)\ Lancaster University
MANAGEMENT SCHOOL

Economics Working Paper Series

2013/002

Technical Appendix to: A New Look at
Variation in Employment Growth in Canada:
The Role of Industry, Provincial, National and

External Factors.

Michele Campolieti, Deborah Gefang and Gary Koop

The Department of Economics
Lancaster University Management School
Lancaster LA1 4YX
UK

© Authors
All rights reserved. Short sections of text, not to exceed
two paragraphs, may be quoted without explicit permission,
provided that full acknowledgement is given.

LUMS home page: http://www.lums.lancs.ac.uk/



Technical Appendix to: A New Look at Variation
in Employment Growth in Canada: The Role of
Industry, Provincial, National and External
Factors

Michele Campolieti*
Department of Management, University of Toronto Scarborough
Centre for Industrial Relations, University of Toronto

Deborah Gefang
Department of Economics, Lancaster University
Gary Koop
Department of Economics, University of Strathclyde

February 1, 2013

*Campolieti gratefully acknowledges the financial support of the Social Sciences and Hu-
manities Research Council of Canada (SSHRC). Please address correspondence to Michele
Campolieti, Centre for Industrial Relations, University of Toronto, 121 St. George Street,
Toronto, Ontario, M5S 2E8, Canada; email: campolie@chass.utoronto.ca.



1 Priors, Posteriors and MCMC algorithms

The models listed in Table 1 of the main paper can each be estimated using
MCMC. Depending on the assumptions of a model, we can use a selection of
the Gibbs blocks described in the rest of the section to form a full conditional
Gibbs sampler that is suitable for its estimation.

The following notations are used in various Gibbs blocks when necessary:

Yip+ denotes the growth rate of industry 7 in province p at time ¢;
® ¢t denotes the error term in the equation associated with Yp;

e h;;, denotes the precision of the 4.i.d. errors in the equation associated

with Yip;

® \ip, Bo,ip, and By, are the constant and the coefficients of lagged US

growth rates in the equation associated with Yp¢;

th

e A;, 1 denotes the element at the n*" row and k" column of A, note that

the n" row is directly associated with Yj,;;

o N zﬁ and f}, denote the national factor, the provincial factor for province

p, and the industrial factor for industry ¢ at time ¢;

® Yy, v, and 7/, are the factor loadings for f, ff and f};, respectively,

in the equation associated with Y;p;

e Y/ VP and Y,V denote the weighted averaged growth rates for industry

i, province p, and the whole country;

. Aﬁp, A}, and Ain denote the coefficients of lagged Y}, Y/, and YV, re-

spectively, in the equation associated with Y;;.



1.1 Conditional Posteriors for A\, A, 5y, and 5,
1.1.1 Models without lagged &,

1.1.1.1 Lagged Y;s do not enter the model

Let Y, = Yips — (VL FL + 7L £ + 4 V), we have

Vi = XIb! + e,

ipt t Yip

where bl = (Aip, Bo.ip: B1.ip) and X[ = (1, DGDPYS, DGDPYS).

YT

ip,27 "

Let Y, = (V)

ip, 1’

Ty —
"a}/;p,T) ) Eip - (5ip,135ip,2;"'a5ip,T)a and XT be a

T x 3 matrix with the t** row given by X;r . In matrix form, we rewrite equation

(1) as

T xtpt )
Y;p - X bip + EZP
where var(E;,) = h;pllT.
We elicit Normal prior for bzp as:

bl ~ N, V})

ip

fort=1,2,...,]andp=1,2,..., P.

b

The conditional posterior for bjp thus takes the following form

pr‘KZaer ~ N(ET V;p)

ipr

where
Vlip = (Klil + hipXT XT?I)
R N e e
ip bip (—b = + p zp)

(2)



10 0 0
In empirical work, we set b' = 0, Z}; = 0 1 0

0 0 1

1.1.1.2 A Restricted* = only the weighted averaged lagged Y;s enter

the model

Let Yi;rat = Yipt — (%‘Ip L+ %—1; Iﬁ + ’ygffv), we have

Yih = X[bl, + cip, (3)

where b;fp = ()‘ipa ﬁO,ipv ﬂl,ipv A{p, AP

p?

AN) and X[ = (1, DGDPYS, DGDPYS, Y |, Y 1, YY)
Let Y, = (V)

ip,l’YT YT )/a Eip = (gip,lagipﬂa“'agipr)a and XT be a

ip,2) " Lip T
T x 6 matrix with the t** row given by X;r . In matrix form, we rewrite equation
(3) as

Y= X"l + B, (4)

where var(E;,) = h;pllT.

We elicit Normal prior for bzp as:
bl, ~ N, V)

fort=1,2,...,andp=1,2,..., P.

The conditional posterior for blTp thus takes the following form

T
ipo

o ot
bl [V, %, F,T ~ N(b V)

where

Vlip = (Kltil + hipXT/Xrl)

71‘ 5 d -1 ’
b =V (VI b 4+ X T Y



In empirical work, we set QT =0, K}: =10 % I¢.
1.1.1.3 A Restricted™ = only own lag coefficients are non-zero

Let er;rot = Lipt — (’yzlp z{‘, +’yz}1)) ;DI; +’Yz]1\7[ftN)7 we have

Vi = X{bly + i (5)
where b, = (Aip, Aip.ip, Bo.ips Brip) and X[ = (1,Yy,.—1, DGDPYS, DGDPYS).

Let V) = (V1 Y, Y] ,), By = (1. cips - ipr), and XT be a T x4
matrix with the tth row given by X;. In matrix form, we rewrite equation (5)

as

Y = X0} + B, (6)

where var(E;,) = hi_plIT.

We elicit Normal prior for b;rp as:

bl, ~ N @', V).

ip
The conditional posterior for bjp thus takes the following form

l

dl
bLIY, S, T ~ N(b;,, V), )

where

Vi, = (V) hpXTXT

o

p

J— —1 !
=V, Wb+ hy XTY)



10 0 0 O
' 1 00
In empirical work, we set b= 0,V, =
0 0 1 0
0 0 0 1

1.1.1.4 A Unrestricted

Let YiLt be the difference between Y;;,; and (’y{p L+ 'yf; Ift) + 'yg ). We
have

yi

ipt = XthIp + Eipt, (7)

where bzp = ()\ivaip,la Aip,?a "'7A7Lp,Na 50,1'17751,1']9)/ and XtT = (17Y11,t—17Y12,t—17
+Yipi_1, DGDPYS, DGDPYS).

yal

Let Y, = (Y, Y], ..

ipl> 'a}/iTpT)/7 EiP = (5ip1,€1'p2, "'7€iPT)7 and XT be a T' x
(IP + 3) matrix with the ¢ row given by X;. In matrix form, we rewrite
equation (7) as

v =X + B, (8)

where var(E;p) = h;plfT
Because in equation (8) the number of parameters is greater than the number
of observations, we elicit the Minnesota prior for b;-rp as:

b, ~ N, V).

ip
Note that KZ is a diagonal matrix with the diagonal elements given by

T, for parameter on own lag;
=4 ma0ip/0_ip, for parameters on other lags;

—bj,;

T30 ip, for parameters on exogeneous/deterministic variables.

where 0y, is the standard OLS estimate of the error variance in the equation



associated with Y, and o_;;, is the standard OLS estimate of the error variance
in the equation associated with the growth rate that is not Y.

The conditional posterior for b;rp thus takes the following form

l

it
prDfa 2; F>F ~ N(bipa Vbi,p)

where

— —1 4 —1
Vztip = (Zl]; "’hipXT X7 )

+

by = Vi, (Vb1 + R XT V)

In empirical work, we set m = 0.05, mo = 0.005, and w3 = 1000.

1.1.2 Models with lagged &,
1.1.2.1 T Diagonal

Here we assume that ¢4, ; follows a stationary AR(1) process:

€ip,t = Pip€ip,t—1 T €ipt

where € is i.i.d. N(0,1/h;p).

Let Y, , = (1= pip L) Yip.e — (v S + b £5 + 4 £)], we have

YiLt = Xt]Lpr + €ip,ts (9)

where bl = (Aip, Bo,ip, Brip) and X{ = (1 — p;L)(1, DGDPYS, DGDPY).

Note that L is the lag operator.

1Various Bayesian priors can be used to shrink the parameter space: the traditional Min-
nesota prior of Doan et al (1984) and Litterman (1986) and its natural variants (e.g. Kadiyala
and Karlsson, 1997; Banbura et al, 2010), the stochastic search variable selection (SSVS) prior
of George, Sun and Ni (2008), the family of SSVS plus Minnesota priors of Koop (2011), Lasso
of Park and Casella (2008), and the double adaptive elastic-net Lasso of Gefang (2012). The
traditional Minnesota prior is popular because its computational cost is low.



Let Y = (V1. V0o, Y] 1)) By = (ip1.cip2, - cipr), and X1 be a
T x 3 matrix with the " row given by X;L . In matrix form, we rewrite equation
(9) as

Y = X", + B, (10)

where var(E;,) = hi_pllT, with I7 be the T x T identity matrix.

We elicit Normal prior for bl-Lp as:

bl ~ N, V)

p

fori=1,2,...,land p=1,2,..., P.
The conditional posterior for b;rp thus takes the following form
ol

—T
bLIY, S, F,T ~ N(b;,, V), )

where
Vi, =W+ hipXT X1
,-i- 71- —1 ’
bip =V, (Kl bt + hip X1 Yl;rj)
10 0 0
In empirical work, we set b =0 and KZ = 0 1 0
0 0 1

1.1.2.2 T Unrestricted

The N x 1 vector &; is assumed to follow a stationary VAR(1) process:

e =Tei1+ ¢

where €; is i.i.d. N(0,X). ¥ is a N x N diagonal matrix with the diagonal

element that corresponds to €;p; given by 1/h;p.



Let the Y, =Y, — (4 ff + 47 fF + 4V ), we have
Y, = BX] +e,, (11)

where B is an N x 3 coefficients matrix with the row associated with Y;, ; given
by (Aip, Bo.ips Brip), Xi = (1, DGDPYS, DGDPVS)'.

Let Y? = (Y], Yy, .., V) — (v, Y, . vl )0, X =Iyo X -1 o X],
where X[ be a T x 3 matrix with the #!" row given by XtT , X;f be a T'x 3 matrix

with the t** row given betT ,and E = (€}, €y, ..., eé,«) Then we have
b yb
y=X"b+e (12)

where 3 = vec(Y?), b = vec(B), and e = vec(E). Note that var(e) = Iy ® X.
For notational convenience, we use = to denote var(e).

We elicit Normal prior for b as:
b~ N(b V)
The conditional posterior for b thus takes the following form

bY,%, F,T ~ N(b,Vy)

where
V= + X0 =7ix" )
b=Vy(Vpb+ X" E7Y)
10 0 O
In empirical work, we set b’ = 0 and Kg = 0 1 0
0 0 1



1.2 Conditional Posteriors for v/, v, and "V
1.2.1 Models without lagged &,

Conditional on A, By, 81, and the factors, we can estimate the elements in v/,

~+F, and vV equation by equation. Let Yiit = Yipt — (N\ip + BipoDGDPYS +

Bip1 DGDPY), we have

yi

ipt Xtibfp + Eipt, (13)

where bfp = (’y{p,fyf;,fyg)/ and Xf = (fL, ﬁ,ftN).
Let Y = (Y, Y, .. YD), Eyp = (eip1.€ipas - Sipr), and X be a T x 3

matrix with the ¢ row given by X}. In matrix form, we rewrite equation (13)

as

Y = X! + By (14)
where var(E;,) = hjplfT.
We elicit Normal prior for bgp as:

bi, ~ N (', V})

ip
fori=1,2,...,0l and p=1,2,..., P.
The conditional posterior for bfp thus takes the following form

71

bfpnf’ E’ F7F ~ N(bip7vli7ip)

where

Vl{ip = (Ki_l + hipXi,Xrl)

P
ip T

b, = Vo (VE b+ hypXT V)

10



1 00

In empirical work, we set b* =0 and Zi =10 1 0

0 0 1
1.2.2 Models with lagged &;
1.2.2.1 T Diagonal

Here we assume that e, ; follows a stationary AR(1) process:

€ip,t = Pip€ip,t—1 T €ipt

where €, is i.i.d. N(0,1/hsy). Let Y, = (1—pipL)[Yip.s— (Nip+Bip. o DGDPYS +

ip,t T

Bipa DGDPIS)], we have

Y;it = Xtibfp —+ Eipt, (15)
where b}, = (v1,, 7L AN) and X} = (1 — pip L) (fL. f5. ).

Let Y, = (Y, Y} v

' e = (e ) . b
ip, 10 Lip, 27 0 ip,T)’ €ip = (€lp,17€zp,27"'a6’tp,T)7 and X* be a

T x 3 matrix with the t** row given by XéE . In matrix form, we rewrite equation
(15) as
Y = X! + e (16)

where var(e;,) = hi_plfT

We elicit Normal prior for bfp as:
b, ~ N(b', V)

fori=1,2,...,0land p=1,2,..., P.

11



The conditional posterior for bfp thus takes the following form

71

bV, S, FT ~ N (B V) )

where
—1 —1 4 —1
Vi, =5 +hpXt XE)
7ot ot /
bip =Va,, (Kg bt + hipX* }/;ip)
1 00
In empirical work, we set b* =0 and Kg = 01 0
0 0 1

1.2.2.2 T Unrestricted

Here ;s are assumed to follow a stationary VAR(1) process:
et =Ter 1+ e

where €; is i.i.d. N(0,%). ¥ is a diagonal matrix with the diagonal element
that corresponds to &;,; given by 1/h;,.

First let Y, = Y; — (A\+ 8o DGDPIS + 3, DGDPYS), Y} = (Y}, Y, .., vh,
and ij£ = (Y§ v, ---7Y73571)l~ We use Y to denote the difference between Y}
and Ybi’f. Next let X7, , = ( > [ [Y), we construct two T'x 3N matrices: X}
with the t*" row given by (Xft,X;t7 ...7X}tp’t), and X] with the " row given
by (X{, 1, X}, 1,... Xip, ;). Finally we have X* = Iy ® X — T @ X}.

Now the model can be written as
vt = X te, (17)

where y* = vec(Y'?), b = vec(B*), and B* be the 3x N coefficient matrix. In B¥,

12



the column that associated with the equation of Y;,; is given by (7{1177{;,'7% ).

We elicit Normal prior for b* as:
bi ~ N(b, Kb)
The conditional posterior for b* thus takes the following form
WY, S, F,0,T ~ NG, VT
where
Vi=i +x¥zixh)
B =T bt xPE Y
where E = var(e).

In empirical work, we set bi =0 and Kg = I3.N.

1.3 Conditional Posteriors for the Factors

Let Yth be the difference between Y; and the sum of A+8y DG DPV+p, DGDPYS
and any other deterministic terms that associated with lagged Y3, if the latter
exist, we have

YR =TF, +¢, (18)

where Fy = (flfF fN), and var(e;) = . When &;s are assumed to be i.i.d., we

1 .
hip(lfpfp) ’

when ;s are assumed follow an VAR(1) process with T unrestricted, vec(2) =

have Q = ¥; when ¢;,;s are assumed follow an AR(1) process, Qip ip =

vec[(In2 — T @ T)vee(X)]. T is the matrix of factor loadings. The dimension of

Fiand T are ([ +P+1) x1and N x (I + P+ 1), respectively.

13



1.3.1 Static Factor Models

For static factor models, as shown in Lopes and West (2004), the conditional

posteriors for F' can be factored into independent normal distributions for F3,
B, Bo, 1,779 ~ N[(Lip + 'S0 ST, (Ip 4+ 1°Q71T) 7]

1.3.2 Dynamic Factor Models

For dynamic factor models, we can rewrite the model into a state-space form,
where the measurement equation is equation (18) , and the transition equation

is the following;:

F, = ®F, + v, (19)

where var(vy) = Ir1py1.
Let Y} = (Y1H7Y2h, ., Y. Following Kim and Nelson (1999, Ch. 8), condi-
tional on ® and I', we can draw the latent factors in the following steps.
First run Kalman filter to calculate Fy, = E(F,|Y}) and Py = Cov(Fy|Y})
fort=1,2,..,T:
Fy_y = ®F,_,

Py = ‘I)Pt|t71q>, + 1P
Fyy = Fyp—1 + Py I (PP + Q)il(Y—th —T'Fy_1)
Py = Pyg1 — Pt\tflr/ (FPt|t71F/ + Q)_lrpt\tfl

Next, we draw Fr based on the last iteration of the Kalman filter:

Fr|YE ~ N(Fpyr, Prir)

14



Then we derive F

Hy backward for t =T — 1,7 —2,...,1:
T

R, Foyr ~ N(Fyjoryr Piross)

where

Fyt oy = Fye + Pt\tq),{q)Pﬂt‘I)/ + I3} (Frgr — DFyy)

Pyp = Py — Pt|t(I)/{(I)Pt\t(I)/ + IS}_l(I)Pﬂt

1.4 Conditional Posteriors for h;),

We set Gamma prior for h;, as G(s72,v). Let €;,; be the i.i.d. error term in the
equation associated with Y;,; and €, = (€ip.1, €ip,2, ..., €p. 7). 1t can be verified

that the conditional posterior for h;, is Gamma
hlp‘}/v Fa Fv >‘a 507 51 ~ G(§72’v)

where

v=T+v
’ 2
o _ Cipfip T s’
v
Note that €; = ¢; if €, is i.9.d., €ipt = Eipt — PipEip,1—1 if ;¢ follows an AR(1)
process, and ¢ = e — Yey_q if ; follows a VAR(1) process.

In empirical work, we set s72 = 0.001 and v = 1.

15



1.5 Conditional Posteriors for ¢
1.5.1 & Unrestricted

Conditional on the I + P + 1 factors, ® can be estimated equation by equation.

Using fj+ to denote the j* element in F}, we have

fit=0i1fie+ djafor+ ..+ G511 fiepr1,e + Vit (20)

where var(v;:) = 1.
Let fj = (ijt, fj,Q’ ceey fj,T)/, Uj = (1/]‘71, Vj2,.ey Vj,T)a X§ be a T x (P+I+].)

tth

matrix with the t*” row given by (fi+, fo,t, ..., fi+p+1.t), and b? be the transpose

of the j" row in ®. In matrix form, we rewrite equation (20) as
fi = X% +U; (21)

where var(U;) = Ir.

We elicit Minnesota prior for b§ as:
bS ~ N(b%, V)

for j =1,2,...,1+ 1+ P. Note that Kg is a diagonal matrix with the diagonal

elements given by

g my, for parameter on own lag;

w5 for parameters on other lags

The conditional posterior for b? thus takes the following form

DY, F A A, o, By ~ N(5,. V)

YR

16



where

Vi, =i XX

78 _ T8 s '
b, =V, (Vi b+ X5 f)

In empirical work, we set b = 0, m4 = 0.05, and 75 = 0.005.

1.5.2 & Diagonal

Conditional on the I 4+ P + 1 factors, ® can be estimated equation by equation.

Using f;: to denote the jth element in F}, we have
fiw = @igfie—1+ Vi, (22)

Let f; = (fi, fi2r o Fir) s Uj = Vi1, V20 s V51)s X8 = (fi—15 fits oo fj—1) s

and b?- be ¢, ;. In matrix form, we rewrite equation (22) as
fi = X% +U; (23)

where var(U;) = Ir.

We elicit Normal prior for b? as:
bl ~ N(, V3)

forj=1,2,..,1+ 1+ P.

The conditional posterior for b? thus takes the following form
7§ T8
b?‘KZ7F7)\7A7BOaBI ~ N(bj7VbJ)

where

V=0 xtxt

17



7§ 7§ —1 n ’
by =V, (Vi b+ X5 f)

In empirical work, we set b§ =0 and Kg =1.

1.6 Conditional Posteriors for T
1.6.1 7T Diagonal

T is a diagonal matrix with the diagonal elements given by p;,, Conditional
on the factors and the rest of the coefficients, we have €;p; = Yip s — (Aip +
BipoDGDPYS+ B, 1 DGDPYS+4L fh+4D fE+7N f8) Let b, = (ip1, €ip2 s Eip1),

i _
and z;, = (€ip,0s€ip1s -y Eipr—1). We have

€§p = pipxgp + eip

where var(e;,) = 1/hipIr.

We elicit Normal prior for p;;, as:

<

Pip ™~ N(vi )

The conditional posterior for p;;, thus takes the following form

piP|Y7 DIV R N(pz’p) V/)'ip)

where
Vpip = (K;l + hipxgpxgp)_l

—_ E>a -1 !
pip = Vpip (Zp B + hipxgpefp)

In empirical work, we set p =0 and V , = 1. To ensure the error terms are

stationary, we draw the posteriors from a Truncated Normal.

18



1.6.2 7T Unrestricted

Conditional on the coefficients and factors, e; = Y; — (A + BoDGDPV® +
BiDGDPYS + A fE+ AP fF + AN fN). Tt is assumed that &, = Yer 1 + €.

’

Let E¥ = (e1,¢9,...,e7) , X* = (g0, 1, ...,ET,l)/, in matrix form, we have
E'=X'T + E, (24)

Let egp be the column of error terms in E* that associated with the i*" industry

in the p'" province, bgp is the row vector in T that associated with egp, we have
e = X'} + e, (25)

where var(e;,) = 1/h;pIr. Because in equation (25) the number of parameters

is greater than the number of observations, we elicit Minnesota prior for bgp as:

bl ~ N, V)

ip
Note that Kg is a diagonal matrix with the diagonal elements given by

; e, for parameter on own lag;
7b i -
" 770ip/0_ip for parameters on other lags

The conditional posterior for bfp thus takes the following form

#
ipI

7 o
bgp‘KE,eraAaﬂO;ﬂlNN(b wa)

where

%

ip

WV +hyp X x5
B, =Vi (V5 B+ hpXtel)

19



In empirical work, we set tighter priors for bgp to ensure stationary. In

particular, we set Qﬁ =0, mg = 0.01, and 77 = 0.001.

2 Variance Decompositions

In this section we provide details for variance decompositions.

2.1 US Growth Rate

Throughout, we assume the exogenous US growth follows an AR(2) process as

in Altonji and Ham (1990):
DGDPY® = ag + oy DGDPYS 4+ a3 DGDPYS + (26)

where p; is i.i.d. N(0,02,).

Let u be the expected value for DGDPU at steady-state. In VAR form,

we have
DGDPPS —u o o DGDPUS —u Lt
= + (27)
DGDPIS —u 1 0 DGDPYS —u 0
Hence, the s period ahead forecast errors for DGDPY?® is
Ys—1p41 + Vs—2ptt42 + oo + V151 + Ptts (28)
h
ap Q2
where ¢y, is the (1,1)?" element in matrix
1 0

The mean squared error of 1 period ahead forecast for DGDPY:

—— US
MSE(DGDP,|t) = o2, (29)

20



The mean squared error of s period ahead forecast for DG DPU*:
ALY S 2 2 2 2
MSE(DGDPt+s|t) = ( s—1 +1/)572+~~-~+¢1 +1)0us (30)

2.2 The Static Factor Model

The model takes the following form:

Y, = A+ BoDGDPY® + BiDGDPYS + " ff + A7 fF + AN N+ (31)

where the variance for ;,; is assumed to be wl-zp.

The 1 period ahead forecast error for Yip: is Bip ofte+1 —|—'yi1pfi{t+1 +%I;fgft+1 +

%JZ ftZL + €ip,t+1. Thus, the mean squared error of 1 period ahead forecast is:
MSE(Yipeilt) = 85, 000: + (i) + (0ip)* + (0p)* + w3, (32)

The s period ahead forecast error for Y, is Bipo(s—1te41 + Vs—2pte+2 +

e Vo1 F pers) + Bip 1 (s—atir1 + Ys—spiero. F V1 hys—2 + fgrs—1) +

Vool i s v I s+l f o+ €iptts. Thus, the mean squared error of s period

ahead forecast is following:

MSE(?ip,tJrsW :[ﬁ?p,o(l/)gfl P2 o+ YT 1)+ ﬁfp,l(f/}gfz + P2 g+ .+ ]+ 1)]on,
I\2 P\2 N2 2
+ (le) + (Vzp) + (Fsz) + wip
(33)

2.3 VAR-Factor models 1, 2, and 7

The models share the following general form:

Y; = A+ AY,_1+ BoDGDPI® + B DGDPYS +~" fl +~47 fF +4N 1N +e, (34)

21



where the variance for €;,; is wfp.

With some manipulation, we have the following VAR form:

Y: A+ Boag A Boar + P11 Poca Yi 1
DGDPVS | = o +1 0 a; as DGDPUS
DGDPVS 0 0 1 0 DGDPUS

Bope + Y L+ AT +AN Y + e

+ It
0
(35)
A Boar 4+ B1 Poaz Y,
Let A = 0 a as , and ¢ be the expectation of DGDPtUS
0 1 0 DGDPUS
at the steady state. We have
Y: Yi 1
(| bGppPPS | —¢)=A(| DGDPS | —c¢
DGDPVS DGDPYS
(36)
Bowe + Y fE AT+ AN Y + e
+ Ht
0
Y;ers
Thus, the s period ahead forecast error for DGD Pt[jré; is as following:

PGPS,
Botte+1 + ’YIftI.H + ’)’Pft}jrl + ’Yth]L + €41

As—l L1

0

22



Bottera + v i+ 47 flo + AN s + i
+ As—2 [hig2 + ...
0
ﬁO,ut«stl + ’Ylftisq + ’foth»sfl + nyftJYstl + Etts—1

+ A Mi4s—1

0

50Mt+8 + ’VIftIJrs + ’fotIis + ’}/th]is + Eits
+ Hits

0
The mean squared error of 1 period ahead forecast for Yp:

MSEYplt) = 2,002, + (75)2 + (75)2 + (7)) + w2, (37)

The mean squared error of s period ahead forecast for Y, is the relevant

diagonal element in:
ATIE(ATY) + ATT2E(A7Y) 4+ AE(A) +E (38)

Boo2,By + v (YD) + 4P () + N (Y)Y + 2 Boo?, 0
where Z = Boo2, o2 0 |,and

0 0 0
¥ is the diagonal error covariance matrix for ;. The (ip,ip)!" element in ¥ is

2
wip'

2.4 VAR-Factor models 3, 4, 5, 6, 8 and 9

The six models share the following general form:

Y, = A+ AY;_1 4+ BoDGDPV® + 81 DGDPYS +~T fE 4~ fF 44N N 16, (39)
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where vy is i.i.d. N(0, 1), and the variance for € is w@?

Jt=®fiiitu (40)

P

First we collect the equations together in a big VAR:

fi

Y,
DGDPVS
DGDPPS

0

I'd
Let A =

0

0 ® 0 0 0 Ji—1
A+ Boao N I'e A foor+ P51 Poas Yio1
Qg 0 O oy a9 DGDP{{%Y
0 0 0 1 0 DGDPS
Ut
Bops + Tvg + &4
Ht
0
(41)
where I is a parameter matrix with v/, v* and "V appropriately stacked in.
0 0 0 fi
A bt hr foos , and the expected value for Y
0 a1 o) DGDPtUS
0 1 0 DGDPYS

0
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be c. We have the following form

fe Ji—1
Y, Yi_

t o) = A( t—1 o)
DGDPV?S DGDPUS
DGDPVS DGDPUS

(42)
Ut
Bopt + Lvg + &4
_|_
et
0
Ut

Bope + vy + 4

where the covariance matrix of is assumed to be Z.

Ht
0

ftJrs

Y;Jrs

Hence, the forecast error for at time ¢t + s is

DGDPYS
DGDPYS_,
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Vt+1 Vt42

Botti+1 +Tvipr + &4 Bottir2 +Tvigpo + €0

As—l + As—2
Ht4+1 Ht4+2
0 0
Vt4s—1 Vi+s
Bottt+s—1 +TVips—1 + 1451 Bottt+s + v + €rqs
+A +
Ht4s—1 Hi+s
0 0
(43)
The mean squared error of 1 period ahead forecast for Yjp::
MSE(Yiper1lt) = 8,000, + (vi)" + (vi)* + (7)) + @3, (44)

The mean squared error of s period ahead forecast for Y, is the relevant

diagonal element in:
ATIEATY + AT2E(AY) + L+ AE(A) +E (45)

2.5 DFM1

The model takes the following form:

Y; = A+ BoDGDPYS + 81 DGDPIS +~ fL +47 £ +4F fE+4N Y +er (46)

Er = TEt_l + € (47)
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where the variance of ¢; is assumed to be 3, a diagonal matrix with appropriate

2

w;,s as its diagonal elements.

The 1 period ahead forecast error for Y, is as following:

Bip,ott+1 + ’YilpfiI,tH + ’Yz{—z)yfit—i-l + 'Ygfﬁl +t €ip,t+1 (48)

Hence, the mean squared error of 1 period ahead forecast is
MSE(Yipealt) = 87, 000: + (Vi) + (0ip)* + (7p)* + . (49)

The s period ahead forecast error for Y;,: contains two parts. The first part

is associated with the US growth rates and the factors:

Bip,O(ws—l,ut-ﬁ-l + ws—2/~"'t+2 + ..+ wlﬂt—i-s—l + Ht—i—s)
+ Bipa (Vs—2pt41 + Vs—3ptt2. o + V1plts—2 + fats—1) (50)

I el P P N ¢N
+YipLitrs T Viplptts T Vip fits

The second part associated with the VAR(1) idiosyncratic error terms is the
relevant element in €; s + Yeppo 1 4 oo + Y57 lery .

Thus the mean squared error of s period ahead forecast for Y;,; also contains
two parts. The first part is [37 o(¥2 | + 92 o+ ... + 97 +1) + B2, (V2 5 +

2+ P+ D)ol 4+ (0h,)? + ()2 + (7)) The second part is the relevant

diagonal element in X+ TXY + ... + Ts71n(Ts-1)

2.6 DFM2

The model takes the following form:

Y; = A+ BoDGDPY® + B DGDPIS +~" fl+~47 f7 + 47 fF + 4N N+ (51)
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Eipt = PipEip(t—1) T Vipt (52)

wherev;,; are assumed to be ii.d. N(0,w7},).

The 1 period ahead forecast error for Y;p:
Bip,okt+1 + W’fpfil,tﬂ + ’772f£t+1 + %]foil + Vipt+1 (53)
The mean squared error of 1 period ahead forecast:
MSEYipaalt) = B3, 0000 + () + () + (05 + =%, (54)
The s period ahead forecast error for Yj,;:

Bip,0(Ws—1ftt41 + Vs—opttqro + oo + V1l s—1 + Ltts)
+ Bip,1 (Ys—aphip1 + Vs_3ptiq2. + V1plpys—2 + flits—1)

F Yip Ll irs + Vighmirs T Vip ks + Vipitts + Plipttrs—1 + o+ 0" Wip it
(55)

The mean squared error of s period ahead forecast:

MSE(?ip,Hs\t) :[ﬁfp,o(wg—l P2 o+ YT+ 1) + 51'2p71(¢§—2 + U2 g+ ..+ ]+ 1)]os,

w?p(l - p2s)

+ (Vip)® + (ip)* + (i) + = — p

(56)

2.7 DFM 3&5

The models share the following general form:

Y; = A+ BoDGDPYS + 81 DGDPIS +~ fL + 47 £+ fE+N N+ (57)
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Er = Tﬁtfl + € (58)

where the variance of ¢; is assumed to be X.

fi=Pfici+u (59)

where v; is 1.i.d. N(0,1).

The 1 period ahead forecast error for Yjp:
Bip,okt+1 + ’YinUiI,tH + ’Y;U;t-s-l + 'Yz'zzvﬁ-l + €ip,t+1 (60)
The mean squared error of 1 period ahead forecast:
MSE(}/;ip,tJrl't) = 51‘2;,,0035 + (’Yin)Q + (’75))2 + (%‘JX)Q + w?p (61)

The s period ahead forecast error for Y;,; contains three parts. The first part
is associated with the US growth: Bip o(¥s—1 b1 +Ys—2fber2+ ..+ V1l s—1+
tits) + Bipa (Vs—2ptsy1 + s 3ttt 2. + V1pieqs—2 + pes—1); The second part is
the relevant element in T'(®*1vy 1 + 520y 0+ ... + Py o1 + 044 5); The third
and the last part is the relevant element in €45 + Yepp 51 + ... + Ts’leH_l.

As a result, the mean squared error for s period ahead forecast contains
three parts too. The first part is [37, o (V21 +¥7 o +.. +0F+1)+ 67, (2 o+

2 5+ ..+ 97+ 1)]o2,; The second part is the relevant diagonal element in
L[®s~ (@5 1) + &~2(95~2)' + ...+ ®® + I]I"’; The third part is the relevant

’

diagonal element in ¥ + TEYT + ... 4+ Ts71n(Ts—1)
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2.8 DFM 4&6

The models share the following general form:

Y; = A+ BoDGDPY® + B DGDPIS + 4" fE+ 47 £ + 47 fE + AN N 4 (62)

Eipt = Pip€ip(t—1) T Vipt (63)

wherev;,,; are assumed to be i.i.d. N (0, w?p).

fi=Pfici+u (64)

where v is 1.i.d. N(0,1).

The 1 period ahead forecast error for Y;p:
Bip,obt+1 + ’YinUiI,tJrl + ’Yil;vf,tﬂ + ngﬁl + Vipt+1 (65)
The mean squared error of 1 period ahead forecast:
MSE(Yipaalt) = B3, 0700 + (7h)* + () + (05)° + =%, (66)

The s period ahead forecast error for Yj,; contains two parts. The first
part is Bip.o(Vs—1fte1 + Vs—apiero 4 oo F V1l s—1 F thigs) + Bip,1 (Vs—aptir1 +
Ys—3her2e + V1t s—2 + ftrs—1) + Vip s + PVipirs—1 + o+ p° Wipri1; The
second part is the relevant element in T'(®5 v, + @5 2050 + .. + Py g1 +
Vits)-

Thus, the mean squared error for s period ahead forecast for Y;,; contains
two parts too. The first part is [57, o (Y2 + 92 o4 ...+ 97+ 1)+ 82 (V25 +

ip,1
w5, (1-p>°) |

St T Dog + () + (vh)? + ()2 + ==z The second part is
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the relevant diagonal element in T[®*~1(®5~1) + ®5-2(d5-2) + .+ &d + ]I

2.9 DFMT7&8

The two models share the following general form:
Y, = A+ BoDGDP® + i DGDPI 4 477 T +A7 7+ 4N £ 20 (67)

. . . 2
where the variance of €;p; is Wi,

fe=®fi1+ v (68)

where vy is 1.i.d. N(0,1).

The 1 period ahead forecast error for Yp:

I, P, P N, N
Bip,ott+1 + YVipVi t+1 + VipUp.t+1 + VipViy1 T Eip,t+1 (69)
The mean squared error of 1 period ahead forecast:

MSE(Yipa41lt) = B 000s + (vip)* + (1i)* + (vip)* + @ (70)

wp

The s period ahead forecast error for Y;,: contains two parts. The first

part is Bip,o(Vs—1fue+1 + Vs—2pttro + oo + Vifhpps—1 + tats) + Bip,1 (s—2ptey1 +
Ys_gpbtt2... + Y1fhers—2 + tets—1) + Eipt+s; The second part is the relevant
element in T(®* 1o, 1 + @ 20440 + oo + Pupg g1 + V).

Thus, the mean squared error for s period ahead forecast for Yj,; contains

two parts too. The first part is 87, o (V2| + 92 o4 ...+ 9T+ 1)+ 82 (V2 5+

a4 Ui+ D]on,+ (02 + ()2 + (0))? + @},; The second part is the

relevant diagonal element in T[®*~1(®*~1) + &-2(¢*~2) + .. + &d + I|I
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3 The Factors

In this section, we plot the factors for the most preferred model. Discussions on

these figures are provided in the main paper.

Figure 1: National Factor

National shocks
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2L
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Note: 33-66% quantile bands are in dash lines.
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Figure 2: Province Factors
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Note: 33-66% quantile bands are in dash lines.
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Figure 3: Industry Factors
AG

25 T

77 82 87 92 97 02 07

TCU

35



CON

77 82 87 92 97 02 07

36



-1

-2

JCY MY L L L L L L

Note: 33-66% quantile bands are in dash lines.
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