i p, 2}, \ldots, \epsilon_{i p, T}\right)$. It can be verified that the conditional posterior for $h_{i p}$ is Gamma

$$
h_{i p} \mid Y, F, \Gamma, \lambda, \beta_{0}, \beta_{1} \sim G\left(\bar{s}^{-2}, \bar{\nu}\right)
$$

where

$$
\begin{gathered}
\bar{\nu}=T+\underline{\nu} \\
\bar{s}^{-2}=\frac{\epsilon_{i p}^{\prime} \epsilon_{i p}+\underline{\nu s^{2}}}{\bar{\nu}}
\end{gathered}
$$

Note that $\epsilon_{t}=\varepsilon_{t}$ if ε_{t} is i.i.d., $\epsilon_{i p t}=\varepsilon_{i p t}-\rho_{i p} \varepsilon_{i p, t-1}$ if $\varepsilon_{i p t}$ follows an $\operatorname{AR}(1)$ process, and $\epsilon_{t}=\varepsilon_{t}-\Upsilon \varepsilon_{t-1}$ if ε_{t} follows a $\operatorname{VAR}(1)$ process.

In empirical work, we set $\underline{s}^{-2}=0.001$ and $\underline{\nu}=1$.

1.5 Conditional Posteriors for Φ

1.5.1 Φ Unrestricted

Conditional on the $I+P+1$ factors, Φ can be estimated equation by equation. Using $f_{j, t}$ to denote the $j^{t h}$ element in F_{t}, we have

$$
\begin{equation*}
f_{j, t}=\phi_{j, 1} f_{1, t}+\phi_{j, 2} f_{2, t}+\ldots+\phi_{j, I+P+1} f_{I+P+1, t}+\nu_{j, t}, \tag{20}
\end{equation*}
$$

where $\operatorname{var}\left(\nu_{j, t}\right)=1$.
Let $f_{j}=\left(f_{j, t}, f_{j, 2}, \ldots, f_{j, T}\right)^{\prime}, U_{j}=\left(\nu_{j, 1}, \nu_{j, 2}, \ldots, \nu_{j, T}\right), X^{\S}$ be a $T \times(P+I+1)$ matrix with the $t^{t h}$ row given by $\left(f_{1, t}, f_{2, t}, \ldots, f_{1+P+I, t}\right)$, and b_{j}^{\S} be the transpose of the $j^{\text {th }}$ row in Φ. In matrix form, we rewrite equation (20) as

$$
\begin{equation*}
f_{j}=X^{\S} b_{j}^{\S}+U_{j} \tag{21}
\end{equation*}
$$

where $\operatorname{var}\left(U_{j}\right)=I_{T}$.
We elicit Minnesota prior for b_{j}^{\S} as:

$$
b_{j}^{\S} \sim N\left(\underline{b}^{\S}, \underline{V}_{b}^{\S}\right)
$$

for $j=1,2, \ldots, 1+I+P$. Note that \underline{V}_{b}^{\S} is a diagonal matrix with the diagonal elements given by

$$
\underline{V}_{b_{j, j}}^{\S}= \begin{cases}\pi_{4}, & \text { for parameter on own lag; } \\ \pi_{5} & \text { for parameters on other lags }\end{cases}
$$

The conditional posterior for b_{j}^{\S} thus takes the following form

$$
b_{j}^{\S} \mid Y, \Sigma, F, \lambda, \Lambda, \beta_{0}, \beta_{1} \sim N\left(\bar{b}_{j}^{\S}, \bar{V}_{b_{j}}^{\S}\right)
$$

where

$$
\begin{aligned}
& \bar{V}_{b_{j}}^{\S}=\left(\underline{V}_{b}^{\S^{-1}}+X^{\S^{\prime}} X^{\S^{-1}}\right) \\
& \bar{b}_{j}^{\S}=\bar{V}_{b_{j}}^{\S}\left(\underline{S}_{b}^{\S^{-1}} \underline{b}^{\S}+X^{\S^{\prime}} f_{j}\right)
\end{aligned}
$$

In empirical work, we set $\underline{b}^{\S}=0, \pi_{4}=0.05$, and $\pi_{5}=0.005$.

1.5.2 Φ Diagonal

Conditional on the $I+P+1$ factors, Φ can be estimated equation by equation. Using $f_{j, t}$ to denote the $j^{t h}$ element in F_{t}, we have

$$
\begin{equation*}
f_{j, t}=\phi_{j, j} f_{j, t-1}+\nu_{j, t}, \tag{22}
\end{equation*}
$$

Let $f_{j}=\left(f_{j, t}, f_{j, 2}, \ldots, f_{j, T}\right)^{\prime}, U_{j}=\left(\nu_{j, 1}, \nu_{j, 2}, \ldots, \nu_{j, T}\right), X^{\S}=\left(f_{j,-1}, f_{j, 1}, \ldots, f_{j, T-1}\right)^{\prime}$, and b_{j}^{\S} be $\phi_{j, j}$. In matrix form, we rewrite equation (22) as

$$
\begin{equation*}
f_{j}=X^{\S} b_{j}^{\S}+U_{j} \tag{23}
\end{equation*}
$$

where $\operatorname{var}\left(U_{j}\right)=I_{T}$.
We elicit Normal prior for b_{j}^{\S} as:

$$
b_{j}^{\S} \sim N\left(\underline{b}^{\S}, \underline{V}_{b}^{\S}\right)
$$

for $j=1,2, \ldots, 1+I+P$.
The conditional posterior for b_{j}^{\S} thus takes the following form

$$
b_{j}^{\S} \mid Y, \Sigma, F, \lambda, \Lambda, \beta_{0}, \beta_{1} \sim N\left(\bar{b}_{j}^{\S}, \bar{V}_{b_{j}}^{\S}\right)
$$

where

$$
\bar{V}_{b_{j}}^{\S}=\left(\underline{V}_{b}^{\S^{-1}}+X^{\S^{\prime}} X^{\S^{-1}}\right)
$$

$$
\bar{b}_{j}^{\S}=\bar{V}_{b_{j}}^{\S}\left(\underline{V}_{b}^{\S^{-1}} \underline{b}^{\S}+X^{\S^{\prime}} f_{j}\right)
$$

In empirical work, we set $\underline{b}^{\S}=0$ and $\underline{V}_{b}^{\S}=1$.

1.6 Conditional Posteriors for Υ

1.6.1 Υ Diagonal

Υ is a diagonal matrix with the diagonal elements given by $\rho_{i p}$, Conditional on the factors and the rest of the coefficients, we have $\varepsilon_{i p, t}=Y_{i p, t}-\left(\lambda_{i p}+\right.$ $\left.\beta_{i p, 0} D G D P_{t}^{U S}+\beta_{i p, 1} D G D P_{t-1}^{U S}+\gamma_{i p}^{I} f_{i t}^{I}+\gamma_{i p}^{P} f_{p t}^{P}+\gamma_{i p}^{N} f_{t}^{N}\right)$ Let $e_{i p}^{\sharp}=\left(\varepsilon_{i p, 1}, \varepsilon_{i p, 2}, \ldots, \varepsilon_{i p, T}\right)$, and $x_{i p}^{\sharp}=\left(\varepsilon_{i p, 0}, \varepsilon_{i p, 1}, \ldots, \varepsilon_{i p, T-1}\right)$. We have

$$
e_{i p}^{\sharp}=\rho_{i p} x_{i p}^{\sharp}+\epsilon_{i p}
$$

where $\operatorname{var}\left(\epsilon_{i p}\right)=1 / h_{i p} I_{T}$.
We elicit Normal prior for $\rho_{i p}$ as:

$$
\rho_{i p} \sim N\left(\underline{\rho}, \underline{V}_{\rho}\right) .
$$

The conditional posterior for $\rho_{i p}$ thus takes the following form

$$
\rho_{i p} \mid Y, \Sigma, F, \Gamma \sim N\left(\bar{\rho}_{i p}, \bar{V}_{\rho_{i p}}\right)
$$

where

$$
\begin{aligned}
& \bar{V}_{\rho_{i p}}=\left(\underline{V}_{\rho}^{-1}+h_{i p} x_{i p}^{\sharp_{i}^{\prime}} x_{i p}^{\sharp}\right)^{-1} \\
& \bar{\rho}_{i p}=\bar{V}_{\rho_{i p}}\left(\underline{V}_{\rho}^{-1} \underline{\rho}+h_{i p} x_{i p}^{\not{ }^{\prime}} e_{i p}^{\sharp}\right)
\end{aligned}
$$

In empirical work, we set $\underline{\rho}=0$ and $\underline{V}_{\rho}=1$. To ensure the error terms are stationary, we draw the posteriors from a Truncated Normal.

1.6.2 Υ Unrestricted

Conditional on the coefficients and factors, $\varepsilon_{t}=Y_{t}-\left(\lambda+\beta_{0} D G D P_{t}^{U S}+\right.$ $\left.\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}\right)$. It is assumed that $\varepsilon_{t}=\Upsilon \varepsilon_{t-1}+\epsilon_{t}$. Let $E^{\sharp}=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{T}\right)^{\prime}, X^{\sharp}=\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{T-1}\right)^{\prime}$, in matrix form, we have

$$
\begin{equation*}
E^{\sharp}=X^{\sharp} \Upsilon+E \text {, } \tag{24}
\end{equation*}
$$

Let $e_{i p}^{\sharp}$ be the column of error terms in E^{\sharp} that associated with the $i^{\text {th }}$ industry in the $p^{t h}$ province, $b_{i p}^{\sharp}$ is the row vector in Υ that associated with $e_{i p}^{\sharp}$, we have

$$
\begin{equation*}
e^{\sharp}=X^{\sharp} b_{i p}^{\sharp}+e_{i p}, \tag{25}
\end{equation*}
$$

where $\operatorname{var}\left(e_{i p}\right)=1 / h_{i p} I_{T}$. Because in equation (25) the number of parameters is greater than the number of observations, we elicit Minnesota prior for $b_{i p}^{\sharp}$ as:

$$
b_{i p}^{\sharp} \sim N\left(\underline{b}^{\sharp}, \underline{V}_{b}^{\sharp}\right)
$$

Note that $\underline{V}_{b}^{\sharp}$ is a diagonal matrix with the diagonal elements given by

$$
\underline{V}_{b_{j, j}}^{\dagger}= \begin{cases}\pi_{6}, & \text { for parameter on own lag; } \\ \pi_{7} \delta_{i p} / \delta_{-i p} & \text { for parameters on other lags }\end{cases}
$$

The conditional posterior for $b_{i p}^{\sharp}$ thus takes the following form

$$
b_{i p}^{\sharp} \mid Y, \Sigma, F, \Gamma, \lambda, \beta_{0}, \beta_{1} \sim N\left(\bar{b}_{i p}^{\sharp}, \bar{V}_{b_{i p}}^{\sharp}\right)
$$

where

$$
\begin{gathered}
\bar{V}_{b_{i p}}^{\sharp}=\left(\underline{V}_{b}^{\sharp-1}+h_{i p} X^{\not{ }^{\prime}} X^{\sharp{ }^{-1}}\right) \\
\bar{b}_{i p}^{\sharp}=\bar{V}_{b_{i p}}^{\sharp}\left(\underline{V}_{b}^{\sharp-1} \underline{b}^{\sharp}+h_{i p} X^{\sharp} e_{i p}^{\dagger}\right)
\end{gathered}
$$

In empirical work, we set tighter priors for $b_{i p}^{\sharp}$ to ensure stationary. In particular, we set $\underline{b}^{\sharp}=0, \pi_{6}=0.01$, and $\pi_{7}=0.001$.

2 Variance Decompositions

In this section we provide details for variance decompositions.

2.1 US Growth Rate

Throughout, we assume the exogenous US growth follows an AR(2) process as in Altonji and Ham (1990):

$$
\begin{equation*}
D G D P_{t}^{U S}=\alpha_{0}+\alpha_{1} D G D P_{t-1}^{U S}+\alpha_{2} D G D P_{t-2}^{U S}+\mu_{t} \tag{26}
\end{equation*}
$$

where μ_{t} is i.i.d. $N\left(0, \sigma_{u s}^{2}\right)$.
Let u be the expected value for $D G D P_{t}^{U S}$ at steady-state. In VAR form, we have

$$
\binom{D G D P_{t}^{U S}-u}{D G D P_{t-1}^{U S}-u}=\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \tag{27}\\
1 & 0
\end{array}\right)\binom{D G D P_{t-1}^{U S}-u}{D G D P_{t-2}^{U S}-u}+\binom{\mu_{t}}{0}
$$

Hence, the s period ahead forecast errors for $D G D P_{t}^{U S}$ is

$$
\begin{equation*}
\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\ldots .+\psi_{1} \mu_{t+s-1}+\mu_{t+s} \tag{28}
\end{equation*}
$$

where ψ_{h} is the $(1,1)^{\text {th }}$ element in matrix $\left(\begin{array}{cc}\alpha_{1} & \alpha_{2} \\ 1 & 0\end{array}\right)^{h}$.
The mean squared error of 1 period ahead forecast for $D G D P_{t}^{U S}$:

$$
\begin{equation*}
M S E\left(\widehat{D G D P}_{t+1}^{U S} \mid t\right)=\sigma_{u s}^{2} \tag{29}
\end{equation*}
$$

The mean squared error of s period ahead forecast for $D G D P_{t}^{U S}$:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{D G D P}_{t+s}^{U S} \mid t\right)=\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right) \sigma_{u s}^{2} \tag{30}
\end{equation*}
$$

2.2 The Static Factor Model

The model takes the following form:

$$
\begin{equation*}
Y_{t}=\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{31}
\end{equation*}
$$

where the variance for $\varepsilon_{i p t}$ is assumed to be $\varpi_{i p}^{2}$.
The 1 period ahead forecast error for $Y_{i p t}$ is $\beta_{i p, 0} \mu_{t+1}+\gamma_{i p}^{I} f_{i, t+1}^{I}+\gamma_{i p}^{P} f_{p, t+1}^{P}+$ $\gamma_{i p}^{N} f_{t+1}^{N}+\varepsilon_{i p, t+1}$. Thus, the mean squared error of 1 period ahead forecast is:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{32}
\end{equation*}
$$

The s period ahead forecast error for $Y_{i p t}$ is $\beta_{i p, 0}\left(\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\right.$ $\left.\ldots .+\psi_{1} \mu_{t+s-1}+\mu_{t+s}\right)+\beta_{i p, 1}\left(\psi_{s-2} \mu_{t+1}+\psi_{s-3} \mu_{t+2} \ldots .+\psi_{1} \mu_{t+s-2}+\mu_{t+s-1}\right)+$ $\gamma_{i p}^{I} f_{i, t+s}^{I}+\gamma_{i p}^{P} f_{p, t+s}^{P}+\gamma_{i p}^{N} f_{t+s}^{N}+\varepsilon_{i p, t+s}$. Thus, the mean squared error of s period ahead forecast is following:

$$
\begin{align*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+s} \mid t\right)= & {\left[\beta_{i p, 0}^{2}\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right)+\beta_{i p, 1}^{2}\left(\psi_{s-2}^{2}+\psi_{s-3}^{2}+\ldots+\psi_{1}^{2}+1\right)\right] \sigma_{u s}^{2} } \\
& +\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{33}
\end{align*}
$$

2.3 VAR-Factor models 1,2 , and 7

The models share the following general form:

$$
\begin{equation*}
Y_{t}=\lambda+\Lambda Y_{t-1}+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{34}
\end{equation*}
$$

where the variance for $\varepsilon_{i p t}$ is $\varpi_{i p}^{2}$.
With some manipulation, we have the following VAR form:

$$
\begin{aligned}
&\left(\begin{array}{c}
Y_{t} \\
D G D P_{t}^{U S} \\
D G D P_{t-1}^{U S}
\end{array}\right)\left(\begin{array}{c}
\lambda+\beta_{0} \alpha_{0} \\
\alpha_{0} \\
0
\end{array}\right)+\left(\begin{array}{ccc}
\Lambda & \beta_{0} \alpha_{1}+\beta_{1} & \beta_{0} \alpha_{2} \\
0 & \alpha_{1} & \alpha_{2} \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
Y_{t-1} \\
D G D P_{t-1}^{U S} \\
D G D P_{t-2}^{U S}
\end{array}\right) \\
&+\left(\begin{array}{c}
\beta_{0} \mu_{t}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \\
\mu_{t} \\
0
\end{array}\right) \\
& \text { Let } A=\left(\begin{array}{ccc}
\Lambda & \beta_{0} \alpha_{1}+\beta_{1} & \beta_{0} \alpha_{2} \\
0 & \alpha_{1} & \alpha_{2} \\
0 & 1 & 0
\end{array}\right), \text { and } c \text { be the expectation of }\left(\begin{array}{c}
(35) \\
Y_{t} \\
D G D P_{t}^{U S} \\
D G D P_{t-1}^{U S}
\end{array}\right)
\end{aligned}
$$

at the steady state. We have

$$
\begin{align*}
& \left(\begin{array}{c}
\left.\left(\begin{array}{c}
Y_{t} \\
D G D P_{t}^{U S} \\
D G D P_{t-1}^{U S}
\end{array}\right)-c\right)=A\left(\left(\begin{array}{c}
Y_{t-1} \\
D G D P_{t-1}^{U S} \\
D G D P_{t-2}^{U S}
\end{array}\right)-c\right) \\
\\
+\left(\begin{array}{c}
\beta_{0} \mu_{t}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \\
\mu_{t} \\
0
\end{array}\right) \\
\text { Thus, the } s \text { period ahead forecast error for }\left(\begin{array}{c}
Y_{t+s} \\
D G D P_{t+s}^{U S} \\
D G D P_{t+s-1}^{U S}
\end{array}\right) \text { is as following: } \\
\mu_{t+1} \\
0
\end{array}\right. \tag{36}\\
& A^{s-1}\binom{\beta_{0} \mu_{t+1}+\gamma^{I} f_{t+1}^{I}+\gamma^{P} f_{t+1}^{P}+\gamma^{N} f_{t+1}^{N}+\varepsilon_{t+1}}{\mu_{t+1}}
\end{align*}
$$

$+A^{s-2}\left(\begin{array}{c}\beta_{0} \mu_{t+2}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t+2}^{P}+\gamma^{N} f_{t+2}^{N}+\varepsilon_{t+2} \\ \mu_{t+2} \\ 0\end{array}\right)+\ldots$
$+A\left(\begin{array}{c}\beta_{0} \mu_{t+s-1}+\gamma^{I} f_{t+s-1}^{I}+\gamma^{P} f_{t+s-1}^{P}+\gamma^{N} f_{t+s-1}^{N}+\varepsilon_{t+s-1} \\ \mu_{t+s-1} \\ 0\end{array}\right)$
$+\left(\begin{array}{c}\beta_{0} \mu_{t+s}+\gamma^{I} f_{t+s}^{I}+\gamma^{P} f_{t+s}^{P}+\gamma^{N} f_{t+s}^{N}+\varepsilon_{t+s} \\ \mu_{t+s} \\ 0\end{array}\right)$
The mean squared error of 1 period ahead forecast for $Y_{i p t}$:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{37}
\end{equation*}
$$

The mean squared error of s period ahead forecast for $Y_{i p t}$ is the relevant diagonal element in:

$$
\begin{equation*}
A^{s-1} \Xi\left(A^{s-1}\right)^{\prime}+A^{s-2} \Xi\left(A^{s-2}\right)^{\prime}+\ldots+A \Xi(A)^{\prime}+\Xi \tag{38}
\end{equation*}
$$

where $\Xi=\left(\begin{array}{ccc}\beta_{0} \sigma_{u s}^{2} \beta_{0}^{\prime}+\gamma^{I}\left(\gamma^{I}\right)^{\prime}+\gamma^{P}\left(\gamma^{P}\right)^{\prime}+\gamma^{N}\left(\gamma^{N}\right)^{\prime}+\Sigma & \beta_{0} \sigma_{u s}^{2} & 0 \\ \beta_{0}^{\prime} \sigma_{u s}^{2} & \sigma_{u s}^{2} & 0 \\ 0 & 0 & 0\end{array}\right)$, and
Σ is the diagonal error covariance matrix for ε_{t}. The $(i p, i p)^{t h}$ element in Σ is $\varpi_{i p}^{2}$.

2.4 VAR-Factor models $3,4,5,6,8$ and 9

The six models share the following general form:

$$
\begin{equation*}
Y_{t}=\lambda+\Lambda Y_{t-1}+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
f_{t}=\Phi f_{t-1}+v_{t} \tag{40}
\end{equation*}
$$

where v_{t} is i.i.d. $N(0, I)$, and the variance for $\varepsilon_{i p t}$ is $\varpi_{i p}^{2}$.
First we collect the equations together in a big VAR:

$$
\begin{align*}
\left(\begin{array}{c}
f_{t} \\
Y_{t} \\
D G D P_{t}^{U S} \\
D G D P_{t-1}^{U S}
\end{array}\right)= & \left(\begin{array}{c}
0 \\
\lambda+\beta_{0} \alpha_{0} \\
\alpha_{0} \\
0
\end{array}\right)+\left(\begin{array}{cccc}
\Phi & 0 & 0 & 0 \\
\Gamma \Phi & \Lambda & \beta_{0} \alpha_{1}+\beta_{1} & \beta_{0} \alpha_{2} \\
0 & 0 & \alpha_{1} & \alpha_{2} \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
f_{t-1} \\
Y_{t-1} \\
D G D P_{t-1}^{U S} \\
D G D P_{t-2}^{U S}
\end{array}\right) \\
& +\left(\begin{array}{c}
v_{t} \\
\beta_{0} \mu_{t}+\Gamma v_{t}+\varepsilon_{t} \\
\mu_{t} \\
0
\end{array}\right) \tag{41}
\end{align*}
$$

where Γ is a parameter matrix with γ^{I}, γ^{P} and γ^{N} appropriately stacked in.

$$
\text { Let } A=\left(\begin{array}{cccc}
\Phi & 0 & 0 & 0 \\
\Gamma \Phi & \Lambda & \beta_{0} \alpha_{1}+\beta_{1} & \beta_{0} \alpha_{2} \\
0 & 0 & \alpha_{1} & \alpha_{2} \\
0 & 0 & 1 & 0
\end{array}\right) \text {, and the expected value for }\left(\begin{array}{c}
f_{t} \\
Y_{t} \\
D G D P_{t}^{U S} \\
D G D P_{t-1}^{U S}
\end{array}\right)
$$

be c. We have the following form

$$
\begin{align*}
\left(\left(\begin{array}{c}
f_{t} \\
Y_{t} \\
D G D P_{t}^{U S} \\
D G D P_{t-1}^{U S}
\end{array}\right)-c\right)= & A\left(\left(\begin{array}{c}
f_{t-1} \\
Y_{t-1} \\
D G D P_{t-1}^{U S} \\
D G D P_{t-2}^{U S}
\end{array}\right)-c\right) \\
& +\left(\begin{array}{c}
v_{t} \\
\beta_{0} \mu_{t}+\Gamma v_{t}+\varepsilon_{t} \\
\mu_{t} \\
0
\end{array}\right) \tag{42}
\end{align*}
$$

$$
\begin{gather*}
A^{s-1}\left(\begin{array}{c}
v_{t+1} \\
\beta_{0} \mu_{t+1}+\Gamma v_{t+1}+\varepsilon_{t+1} \\
\mu_{t+1} \\
0 \\
+A\left(\begin{array}{c}
v_{t+2} \\
v_{t+s-1} \\
\mu_{t+2} \\
0 \\
\beta_{0} \mu_{t+2}+\Gamma v_{t+2}+\varepsilon_{t+2} \\
\beta_{0} \mu_{t+s-1}+\Gamma v_{t+s-1}+\varepsilon_{t+s-1} \\
\mu_{t+s-1} \\
0
\end{array}\right)+\ldots \\
v_{t+s} \\
\mu_{t+s} \\
0
\end{array}\right)+\left(\begin{array}{c}
\mu_{t+s}+\Gamma v_{t+s}+\varepsilon_{t+s} \\
\end{array}\right)+
\end{gather*}
$$

The mean squared error of 1 period ahead forecast for $Y_{i p t}$:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{44}
\end{equation*}
$$

The mean squared error of s period ahead forecast for $Y_{i p t}$ is the relevant diagonal element in:

$$
\begin{equation*}
A^{s-1} \Xi\left(A^{s-1}\right)^{\prime}+A^{s-2} \Xi\left(A^{s-2}\right)^{\prime}+\ldots+A \Xi(A)^{\prime}+\Xi \tag{45}
\end{equation*}
$$

2.5 DFM1

The model takes the following form:

$$
\begin{equation*}
Y_{t}=\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{J} f_{t}^{J}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{t}=\Upsilon \varepsilon_{t-1}+\epsilon_{t} \tag{47}
\end{equation*}
$$

where the variance of ϵ_{t} is assumed to be Σ, a diagonal matrix with appropriate $\varpi_{i p}^{2} \mathrm{~s}$ as its diagonal elements.

The 1 period ahead forecast error for $Y_{i p t}$ is as following:

$$
\begin{equation*}
\beta_{i p, 0} \mu_{t+1}+\gamma_{i p}^{I} f_{i, t+1}^{I}+\gamma_{i p}^{P} f_{p, t+1}^{P}+\gamma_{i p}^{N} f_{t+1}^{N}+\epsilon_{i p, t+1} \tag{48}
\end{equation*}
$$

Hence, the mean squared error of 1 period ahead forecast is

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{49}
\end{equation*}
$$

The s period ahead forecast error for $Y_{i p t}$ contains two parts. The first part is associated with the US growth rates and the factors:

$$
\begin{align*}
& \beta_{i p, 0}\left(\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\ldots .+\psi_{1} \mu_{t+s-1}+\mu_{t+s}\right) \\
& +\beta_{i p, 1}\left(\psi_{s-2} \mu_{t+1}+\psi_{s-3} \mu_{t+2} \ldots .+\psi_{1} \mu_{t+s-2}+\mu_{t+s-1}\right) \tag{50}\\
& +\gamma_{i p}^{I} f_{i, t+s}^{I}+\gamma_{i p}^{P} f_{p, t+s}^{P}+\gamma_{i p}^{N} f_{t+s}^{N}
\end{align*}
$$

The second part associated with the $\operatorname{VAR}(1)$ idiosyncratic error terms is the relevant element in $\epsilon_{t+s}+\Upsilon \epsilon_{t+s-1}+\ldots .+\Upsilon^{s-1} \epsilon_{t+1}$.

Thus the mean squared error of s period ahead forecast for $Y_{i p t}$ also contains two parts. The first part is $\left[\beta_{i p, 0}^{2}\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right)+\beta_{i p, 1}^{2}\left(\psi_{s-2}^{2}+\right.\right.$ $\left.\left.\psi_{s-3}^{2}+\ldots+\psi_{1}^{2}+1\right)\right] \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}$; The second part is the relevant diagonal element in $\Sigma+\Upsilon \Sigma \Upsilon^{\prime}+\ldots+\Upsilon^{s-1} \Sigma\left(\Upsilon^{s-1}\right)^{\prime}$.

2.6 DFM2

The model takes the following form:

$$
\begin{equation*}
Y_{t}=\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{J} f_{t}^{J}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{i p t}=\rho_{i p} \varepsilon_{i p(t-1)}+\nu_{i p t} \tag{52}
\end{equation*}
$$

where $\nu_{i p t}$ are assumed to be i.i.d. $N\left(0, \varpi_{i p}^{2}\right)$.
The 1 period ahead forecast error for $Y_{i p t}$:

$$
\begin{equation*}
\beta_{i p, 0} \mu_{t+1}+\gamma_{i p}^{I} f_{i, t+1}^{I}+\gamma_{i p}^{P} f_{p, t+1}^{P}+\gamma_{i p}^{N} f_{t+1}^{N}+\nu_{i p, t+1} \tag{53}
\end{equation*}
$$

The mean squared error of 1 period ahead forecast:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{54}
\end{equation*}
$$

The s period ahead forecast error for $Y_{i p t}$:

$$
\begin{align*}
& \beta_{i p, 0}\left(\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\ldots .+\psi_{1} \mu_{t+s-1}+\mu_{t+s}\right) \\
& +\beta_{i p, 1}\left(\psi_{s-2} \mu_{t+1}+\psi_{s-3} \mu_{t+2} \ldots+\psi_{1} \mu_{t+s-2}+\mu_{t+s-1}\right) \\
& +\gamma_{i p}^{I} f_{i, t+s}^{I}+\gamma_{i p}^{P} f_{p, t+s}^{P}+\gamma_{i p}^{N} f_{t+s}^{N}+\nu_{i p, t+s}+\rho \nu_{i p, t+s-1}+\ldots .+\rho^{s-1} \nu_{i p, t+1} \tag{55}
\end{align*}
$$

The mean squared error of s period ahead forecast:

$$
\begin{align*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+s} \mid t\right)= & {\left[\beta_{i p, 0}^{2}\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right)+\beta_{i p, 1}^{2}\left(\psi_{s-2}^{2}+\psi_{s-3}^{2}+\ldots+\psi_{1}^{2}+1\right)\right] \sigma_{u s}^{2} } \\
& +\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\frac{\varpi_{i p}^{2}\left(1-\rho^{2 s}\right)}{1-\rho^{2}} \tag{56}
\end{align*}
$$

2.7 DFM 3\&5

The models share the following general form:

$$
\begin{equation*}
Y_{t}=\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{J} f_{t}^{J}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{t}=\Upsilon \varepsilon_{t-1}+\epsilon_{t} \tag{58}
\end{equation*}
$$

where the variance of ϵ_{t} is assumed to be Σ.

$$
\begin{equation*}
f_{t}=\Phi f_{t-1}+v_{t} \tag{59}
\end{equation*}
$$

where v_{t} is i.i.d. $N(0, I)$.
The 1 period ahead forecast error for $Y_{i p t}$:

$$
\begin{equation*}
\beta_{i p, 0} \mu_{t+1}+\gamma_{i p}^{I} v_{i, t+1}^{I}+\gamma_{i p}^{P} v_{p, t+1}^{P}+\gamma_{i p}^{N} v_{t+1}^{N}+\epsilon_{i p, t+1} \tag{60}
\end{equation*}
$$

The mean squared error of 1 period ahead forecast:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{61}
\end{equation*}
$$

The s period ahead forecast error for $Y_{i p t}$ contains three parts. The first part is associated with the US growth: $\beta_{i p, 0}\left(\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\ldots .+\psi_{1} \mu_{t+s-1}+\right.$ $\left.\mu_{t+s}\right)+\beta_{i p, 1}\left(\psi_{s-2} \mu_{t+1}+\psi_{s-3} \mu_{t+2} \ldots+\psi_{1} \mu_{t+s-2}+\mu_{t+s-1}\right)$; The second part is the relevant element in $\Gamma\left(\Phi^{s-1} v_{t+1}+\Phi^{s-2} v_{t+2}+\ldots+\Phi v_{t+s-1}+v_{t+s}\right)$; The third and the last part is the relevant element in $\epsilon_{t+s}+\Upsilon \epsilon_{t+s-1}+\ldots .+\Upsilon^{s-1} \epsilon_{t+1}$.

As a result, the mean squared error for s period ahead forecast contains three parts too. The first part is $\left[\beta_{i p, 0}^{2}\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right)+\beta_{i p, 1}^{2}\left(\psi_{s-2}^{2}+\right.\right.$ $\left.\left.\psi_{s-3}^{2}+\ldots+\psi_{1}^{2}+1\right)\right] \sigma_{u s}^{2}$; The second part is the relevant diagonal element in $\Gamma\left[\Phi^{s-1}\left(\Phi^{s-1}\right)^{\prime}+\Phi^{s-2}\left(\Phi^{s-2}\right)^{\prime}+\ldots+\Phi \Phi^{\prime}+I\right] \Gamma^{\prime}$; The third part is the relevant diagonal element in $\Sigma+\Upsilon \Sigma \Upsilon^{\prime}+\ldots+\Upsilon^{s-1} \Sigma\left(\Upsilon^{s-1}\right)^{\prime}$.

2.8 DFM 4\&6

The models share the following general form:

$$
\begin{equation*}
Y_{t}=\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{J} f_{t}^{J}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{i p t}=\rho_{i p} \varepsilon_{i p(t-1)}+\nu_{i p t} \tag{63}
\end{equation*}
$$

where $\nu_{i p t}$ are assumed to be i.i.d. $N\left(0, \varpi_{i p}^{2}\right)$.

$$
\begin{equation*}
f_{t}=\Phi f_{t-1}+v_{t} \tag{64}
\end{equation*}
$$

where v_{t} is i.i.d. $N(0, I)$.
The 1 period ahead forecast error for $Y_{i p t}$:

$$
\begin{equation*}
\beta_{i p, 0} \mu_{t+1}+\gamma_{i p}^{I} v_{i, t+1}^{I}+\gamma_{i p}^{P} v_{p, t+1}^{P}+\gamma_{i p}^{N} v_{t+1}^{N}+\nu_{i p, t+1} \tag{65}
\end{equation*}
$$

The mean squared error of 1 period ahead forecast:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{66}
\end{equation*}
$$

The s period ahead forecast error for $Y_{i p t}$ contains two parts. The first part is $\beta_{i p, 0}\left(\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\ldots .+\psi_{1} \mu_{t+s-1}+\mu_{t+s}\right)+\beta_{i p, 1}\left(\psi_{s-2} \mu_{t+1}+\right.$ $\left.\psi_{s-3} \mu_{t+2} \ldots+\psi_{1} \mu_{t+s-2}+\mu_{t+s-1}\right)+\nu_{i p, t+s}+\rho \nu_{i p, t+s-1}+\ldots .+\rho^{s-1} \nu_{i p, t+1}$; The second part is the relevant element in $\Gamma\left(\Phi^{s-1} v_{t+1}+\Phi^{s-2} v_{t+2}+\ldots+\Phi v_{t+s-1}+\right.$ $\left.v_{t+s}\right)$.

Thus, the mean squared error for s period ahead forecast for $Y_{i p t}$ contains two parts too. The first part is $\left[\beta_{i p, 0}^{2}\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right)+\beta_{i p, 1}^{2}\left(\psi_{s-2}^{2}+\right.\right.$ $\left.\left.\psi_{s-3}^{2}+\ldots+\psi_{1}^{2}+1\right)\right] \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\frac{\varpi_{i p}^{2}\left(1-\rho^{2 s}\right)}{1-\rho^{2}}$; The second part is
the relevant diagonal element in $\Gamma\left[\Phi^{s-1}\left(\Phi^{s-1}\right)^{\prime}+\Phi^{s-2}\left(\Phi^{s-2}\right)^{\prime}+\ldots+\Phi \Phi^{\prime}+I\right] \Gamma^{\prime}$

2.9 DFM7\&8

The two models share the following general form:

$$
\begin{equation*}
Y_{t}=\lambda+\beta_{0} D G D P_{t}^{U S}+\beta_{1} D G D P_{t-1}^{U S}+\gamma^{I} f_{t}^{I}+\gamma^{J} f_{t}^{J}+\gamma^{P} f_{t}^{P}+\gamma^{N} f_{t}^{N}+\varepsilon_{t} \tag{67}
\end{equation*}
$$

where the variance of $\varepsilon_{i p t}$ is $\varpi_{i p}^{2}$.

$$
\begin{equation*}
f_{t}=\Phi f_{t-1}+v_{t} \tag{68}
\end{equation*}
$$

where v_{t} is i.i.d. $N(0, I)$.
The 1 period ahead forecast error for $Y_{i p t}$:

$$
\begin{equation*}
\beta_{i p, 0} \mu_{t+1}+\gamma_{i p}^{I} v_{i, t+1}^{I}+\gamma_{i p}^{P} v_{p, t+1}^{P}+\gamma_{i p}^{N} v_{t+1}^{N}+\varepsilon_{i p, t+1} \tag{69}
\end{equation*}
$$

The mean squared error of 1 period ahead forecast:

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{Y}_{i p, t+1} \mid t\right)=\beta_{i p, 0}^{2} \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2} \tag{70}
\end{equation*}
$$

The s period ahead forecast error for $Y_{i p t}$ contains two parts. The first part is $\beta_{i p, 0}\left(\psi_{s-1} \mu_{t+1}+\psi_{s-2} \mu_{t+2}+\ldots .+\psi_{1} \mu_{t+s-1}+\mu_{t+s}\right)+\beta_{i p, 1}\left(\psi_{s-2} \mu_{t+1}+\right.$ $\left.\psi_{s-3} \mu_{t+2} \ldots+\psi_{1} \mu_{t+s-2}+\mu_{t+s-1}\right)+\varepsilon_{i p, t+s}$; The second part is the relevant element in $\Gamma\left(\Phi^{s-1} v_{t+1}+\Phi^{s-2} v_{t+2}+\ldots+\Phi v_{t+s-1}+v_{t+s}\right)$.

Thus, the mean squared error for s period ahead forecast for $Y_{i p t}$ contains two parts too. The first part is $\left[\beta_{i p, 0}^{2}\left(\psi_{s-1}^{2}+\psi_{s-2}^{2}+\ldots+\psi_{1}^{2}+1\right)+\beta_{i p, 1}^{2}\left(\psi_{s-2}^{2}+\right.\right.$ $\left.\left.\psi_{s-3}^{2}+\ldots+\psi_{1}^{2}+1\right)\right] \sigma_{u s}^{2}+\left(\gamma_{i p}^{I}\right)^{2}+\left(\gamma_{i p}^{P}\right)^{2}+\left(\gamma_{i p}^{N}\right)^{2}+\varpi_{i p}^{2}$; The second part is the relevant diagonal element in $\Gamma\left[\Phi^{s-1}\left(\Phi^{s-1}\right)^{\prime}+\Phi^{s-2}\left(\Phi^{s-2}\right)^{\prime}+\ldots+\Phi \Phi^{\prime}+I\right] \Gamma^{\prime}$.

3 The Factors

In this section, we plot the factors for the most preferred model. Discussions on these figures are provided in the main paper.

Figure 1: National Factor

Note: $33-66 \%$ quantile bands are in dash lines.

Figure 2: Province Factors

Note: $33-66 \%$ quantile bands are in dash lines.

Figure 3: Industry Factors

Note: $33-66 \%$ quantile bands are in dash lines.

References

[1] Altonji, J.G. and J.C. Ham (1990), "Variation in Employment Growth in Canada: The Role of External, National, Regional and Industrial Factors," Journal of Labor Economics 8, S198-S236.
[2] Banbura, M, D. Giannone and L. Reichlin (2010), Large Bayesian vector auto regressions, Journal of Applied Econometrics, 25, 71-92.
[3] Doan, T., R. Litterman and C. Sims (1984), Forecasting and conditional projections using realistic prior distributions, Econometric Reviews, 3, 1100.
[4] Gefang, D. (2012), Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage, manuscript.
[5] George, E., D. Sun and S. Ni (2008), Bayesian stochastic search for VAR model restrictions, Journal of Econometrics, 142, 553-80.
[6] Kadiyala, K.R. and S. Karlsson (1997), Numerical methods for estimation and inference in Bayesian VAR-models, Journal of Applied Econometrics, 12(2), 99-132.
[7] Kim, C. J. and C. R. Nelson (1999), State-Space Models with Regime Switching, Cambridge, Massachusetts: MIT Press.
[8] Koop, G. (2011), Forecasting with medium and large Bayesian VARs, Journal of Applied Econometrics, doi: 10.1002/jae.1270.
[9] Lopes, H.F. and M. West (2004), Bayesian model assessment in factor analysis, Statistica Sinica, 14, 41-67.
[10] Park, T. and G. Casella (2008), The Bayesian Lasso, Journal of the American Statistical Association, 103, 681-86.

[^0]: *Campolieti gratefully acknowledges the financial support of the Social Sciences and Humanities Research Council of Canada (SSHRC). Please address correspondence to Michele Campolieti, Centre for Industrial Relations, University of Toronto, 121 St. George Street, Toronto, Ontario, M5S 2E8, Canada; email: campolie@chass.utoronto.ca.

[^1]: ${ }^{1}$ Various Bayesian priors can be used to shrink the parameter space: the traditional Minnesota prior of Doan et al (1984) and Litterman (1986) and its natural variants (e.g. Kadiyala and Karlsson, 1997; Banbura et al, 2010), the stochastic search variable selection (SSVS) prior of George, Sun and Ni (2008), the family of SSVS plus Minnesota priors of Koop (2011), Lasso of Park and Casella (2008), and the double adaptive elastic-net Lasso of Gefang (2012). The traditional Minnesota prior is popular because its computational cost is low.

