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Abstract

We consider the facility layout problem with machine capacities (and hence multi-
ple machines of each type) and random demand. We develop a very efficient heuristic
allowing us to find good solutions to the stochastic case whenever good solutions can be
found for the corresponding deterministic problem with uncapacitated machines of the
same dimension. Hence, this problem represents a case where a specific deterministic
model, even when solved heuristically, produces a very good solution to a stochastic
model.
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1 Introduction

The facility layout problem (FLP) is to arrange physical locations for facilities (such as
machine tools, work centres, manufacturing cells, departments, and warehouses) for a pro-
duction or delivery system. The layout of facilities is one of the most fundamental and
strategic issues in many manufacturing industries. Most modifications or re-arrangements
of existing layouts involve substantial financial investments and planning efforts (Singh and
Singh 2010). An efficient layout of facilities can reduce operational cost and contribute to
the overall production efficiency (Tomkins et al 2003).

Given information such as capacities of machines, processing routes and demand, the fa-
cility layout planner’s objective is to determine an efficient layout according to some design
criterion. One of the most frequently considered criteria is the minimization of material
handling distances/costs. It is claimed that material handling costs contribute from 20 to
50 percent of total operating expenses in manufacturing (Francis and White 1974). Mate-
rial handling costs are incurred when moving finished parts, work-in-process parts, spares,
tools and other equipments or supplies between machines or machines and storage locations
to meet different demands during production (Heragu and Kusiak 1988). Manned and un-
manned material handling equipment, such as conveyors, automatic guided vehicles (AGVs),
cranes and robots are deployed for delivery activities. To minimize material handling costs
in layout design, distances travelled for both material, equipment, and personnel will need
to be taken into consideration (Taghavi and Murat 2011).

The FLP was initially formulated as a quadratic assignment problem (QAP) which is
NP-hard and has been widely used to solve FLPs (Koopmans and Beckman 1957). Exact
methods (e.g. branch-and-bound (Salimanpur and Jafari 2008) and cutting planes (Bukard
and Bonniger 1983)) are only efficient for layout problems of sizes up to about 16 (Singh and
Sharma 2006). To achieve solutions for larger cases, heuristic methods such as simulated
annealing (Baykasoglu and Cindy 2001, Misevicius 2003), genetic algorithm (Balakrishnan
et al 2003, Lee et al 2003), tabu search (Chiang and Chiang 1998, Helm and Hadley 2000)
and other methods based on the QAP have been proposed. Performances of SA and GA
for solving layout problems have been compared by Heragu and Alfa (2003) and Tavakkoli-
Moghaddain and Shanyan (1998).

Urban et al (2000) studied an integrated facility layout and flow assignment problem
(IFLFAP) which is closer to reality by considering capacitated machines. Being different
from QAPs, flows between any pair of machines in IFLFAPs are decision variables deter-
mined by solving a flow assignment problem to satisfy product demand. Hence the facility
design from IFLFAP is obtained by joint decisions on machine locations and flow assign-
ments. The resulting formulation of IFLFAP was then solved by using two metaheruistics,
GRASP and Tabu search (Taghavi and Murat 2011). A layout obtained from the IFLFAP
is called a distributed layout, and is commonly used in Japan (Suzaki 1985).

A stochastic version of IFLFAP was considered by Benjaafar and Sheikhzadeh (2000) who
took into account uncertain factors such as changes in technology and market requirements
in the production environment. The objective of a stochastic IFLFAP is to design a robust
layout which adapts to changes of product mix and demand. An extended QAP was applied
to formulate the stochastic IFLFAP, which is also NP-hard. Optimal solutions could only
be found for small-scale problems. Large cases (up to 40 considered by Benjaarfar and
Sheikhzadeh) were solved by an iterative heuristic method after decomposing the problem
into facility layout and flow assignment sub-problems. Distributed layouts obtained from the
stochastic IFLFAP were then compared with three other a priori layout strategies including



functional layouts, maximally distributed layouts and random layouts. The criterion of
minimizing expected material handling costs over different production scenarios was used
for the comparison of the four layout strategies. Computational results indicated that
distributed layouts outperformed the other three layout strategies by 10% - 40%.

This paper studies a specific case of the stochastic IFLFAP in which only demand varies.
The formulation of this specific stochastic IFLFAP is similar to the one proposed by Ben-
jaafar and Sheikhzadeh (2000). A new heuristic approach is presented to solve this problem
in a much more efficient way than before.

Most decisions are made under relevant uncertainty about the future. If the starting
model, before uncertainty is added, is very hard to solve — such as the extremely difficult
QAP we are facing here — adding uncertainty (and thereby normally some dynamics) might
seem numerically hopeless. On the other hand, not doing so, may lead to rather useless
results. This is a classical dilemma of many planning problems, not the least in logistics.
So, rather than adding uncertainty to an already “hopeless" model, we may look for other
approaches. Sometimes deterministic solutions, despite being very bad in their own rights,
see for example Thapalia et al (2012), can turn out to contain very useful information, while
in other similar situations, this is not at all the case, see for example Lium et al (2009).
In this paper we demonstrate that a heuristic solution to a deterministic problem can lead
to extremely good solutions to a numerically hopeless stochastic QAP. This way, whenever
the deterministic problem can be solved, randomness (and in this case also capacitated
machines) can be added to the model without any serious numerical effects, making the
models much more relevant and useful.

2 Model development

2.1 Problem statement

We study the problem of designing plant layouts with capacitated machine duplicates in
a stochastic environment. It is assumed that plants can only produce one product or one
fixed product mix, but the actual demand is random. From period to period, demand
fluctuates according to a known continuous distribution. Reconfigurations of plant layouts
are considered infeasible since both the frequency of demand changes and costs of re-layouts
are too high for any redesign to be economic and efficient. Hence the objective of this
problem is to design a fixed plant layout for all production periods which minimizes the
total expected (or average) material handling costs. Copies of one machine type have the
same capacities while for those of different types, capacities can be different. The total
production capacity of a plant can easily be found from the capacities of the machine copies.
It is also assumed that maximal demand equals total production capacity. The objective is
to obtain a layout which minimizes the expected/average material handling costs over all
possible demands.

Compared with the classical FLP, the unique aspect of the IFLFAP is that under each
production scenario we are only given flow volumes (equal to demand) between machine
types. Flows between pairs of individual machine copies are not known. These are decision
to be determined together with machines locations. This is the reason why this problem is
called the integrated facility layout and flow assignment problem. However flow assignments
are not really in focus. The final result is the layout of the facility.

The following are the IFLFAP’s assumptions. The first three are inherited from the
classical FLP.



All machines of the same type have the same capacity

The number of machines equals the number of locations

The unit flow cost between machines only depends on their locations

The (continuous) distribution function for demand is known and given

No redundant machines are in the production system, implying that all copies are
utilized when maximal demand occurs

2.2 Problem formulation

2.2.1 Notations

parameters:

N = total number of machine types

e N; = total number of machine copies of type @

e n,; = nth machine of type ¢

e K = total number of locations

e (; = capacity of machine copies of type j

e d;; = distance between location k£ and location [

e h = uncertain demand which follows a continuous distribution with probability density
function g(h)

® Nmar = the maximal demand (equal to the production capacity)

° Vj; = required flow amount from machine type i to type j given demand is h

vh {h, if production requires sequence from machine type i to type j
ij =

0, otherwise

decision variables:

1, if nth copy of type i is assigned to location k
® T,k =
nik 0, otherwise

® Up,m; = flow volume from nth copy of type ¢ to mth copy of type j.



2.2.2 Formulation
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The IFLFAP is formulated as a two-stage stochastic program where the first stage problem is
to decide the allocation of machines (Constraint set (2) to Constraint set (4)) and the second
stage problem is to assign flows between machines (Constraint set (6) to Constraint set (8)).
The objective (1) is a cubic function to minimize the expected material handling costs over
all possible demands from 0 to hqee. Constraint sets (2) and (3) are the assignment
constraints. Constraint set (6) guarantees that the capacity of each machine copy is not
exceeded. Constraint set (7) ensures that the total flow from copies of type ¢ to copies of
type j equals the required amount V;’; of the two types, where Vl}; is decided by demand h
under each scenario. Conservation of material flow among machines is guaranteed in (8).

Two decision variables are shown from the above formula, the layout variables (2, T 1),
and the flow variables (vp,m ;) for each possible demand. But the ultimate goal is to deter-
mine the machine layout, not the flows.

2.3 MILP formulation

The objective function of the formulation in Section 2.2.2 contains a cubic function 7(X,h)
which is the product of three decision variables, one flow assignment decision (vnimj) and
two machine allocation decisions (xy,,, T, 1). In this section, we generate a new formulation
which linearises the cubic objective function by introducing a new decision variable:

Wn,;km;l = Ungm; * Tn;k * Tmjl- (10)



This decision variable W, kmjl denotes the amount of flow between machine n; and machine
m; if these two machines have been allocated to locations k and [, respectively. By using
this decision variable, the IFLFAP is formulated as a mix integer linear problem (MILP):

minz = /hmw(w,h)g(h)dh (11)
0

subject to:

constraint sets (2) to (4)

where:

m(W,h) = min{dywn,; km ;1 } (12)
N N, K K

ZZZanikmjlng m;=1,...,N; j=1,...,N (13)

i=0n;=1k=11=1
N, K Nj K

N N, K K N Ny K K
DD DD nkma =D Y D Winirgu (15)
i=0n;=1k=11=1 q=0rg=11=1u=1

mjzl,...,Nj jil,...,N

Tnr={01} mi=1,...,N, i=1,...N, k=1,..K (16)
W, kmls = 0 (17)
Wn,kmjls < Mp,g (18)
Wnkmjls < Mxm 1 (19)

’I’Li:L...,Ni ijL...,Nj k‘,l:L...,K i,jZI,...,N
whereM = hpmaz

The above formulation is for continuous demand. For the case with a number of discrete
demand scenarios, we only need to change the objective function to (20).

S
minz = Z’]T(VV, s)g(s) (20)
s=1

where S is the total number of scenarios.

Compared with the formulation in Section 2.2.2, two new constraints ((18) and (19)) are
added in the MILP formulation. They guarantee that the flow variable w,, kemjls will be
zero if machine n; and machine m; are not allocated to places k and [, respectively. The
other constraints are similar to those in Section 2.2.2, with the only difference being that
decision variables of flow assignments are changed to wy,; ke j1-

The MILP model linearizes the original formulation in Section 2.2.2 by increasing the
number of variables and constraints in the second-stage flow assignment problem, which
contains K? binary variables, N, K (K — 1) continuous variables and 1+ 4K + N(N —1) +
2N, K (K —1) constraints (where K is the total number of machines and locations, N is
the number of machine types, and N, is the number of arcs in the network). As problem



size increases, the computational effort needed to obtain optimal solutions increases quickly.
Only small to medium sized problems can be solved optimally. From our experiments, the
limitation of problem size is around 15 machines of four types. Hence, heuristics are required
for solving larger problems.

Urban et al (2000) have made a similar linearisation by introducing the variable w,, ke
using

Wn;kmjl > Un;m; +Mxnik+Mxmjl —2M (21)

to replace the two constraint sets (18) and (19) used in our formulation. Compared with
Urban et al’s model, our formulation has more constraints. But according to our computa-
tional experience, less computational effort is required to solve our model. Hence we keep
the two constraint sets ((18) and (19)) in the formulation of Section 2.3.

3 A heuristic approach

A new heuristic to solve stochastic IFLFAPs is proposed in this section. The approach
decomposes the stochastic IFLFAP into two sub-problems, a flow map problem and a facility
layout problem. The unique aspect of this approach is that the two sub-problems only need
to be solved once. The idea of the heuristic comes from some observation of optimal layouts
which were found from small-to-medium sized problems.

3.1 Observation of optimal layouts

We compared optimal layouts obtained from stochastic and deterministic IFLFAPs. Both
were formulated as MILPs with a finite number of demand scenarios as described in sec-
tion 2.3. The deterministic case had one single scenario. All cases were then solved to
optimality by using CPLEX12.1. For the stochastic IFLFAPs, we used five scenarios to
describe the uncertain demand. For the deterministic case, two cases were studied, namely
maximal demand (equal to the maximal production capacity) and expected demand (aver-
age of all possible demands). Hence, we obtained three layouts by solving one stochastic
and two deterministic cases. These layouts were then compared by calculating the total
expected material handling costs using a continuous distribution for evaluation (obviously
having the same mean as the stochastic case with five scenarios). The evaluation model for
a given machine layout is found by solving the following linear program parametrically in
the demand h.

f(h) = mlnzz Z Z Ungm;Tn;m; (22)

i=1j=1n;=1m;=1
N N;
SN vnimytm; <em;  my=1,...,N;  j=1,..,N (23)
i=0mn;=0
N; N

SN vnm; =V dj=1,...,N (24)

nizl mjzl

N N; N Ng
ZvamfZvam mj=1,....,N;  j=1,...,N (25)
i=0mn;=1 q=1rq=1



’UniijO ni=1,....,N; m;=1,...,N; i,j=1,...,N (26)

Notation used here is the same as in the model in Section 2.2.2. Decision variable vy,m,
refers to the flow between machine pairs n; and m;, while Tnim; is the unit flow cost between
machines n; and m;. Since the machine layout is given, location variables T,k and Tl in
the model in Section 2.2.2 are known. This is then used to calculate the unit flow cost by
Tngm; = Akl * T,k * Tyl Constraint sets (23) to (25) correspond to constraints (6) to (8).
In constraint (24) the right-hand side VZ’; is the required flow amount from type i to type
j decided by demand h. The h varies between low and high demands, following a given
distribution. By using parametric optimization on the linear evaluation model, the function
f(h) of minimum flow cost against demand h is obtained exactly. The total minimum
expected flow cost was then obtained by the integration [ f(h)g(h)dh where g(h) is the
density function of the probability distribution used to describe demand.

Since the MILP is very hard to solve, small-to-medium sized problems with 10 or fewer
machines were studied. 200 experiments were performed for each case of 6, 7, 8, 9, and
10 machines. Results are shown in Tables 1 and 2. Table 1 compares expected flow costs
of the three layouts in terms of how much worse the deterministic layouts were relative to
the stochastic one. All numbers are measured in percent. The CPU times are compared in
Table 2.

Layouts obtained from the stochastic formulation (with five scenarios) had the lowest
expected material handling costs, while the worst layouts were obtained from the deter-
ministic model using expected demand. A major reason for this is that only some of the
machines were needed to meet the average demand. Flows through utilised machines in-
dicated where to allocate them, whilst those which were not used at all were randomly
assigned to the remaining locations (as there were no signals to the model as to where they
should be placed). When demand varied from low to high, those randomly placed machines
were likely to increase the total expected costs.

The deterministic model with maximal demand had better machine layouts than the
model with average demand. Even more importantly, in most cases the layouts obtained
from the deterministic model with maximal demand were the same as the ones from the
stochastic model. The reason is that all the machines are used to meet the requirements
of maximal demand, so no machines were randomly assigned locations. Also, the flow for
maximal demand contains within itself feasible flows for lower demands, making the lay-
out for maximal demand 'robust’ to demand variation between the lowest and the highest.
Layouts obtained from this deterministic model were close to the best ones using stochas-
tic programming whilst the CPU times required were much lower since the deterministic
model only had to solve the model in Section 2.2.2 with one scenario. Hence, instead of
solving stochastic models, solutions with similar qualities can be obtained from solving a
deterministic model using maximal demand. Based on this observation, a greedy heuristic
is developed, since, as problem size grows, also the deterministic case with maximal demand
becomes numerically unsolvable; These are very hard problems to solve.

3.2 Greedy heuristic

The general idea of our greedy heuristic (see Figure 1) is to transform the stochastic IFLFAP
into a classic QAP by using optimal flows from the deterministic model with maximal
demand to determine flows between all pairs of machine copies. But also this deterministic
problem is very hard to solve, hence, the heuristic will approximate the solution to this



Table 1: Expected flow costs, measured as percentage deviations from the stochastic

design.

number of machines (Max-Sto)7% (Exp-8to)%
avg std avg std

6 0.37 0.12 | 0.88 0.16

7 0.55 0.18 | 1.30 0.19

8 0.62 0.13 | 1.39 0.20

9 0.61 0.13 | 149 0.21

10 0.45 0.19 | 221 0.27

Table 2: CPU times (in seconds) of the different models.

number of machines stochastic Max Exp
avg std avg std avg std
6 0.63 0.05 0.07 0.00 | 0.04 0.00
7 5.82 0.64 0.46 0.03 | 0.18 0.02
8 30.21 3.30 1.15 0.07 | 0.56 0.05
9 23112 2495 | 794 0.62 | 497 0.89
10 795.88 137.92 | 19.54 2.29 | 17.01 4.49

deterministic problem. So we approximate at two levels: We use a deterministic model with
maximal demand rather than the true stochastic model, and we approximate the solution
to the deterministic model. The numerical results will show that the resulting heuristic is
very fast and very accurate.

All existing algorithms for the QAP can then be applied. This will imply that whenever
the QAP can be solved (hard as it is), the much more realistic case with multiple machine
copies and random demand can also be solved (with very high accuracy). From a practical
perspective, this is a very important step forward.

The heuristic has three steps. To make it easier to understand the heuristic, we shall
use an example with six machines and six locations to illustrate. Figure 2 shows the six
locations. The unit flow cost between two locations is equal to the taxi distance. The
job sequence is fixed at typel — type2 — type3. Demand in each production period varies
between 0 and the production capacity of 30. In this example, the uncertain demand is
assumed to follow a 8 distribution with shape parameters (5,2). The objective is to design a
machine layout to minimize the expected material handling costs. Information about each
machine type (capacity of copies of each type, number of copies of each type, and total
capacity of each type) is shown in Table 3.

Table 3: Information about machine types

type 1 type 2 type 3
Capacity of copies 30 12 16
Number of copies 1 (ml1l) 3 (m21, m22, m23) 2 (m31,m32)
Total capacity 30 36 32

In Step 1 we shall find a flow map, that is, a set of flows covering all pairs of machine
copies (rather than all pairs of machine types). With such a flow map, we are back to a
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Figure 1: Flow chart of the Greedy Heuristic for the stochastic IFLFAP
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classical QAP. Unless the flow map is carefully selected, the resulting QAP will lead to a
very bad layout. We know that the deterministic IFLFAP with maximal demand produces
good solutions. It is also clear, from the problem structure, including the use of the taxi
norm, that if the flow map is such that there exists a design with only neighboring machine
copies having flow between them, then that flow map (and resulting design) must be very
good (and often optimal). For this to happen, it is also intuitive that there should not be too
many non-zeros in the flow map since in that case it will be impossible to place all machine
copies with non-zero flows next to each other. The heuristic is based on these observations,
but the quality of the heuristic is demonstrated in the numerical tests, and not in any way
proven by these observations.

e Step 1: Assign flows to pairs of machine copies

Let us show the logic of this step by using our example from Table 3 and Figure 2.
The results are shown in Figure 3.

All flow must pass through all machines types. So it must start in machine ml1l
(the first and only copy of machine type 1), pass onto machine m21 (the first copy of
machine type 2), and finally onto m31. Since all copies of a type are the same, the
determination of which copy is the "first" is arbitrary. We then send as much flow as
we can on this path. The max flow is determined by machine m21 as it has a capacity
of only 12. This is illustrated as Route 1 in Figure 3. At this point is is necessary to
move to the second copy of machine type 2, namely machine m22. This allows us to
send another four units of flow, at which time machine m31 is full (it has a capacity
of 16). This is Route 2 in Figure 3. We then move onto the second copy of machine
type 3, and get a path (Route 3) of capacity 8, filling up machine m22. Then finally
we get Route 4 with a capacity of 6.

typel type2 type3

e e R

@) k) k) s
@)t k) e

Figure 3: Four flow routes in the example

So, the approach divides the maximal demand into n ranges [0,D1],...,[Dp—1,Dn].
The upper bound in the last range D, equals maximal demand. In the r;, de-

11



mand range([D,_1,D,]), the total capacity of machine type ¢ is obtained by mul-
tiplying the number of utilized copies (u_num[i]) and a copy’s capacity for that type
(¢;). type_min]r] is the type which has the smallest total capacity in the 7y, range
and the value of the upper bound D, equals to the total capacity for type min|r].
Then the r’th range updates to range (r+1): [D,,D,41], by utilizing one more
copy of type_min[r] which results in the number of used copies being updated to
(u_num[type_min[r]]+1). A new flow route is generated in range (r+1) by con-
necting the newly utilized copy of type_min|r] with the existing available copies of the
other types. The new route has flow amount of (D,41 — D,). D, is the lower bound
which has the same value as the upper bound in the previous range. The upper bound
D;41 is the total capacity of type__min[r+ 1] where type_min[r+1] is the type with
minimum total capacity in range (r 4 1). One more copy of the type with minimum
capacity is then utilized in the next demand range. The process continues until all
machines are utilized and connected. Flow routes are obtained from each range of
demand.

Results of Step 1 on the example are shown in Table 4 which includes range/route
numbers (r), the number of utilized copies of each type (u_numli]), the type with
minimum total capacity (type min[r]), the maximal value on each range (D,) and
flow amount of each route (D, — D,_1).

Table 4: Step 1 of the example

range/route(r) | u_num[l] wuw_num[2] wu_num[3] | type_minlr| | Dy | Dy —Dy_3
2

1 1 1 1 2 12 1
2 1 14+1=2 1 3 16 4
3 1 2 14+1=2 2 24 8
4 1 24+1=3 2 1 30 6

o Step 2: Add weights on each of the flow routes

In this step, weights are added on each of the flow routes to show their importance.
The idea is that the QAP needs to know that Route 1, somehow, is more important
than Route 4 since it is used all the time, while Route 4 is used only when demand
is very high. The priority of each route is determined by its chance of being used
when demand varies between low and high. The flow route from the demand range
[Dy_1,D,] is used when demand is above D,_;. Hence the flow route for the range
[0,D1] has the highest priority since it is used for all possible demands from 0 to
D,,. The flow route for the last range [D,,_1,D,] has the lowest priority since it is
used only for the smallest range from D, _; to D,. We have adopted two weighting
schemes. We call them the probabilistic weighting scheme and the simple weighting
scheme. The probabilistic weighting scheme weights flow routes according to their
probabilities of being used which are obtained from the distribution of demand. In
the simple weighting scheme, a total number of n flow routes are weighted by n integers
from 1 to n according to priorities of each route. Larger integers are associated to
routes with higher priorities. After obtaining weights from each of the two weighting
schemes, weighted flows are calculated for each route by the multiplication of flow
and weight. For each pair of machines, the machine-to-machine weighted flow is then
obtained by the sum of the pair’s flows from all routes.

12



Table 5 shows weights and weighted flows of the four routes by applying the two
weighting schemes on the example. The weights in the probability weighting scheme
are obtained from the assumed 3 distribution of demand. Weighted flows between
pairs of machines are then obtained and shown in Figure 4.

Table 5: Weighted flows

route (Probability weighting scheme) (Simple Weighting Scheme)
weight weighted flow weight weighted flow
1 1 12 4 48
2 0.96 3.84 3 12
3 0.86 6.88 2 16
4 0.34 2.04 1 6
Probability Weighting scheme Simple Weighting scheme
I typel l I type2 l I type3 l I typel l I type2 l I type3 l

Figure 4: Weighted flows for two different weighting schemes

e Step 3: solve QAP to obtain layout

Since flows between all pairs of machines are known from Step 2, the original stochastic
IFLFAP has been transformed to a classic QAP.

N N Ni Mj

K K
ZZ Z Z sz”imjdklxnikxmjl (27)

i=1j=1N;=1m;=1k=11=1

subject to: constraint sets (2) to (4).

Here fr;m; is the weighted flow between machines n; and m;, obtained from Step 2.
To solve this QAP, all existing methods, both exact and heuristic, can be applied. In
our heuristic, we solve the QAP optimally by using CPLEX 12.1. For testing purposes,
it us useful to solve the QAP to optimality whenever possible, since we then know that
all errors stem from the new heuristic, and no noise is added by the solution of the
QAP.
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Figure 5: Results of locations and flows in the Example for two different weighting schemes

For the 6-machine example, machine locations and weighted flows are shown in Fig-
ure 5. Since all copies of a machine type are exactly the same, the locations of machines
are shown by type. Note that although the flows are different, the designs are the same.
Hence, in fact, the two schemes produced the same solution.

4 Experimental Results

In order to evaluate the proposed greedy heuristic, numerical experiments have been studied
on problems with size from 6 to 30 machines. Data sets for these problems are randomly
generated. Distances between possible locations are measured by the taxi norm. Parameters
including beta distribution for demand, machine capacity, the number of duplicates of each
machine type and the visiting sequence of machine types are randomly generated.

Our greedy heuristic and the random problem generator were written in C++ interfaced
with CPLEX 12.1. All reported CPU times are from a personal computer with Intel Core
2 Duo 2.99GHZ CPU and 3.25GB of RAM.

200 data sets are randomly generated with the above procedure for problem sizes from 6
to 10. In these cases, optimal solutions of the stochastic MILP (presented in Section 2.3) are
used as benchmark to evaluate the heuristic performance. Table 6 presents how much the
heuristic results of our two weighting schemes, the probability weighting scheme (PWS) and
the simple weighting scheme (SWS), are away from the benchmark result of the stochastic
MILP (Sto). CPU times of the PWS, SWS and Sto are shown in Table 7. The numerical
results show that the heuristic performs extremely well with results within 1% of the optimal
solution, while the computing time is only a few seconds. For the case of 10 machines CPU-
times are cut by a factor of over 500.
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Table 6: Compare the cost difference between PWS and Sto, SWS and Sto
for problem size from 6 to 10

. (PWS-Sto)% (SWS-Sto)%
number of machines
avg std avg std
6 0.06 0.03 0.01 0.01
7 0.06 0.02 0.35 0.10
8 0.19 0.08 0.21 0.13
9 0.25 0.10 0.26 0.15
10 0.23 0.13 0.34 0.18
Table 7: CPU times(in seconds) of PWS, SWS and Sto
number of machines PWS SWS Sto
avg std | avg  std avg std
6 0.03 0.01 | 0.06 0.02 | 0.63 0.05
7 0.09 0.06 | 0.10 0.04 | 5.82 0.64
8 0.29 0.08 | 0.30 0.10 | 30.21 3.30
9 0.50 0.12 | 0.53 0.15 | 231.12 24.95
10 1.37 0.10 | 1.42 0.13 | 795.88 137.92

For larger problems, two data sets are generated for each of the problem sizes 15, 20, 25
and 30. Since optimal solutions of the stochastic MILPs are no longer available for these
larger cases, another benchmark is required. The one chosen is the solution of the deter-
ministic model with maximal demand (MAX) because Table 1 shows that this deterministic
solution is very close to the stochastic solution but with less computing time. The numerical
results show that the heuristic results are very close to the benchmark, but with considerable
less computing time. For 25 machines, the largest case where we could solve the benchmark
problem to optimality, CPU-times are cut by a a factor of about 2500.

Table 8: Results of cost and CPU time (in seconds) of
PWS, SWS and MAX for larger problem size

number of PWS SWS MAX
machines cost (PWS-MAX)% CPU time| cost (SWS-MAX)% CPU time| cost CPU time
15 case 01| 556.10 -5.29 1.84 578.91 -1.41 1.78 587.16  13984.80
case 02] 290.25 0.09 2.39 290.19 0.07 2.99 290 30744.91
20 case 01|634.75 0.61 25.89 |626.12 -0.76 21.25 630.89 41940.73
case 02| 739.71 -0.14 22.30 | 746.85 0.83 29.47 740.71  79416.82
25 case 01| 331.44 0.00 34.42 | 331.43 0.00 32.75 331.44 90252.64
case 02|1170.64 -0.42 77.40 |1254.78 6.73 80.40 |1175.63 T
30 case 01| 914.31 -11.02 1090.53 |919.11 10.55 1716.01 |1027.57 T
case 02|1222.58 -0.66 10800.01 {1225.95 -0.38 7911.95 |1230.65

t: the best feasible solution obtained within time limit of 129600 seconds.
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5 Conclusion

A distributed layout is obtained by simultaneously determining the facility layout problem
and the flow assignment problem. This paper studies how to design a distributed layout
which minimizes the total expected material handling cost in a stochastic environment where
demand is uncertain. We developed a greedy heuristic which transforms the stochastic
integrated layout problem into a classical QAP by assigning weighted flows to machine
copies. Two weighting schemes were applied in order to show the difference of priorities of
different flow routes. Compared with other heuristics for solving this integrated problem,
the main benefit of this heuristic is that the time-consuming QAP only needs to be solved
once. The numerical tests show that our heuristic can effectively find solutions within 1% of
the best alternative, but these alternatives are orders of magnitude harder to solve. Hence,
we can find very good solutions to a stochastic QAP by solving a deterministic QAP of
the same dimension: stochastics is added at no computational cost. Further research will
be the development of a greedy heuristic for the integrated layout problem in a stochastic
environment where both demand and products (visiting sequence of machine types) are
uncertain.
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