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1 Priors, Posteriors and MCMC algorithms

The models listed in Table 1 of the main paper can each be estimated using

MCMC. Depending on the assumptions of a model, we can use a selection of

the Gibbs blocks described in the rest of the section to form a full conditional

Gibbs sampler that is suitable for its estimation.

The following notations are used in various Gibbs blocks when necessary:

• Yipt denotes the growth rate of industry i in province p at time t;

• εipt denotes the error term in the equation associated with Yipt;

• hip denotes the precision of the i.i.d. errors in the equation associated

with Yipt;

• λip, β0,ip, and β1,ip are the constant and the coefficients of lagged US

growth rates in the equation associated with Yipt;

• Λip,k denotes the element at the nth row and kth column of Λ, note that

the nth row is directly associated with Yipt;

• fNt , fPpt and f
I
it denote the national factor, the provincial factor for province

p, and the industrial factor for industry i at time t;

• γNip , γ
P
ip, and γ

I
ip are the factor loadings for fNt , fPpt and f Iit, respectively,

in the equation associated with Yipt;

• Y i
t , Y

p
t , and Y

N
t denote the weighted averaged growth rates for industry

i, province p, and the whole country;

• Λi
ip, Λ

p
ip, and ΛN

ip denote the coefficients of lagged Y i
t , Y

p
t , and Y N

t , re-

spectively, in the equation associated with Yipt.

2



1.1 Conditional Posteriors for λ, Λ, β0, and β1

1.1.1 Models without lagged εt

1.1.1.1 Lagged Yts do not enter the model

Let Y †
ipt = Yipt − (γIipf

I
it + γPipf

P
pt + γNipf

N
t ), we have

Y †
ipt = X†

t b
†
ip + εipt, (1)

where b†ip = (λip, β0,ip, β1,ip)
′
and X†

t = (1, DGDPUS
t , DGDPUS

t−1).

Let Y †
ip = (Y †

ip,1, Y
†
ip,2, ..., Y

†
ip,T )

′, Eip = (εip,1, εip,2, ..., εip,T ), and X† be a

T ×3 matrix with the tth row given by X†
′

t . In matrix form, we rewrite equation

(1) as

Y †
ip = X†b†ip + Eip (2)

where var(Eip) = h−1
ip IT .

We elicit Normal prior for b†ip as:

b†ip ∼ N(b†, V †
b)

for i = 1, 2, ..., I and p = 1, 2, ..., P .

The conditional posterior for b†ip thus takes the following form

b†ip|Y,Σ, F,Γ ∼ N(b
†
ip, V

†
bip)

where

V
†
bip = (V †−1

b + hipX
†
′

X†−1

)

b
†
ip = V

†
bip(V

†−1

b b† + hipX
†
′

Y †
ip)

.
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In empirical work, we set b† = 0, V †
b =


10 0 0

0 1 0

0 0 1

.

1.1.1.2 Λ Restricted∗ = only the weighted averaged lagged Yts enter

the model

Let Y †
ipt = Yipt − (γIipf

I
it + γPipf

P
pt + γNipf

N
t ), we have

Y †
ipt = X†

t b
†
ip + εipt, (3)

where b†ip = (λip, β0,ip, β1,ip,Λ
I
ip,Λ

P
ip,Λ

N
ip)

′
andX†

t = (1, DGDPUS
t , DGDPUS

t−1, Y
i
t−1, Y

p
t−1, Y

N
t−1).

Let Y †
ip = (Y †

ip,1, Y
†
ip,2, ..., Y

†
ip,T )

′, Eip = (εip,1, εip,2, ..., εip,T ), and X† be a

T ×6 matrix with the tth row given by X†
′

t . In matrix form, we rewrite equation

(3) as

Y †
ip = X†b†ip + Eip (4)

where var(Eip) = h−1
ip IT .

We elicit Normal prior for b†ip as:

b†ip ∼ N(b†, V †
b)

for i = 1, 2, ..., I and p = 1, 2, ..., P .

The conditional posterior for b†ip thus takes the following form

b†ip|Y,Σ, F,Γ ∼ N(b
†
ip, V

†
bip)

where

V
†
bip = (V †−1

b + hipX
†
′

X†−1

)

b
†
ip = V

†
bip(V

†−1

b b† + hipX
†
′

Y †
ip)
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In empirical work, we set b† = 0, V †
b = 10 ∗ I6.

1.1.1.3 Λ Restricted∗∗ = only own lag coefficients are non-zero

Let Y †
ipt = Yipt − (γIipf

I
it + γPipf

P
pt + γNipf

N
t ), we have

Y †
ipt = X†

t b
†
ip + εipt, (5)

where b†ip = (λip,Λip,ip, β0,ip, β1,ip)
′
andX†

t = (1, Yip,t−1, DGDP
US
t , DGDPUS

t−1).

Let Y †
ip = (Y †

ip1, Y
†
ip2, ..., Y

†
ipT )

′, Eip = (εip1, εip2, ..., εipT ), and X
† be a T × 4

matrix with the tth row given by X†
t . In matrix form, we rewrite equation (5)

as

Y †
ip = X†b†ip + Eip (6)

where var(Eip) = h−1
ip IT .

We elicit Normal prior for b†ip as:

b†ip ∼ N(b†, V †
b).

The conditional posterior for b†ip thus takes the following form

b†ip|Y,Σ, F,Γ ∼ N(b
†
ip, V

†
bip)

where

V
†
bip = (V †−1

b + hipX
†
′

X†−1

)

b
†
ip = V

†
bip(V

†−1

b b† + hipX
†
′

Y †
ip)

5



In empirical work, we set b† = 0, V †
b =



10 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

1.1.1.4 Λ Unrestricted

Let Y †
ipt be the difference between Yipt and (γIipf

I
it + γPipf

P
pt + γNipf

N
t ). We

have

Y †
ipt = X†

t b
†
ip + εipt, (7)

where b†ip = (λip,Λip,1,Λip,2, ...,Λip,N , β0,ip, β1,ip)
′
andX†

t = (1, Y11,t−1, Y12,t−1, ...,

+ YIP,t−1, DGDP
US
t , DGDPUS

t−1).

Let Y †
ip = (Y †

ip1, Y
†
ip2, ..., Y

†
ipT )

′, Eip = (εip1, εip2, ..., εipT ), and X
† be a T ×

(IP + 3) matrix with the tth row given by X†
t . In matrix form, we rewrite

equation (7) as

Y †
ip = X†b†ip + Eip (8)

where var(Eip) = h−1
ip IT

Because in equation (8) the number of parameters is greater than the number

of observations, we elicit the Minnesota prior for b†ip as:

b†ip ∼ N(b†, V †
b).

Note that V †
b is a diagonal matrix with the diagonal elements given by

V †
bj,j

=


π1, for parameter on own lag;

π2σip/σ−ip, for parameters on other lags;

π3σip, for parameters on exogeneous/deterministic variables.

where σip is the standard OLS estimate of the error variance in the equation
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associated with Yipt, and σ−ip is the standard OLS estimate of the error variance

in the equation associated with the growth rate that is not Yipt.
1

The conditional posterior for b†ip thus takes the following form

b†ip|Y,Σ, F,Γ ∼ N(b
†
ip, V

†
bip)

where

V
†
bip = (V †−1

b + hipX
†
′

X†−1

)

b
†
ip = V

†
bip(V

†−1

b b† + hipX
†
′

Y †
ip)

In empirical work, we set π1 = 0.05, π2 = 0.005, and π3 = 1000.

1.1.2 Models with lagged εt

1.1.2.1 Υ Diagonal

Here we assume that εip,t follows a stationary AR(1) process:

εip,t = ρipεip,t−1 + ϵip,t

where ϵt is i.i.d. N(0, 1/hip).

Let Y †
ip,t = (1− ρipL)[Yip,t − (γIipf

I
it + γPipf

P
pt + γNipf

N
t )], we have

Y †
ip,t = X†

t b
†
ip + ϵip,t, (9)

where b†ip = (λip, β0,ip, β1,ip)
′
and X†

t = (1 − ρipL)(1, DGDP
US
t , DGDPUS

t−1).

Note that L is the lag operator.

1Various Bayesian priors can be used to shrink the parameter space: the traditional Min-
nesota prior of Doan et al (1984) and Litterman (1986) and its natural variants (e.g. Kadiyala
and Karlsson, 1997; Banbura et al, 2010), the stochastic search variable selection (SSVS) prior
of George, Sun and Ni (2008), the family of SSVS plus Minnesota priors of Koop (2011), Lasso
of Park and Casella (2008), and the double adaptive elastic-net Lasso of Gefang (2012). The
traditional Minnesota prior is popular because its computational cost is low.
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Let Y †
ip = (Y †

ip,1, Y
†
ip,2, ..., Y

†
ip,T )

′, Eip = (εip,1, εip,2, ..., εip,T ), and X† be a

T ×3 matrix with the tth row given by X†
t . In matrix form, we rewrite equation

(9) as

Y †
ip = X†b†ip + Eip (10)

where var(Eip) = h−1
ip IT , with IT be the T × T identity matrix.

We elicit Normal prior for b†ip as:

b†ip ∼ N(b†, V †
b)

for i = 1, 2, ..., I and p = 1, 2, ..., P .

The conditional posterior for b†ip thus takes the following form

b†ip|Y,Σ, F,Γ ∼ N(b
†
ip, V

†
bip)

where

V
†
bip = (V †−1

b + hipX
†
′

X†−1

)

b
†
ip = V

†
bip(V

†−1

b b† + hipX
†
′

Y †
ip)

In empirical work, we set b† = 0 and V †
b =


10 0 0

0 1 0

0 0 1

.

1.1.2.2 Υ Unrestricted

The N × 1 vector εt is assumed to follow a stationary VAR(1) process:

εt = Υεt−1 + ϵt

where ϵt is i.i.d. N(0,Σ). Σ is a N × N diagonal matrix with the diagonal

element that corresponds to εipt given by 1/hip.
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Let the Y †
t = Yt − (γIf It + γP fPt + γNfNt ), we have

Y †
t = BX†

t + εt, (11)

where B is an N ×3 coefficients matrix with the row associated with Yip,t given

by (λip, β0,ip, β1,ip), X
†
t = (1, DGDPUS

t , DGDPUS
t−1)

′
.

Let Y ♭ = (Y †
1 , Y

†
2 , ..., Y

†
T )

′ − (Y †
0 , Y

†
1 , ..., Y

†
T−1)

′Υ, X♭ = IN ⊗X†
a −Υ

′ ⊗X†
b ,

where X†
a be a T ×3 matrix with the tth row given by X†

′

t , X†
b be a T ×3 matrix

with the tth row given byX†
′

t , and E = (ϵ
′

1, ϵ
′

2, ..., ϵ
′

T ). Then we have

y♭ = X♭b+ e (12)

where y♭ = vec(Y ♭), b = vec(B), and e = vec(E). Note that var(e) = IT ⊗ Σ.

For notational convenience, we use Ξ to denote var(e).

We elicit Normal prior for b as:

b ∼ N(b, V b)

The conditional posterior for b thus takes the following form

b|Y,Σ, F,Γ ∼ N(b, V b)

where

V b = (V −1
b +X♭

′

Ξ−1X♭−1

)−1

b = V b(V bb+X♭
′

Ξ−1y♭)

In empirical work, we set b† = 0 and V †
b =


10 0 0

0 1 0

0 0 1

.
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1.2 Conditional Posteriors for γI, γP , and γN

1.2.1 Models without lagged εt

Conditional on λ, β0, β1, and the factors, we can estimate the elements in γI ,

γP , and γN equation by equation. Let Y ‡
ipt = Yipt − (λip + βip,0DGDP

US
t +

βip,1DGDP
US
t−1), we have

Y ‡
ipt = X‡

t b
‡
ip + εipt, (13)

where b‡ip = (γIip, γ
P
ip, γ

N
ip )

′
and X‡

t = (f Iit, f
P
pt, f

N
t ).

Let Y ‡
ip = (Y ‡

ip1, Y
‡
ip2, ..., Y

‡
ipT )

′, Eip = (εip1, εip2, ..., εipT ), and X
‡ be a T × 3

matrix with the tth row given by X‡
t . In matrix form, we rewrite equation (13)

as

Y ‡
ip = X‡b‡ip + Eip (14)

where var(Eip) = h−1
ip IT .

We elicit Normal prior for b‡ip as:

b‡ip ∼ N(b‡, V ‡
b)

for i = 1, 2, ..., I and p = 1, 2, ..., P .

The conditional posterior for b‡ip thus takes the following form

b‡ip|Y,Σ, F,Γ ∼ N(b
‡
ip, V

‡
bip)

where

V
‡
bip = (V ‡−1

b + hipX
‡
′

X‡−1

)

b
‡
ip = V

‡
bip(V

‡−1

b b‡ + hipX
‡
′

Y ‡
ip)

10



In empirical work, we set b‡ = 0 and V ‡
b =


1 0 0

0 1 0

0 0 1

.

1.2.2 Models with lagged εt

1.2.2.1 Υ Diagonal

Here we assume that εip,t follows a stationary AR(1) process:

εip,t = ρipεip,t−1 + ϵip,t

where ϵt is i.i.d. N(0, 1/hip). Let Y
‡
ip,t = (1−ρipL)[Yip,t−(λip+βip,0DGDP

US
t +

βip,1DGDP
US
t−1)], we have

Y ‡
ipt = X‡

t b
‡
ip + ϵipt, (15)

where b‡ip = (γIip, γ
P
ip, γ

N
ip )

′
and X‡

t = (1− ρipL)(f
I
it, f

P
pt, f

N
t ).

Let Y ‡
ip = (Y ‡

ip,1, Y
‡
ip,2, ..., Y

‡
ip,T )

′, ϵip = (ϵip,1, ϵip,2, ..., ϵip,T ), and X‡ be a

T ×3 matrix with the tth row given by X‡
′

t . In matrix form, we rewrite equation

(15) as

Y ‡
ip = X‡b‡ip + ϵip (16)

where var(ϵip) = h−1
ip IT

We elicit Normal prior for b‡ip as:

b‡ip ∼ N(b‡, V ‡
b)

for i = 1, 2, ..., I and p = 1, 2, ..., P .
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The conditional posterior for b‡ip thus takes the following form

b‡ip|Y,Σ, F,Γ ∼ N(b
‡
ip, V

‡
bip)

where

V
‡
bip = (V ‡−1

b + hipX
‡
′

X‡−1

)

b
‡
ip = V

‡
bip(V

‡−1

b b‡ + hipX
‡
′

Y ‡
ip)

In empirical work, we set b‡ = 0 and V ‡
b =


1 0 0

0 1 0

0 0 1

.

1.2.2.2 Υ Unrestricted

Here εts are assumed to follow a stationary VAR(1) process:

εt = Υεt−1 + ϵt

where ϵt is i.i.d. N(0,Σ). Σ is a diagonal matrix with the diagonal element

that corresponds to εipt given by 1/hip.

First let Y ‡
t = Yt−(λ+β0DGDP

US
t +β1DGDP

US
t−1), Y

‡
a = (Y ‡

1 , Y
‡
2 , ..., Y

‡
T )

′
,

and Y ‡
b = (Y ‡

0 , Y
‡
1 , ..., Y

‡
T−1)

′
. We use Y ‡ to denote the difference between Y ‡

a

and Y ‡
b Υ. Next let X‡

ip,t = (f Iit, f
P
pt, f

N
t ), we construct two T ×3N matrices: X‡

a

with the tth row given by (X‡
1,t, X

‡
2,t, ..., X

‡
IP,t), and X

‡
b with the tth row given

by (X‡
1,t−1, X

‡
2,t−1, ..., X

‡
IP,t−1). Finally we have X‡ = IN ⊗X‡

a −Υ
′ ⊗X‡

b .

Now the model can be written as

y‡ = X‡b‡ + e, (17)

where y‡ = vec(Y ‡), b‡ = vec(B‡), andB‡ be the 3×N coefficient matrix. InB‡,
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the column that associated with the equation of Yipt is given by (γIip, γ
P
ip, γ

N
ip )

′
.

We elicit Normal prior for b‡ as:

b‡ ∼ N(b, V b)

The conditional posterior for b‡ thus takes the following form

b‡|Y,Σ, F,Γ,Υ ∼ N(b
‡
, V

‡
b)

where

V
‡
b = (V ‡−1

b +X‡
′

Ξ−1X‡)−1

b
‡
= V

‡
b(V

‡−1

b b‡ +X‡
′

Ξ−1y‡)

where Ξ = var(e).

In empirical work, we set b‡ = 0 and V ‡
b = I3∗N .

1.3 Conditional Posteriors for the Factors

Let Y ♮
t be the difference between Yt and the sum of λ+β0DGDP

US
t +β1DGDP

US
t−1

and any other deterministic terms that associated with lagged Yt, if the latter

exist, we have

Y ♮
t = ΓFt + εt, (18)

where Ft = (f It f
P
t f

N
t ), and var(εt) = Ω. When εts are assumed to be i.i.d., we

have Ω = Σ; when εipts are assumed follow an AR(1) process, Ωip,ip = 1
hip(1−ρ2

ip)
;

when εipts are assumed follow an VAR(1) process with Υ unrestricted, vec(Ω) =

vec[(IN2 −Υ⊗Υ)vec(Σ)]. Γ is the matrix of factor loadings. The dimension of

Ft and Γ are (I + P + 1)× 1 and N × (I + P + 1), respectively.
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1.3.1 Static Factor Models

For static factor models, as shown in Lopes and West (2004), the conditional

posteriors for F can be factored into independent normal distributions for Ft,

Ft|Σ, λ, β0, β1, γI , γP , γN ∼ N [(IIP + Γ
′
Σ−1Γ)−1Γ

′
Σ−1Y ♮

t , (IIP + Γ
′
Ω−1Γ)−1]

1.3.2 Dynamic Factor Models

For dynamic factor models, we can rewrite the model into a state-space form,

where the measurement equation is equation (18) , and the transition equation

is the following:

Ft = ΦFt + νt, (19)

where var(νt) = II+P+1.

Let Ỹ ♮
t = (Y ♮

1 , Y
♮
2 , ..., Y

♮
t )

′
. Following Kim and Nelson (1999, Ch. 8), condi-

tional on Φ and Γ, we can draw the latent factors in the following steps.

First run Kalman filter to calculate Ft|t = E(Ft|Ỹ ♮
t ) and Pt|t = Cov(Ft|Ỹ ♮

t )

for t = 1, 2, ..., T :

Ft|t−1 = ΦFt−1

Pt|t−1 = ΦPt|t−1Φ
′
+ II+P+1

Ft|t = Ft|t−1 + Pt|t−1Γ
′
(ΓPt|t−1Γ

′
+Ω)−1(Y ♮

t − ΓFt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Γ
′
(ΓPt|t−1Γ

′
+Ω)−1ΓPt|t−1

Next, we draw FT based on the last iteration of the Kalman filter:

FT |Ỹ ♮
T ∼ N(FT |T , PT |T )

14



Then we derive Ft|Ỹ ♮
T
backward for t = T − 1, T − 2, ..., 1:

Ft|Y ♮
t , Ft+1 ∼ N(Ft|t,Ft+1

, Pt|t,Ft+1
)

where

Ft|t,Ft+1
= Ft|t + Pt|tΦ

′
{ΦPt|tΦ

′
+ I3}−1(Ft+1 − ΦFt|t)

Pt|t,Ft+1
= Pt|t − Pt|tΦ

′
{ΦPt|tΦ

′
+ I3}−1ΦPt|t

1.4 Conditional Posteriors for hip

We set Gamma prior for hip as G(s−2, ν). Let ϵipt be the i.i.d. error term in the

equation associated with Yipt and ϵip = (ϵip,1, ϵip,2, ..., ϵip,T ). It can be verified

that the conditional posterior for hip is Gamma

hip|Y, F,Γ, λ, β0, β1 ∼ G(s−2, ν)

where

ν = T + ν

s−2 =
ϵ
′

ipϵip + νs2

ν

Note that ϵt = εt if εt is i.i.d., ϵipt = εipt−ρipεip,t−1 if εipt follows an AR(1)

process, and ϵt = εt −Υεt−1 if εt follows a VAR(1) process.

In empirical work, we set s−2 = 0.001 and ν = 1.
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1.5 Conditional Posteriors for Φ

1.5.1 Φ Unrestricted

Conditional on the I +P +1 factors, Φ can be estimated equation by equation.

Using fj,t to denote the jth element in Ft, we have

fj,t = ϕj,1f1,t + ϕj,2f2,t + ...+ ϕj,I+P+1fI+P+1,t + νj,t, (20)

where var(νj,t) = 1.

Let fj = (fj,t, fj,2, ..., fj,T )
′
, Uj = (νj,1, νj,2, ..., νj,T ), X

§ be a T ×(P +I+1)

matrix with the tth row given by (f1,t, f2,t, ..., f1+P+I,t), and b
§
j be the transpose

of the jth row in Φ. In matrix form, we rewrite equation (20) as

fj = X§b§j + Uj (21)

where var(Uj) = IT .

We elicit Minnesota prior for b§j as:

b§j ∼ N(b§, V §
b)

for j = 1, 2, ..., 1 + I + P . Note that V §
b is a diagonal matrix with the diagonal

elements given by

V §
bj,j

=

 π4, for parameter on own lag;

π5 for parameters on other lags

The conditional posterior for b§j thus takes the following form

b§j |Y,Σ, F, λ,Λ, β0, β1 ∼ N(b
§
j , V

§
bj )

16



where

V
§
bj = (V §−1

b +X§
′

X§−1

)

b
§
j = V

§
bj (V

§−1

b b§ +X§
′

fj)

In empirical work, we set b§ = 0, π4 = 0.05, and π5 = 0.005.

1.5.2 Φ Diagonal

Conditional on the I +P +1 factors, Φ can be estimated equation by equation.

Using fj,t to denote the jth element in Ft, we have

fj,t = ϕj,jfj,t−1 + νj,t, (22)

Let fj = (fj,t, fj,2, ..., fj,T )
′
, Uj = (νj,1, νj,2, ..., νj,T ),X

§ = (fj,−1, fj,1, ..., fj,T−1)
′
,

and b§j be ϕj,j . In matrix form, we rewrite equation (22) as

fj = X§b§j + Uj (23)

where var(Uj) = IT .

We elicit Normal prior for b§j as:

b§j ∼ N(b§, V §
b)

for j = 1, 2, ..., 1 + I + P .

The conditional posterior for b§j thus takes the following form

b§j |Y,Σ, F, λ,Λ, β0, β1 ∼ N(b
§
j , V

§
bj )

where

V
§
bj = (V §−1

b +X§
′

X§−1

)
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b
§
j = V

§
bj (V

§−1

b b§ +X§
′

fj)

In empirical work, we set b§ = 0 and V §
b = 1.

1.6 Conditional Posteriors for Υ

1.6.1 Υ Diagonal

Υ is a diagonal matrix with the diagonal elements given by ρip, Conditional

on the factors and the rest of the coefficients, we have εip,t = Yip,t − (λip +

βip,0DGDP
US
t +βip,1DGDP

US
t−1+γ

I
ipf

I
it+γ

P
ipf

P
pt+γ

N
ipf

N
t ) Let e♯ip = (εip,1, εip,2, ..., εip,T ),

and x♯ip = (εip,0, εip,1, ..., εip,T−1). We have

e♯ip = ρipx
♯
ip + ϵip

where var(ϵip) = 1/hipIT .

We elicit Normal prior for ρip as:

ρip ∼ N(ρ, V ρ).

The conditional posterior for ρip thus takes the following form

ρip|Y,Σ, F,Γ ∼ N(ρip, V ρip)

where

V ρip = (V −1
ρ + hipx

♯
′

ipx
♯
ip)

−1

ρip = V ρip(V
−1

ρ ρ+ hipx
♯
′

ipe
♯
ip)

In empirical work, we set ρ = 0 and V ρ = 1. To ensure the error terms are

stationary, we draw the posteriors from a Truncated Normal.
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1.6.2 Υ Unrestricted

Conditional on the coefficients and factors, εt = Yt − (λ + β0DGDP
US
t +

β1DGDP
US
t−1 + γIf It + γP fPt + γNfNt ). It is assumed that εt = Υεt−1 + ϵt.

Let E♯ = (ε1, ε2, ..., εT )
′
, X♯ = (ε0, ε1, ..., εT−1)

′
, in matrix form, we have

E♯ = X♯Υ+ E, (24)

Let e♯ip be the column of error terms in E♯ that associated with the ith industry

in the pth province, b♯ip is the row vector in Υ that associated with e♯ip, we have

e♯ = X♯b♯ip + eip, (25)

where var(eip) = 1/hipIT . Because in equation (25) the number of parameters

is greater than the number of observations, we elicit Minnesota prior for b♯ip as:

b♯ip ∼ N(b♯, V ♯
b)

Note that V ♯
b is a diagonal matrix with the diagonal elements given by

V †
bj,j

=

 π6, for parameter on own lag;

π7δip/δ−ip for parameters on other lags

The conditional posterior for b♯ip thus takes the following form

b♯ip|Y,Σ, F,Γ, λ, β0, β1 ∼ N(b
♯

ip, V
♯

bip)

where

V
♯

bip = (V ♯−1

b + hipX
♯
′

X♯−1

)

b
♯

ip = V
♯

bip(V
♯−1

b b♯ + hipX
♯
′

e†ip)
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In empirical work, we set tighter priors for b♯ip to ensure stationary. In

particular, we set b♯ = 0, π6 = 0.01, and π7 = 0.001.

2 Variance Decompositions

In this section we provide details for variance decompositions.

2.1 US Growth Rate

Throughout, we assume the exogenous US growth follows an AR(2) process as

in Altonji and Ham (1990):

DGDPUS
t = α0 + α1DGDP

US
t−1 + α2DGDP

US
t−2 + µt (26)

where µt is i.i.d. N(0, σ2
us).

Let u be the expected value for DGDPUS
t at steady-state. In VAR form,

we have DGDPUS
t − u

DGDPUS
t−1 − u

 =

 α1 α2

1 0


 DGDPUS

t−1 − u

DGDPUS
t−2 − u

+

 µt

0

 (27)

Hence, the s period ahead forecast errors for DGDPUS
t is

ψs−1µt+1 + ψs−2µt+2 + ....+ ψ1µt+s−1 + µt+s (28)

where ψh is the (1, 1)th element in matrix

 α1 α2

1 0


h

.

The mean squared error of 1 period ahead forecast for DGDPUS
t :

MSE(D̂GDP
US

t+1|t) = σ2
us (29)
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The mean squared error of s period ahead forecast for DGDPUS
t :

MSE(D̂GDP
US

t+s|t) = (ψ2
s−1 + ψ2

s−2 + ....+ ψ2
1 + 1)σ2

us (30)

2.2 The Static Factor Model

The model takes the following form:

Yt = λ+ β0DGDP
US
t + β1DGDP

US
t−1 + γIf It + γP fPt + γNfNt + εt (31)

where the variance for εipt is assumed to be ϖ2
ip.

The 1 period ahead forecast error for Yipt is βip,0µt+1+γ
I
ipf

I
i,t+1+γ

P
ipf

P
p,t+1+

γNipf
N
t+1 + εip,t+1. Thus, the mean squared error of 1 period ahead forecast is:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (32)

The s period ahead forecast error for Yipt is βip,0(ψs−1µt+1 + ψs−2µt+2 +

....+ψ1µt+s−1 + µt+s) + βip,1(ψs−2µt+1 +ψs−3µt+2....+ψ1µt+s−2 + µt+s−1) +

γIipf
I
i,t+s+γ

P
ipf

P
p,t+s+γ

N
ipf

N
t+s+εip,t+s. Thus, the mean squared error of s period

ahead forecast is following:

MSE(Ŷip,t+s|t) =[β2
ip,0(ψ

2
s−1 + ψ2

s−2 + ...+ ψ2
1 + 1) + β2

ip,1(ψ
2
s−2 + ψ2

s−3 + ...+ ψ2
1 + 1)]σ2

us

+ (γIip)
2 + (γPip)

2 + (γNip )
2 +ϖ2

ip

(33)

2.3 VAR-Factor models 1, 2, and 7

The models share the following general form:

Yt = λ+ΛYt−1+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
P fPt +γNfNt +εt (34)
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where the variance for εipt is ϖ
2
ip.

With some manipulation, we have the following VAR form:


Yt

DGDPUS
t

DGDPUS
t−1

 =


λ+ β0α0

α0

0

+


Λ β0α1 + β1 β0α2

0 α1 α2

0 1 0




Yt−1

DGDPUS
t−1

DGDPUS
t−2



+


β0µt + γIf It + γP fPt + γNfNt + εt

µt

0


(35)

LetA =


Λ β0α1 + β1 β0α2

0 α1 α2

0 1 0

, and c be the expectation of


Yt

DGDPUS
t

DGDPUS
t−1


at the steady state. We have

(


Yt

DGDPUS
t

DGDPUS
t−1

− c) =A(


Yt−1

DGDPUS
t−1

DGDPUS
t−2

− c)

+


β0µt + γIf It + γP fPt + γNfNt + εt

µt

0


(36)

Thus, the s period ahead forecast error for


Yt+s

DGDPUS
t+s

DGDPUS
t+s−1

 is as following:

As−1


β0µt+1 + γIf It+1 + γP fPt+1 + γNfNt+1 + εt+1

µt+1

0
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+As−2


β0µt+2 + γIf It + γP fPt+2 + γNfNt+2 + εt+2

µt+2

0

+ ...

+A


β0µt+s−1 + γIf It+s−1 + γP fPt+s−1 + γNfNt+s−1 + εt+s−1

µt+s−1

0



+


β0µt+s + γIf It+s + γP fPt+s + γNfNt+s + εt+s

µt+s

0


The mean squared error of 1 period ahead forecast for Yipt:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (37)

The mean squared error of s period ahead forecast for Yipt is the relevant

diagonal element in:

As−1Ξ(As−1)
′
+As−2Ξ(As−2)

′
+ ...+AΞ(A)

′
+ Ξ (38)

where Ξ =


β0σ

2
usβ

′

0 + γI(γI)
′
+ γP (γP )

′
+ γN (γN )

′
+Σ β0σ

2
us 0

β
′

0σ
2
us σ2

us 0

0 0 0

, and

Σ is the diagonal error covariance matrix for εt. The (ip, ip)th element in Σ is

ϖ2
ip.

2.4 VAR-Factor models 3, 4, 5, 6, 8 and 9

The six models share the following general form:

Yt = λ+ΛYt−1+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
P fPt +γNfNt +εt (39)
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ft = Φft−1 + vt (40)

where vt is i.i.d. N(0, I), and the variance for εipt is ϖ
2
ip.

First we collect the equations together in a big VAR:



ft

Yt

DGDPUS
t

DGDPUS
t−1


=



0

λ+ β0α0

α0

0


+



Φ 0 0 0

ΓΦ Λ β0α1 + β1 β0α2

0 0 α1 α2

0 0 1 0





ft−1

Yt−1

DGDPUS
t−1

DGDPUS
t−2



+



vt

β0µt + Γvt + εt

µt

0


(41)

where Γ is a parameter matrix with γI , γP and γN appropriately stacked in.

LetA =



Φ 0 0 0

ΓΦ Λ β0α1 + β1 β0α2

0 0 α1 α2

0 0 1 0


, and the expected value for



ft

Yt

DGDPUS
t

DGDPUS
t−1
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be c. We have the following form

(



ft

Yt

DGDPUS
t

DGDPUS
t−1


− c) =A(



ft−1

Yt−1

DGDPUS
t−1

DGDPUS
t−2


− c)

+



vt

β0µt + Γvt + εt

µt

0



(42)

where the covariance matrix of



vt

β0µt + Γvt + εt

µt

0


is assumed to be Ξ.

Hence, the forecast error for



ft+s

Yt+s

DGDPUS
t+s

DGDPUS
t+s−1


at time t+ s is
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As−1



vt+1

β0µt+1 + Γvt+1 + εt+1

µt+1

0


+As−2



vt+2

β0µt+2 + Γvt+2 + εt+2

µt+2

0


+ ...

+A



vt+s−1

β0µt+s−1 + Γvt+s−1 + εt+s−1

µt+s−1

0


+



vt+s

β0µt+s + Γvt+s + εt+s

µt+s

0


(43)

The mean squared error of 1 period ahead forecast for Yipt:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (44)

The mean squared error of s period ahead forecast for Yipt is the relevant

diagonal element in:

As−1Ξ(As−1)
′
+As−2Ξ(As−2)

′
+ ...+AΞ(A)

′
+ Ξ (45)

2.5 DFM1

The model takes the following form:

Yt = λ+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
JfJt +γP fPt +γNfNt + εt (46)

εt = Υεt−1 + ϵt (47)
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where the variance of ϵt is assumed to be Σ, a diagonal matrix with appropriate

ϖ2
ips as its diagonal elements.

The 1 period ahead forecast error for Yipt is as following:

βip,0µt+1 + γIipf
I
i,t+1 + γPipf

P
p,t+1 + γNipf

N
t+1 + ϵip,t+1 (48)

Hence, the mean squared error of 1 period ahead forecast is

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip. (49)

The s period ahead forecast error for Yipt contains two parts. The first part

is associated with the US growth rates and the factors:

βip,0(ψs−1µt+1 + ψs−2µt+2 + ....+ ψ1µt+s−1 + µt+s)

+ βip,1(ψs−2µt+1 + ψs−3µt+2....+ ψ1µt+s−2 + µt+s−1)

+ γIipf
I
i,t+s + γPipf

P
p,t+s + γNipf

N
t+s

(50)

The second part associated with the VAR(1) idiosyncratic error terms is the

relevant element in ϵt+s +Υϵt+s−1 + ....+Υs−1ϵt+1.

Thus the mean squared error of s period ahead forecast for Yipt also contains

two parts. The first part is [β2
ip,0(ψ

2
s−1 + ψ2

s−2 + ... + ψ2
1 + 1) + β2

ip,1(ψ
2
s−2 +

ψ2
s−3+ ...+ψ

2
1 +1)]σ2

us+(γIip)
2+(γPip)

2+(γNip )
2; The second part is the relevant

diagonal element in Σ + ΥΣΥ
′
+ ...+Υs−1Σ(Υs−1)

′
.

2.6 DFM2

The model takes the following form:

Yt = λ+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
JfJt +γP fPt +γNfNt + εt (51)
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εipt = ρipεip(t−1) + νipt (52)

whereνipt are assumed to be i.i.d. N(0, ϖ2
ip).

The 1 period ahead forecast error for Yipt:

βip,0µt+1 + γIipf
I
i,t+1 + γPipf

P
p,t+1 + γNipf

N
t+1 + νip,t+1 (53)

The mean squared error of 1 period ahead forecast:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (54)

The s period ahead forecast error for Yipt:

βip,0(ψs−1µt+1 + ψs−2µt+2 + ....+ ψ1µt+s−1 + µt+s)

+ βip,1(ψs−2µt+1 + ψs−3µt+2....+ ψ1µt+s−2 + µt+s−1)

+ γIipf
I
i,t+s + γPipf

P
p,t+s + γNipf

N
t+s + νip,t+s + ρνip,t+s−1 + ....+ ρs−1νip,t+1

(55)

The mean squared error of s period ahead forecast:

MSE(Ŷip,t+s|t) =[β2
ip,0(ψ

2
s−1 + ψ2

s−2 + ...+ ψ2
1 + 1) + β2

ip,1(ψ
2
s−2 + ψ2

s−3 + ...+ ψ2
1 + 1)]σ2

us

+ (γIip)
2 + (γPip)

2 + (γNip )
2 +

ϖ2
ip(1− ρ2s)

1− ρ2

(56)

2.7 DFM 3&5

The models share the following general form:

Yt = λ+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
JfJt +γP fPt +γNfNt + εt (57)
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εt = Υεt−1 + ϵt (58)

where the variance of ϵt is assumed to be Σ.

ft = Φft−1 + vt (59)

where vt is i.i.d. N(0, I).

The 1 period ahead forecast error for Yipt:

βip,0µt+1 + γIipv
I
i,t+1 + γPipv

P
p,t+1 + γNipv

N
t+1 + ϵip,t+1 (60)

The mean squared error of 1 period ahead forecast:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (61)

The s period ahead forecast error for Yipt contains three parts. The first part

is associated with the US growth: βip,0(ψs−1µt+1+ψs−2µt+2+ ....+ψ1µt+s−1+

µt+s)+ βip,1(ψs−2µt+1 +ψs−3µt+2....+ψ1µt+s−2 +µt+s−1); The second part is

the relevant element in Γ(Φs−1vt+1+Φs−2vt+2+ ...+Φvt+s−1+vt+s); The third

and the last part is the relevant element in ϵt+s +Υϵt+s−1 + ....+Υs−1ϵt+1.

As a result, the mean squared error for s period ahead forecast contains

three parts too. The first part is [β2
ip,0(ψ

2
s−1+ψ

2
s−2+ ...+ψ

2
1 +1)+β2

ip,1(ψ
2
s−2+

ψ2
s−3 + ... + ψ2

1 + 1)]σ2
us; The second part is the relevant diagonal element in

Γ[Φs−1(Φs−1)
′
+Φs−2(Φs−2)

′
+ ...+ΦΦ

′
+ I]Γ

′
; The third part is the relevant

diagonal element in Σ + ΥΣΥ
′
+ ...+Υs−1Σ(Υs−1)

′
.
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2.8 DFM 4&6

The models share the following general form:

Yt = λ+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
JfJt +γP fPt +γNfNt + εt (62)

εipt = ρipεip(t−1) + νipt (63)

whereνipt are assumed to be i.i.d. N(0, ϖ2
ip).

ft = Φft−1 + vt (64)

where vt is i.i.d. N(0, I).

The 1 period ahead forecast error for Yipt:

βip,0µt+1 + γIipv
I
i,t+1 + γPipv

P
p,t+1 + γNipv

N
t+1 + νip,t+1 (65)

The mean squared error of 1 period ahead forecast:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (66)

The s period ahead forecast error for Yipt contains two parts. The first

part is βip,0(ψs−1µt+1 + ψs−2µt+2 + ....+ ψ1µt+s−1 + µt+s) + βip,1(ψs−2µt+1 +

ψs−3µt+2....+ψ1µt+s−2 +µt+s−1)+ νip,t+s + ρνip,t+s−1 + ....+ ρs−1νip,t+1; The

second part is the relevant element in Γ(Φs−1vt+1 +Φs−2vt+2 + ...+Φvt+s−1 +

vt+s).

Thus, the mean squared error for s period ahead forecast for Yipt contains

two parts too. The first part is [β2
ip,0(ψ

2
s−1 +ψ2

s−2 + ...+ψ2
1 +1)+ β2

ip,1(ψ
2
s−2 +

ψ2
s−3+ ...+ψ

2
1 +1)]σ2

us+(γIip)
2+(γPip)

2+(γNip )
2+

ϖ2
ip(1−ρ2s)

1−ρ2 ; The second part is
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the relevant diagonal element in Γ[Φs−1(Φs−1)
′
+Φs−2(Φs−2)

′
+ ...+ΦΦ

′
+ I]Γ

′

2.9 DFM7&8

The two models share the following general form:

Yt = λ+β0DGDP
US
t +β1DGDP

US
t−1+γ

If It +γ
JfJt +γP fPt +γNfNt + εt (67)

where the variance of εipt is ϖ
2
ip.

ft = Φft−1 + vt (68)

where vt is i.i.d. N(0, I).

The 1 period ahead forecast error for Yipt:

βip,0µt+1 + γIipv
I
i,t+1 + γPipv

P
p,t+1 + γNipv

N
t+1 + εip,t+1 (69)

The mean squared error of 1 period ahead forecast:

MSE(Ŷip,t+1|t) = β2
ip,0σ

2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip (70)

The s period ahead forecast error for Yipt contains two parts. The first

part is βip,0(ψs−1µt+1 + ψs−2µt+2 + ....+ ψ1µt+s−1 + µt+s) + βip,1(ψs−2µt+1 +

ψs−3µt+2.... + ψ1µt+s−2 + µt+s−1) + εip,t+s; The second part is the relevant

element in Γ(Φs−1vt+1 +Φs−2vt+2 + ...+Φvt+s−1 + vt+s).

Thus, the mean squared error for s period ahead forecast for Yipt contains

two parts too. The first part is [β2
ip,0(ψ

2
s−1 +ψ2

s−2 + ...+ψ2
1 +1)+ β2

ip,1(ψ
2
s−2 +

ψ2
s−3 + ...+ ψ2

1 + 1)]σ2
us + (γIip)

2 + (γPip)
2 + (γNip )

2 +ϖ2
ip; The second part is the

relevant diagonal element in Γ[Φs−1(Φs−1)
′
+Φs−2(Φs−2)

′
+ ...+ΦΦ

′
+ I]Γ

′
.
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3 The Factors

In this section, we plot the factors for the most preferred model. Discussions on

these figures are provided in the main paper.

Figure 1: National Factor
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Figure 2: Province Factors
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Figure 3: Industry Factors
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Note: 33-66% quantile bands are in dash lines.
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