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The main purpose of this research is to enhance the current procedures of 

designing decision support systems (DSSs) used by decision-makers to 

comprehend the current situation better in cases where the available amount 

of information required to make an informed decision is limited. It has been 

suggested that the highest level of situation awareness can be achieved by a 

thorough grasp of particular key elements that, if put together, will synthesize 

the current status of an environment. However, there are many cases where a 

decision-maker needs to make a decision when no information is available, 

the source of information is questionable, or the information has yet to arrive. 

On the other hand, in timely critical decision-making, the availability of 

information might become a curse rather than a blessing, as the more 

information is available the more time is required to process it. In time critical 

situations, time is an expensive commodity not always affordable. For 

instance, consider a surgeon performing cardiac surgery. With all the new 

advances in monitoring equipment and medical laboratory tests, there would 

be too much information to account for before the surgeon could decide on his 
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next “cut”. A DSS could help reduce the amount of information by converting it 

into the bigger picture through summarizing. 

The research resulted in a new innovated theory that combines the 

philosophical comparative approach to probability, the frequency interpretation 

of probability, dynamic Bayesian networks and the expected utility theory. It 

enables engineers to write self-learning algorithms that use example of 

behaviours to model situations, evaluate and make decisions, diagnose 

problems, and/or find the most probable consequences in real-time.  The new 

theory was particularly applied to the problems of validating equipment 

readings in an aircraft, flight data analysis, prediction of passengers 

behaviours, and real-time monitoring and prediction of patients’ states in 

intensive care units (ICU). The algorithm was able to pinpoint the faulty 

equipment from between a group of equipment giving false fault indications, 

an important improvement over the current fault detection procedures. In 

addition, the network was able to give to the aircraft pilot recommendations 

about the optimal speed and altitude that will result in reducing fuel 

consumptions and thereby saving costs and extending equipment lives.  On 

the ICU application side, the algorithm was able to predict those patients with 

high mortality risk about 24 hours before they actually deceased. In addition, 

the network can guide nurses to best practices, and to summarize patients’ 

current state in terms of an overall index.  Furthermore, it can use data 

collected by hospitals to improve its accuracy and to diagnose patients in real-

time and predict their state well-ahead to the future.  
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1.   Introduction 

 

We live in an ever-changing world where our convictions about the state of 

it update with time as we discover new information about our surroundings. As 

we acknowledge the imperfections of our knowledge repositories regarding 

the state of the world, we often need to make decisions despite all the missing 

details and the uncertainty of where our decisions might lead us to. A robot 

might use its sensory system, for instance, a sonar based sensor, to retrieve 

cues about its surroundings. Then it might use these cues to decide on which 

direction is best to turn to. Since the world behind the range of the robot’s 

sensors is unknown, the robot may take a turn that leads to a dead end. 

Hence, the robot needs to make a decision in an environment where the only 

available information is that of its immediate surroundings. Even if the robot 

was in an exceptionally charted environment, its sensors might malfunction or 

degrade. In this case, the uncertainty arises not from the environment but 

rather from a lack of trustworthiness of the robot’s sensors. In addition, the 

robot programming may contain bugs, the robot might trip and fall, or its 

battery may run out of power or be stolen. The list of events that the robot 

could possibly face in an environment grows infinitely as we consider more 

details. The problem of specifying all the exceptions a designer needs to 

consider is called the qualification problem [1, p. 268].    



 
Introduction 2 

 
 

 

Uncertainty can arise due to external factors, such as noise. In statistics, 

noise refers to unexpected (or unexplained) variations in the observations of a 

process, as opposed to the explained variation where the mathematical model 

of the process can be estimated [2]. In digital communications, information 

may be sent as pulses with varying amplitudes that each represents a state. 

After random noise is added to the amplitude of the pulses throughout the 

transmission channel, the receiver has to estimate what state was sent given 

the random variations in the received signal due to the added noise [3].  

In general, uncertainty might arise due to theoretical ignorance, as is the 

case when scientists have an incomplete understanding of phenomena; 

laziness because listing all the causes that orchestrate the observed 

behaviour of a phenomenon might be too much work; or practical ignorance 

when we are required to decide based on partial evidence, for instance, a 

physician trying to diagnose a patient without performing all the necessary 

laboratory tests [1, p 481].  

Finally, in quantum physics, uncertainty is an objective property of reality. 

Certain pairs of particles’ properties are constrained together in a precise 

inequality, such that the more that is known about the first of the pair, the less 

that is knowable about the second [4]. Consequently, a part of our world is 

always going to be fuzzier even as we gain more knowledge about the other 

part.   

Probability theory is the main tool used to represent uncertainty arising 

from laziness and ignorance [1, p 482]. If we consider probability as a 

measure of how likely an event would be observed in an experiment repeated 
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a certain amount of times, then it could be used as a quantitative 

representation of our certainty of how likely that event might occur from 

among all other possible events. In this context, probability is interpreted as a 

degree of belief rather than a frequency of occurrence. It provides a 

quantifiable interface to an agent epistemological state regarding the world. 

For example, if 1 robot out of 100 suffered power problems then we could say 

that our belief that this robot would suffer power problems is 0.01.    

Probability can also be used in decision-making where it is treated as the 

expression of an agent’s judgement of how possible an event is. Probability in 

this context represents a decision not an estimate of errors [5]. Combined with 

utility, probability can be used to construct decision networks where various 

decision paths are plotted and assigned preferences that describe their 

usefulness to the decision-maker, and where the likelihood of each path is 

expressed in terms of probability. Thereby, the decision-maker can find the 

path that results in the maximum utility [6]. In addition, probability is used to 

model noise and random processes in digital communication systems to 

minimize the rate at which the receiver wrongly guesses which state the 

transmitter has actually sent. The likelihood of an outcome with respect to the 

sample mapped into a function of time represents the random nature of a 

process [3, p. 303].  

An extensive amount of research and literature is available on the 

statistical modelling of noise and the probabilistic representation of 

uncertainty. Moreover, researchers have suggested various approaches on 

how to quantify uncertainty. The purpose of this thesis is to find an optimal 
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approach of dealing with decision-making under uncertainty when little 

information is available to the decision-maker at the time of making the 

decision. We will look into the objective of this thesis in the next section. 

1.1 Motivations and aims 

 

The main purpose of this research is to enhance the current procedures of 

designing decision support systems (DSSs) used by decision-makers to 

comprehend the current situation better in cases where the available amount 

of information required to make an informed decision is limited. It has been 

suggested that the highest level of situation awareness can be achieved by a 

thorough grasp of particular key elements that, if put together, will synthesize 

the current status of an environment [7]. However, there are many cases 

where a decision-maker needs to make a decision when no information is 

available, the source of information is questionable, or the information has yet 

to arrive. For example, consider a nurse in a public health centre who is 

responsible for admitting and assigning patients to be seen either by a doctor 

or a nurse. The assignment to a doctor should be based on a higher severity 

condition of the patient’s symptoms relative to that of an assignment to a 

nurse. Since some patients might overstate their symptoms to be admitted to 

a doctor and thereby a better service, or conversely, they may understate their 

symptoms out of fear. Therefore, the nurse cannot be certain about the 

severity of those patients’ illnesses. 
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In timely critical decision-making, the availability of information might 

become a curse rather than a blessing, as the more information is available 

the more time is required to process it. In time critical situations, time is an 

expensive commodity not always affordable. For instance, consider a surgeon 

performing cardiac surgery. With all the new advances in monitoring 

equipment and medical laboratory tests, there would too much information to 

account for before the surgeon could decide on his next “cut”. A DSS could 

help reduce the amount of information by converting it into the bigger picture 

through summarizing.  

In the aviation industry, large aircraft often contain redundant measuring 

equipment. The accuracy of the navigation system can be verified by 

comparing the readings from two different equipment groups. For instance, an 

accurate altitude can be assumed when the altimeter reading of the pilot’s 

panel is identical to that on the flight officer’s panel. Otherwise, a search for a 

defective component is initialized, which, in turn, might involve manual 

procedures, such as switching to alternative air data, or observing the status 

of the altimeter for visual defection cues, such as a fluctuating pointer [8]. 

However, manual observations require the pilots to be in a high state of 

situational awareness where they would be able to comprehend the states of 

the aircraft, and in turn, make reasonable decisions. This would defeat the 

purpose of a DSS (or redundant measuring equipment), as they are supposed 

to raise pilot’s situational awareness instead of the other way around. 

The work in this thesis was particularly applied to the problem of validating 

equipment readings in an aircraft, flight data analysis, and real-time monitoring 
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and prediction of patients’ states in intensive care units (ICU). Each 

application will be discussed further in the upcoming chapters. However, the 

author feels it is necessary to introduce some basic notations and background 

topics before the main theory is introduced. 

1.2 Decision Support Systems 

DSSs is an umbrella term applied to any computerized system used in 

aiding making decisions in an organization [9, p 14]. One of the earliest 

definitions of DSSs comes from Keen and Morton in 1978, where [9, p. 12]: 

Decision support systems couple the intellectual 

resources of individuals with the capabilities of the 

computer to improve the quality of decisions. It is a 

computer-based support system for management 

decision makers who deal with semi-structured 

problems. 

Classically, the process of designing a DSS was classified into three 

categories: structured, unstructured, and semi-structured [9, p. 11]. Structured 

DSSs are those that involve a straightforward decision-making process where 

standard procedures exist to make the required decision; for example, 

processing a new order in an online store. Unstructured DSS is where the 

problem of coming up with a decision is often complex, fuzzy, or has no 

standard solutions, for example, buying new software for processing 

documents in a firm. Finally, semi-structured DSSs are in-between cases, 
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where part of the decision-making process can be structured but others 

cannot. An example is selecting the best car insurance.  

With respect to the application that has driven the design of a DSS, DSSs 

are classified into model-driven, data-driven, communication-driven, 

document-driven, and knowledge-driven [10]. Model-driven DSSs are those 

that simulate, optimize, and/or manipulate a process. They use parameters 

and/or rules provided by experts to aid decision-makers in the process of 

analyzing a situation and thereby come up with a more optimized decision/s. 

As the capabilities of computers dramatically grew, model-based DSSs grew 

in complexity and started to provide wider ranges of options, optimisability, 

and decision routes. Conversely, data-driven DSSs are designed to support 

better access and manipulation of a company’s internal (or even external) 

data. They could be as elementary as a web-based query tool or as complex 

as real-time access and analysis of a huge data warehouse. Communication-

driven DSSs use state-of-the-art communication technologies as a media to 

facilitate better collaboration and communicational-based decisions. Some of 

the commonly used communication technologies are video conferences, 

internet newsletters, and computer based bulletin boards. Document-based 

DSSs emphasize the accessibility and/or manipulation of documents from 

normally huge databases. As the World Wide Web grew in size and more 

documents became available, document-based DSSs became the main 

platform for usage in document searching and retrieval. Knowledge-based 

DSSs (Kb-DSSs) have the capability of recommending an action to a 

decision-maker rather than a passive analysis and/or accessibility, as with 
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previous types of DSSs. They usually use expert knowledge or artificial 

intelligence optimized to solve problems within a specific domain. One 

example is computer-based medical diagnosis tools. The overall aim of this 

thesis falls within the domain of Kb-DSSs.  
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Intelligence: 

 Observe reality 

 Gain problem/opportunity understanding 

Design: 

 Design decision criteria 

 Develop decision alternatives  

 Identify relevant uncontrollable events 

Choice: 

 Logically evaluate the decision 

alternatives 

 Logically evaluate the decision 

To approximate the ways experts make a decision, several frameworks 

have been suggested to model human information processing. Simon’s three-

phase paradigm of intelligence [11] is one of the earliest. Simon’s model is a 

conceptual model that, software-wise, can easily be implemented [12]. The 

model consists of three phases: intelligence, design, and choice (Figure 1) 

[11]. The first phase is a reconnaissance phase, where a decision-maker 

starts by collecting various cues from a situation, and then collects 

FIGURE 1. The three-phase paradigm of intelligence 
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information, detects opportunity, and comprehends the main drives behind 

them. The second phase is where the intelligence collected previously is used 

to model the problem/opportunity. The decision-maker would develop 

relationships between events motives and/or drives behind the situation at 

hand and in turn set up criteria that links his systematic model to expected 

results and their desired utilities and possible alternatives to an action. Finally, 

the decision-maker would apply his model along with the collected intelligence 

to produce an action or a list of actions summarizing the next course of 

action/s. An extra step would be a reflection phase, where the decision-

makers evaluate the effectiveness of their model and come up with 

suggestions for the next cycle of decision-making, where they develop 

confidence and expertise in the process of decision-making and start the 

actual implementation plan [11]. In the next section, we briefly present the 

process of making choices under uncertainty, which characterizes the second 

step of the Simon’s three phases of intelligence.   

1.3 Choice under Uncertainty 

When a decision-maker decides on which type of computer to buy for an 

office, the output of his choice is always certain and determined in the sense 

that if computer type A is bought, then computer type A is what the decision-

maker will get. This is because the choice of the decision-maker mainly 

influences the outcome of the decision. However, there are many cases where 

unforeseen events that the decision-maker cannot be sure of influence the 

outcome of a decision. For example, imagine that a gambler would gain £100 
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if the outcome of a dice roll is 6 and £75 if the outcome is 5 or 4, but would 

lose £100 if the outcome is 3, 2 or 1. The gambler cannot be certain of the 

output of the dice roll because many factors affect, and thereby determine 

which face of the dice is going to face up, and these factors are out of his 

hands. In such a situation, the gambler needs to make his bet while remaining 

uncertain of the output of his dice roll. It is evident to assume that the gambler 

would have different preferences to each possible outcome of the dice roll. For 

instance, he would not want to roll 3, 2, or 1 since he would lose £100 but 

would prefer to roll 4, 5, or 6. As mentioned in the Introduction, combining 

preferences (or utility) with probability is the basis of our modern 

understanding of decision theory.  

The earliest recorded attempt to combine probability with preferential value 

to make a choice was that of Blaise Pascal in the seventieth century in his 

famous Pascal wager [13]. Pascal argued that the expected value of making a 

choice giving n possible choices with values {v1, v2,….,vn} and probabilities 

{p1,p2,…pn} is given by:  

   ∑    

 

 

 (1)  

In 1728, Nicholas Bernoulli challenged this notation that a decision-maker 

needs only to consider expected value in what is now known as the St. 

Petersburg paradox [14]: 
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Suppose someone offers to toss a fair coin 

repeatedly until it comes up heads, and to pay you 

$1 if this happens on the first toss, $2 if it takes two 

tosses to land a head, $4 if it takes three tosses, 

$8 if it takes four tosses, etc. What is the largest 

sure gain you would be willing to forgo in order to 

undertake a single play of this game? 

Since the probability of getting heads on the first toss is ½, the probability 

of getting heads on the second toss is ¼, and the probability of getting heads 

on the nth toss is  1/2n, the expected value can be estimated using Equation 1 

as: 

   
 

 
    

 

 
      

 

  
       

 

 
 

 

 
   

 

 
    (2)  

The results of Equation 2 suggest that a gambler should accept the bet no 

matter what entry price is set for that game as the expected payoff is always 

higher, in fact, it is infinite. However, it is obvious that only few, if any, rational 

decision-makers would consider paying any amount of money to enter such a 

game. Gabriel Cramer and Daniel Bernoulli proposed the solution to this 

paradox by noting that a gain of $2 is not necessarily twice as useful as a gain 

of $1 [14]. They introduced the notion of expected utility function U(.) and used 

it to access a gambling situation rather than the expected value. In this 

context, the utility of a choice becomes the multiplication of its odds by its 

utility. The utility of a choice considers many factors other than the financial 

outcome of it. For example, the amount of wealth and resources that the 

decision-maker currently possesses and is willing to risk, the concept of the 
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diminishing marginal utility of money, i.e., U($2n) < 2U($n), and whether there 

a casino willing to offer such a gamble exists. With the expected utility 

principle in mind, we can rewrite Equation 1 as: 

   ∑      

 

 

 (3)  

where U(n) is the utility of choice n. Assuming that the current wealth of 

the gambler is W, the sure gain ζ of the gamble of the previous example is 

[14]: 

     ζ  
 

 
         

 

 
           

 

  
    

        
(4)  

For example, if we assume a natural logarithmic utility function and that the 

gambler’s wealth is about $1,000, then the sure gain will only be about $5.94. 

Despite the fact that the utility function has solved one of the classical 

paradoxes in decision theory, it does not tell us much about how to model 

preferences of a decision-maker. In economics, the utility function of 

consumers is modelled under the assumption that their preferences are 

consequentialist, that is, that consumers are indifferent to two compound 

gambles if they can be reduced to the same simple gamble; and continuity, 

that is, the utility of gamble A is higher than gamble B even when the 

probability of a new gamble C is added to gamble A [15]. However, research 

into the expected utility modelling is much more involved than the scope of 
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this thesis and is sometimes controversial [16]. In addition, the expected utility 

principle would only work if the probability distribution of choices is known. 

This is also one of the main criticisms of Bayesian probability [17].   

 

1.4 Overview of thesis structure 

 

This thesis is organized into six chapters. It started with a brief introduction 

to the aims, motivations of the thesis and DSS outlined in chapter 1. Chapter 2 

is an introduction to the theory of probability which overviews the 

combinatorial calculus, probability theory and its results, Bayesian networks 

and decision-making within the framework of Bayesian Networks.   

Chapter 3 details the analysis of various interpretations of probability. It 

sets the objectives for the wining interpretation and finally presents the 

proposed approach to comparative probability which will be used in the 

following chapters. 

Chapter 4 is the first application of the developed algorithms. It starts with 

brief introduction to aviation safety. It gives two applications of the proposed 

algorithms to aviation safety. Chapter 5 is the second application of 

comparative probability. The application will be to ICU patients. Once more, 

we will show two applications of comparative probability to monitoring and 

analyzing patients states in ICU. 
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Finally, chapter 6 concludes the thesis with reminder of the objectives of 

the thesis and how they have been met. In addition, it outlines potential 

opportunities and future work which made possible following the results of the 

research in this thesis.    
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2.  Bayesian Artificial 

Intelligence  

The main objective of this thesis is to establish a framework for making 

decisions when little information is available to the decision-maker without 

resorting to the common mistake of extracting knowledge from ignorance. We 

have already seen in Chapter 1 that probability is the basic foundation of 

representing and quantifying uncertainty. In this context, we could think of 

probability as an intermediate domain between events and actions. In 

addition, the importance of probability to scientists and engineers is so 

obvious that it requires no further explanation or listing of examples. Finally, 

we saw that probability is an aspect of reality in the realm of quantum physics. 

However, many references, be it books, journal papers, or lecture notes, 

devise their own abbreviations, symbols, and nomenclature to represent 

various quantities and terms in probability theory. Therefore, it would only be 

reasonable to introduce a common notation that we will consistently refer to 

throughout the course of thesis. However, as probability theory is far more 

detailed than being summed up in one chapter of a thesis, referring to the 

references mentioned throughout the context of this chapter is recommended.  

This chapter will walk through the basic concept of counting to advanced 

concepts in probability to Bayesian networks and their applications. It starts by 
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discussing the principle of counting and the basic notations of combinations 

and possible outcomes of experiments. Then it moves to probability theory 

from unconditional to conditional and joint probability distributions for both 

discrete and continuous variables. Having introduced probability theory, 

Bayesian network is discussed along with their importance as probabilistic 

graphical model of joint probability distribution and their role in decision-

making. Finally, chapter two concludes by brief discussion of learning 

Bayesian networks structures from examples.  

2.1 The principle of counting 

In combinatorial analysis, counting refers to the way of finding the number 

of possible outcomes of an experiment or a series of experiments that 

somehow are related together. One formulation of the principle of counting is: 

“Suppose that two experiments are to be 

performed. Then if experiment 1 can result in any 

one of m possible outcomes and if for each 

outcome of experiment 1 there are n possible 

outcomes of experiment 2, then together there are 

m×n possible outcomes of the two experiments 

[18, p. 2]” 

For instance, suppose that ice cream either comes in a cup or a cone and 

the available flavours are chocolate, vanilla, and strawberry. Since the shape 

of the ice cream can be regarded as experiment 1 with 2 possible outcomes 

and the flavour of it can be noted as experiment 2 with 3 possible outcomes, 

the overall number of outcomes of both experiment 1 and 2 is: 2×3=6. One 
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could express the relationship between experiment 1 and 2 in terms of a tree 

diagram. The tree diagram helps understand the relationship between the two 

experiments. See figure 2 

 

 

 

 

 

 

 

The principle of counting can be generalized to more than two 

experiments. If an amount of r experiments are performed and the possible 

outcomes of experiment 1 were n1, the possible outcomes of experiment 2 

were n2….and the possible outcomes of experiment r were nr, then the overall 

number of possible outcomes is: n1×n2×…×nr [18, p. 3]. Each possible 

outcome in counting is referred to as a permutation. Although the principle of 

counting is very powerful, every so often we require a quick way of calculating 

the number of possible groups of r objects that can be arranged from a total of 

n objects. For example, a player in a word game may be interested in knowing 

how many permutations of 3 letters are possible out of the 10 letters he is 

holding. Since the first letter holder can contain any of the available 10 letters 

and the second letter holder can have any of the remaining 9 letters while the 

third one can hold any of the lasting 8 letters, it follows that the overall number 

FIGURE 2. A tree diagram illustrations the principle of counting 

strawberry 

vanilla 

chocolate 

strawberry 

vanilla 

chocolate 

cone 

ice cream 

cup 
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of permutation is: 10×9×8=720.  However, this result assumes that the order 

of arrangement is relevant, that is permutations like ABC, BCA, BAC are 

accounted for. When the order of arrangement is irrelevant, then the overall 

number of permutation should be divided by the number of times the same 

letters are repeatedly re-arranged. In this case, it amounts to 3×2×1. In 

general, the number of possible combinations of r objects out of n objects 

where the order of permutations is not relevant can be expressed as [18, p. 6]: 

(
 

 
)  

  

        
 (5)  

Equation 5 is also referred to as the binomial coefficient because it plays 

an important role in binomial theorem [18,p. 15]. However, what if we are to 

divide the n objects into r distinct and non-overlapping groups? Since the 

groups are distinct and non-overlapping, and using the principle of counting, 

we can find [18,p. 11]: 

(
 

     …  
)  

  

      …    
 …                (6)  

2.2 Basic concepts in probability 

In this section, we will explore probability theory from its basic concepts to its 

greatest results such as the central limit theorem and the strong law of large 

numbers. However, probability theory is far more detailed and complex 

subject to be fit in a section of a thesis. Hence, most of the concepts 
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introduced here are as brief and abstracted as they could be. The main 

purpose of this section is not to introduce concepts that can be found in every 

first course book about probability but to establish consistent notation and 

reference basis upon which the main theory of this thesis can be build.   

2.2.1 Events, sample space and their relationships 

The word probability comes from Latin probabilis which means to that may 

be proved.  It was also used in Shakespeare’s Histories to mean worthy of 

acceptance or belief  and having an appearance of truth [19]. However in 

modern everyday usage, it is used to refer to the degree of certainty that an 

event will occur [20,p. 15]. For example, the weather cast may indicate that 

there is a low probability the weather will be sunny during the next week in the 

North West of England. On the other hand, the theory of probability deals with 

quantifying and weighing of evidences and the likelihood of events. The 

probability calculus was proposed in the 17th century by Fermat and Pascal to 

tackle the problem of uncertainty in the outcome of gambling games [21,p. 6]. 

Later on, it was realized that probability calculus can also be applied to 

characterize ignorance. Probability became the very corner stone of science 

and weighing scientific observation that Bishop Butler considered it “the very 

guide to life” [21,p. 6].  

If the output of an experiment cannot be deterministically estimated 

beforehand, then we might overcome that by deterministically estimating all 

the possible outcomes of the experiment. This is often referred to as the 
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sample space and denoted by the Greek uppercase letter Omega (Ω) 

whereas an outcome or subset of outcomes of the experiment is called an 

event and usually denoted by the Greek lowercase letter Omega (ω) [1,p. 

484]. For example consider the case of dice toss. Since an ordinary dice has 

six faces labelled 1 to 6, the possible outcomes, or sample space, of the 

experiment will be: 

    , , , , ,   (7)  

If the dice landed with side labelled 6 facing up then the event is 

represented as ω = 6. As previously discussed in the principle of counting 

section, we are sometimes interested in calculating the likelihood of an event 

when more than one experiment is performed. For instance, consider if we 

have two dices rather than one and they were tossed simultaneously. In this 

case the sample space of events is [18,p. 25]: 

     ,     ,    , , , , ,   (8)  

Where i denotes the side label of the first dice and j denotes the side label 

of the second dice. Hence (i,j) denotes one event from the sample space Ω. 

Let the experiments of tossing two dices separately be regarded as E1 and E2 

and event in experiment E1 and E2 is denoted as ω1 and ω2, then we define 

the new event ω1   ω2 is the event that either ω1 or  ω2 has occurred. This 

new event is referred to as the union of ω1 and ω2. Furthermore, the event 

that both ω1 and ω2 has occurred is denoted as ω1   ω2 and referred to as the 
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intersection of events ω1 and ω2. The union and intersection of two events can 

be generalized to any number of events such as n to: 

      ⋃  

 

   

 (9)  

for the union of events ω1 to ωn and to: 

      ⋂  

 

   

 (10)  

for the intersection of events ω1 to ωn. The compliment of an event ω is 

defined as all the events over the sample space Ω where ω will not occur and 

is denoted by ωc. If the subset of events described by ω1 is also included in ω2 

then we say that  ω1 is contained in ω2 which is usually denoted as ω1    ω2 

[18,p. 26]. When a subset of events such as ω1 is contained within another ω2 

then the occurrence of ω2 implies the occurrence of ω1. Such consequential 

relationship plays an important role in reasoning and thereby in decision-

making. On the other hand, if the subset of events in ω1 is exactly that of ω2, 

then the two events are equal and denoted as ω1 = ω2.  The various 

relationships between events are usually expressed graphically by the so 

called Venn diagrams [21,p. 6]. In Venn diagram, a subset of events is 

represented in terms of closed shapes and the logical relationships between 

them are represented by symbolic intersections among these shapes. Figure 

3 shows some of the previous relationships represented in Venn diagrams. 
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2.2.2  Unconditional Probability 

 Consider an experiment in which a fair 6 faced dice is tossed. Since the 

dice hasn’t been tampered with as to land on one of its edge, the dice should 

land on any one of its faces. We can express that in more abstract way by 

saying the outcome of a fair dice toss experiment should be any event from 

within the sample space defined as {1,2,3,4,5,6}. No matter how many times 

the same experiment is repeated, it’s only intuitive that the result is always 

some value from within that sample space and that it is impossible to have an 

outcome that is 7, 9 or any other value that is not part of the sample space. 

Since we often express such intuitive in terms of probability, we might say that 

we are 100% sure that the experiment will result in any value of the sample 

space and 0% sure that it will result in any value outside that. If we normalize 

the percentage of our confidence and express the two mentioned intuitive 

expectations, we will get: 

 

ω1 ω2 

Ω ω1∩ ω2 

ω1 ω2 

Ω ω1∪ ω2 

(a) (b) 

Figure 3. Venn Diagrams showing (a) intersection relationship (b) union relationship 
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        (11)  

and 

         (12)  

If the dice were biased in a way as to land with its side labelled 6 facing up, 

then, on average, we expect the event ω = 6 to take place more than the 

others. But as the dice is assumed fair, it is again intuitive to assume that each 

event within the sample space is as likely as the others. If we label the 

probability of occurrence of event ω as P(ω), then: 

                                   (13)  

Let us use the mathematical + sign to denote the probability of a union of two 

events such as ω1 and ω2, and using equation (11), we can write: 

                                      (14)  

Since every event in (14) has the same probability, then: 

                                        (15)  

Although equations (1) to (6) were derived intuitively, they are part of our 

modern understanding of probability which is build upon the basic three 

axioms of probability hence called axiomatic probability [18,p. 26]. The three 

axioms of probability, also known as Kolmogorov axioms state that [21,p. 6]: 
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Usually, the probability of an event  is defined from a relative frequency of 

occurrence [18,p. 29]. In an experiment with a sample space of     which is 

repeated for n number of times under the same conditions, if an event like   

occurred      times during the course of performing the previously mentioned 

experiments, then we define      as: 

         
   

    

 
 (17)  

Therefore, the probability of an event is the converging limit of occurrence 

of the event as the reptilian of the experiment approaches infinity. The 

assumption that the probability of an event should converge to some value 

can be considered as another axiom of probability or as a result of the 

previously mentioned axioms  [18,p. 29]. Nonetheless, the axioms of 

probability can be used to derive other relationships such as the following: 

 

Axioms of probability (16) 

Axiom 1: 

 𝑃 Ω     …    .      

Axiom 2: 

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔   Ω,𝑃 ω ≥    …    .   

Axiom 3: 

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔 ,𝜔   Ω,  f 𝜔  𝜔  ∅, 𝑡ℎ𝑒𝑛 𝑃 𝜔  𝜔   𝑃 𝜔   

𝑃 𝜔    …     .   
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However, if our everyday world is deterministic, that is similar causes will 

result in similar effects, then shouldn’t an experiment performed with the same 

conditions always lead to the same results? Where would the uncertainty in 

estimating the outcomes come from? Unquestionably, we would be uncertain 

about the output of an experiment if its initial condition cannot be guaranteed 

to be the same or if the slightest change in the initial condition will result in a 

butterfly chain of effects. On the contrary, this is not the assumption of the 

relative frequency definition of probability. One way to answer this paradox is 

to note that the previous definition of probability doesn’t convey a proposition 

about reality but rather about logical possibilities.  An experiment assumed to 

be carried out under the same condition is to assume that it favours no one 

𝑃 ∅     

𝑃 𝜔   𝑃 𝜔𝑐    

𝑃 𝜔  𝜔   𝑃 𝜔   𝑃 𝜔    𝑃 𝜔  𝜔   

𝑖𝑓 𝜔   𝜔 , 𝑡ℎ𝑒𝑛 𝑃 𝜔  ≤ 𝑃 𝜔   

Consequences of Kolmogorov axioms (17) 

Probability of the empty set: 

Probability of occurrence is 1 minus the probability of not occurring 

The addition law of probability 

Probability of subset of event 
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outcome over the others. Hence, a probability proposition asserts how 

logically possible an event would be if no other prior information is known. 

This type of probabilistic assertion is called unconditional, or prior, probability. 

The estimation of the conditional probability of an event require no more than 

knowledge of the sample space and no knowledge about the outer world is 

necessary.  As soon as information about the actual world has arrived, 

conditional probability becomes invalid. Therefore, the likelihood of an event 

needs to be reassessed in light of the new information. The likelihood of an 

event in the presence of prior knowledge of the experiment is called 

conditional probability.  

2.2.3 Conditional Probability 

In philosophy, Kant distinguished between two types of judgements: 

analytical and synthetic judgement [22]. Analytical judgement deals with the 

way concepts and ideas are connected but it tells us nothing about the state of 

affairs in the actual world. Its truth requires nothing more than knowing the 

actual meaning of a concept or an idea, whereas synthetic judgements are 

those that their truths cannot be inferred without information about the actual 

world [23]. Hence, unconditional probability doesn’t tell us anything about the 

actual world for it requires no knowledge about it other than the breadth of the 

sample space. If the unconditional probability of having a head in a coin flip is 

0.5 then that shouldn’t be considered what will happen in real coin flip 

experiment. Unconditional probability is an analytical judgement about 

possibilities not actualities.  
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Therefore, if the likelihood of an event in an experiment is to be estimated, 

information about the state of affairs surrounding that event should be 

gathered. When a condition of an experiment is known, then unconditional 

probability becomes void and a way to incorporate the new condition into the 

calculation of the event probability needs to be implemented.  

Suppose that two ordinarily dices are to be tossed sequentially. If we know 

that the output of the first toss is 6, then how we are to incorporate this 

information into the estimation of how likely it will be to get an outcome that 

both adds up to 8 when the second die is tossed.  We reason as follows: since 

the first dice roll is known, then there are only six possible outcomes out of the 

second experiments (6,1), (6,2), (6,3), (6,4), (6,5), and (6,6). In addition, there 

is only one way of getting an outcome of 8 namely (6,2), therefore,  the 

conditional probability of the outcome 8 giving that 6 have occurred from the 

first dice roll is  1/6. In general, we define the conditional probability of event ω 

giving that evidence (or condition) e has occurred as [21,p. 7]: 

   |    
      

    
 (16)  

where    |  is called the conditional probability of ω giving that e has 

occurred. Equation 16 is also known as the product rule of probability written 

usually as [1,p. 486]: 

           |       (17)  
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Theorems of Conditional Probability (20) 

Total probability: 

The chain rule 

where 

is the complement of an event  

 

𝑃 𝜔    ∑ 𝜔  𝜔 
𝑖  

𝑖

  …     .   

𝑃 𝜔3|𝜔    𝑃 𝜔3|𝜔  𝑃 𝜔 |𝜔   𝑃 𝜔3|~𝜔  𝑃 𝜔 |~𝜔    …    .   

∼ 𝜔   𝜔𝑐 

The union between two events can also be expressed as     ,    and in 

general written as: 

   ,       |       (18)  

The product rule of equation 18 can be generalized to any number of events 

or evidences as [18,p. 71]: 

       3 …              |      3|         |  …      (19)  

It is of value to note that conditional probability satisfies all the three 

axioms of probability given in equations 16 [18,p. 102]. Some important 

theorems of conditional probability are given below [21,p. 8]: 

 

 



 
Bayesian Artificial Intelligence 30 

 
 

 

2.2.4 Independence and conditional independence 

In the previous section, we saw how the introduction of new information could 

affect the likelihood of an even in an experiment. However, not every change 

in state of affairs will result in a consequential update of the probability of an 

outcome. For example, the likelihood of obtaining a head when a fair coin is 

flipped doesn’t change if we knew that the previous flipped resulted in a head 

or tail because the output of the first experiment doesn’t change the number of 

combinations which the second experiment can result in. When the outcome 

of an event like ω1 has no affect on the estimation of the likelihood of another 

event like ω2, we say that ω1 and ω2 are independent (also marginal 

independent or absolutely independent) [1,p. 494]. The independent of two 

variables can be expressed as: 

    ,                 (21)  

and for any number of events such as ω1 to ωn:  

    ,   ,  3, …               …      (22)  

On the other hand, two events may seem to be dependent on a third event but 

the conditional probability of them does not seem to change when the 

likelihood of the third event is altered. For example, the likelihood of cloudy 

sky will increase dramatically if the sky is raining. Similarly, the likelihood of 

low temperature would increase if the sky is raining as well. Both the events 

cloudy sky and low temperature depends on the presence of rain. If we have 

no information about the condition of the sky, then looking at the thermometer 
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will alter our belief about the possibilities of the current weather. On the other 

hand, if we already know that it is raining, then looking at the thermometer 

wouldn’t make more certain about the presence of clouds. That means that 

the two events: cloudy sky and low temperature are independent giving the 

event rainy sky. If we represent the event cloudy sky as ωcloud, low 

temperature as ωtemp, and rainy sky as ωrain, then [1,p. 498]: 

                               |                     (23)  

and: 

                               |       (24)  

2.2.5 Bayes Theorem 

Bayes theorem is an extension of the product rule of probability giving in 

equation 18 [1, p. 495]. It connects together the conditional probability 

between two events with its inverse. Despite its intuitive and simple nature, it 

has massive consequences on the interpretation of probability, approach to 

epistemology, hypothesis testing, and inductive logic [24]. It also forms the 

cornerstone of modern probabilistic reasoning in artificial intelligence, it is 

given by [1, p. 495]: 

    |     
    |         

     
 (25)  
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Bayes rule comes in handy in cases where we have information about the 

probability of an effect giving some cause and we would like to estimate the 

likelihood of the cause when the effect at presence. This is particularly useful 

in diagnosis-wise flow of inference where we have symptoms and the most 

likely causes are to be inferred.   But the real value of Bayes rule is that it 

shows how the likelihood of an event is updated as new evidences becomes 

available which is useful in inferring the likelihood of a hypothesis over 

another. It tells us that the likelihood of hypothesis y giving evidence x is equal 

to its likelihood times its prior probability before evidence x became available 

conditioned by the likelihood of evidence x itself. This process is referred to as 

conditionaliztion [21,p. 12].  

Another application of Bayes rule is the subjective process of learning. In this 

context, learning is viewed as the a continuous process of updating believes 

about the likelihood of a state of affairs as new information is acquired [24].  

For example, experience can alter our certainty about the truthful of previously 

held proposition. Bayes rule can also help eliminate irrational favourism such 

as the case with the principle of the weak evidence. It states that if an 

evidence like e with probability of P(e) does not increase the likelihood of a 

hypothesis (like h) over another (like h*) and h was more believable than h* 

then any new information that serve to strengthen P(e) will maintain a higher 

likelihood of  h over  h* [24]. 

Although Byes rule is used widely in different disciplines ranging from 

philosophy to statistics to artificial intelligence, the concept of probability as a 

subjective belief is a controversial one [21,p. 12] that gets many philosophical 
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and research framework going in past years and years to come.  We will 

introduce the application of Bayes rule in artificial intelligence in the next 

section.   

2.2.6 Random Variables 

Often, a gambler is not interested in the mere outcome of the two dice roll but 

rather the numerical sum of the number rolled, or in case of coin flip, the 

number of times of obtaining a head out of three repeated experiment. In 

process quality control, we are more interested in quantifying the number of 

times  the output is above or within a certain range [25,p. 115]. In all these 

cases, the interest is on a certain function defined over the sample space of 

an experiment. Such function is often referred to as a random variable or a 

stochastic variable [18,p. 132]. The value of a random variable can be 

evaluated using the combinatorial calculus discussed earlier. For instance, the 

probability that sum of two dice rolls will be 10 can be calculated by counting 

the number of combinations where the sum of the two dice numbers is 8, 

namely: (6, 4), (4, 6), and (5, 5). Since there are 36 possible outcomes from a 

two dice roll, the probability of obtaining a sum of 10 is: 

           
 

  
  

 

  
 (26)  

A variable described by function over the sample space can be classified as 

either discrete or continues. A discrete random variable is that in which the 

function that defines it results in a finite number of possibilities such as the 

sum of two dice rolls which can be any of the group {1,2,3….12}, or an infinite 
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series of separate values such as the group of integer numbers.  On the other 

hand, a continues random variable is that where its function can assume any 

possible value within a certain range or multi ranges of values [26].  

Random variables obey the three axioms of probability and there 

values should sums up to 1. Usually an uppercase letter is used to denote a 

random variable and lowercase to denote a generic value of a random 

variable such that for the random variable X which has k discrete values [20,p. 

20]: 

∑          

 

   

 (27)  

where xi is the i-th value of the random variable X. Usually the probability 

function of a random variable, also known as the Probability Mass Function 

(PMF) , is presented in terms of a two dimensional graph. The x-axis of the 

graph is usually used to denote the range of values of the random variable 

whereas the y-axis is preserved for the corresponding probability value of that 

variable [18,p. 138]. Figure 4 shows the probability mass function of the sum 

of a pair of dice [27,p. 61]. 
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Figure 4. P(x+y) is the mass probability function of a pair of dice 

 

Another way of representing a random variable function over a space sample 

is the Cumulative Distribution Function (CDF) which describes the probability 

that a random variable falls below a given value or simply the sum of all 

probabilities of the mass distribution function where it is less than or equal to 

some value like x [28]: 

          ≤      ∑     

    

 (28)  

where        is the cumulative distribution function of the random variable X 

when x = xi. Since a CDF is essentially a sum of probabilities lying under a 

certain value, it is a cumulatively increasing function which starts always with 

a value of zero and ends with 1, and                     [29,p. 5]. Figure 5 

shows the   cumulative distribution function of probability mass function of a 

pair of dice rolls. 
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Figure 5. CDF of a pair of dice roll 

  One important and central concept in probability theory is the expected value 

of a random variable [30,p. 148]. The expected value of a random variable is 

defined as the weighted average of all the possible values in the sample 

space. Usually denoted by uppercase U, the expected value of random 

variable (X) is defined as [31,p. 127]: 

      ∑    

 

   

    (29)  

For example the expected value of fair dice roll is: 

           
 

 
   

 

 
   

 

 
   

 

 
   

 

 
   

 

 
 

 

 
 (30)  

The expected value represents another idealized concept in the frequency 

interpretation of probability just like the definition of probability itself [31,p. 

127]. Therefore, the expected value of a random variable doesn’t have to be a 
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directly measurable or even possible quantity that exists in the sample space. 

For example, the expected value of a dice rolls fond earlier as: 7/2 is 

impossible. From the point of view of the frequency interpretation of 

probability, it represents the ultimate average of the samples that the 

experiment should converge to when the observation is infinitely repeated. 

Since the ratio of observing an event such as ω from the sample space Ω 

would converge to P(ω) and that is true for all ω, then it follows that the 

average of observing  ω is [18,p. 141]: 

∑    

 

   

           (31)  

The expected value of a function of random variable can also be calculated by 

noting that that function has a mass distribution function as the random 

variable has. If we designate that function as g(X) then the expected value of 

g(X) is [18,p. 145]: 

         ∑       

 

   

    (32)  

Although the importance of the expected value of a random variable, it does 

not some up all the properties of it. For example, we may be interested in 

knowing how wide the variable spread around the average.  The spread of the 

probability distribution function, commonly denoted as the variance, is 

important in process control as it gives indication on whether the process is 

still under control or becoming uncontrolled [25]. The variance of a random 
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variable can also help measure the representation power of the average. If the 

variance is high then the average doesn’t quite represent the data because it 

would imply that there are wide gaps between observed events [32]. If the 

variance is small then it means that the events are similar to each other. The 

variance of a random variable is given by [18,p. 149]: 

               ∑           

 

 

              (33)  

where      is the variance of X and   is the variable mean. For example the 

variance of a fair dice roll is: 

                            
  

 
 

  

 
 

  

  
 (34)  

The square root of the variance is commonly known as the standard deviation 

(designated by the Greek letter σ). Not all random variables are discrete but 

there exists many examples that are continuous, for example, the 

measurement of a resistor value or the lifetime of a light bulb. Both are 

examples of measurements that result in uncertainty as to what the real value 

would be. In this case, we define the probability density function of the random 

continuous variable X over the sample space       ,   as f(x) and the 

probability that the random variable X will be within the set of real numbers B 

as [18,p. 205]: 
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       ∫       
 

 (35)  

The continues probability counterpart to the discrete one should also abide the 

three axioms of probability. Therefore, the area under f(x) should always add 

up to 1, that is:  

       ,    ∫       
 

  

   (36)  

Hence the cumulative distribution function of the continuous random variable 

X is:  

      ∫       
 

  

 (37)  

Using equation 29, the expected value of the continuous random variable X 

can written us: 

     ∫        
 

  

 (38)  

 In addition, if g(x) is a function defined over the continuous random variable 

whose probability distribution function is given by f(x), then the expected value 

of g(x) is given by: 

        ∫           
 

  

 (39)  



 
Bayesian Artificial Intelligence 40 

 
 

 

Finally, the variance of the continuous random variable whose probability 

distribution function is given by f(x) is given by equation 33. 

One of the most important probability distribution functions is the normal 

distribution function (also known as Gaussian distribution[20,p. 28]) pioneered 

by the French mathematician Abraham DeMoivre in 1733 to estimate the 

probability of binomial random variables and was later extended by Laplace 

and others [18,p. 218]. The normal distribution function is a one having a 

mean of μ and a standard deviation of σ is: 

     
 

√    
           ⁄  (40)  

The Gaussian distribution function is a bell shaped curve with a peak at μ. 

Figure 6 shows a typical Gaussian distribution function. The importance of the 

normal distribution function is that it gives a theoretical support to the practical 

notation of the behaviour of some continuous random variables such as the 

height of a person and it is considered one of the two greatest results of 

probability theory1 [18,p. 218].  

                                            
1
 The other is the strong law of large numbers 
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Figure 6. Normal distribution function from [33] 

 

2.2.7 Joint probability distribution 

In many scientific experiments which involves statistical measures, there are 

more than one random variable to be measured over the same sample space 

[34,p. 49] , for example, the pressure and volume of a gas, the resistance and 

temperature of a resistor, or the height and weight of a person.  So far we 

have only introduces probabilistic concepts with regards to only one variable. 

In this section, we will briefly introduce basic concepts of bivariate 

distributions. 

Let X and Y be two random variables from sample space Ω, we define the 

cumulate joint probability of X and Y by [18,p. 258]: 

   ,        ≤  ,  ≤                  ,     (41)  
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The distribution of both of X and Y can be derived from the joint probability of 

them which, in addition, could be used to answer all statistical enquiries about 

the joint probability of X and Y [18,p. 259].  Equation 42 gives the distribution 

of X and Y in terms of their joint probability [34, p. 50]. 

          ≤        ,        …     

          ≤        ,          …     

(42)  

If X and Y are both continuous and their joint probability distribution (or 

density) function is f(x,y), then the joint probability of X and Y, written as 

P(X,Y) is [18,p. 261]: 

   ,    ∬   ,          (43)  

hence the joint cumulative probability distribution function f(x,y) is [18,p. 262]: 

   ,    ∫ ∫    ,        

 

  

 

  

 (44)  

Therefore, the joint probability density function is the second derivate of 

equation 44 given by: 

   ,    
  

     
    ,    (45)  
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  Previously, we have discussed the independence of two events and their 

corresponding conditional probability. It will be only natural to make the same 

inquiry regarding the independence of random variable. Let X and Y be two 

random variables. If x and y are any two sets of real valued numbers, then X 

and Y are independent when [35,p. 305]: 

   ,                (46)  

The cumulative joint probability distribution function of X and Y follows by 

appealing to the three axioms of probability [18,p. 267] which will yield [35, 

p.307]: 

   ,                (47)  

Using equation 46, the conditional distribution of X given Y and Y given X can 

be derived as [35, p.308]:  

    ⁄           …     

    ⁄           …     

(48)  

Equation 39 which gives the expectation of a single continuous random 

variable can be extended to the case of a function such g defined over the two 

joint random variables X and Y as [36,p. 141]:  

     ,      ∫ ∫    ,      ,        
 

  

 

  

 (49)  
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2.2.8 Central limit theorem 

The term central limit theorem traces back to a paper published by George 

Pólya back in the 1920s titled “Central Limit theorem in probability theory” and 

has been used since then [37, p. 1]. However, it was the result of the 

successive work of three of the most brilliant mathematicians of the eighteenth 

century: Abraham de Moivre, Simon Laplace, and Carl Gauss [38,p. 29]. 

Nowadays, the central limit theorem refers to an umbrella of statements that 

describe the convergence of some probability distribution functions of single or 

many random variables [37, p. 1].  The importance of the central limit theorem 

in probability theory comes from its diverse application and its ability to explain 

some of the widely used distributions such as the normal distribution  [38,p. 

29].  

The first and the simplest limit theorem is the Markov inequality which tells us 

how likely a sample deviates from the mean. In addition, it applies to any 

random variable even those whose their distribution is unknown [39,p. 187]. If 

X is a random variable that can only take positive values then for any x larger 

than 0 [18,p. 430]: 

   ≥   ≤  
    

 
 (50)  

However, Markov inequality is not always useful because if         then all 

it tells us is that    ≥    is less than a number larger than 1 which is an 

obvious statement as all probabilities are less than or equal to 1[39,p. 187]. 

Markov inequality is a generalization of Chebyshev’s inequality which works 
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for both positive and negative numbers. It is one of the most famous 

inequalities in probability theory and Chebyshev’s best work [40,p. 75]. 

Equation 51 gives a mathematical formation of Chebyshev’s inequality for 

random variable X which has a mean of μ and variance σ2 for any value of 

k>1 [18,p. 431]: 

  |   | ≥   ≤  
  

  
 (51)  

Another importance of Markov’s and Chebyshev’s inequalities comes from the 

fact that when it is not always possible to know the distribution of the variable 

but rather its mean and variance, they can be used to set bounds on 

probabilities around the mean  [18,p. 431].  

The most important generalization drawn from Chebyshev’s inequality is the 

weak law of large numbers [18,p. 433]: 

 

 

   

    

 

The weak law of large numbers shows how the practically calculated 

probability through experiment is more likely to diverge from the theoretical 

one proposed by the frequency interpretation of probability [38,p. 19].  

The weak law of large numbers (52) 

If X1, X2, … are random variables each with identical probability distribution function 

and a finite expectation value of μ1, μ2,…then for any ε>1: 

P (|
X1+X + +Xn

 
 μ| ≥ ε)    as      
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As previously mentioned, the most important result of probability theory is 

the central limit theorem [18,p. 434]. It simply tells us that averages (or sums) 

of n independent and identically distributed random variables each with mean 

of μ and variance of σ2 tend to come close to a Gaussian distribution as n 

becomes boundlessly large [41,p. 47]. Hence, providing a theoretical 

framework to explain why many natural statistical phenomena have a bell 

shaped distribution. It also gives theoretical framework that deals with 

measurement errors by proposing that they should have normal distribution, in 

fact the central limit theorem was used to refer to as the law of frequency of 

errors in the seventieth and eightieth centuries [18,p. 442]. The central limit 

theorem in a very simplistic mathematical form, that is: for a single random 

variable only) is given by [18,p. 434]: 

 

 

 

 

 

 

 

 

However, there are examples of superimposed independent effect that 

lead to non-normal processes [42,p. 28].  Although the existence of such 

process seem at first glance to invalidate the central limit theorem, careful 

X  X    X   μ

σ√ 
 

Central limit theorem (53) 

If X1, X2, … are random variables each with identical probability distribution function 

and identical mean μ, and identical variance σ
2
, then the distribution of: 

will converge to normal distribution as     that is for a real number a: 

P (
X1+X + +Xn  μ

σ√ 
≤ a)  

 

√2π
 e x  ⁄ 

  
dx   as   a    
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analysis of such processes shows that they posses infinite variance  which 

places them outside the applicability of the central limit theorem [42,p. 28].   

The strong law of large numbers states that, with perfect certainty, the 

averages of a sequence of random variables each with similar distribution will 

converge to the mean of the distribution [18,p. 443]. 

 

 

 

 

 

The strong law of large numbers shows that the averages of repeated 

experiments should converge to their expected value. For example, if a game 

of coin head or tail is repeated infinitely, then the proportion of heads or tails 

will be ½ with undutiful likelihood. Jacob Bernoulli was the earliest 

mathematician to prove the law of large numbers [43,p. 79].  Bernoulli was 

interested in developing mathematical tools to help make good decisions in 

civil, economic, and moral issues. He thought that by proving the strong law of 

large numbers, the relative frequency of observation can be a corner stone on 

which such decisions can be established [43,p. 79].  

There are many other famous inequalities in the inventory of probability 

theory that deals with various situations or help simplify others such as the 

one-sided Chebyshev inequality [44,p. 70], Jensen’s inequality, and Chernoff 

bounds. These are beyond the scope of this section which was mainly to 

The strong law of large numbers (54) 

If X1, X2, … are random variables each with identical probability distribution function 

and a finite mean of μ, then with probability =1 : 

X1+X + +Xn

 
 μ as      
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provide consistent mathematical background to establish the discussion of 

Bayesian networks in the next section and in chapter 3.  Reference [44] gives 

quick introduction to them.  

2.3 Bayesian Networks 

 

We have seen in the previous section that all it takes to answer any 

statistical query about a random variable is knowing its probability distribution 

function or the joint probability for more than one random variable. However, it 

is not always possible, or practical, to obtain the full joint probability of some 

random variables. In addition, the size of the joint probability table in the case 

of discrete variables will increase dramatically as the number of random 

variables increases not to mention the required computation power for 

processing. For example, if a sample space has n variables each with only 

two possible outcomes, then the joint probability table will have 2n entries [1,p. 

493]. If a process requires 20 variables in order to be fully described and, for 

simplicity, each can have either of a binary state, then the joint probability 

table size is 220=1,048,576 entries. Processing such table size could be 

impractical assuming it was possible to calculate each entry in it. We have 

also seen that with independence and conditional independence, we can 

simplify some probabilistic queries by careful analysis of the relationship 

between the variables.  It will be of great value if we could exploit this fact as 

to reduce the amount of calculation required to produce a joint probability 

distribution or to produce a more compact version of it. 
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Bayesian Networks are probabilistic graphical models that represent joint 

probabilities in way that emphasize statistical relationships between the 

random variables of a sample space [20,p. 51].  Bayesian Networks allow us 

to re-present probabilistic queries in a manner that flexibly reduce the amount 

of calculation and prior knowledge required to obtain the answer.  

In this section, we will introduce key concepts and principles of Bayesian 

Networks and their role in statistical inference, making decision under 

uncertainty, learning and representation of knowledge, and dynamic update of 

belief with time. 

2.3.1 Basic Bayesian Network Structure 

A Bayesian network graph consists of nodes and arrows. Nodes are usually 

oval shapes that designate a variable whereas the arrows show the 

relationships between the variables. In order for the Bayesian Network 

representation to become superior to joint probability representation, the 

number of arrows has to be as minimum as possible. Otherwise, if the arrows 

were drawn such as to connect every variable to all the others, then the graph 

will become equivalent to a joint probability table. The usual way of drawing 

the arrows is to think of the casual relationship between the variables. In this 

context, an arrow is drawn from variable X to variable Y if the presences of X 

leads to Y. Casual relationships between the parameters are not to be strictly 

understood as real causal relationships but rather as implications or also 

known as statistical causality [45]. For example, suppose that a doctor has 

noticed that one of his patients is suffering symptoms of short breath (also 

known as Dyspnoea). The doctor knows that short breath can be the result of 
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lung cancer which, in turn, can be the result of pollution or smoking. She also 

knows that cancer can be identified with an X-ray. If the X-ray turns out 

positive result then Cancer is the cause of the patients symptoms but if turns 

out negative then it might be the result of some other causes such as 

bronchitis or tuberculosis [21,p. 30]. She also knows that the X-ray imagery 

result is not 100% trustworthy and that smoking is one contributor to lung 

cancer among others. Hence, she assigned prior probabilities to the 

trustworthiness of an X-ray machine, pollution, and smoking.  In addition, she 

estimated the conditional probability of developing cancer giving that a patient 

is a smoker and having cancer when the patient is a polluted environment. 

With this information in mind, the Bayesian Network graph would look like the 

one in figure 7 [21,p. 31].  

 

Fro 

Pollution Smoking 

  Cancer 

    X-ray Dyspnoea 

Figure 7. Bayesian network of the short breath patient  
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The advantage of Bayesian Network over joint probability table is clear 

from figure 7. The directions of the arrows tell us about the way evidences and 

observations flow throughout the graph and in turn how probabilities should be 

updated accordingly.  Since there are no direct arrows between the node: 

Smoking and X-ray unless through the node: Cancer, then Smoking and X-ray 

are conditionally independent giving Cancer. This result makes sense when 

we recall the definition of conditional independence discussed in the last 

section. If the patient has been already diagnosed with cancer, then knowing 

that he is a smoker would not affect our confidence level with regards to the 

result of X-ray imagery. Similarly, Dyspnoea and X-ray are conditionally 

independent giving Cancer. In general, two variable are conditionally 

dependent if they are connected through a converging node and their 

probability would change if new evidences are added to the descendent node 

or either one of them [45,p. 8]. The requirement that no hidden connections 

between variables exist apart from those shown in the graph is called the 

Markov property [21,p. 33]. It is not necessary for Bayesian Network to adhere 

to Markov property but then the graph won’t be optimal that is there will be 

redundant arrows that connect independent variables together. When the 

number of connections between the variables are so compact that no further 

reduction is possible, the graph is called an I-map (short for independent map) 

[21,p. 33], otherwise it is a D-map (short for dependent map). Graphs that are 

both an I-map and a D-map are called the perfect graphs [21,p. 33]. With all 

these little inferences regarding the statistical relationships between the 

variable, the estimation of any probabilistic query will be much simplified.  
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It is normal to describe Bayesian Network graphs with the aid of 

metaphors. For example, the node which results from another is called a child 

and the latter node is called a parent [21,p. 32]. A node is an ancestor of 

another if it appears before that other and the latter is called its descendent. 

The top node which is a child of none is called root whereas a node with no 

children is called a leaf.  Markov Blanket is defined as the current node 

parents and children and the parents of its children [21,p. 32]. For example, 

Cancer is a parent of X-ray which is a leaf. Pollution and Smoking are roots 

and parents of Cancer. Markov blanket of Cancer is Pollution, Smoking, X-ray, 

and Dyspnoea.  

2.3.2 Types of reasoning 

Since a Bayesian network graph is essentially a simplified alternative way 

of developing the joint probability distribution of some random variables, it can 

also used to answer all statistical queries as the case with an ordinary joint 

probability table. Usually, we refer to that process as reasoning and classify 

them into four types [21,p. 34]. 

Figure 8 shows the four types of reasoning with application to the 

example shown in figure 7. For drawing clarification reasons, nodes names of 

figure 7 are reduced in figure to only their first letter so that the node Cancer is 

now only C. Figure 8(a) shows the first type of reasoning available through 

Bayesian network. The direction of reasoning for this mode is from results or 

effects to causes. Thus, it is referred to as diagnostic reasoning [21,p. 34]. For 

example, If the patients X_ray turns out to be positive, then the probability that 

the patient has lung cancer will increase because lung cancer has an effect on 
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the expected details of an X-ray image. Figure 8(b) shows the case where we 

have evidences that the patient is a smoker. Since there is colouration 

between smoking and lung cancer, we may infer that the patient will develop 

symptoms of lung cancer. The direction of inference in this case is predictive 

as it is project the state of thing into the future. In figure 8(c), the patient is 

assumed to have diagnosed with lung cancer. In such case, the likelihood that 

the patient is a smoker or lives in a polluted environment will increase. If we 

acquire evidence that the patient was a smoker, then that would explain his 

disease and in turn reduce the likelihood that he have developed it due to 

pollution. This form of reasoning is known as explaining away or intercasual 

[21,p. 35]. Not all queries can be fit in a diagnostic, predictive or intercasual 

fashion as the network can be queried at any node with any type of available 

evidences. Such type of reasoning is called combined reasoning [21,p. 35] 

and example of it is shown in figure 8(d). 

Evidences are another term for the arrival of new information which 

could in turn be uncertain. For example, new evidences on the Polluted node 

can be an unconditional probability of how likely the patient has been exposed 

to pollution. Similarly, new information could arrive in terms of the conditional 

probability of detecting cancer in an X-ray image giving that the patient has 

developed a cancer. This kind of uncertain evidence is referred to as virtual 

evidence or likelihood evidence [21,p. 35].  
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2.3.3 Inference in Bayesian Networks 

The aim of any probabilistic network is to calculate the resultant, or 

posterior, probability on a given node(s) when evidences are available on 

other(s) [21,p. 53]. Usually, inference in Bayesian networks is either exact or 

approximate [21,p. 53]. The criteria for choosing which type of reasoning to 

adopt depends on the number of nodes in the network and the complexity of 

its interconnection [21,p. 53]. This section will briefly introduce key concepts of 

both reasoning types with application to the lung cancer example of figure 7. 

To unify the notation of queried nodes, evidences, and others, Uppercase 

Figure 8. Four Types of reasoning in Bayesian Networks. 



 
Bayesian Artificial Intelligence 55 

 
 

 

letters will be used to designate queried node such as X,P, or S, and 

lowercase letters to designate a specific evidence at a node such as x,p, or s. 

Since a Bayesian network (BN) is a representation of joint probability 

table. Each node in a BN is represented by a conditional probability with 

regards to its parents and the multiplication of these together gives the joint 

probability table of the network as shown in equation 55 [1,p. 513] 

    ,   , … ,     ∏                 

 

   

 (55)  

 

 If a node is a root, that is, it has no parent, then the unconditional 

probability is used instead of the conditional probability in equation 55. Hence, 

the joint probability of the lung cancer patient of figure 7 is given in equation 

56.  

   ,  ,  ,  ,       |     |     | ,            (56)  

Exact methods or algorithms use the joint probability representation of 

equation 55 and probabilistic relationships to compute posterior probability 

giving the availability of evidences on some nodes [1,p. 523].  For example, if 

the probability that the patient of figure 7 has cancer giving the availability of 

X-ray image and smoking status is to be calculated, then a procedure such as 

the following can be used: 
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   | ,    
   ,  ,   

   ,   
 (57)  

Equations 57 make use of the product rule given in equation 18. Let 

       ,    be a normalization factor, equation 57 can be rewritten as: 

   | ,        ,  ,    (58)  

The joint probability table of the nodes C,X, and S can be obtained by 

summing terms from the full probability table of all the nodes [1,p. 523]. 

Hence: 

   ,  ,    ∑∑   ,  ,  ,  ,   

  

 (59)  

Where  ,   is the sample space range of P and D respectively. 

Substituting equation 59 in 58, we get: 

   | ,     ∑∑   ,  ,  ,  ,   

  

 (60)  

Finally using the full joint probability representation that we obtained 

through the Bayesian network graph in equation 56, we can rewrite equation 

60 as: 

   | ,     ∑∑   |  

  

   |     | ,            (61)  
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Equation 61 can be enhanced further by noting that some terms are 

constant with regard to one or the two summations. The term      is constant 

with regard to both summations can be moved towards the far left end and the 

term      is constant in regards of the second summation over d. Hence, 

equation 61 becomes: 

   | ,          ∑    ∑   |     |     | ,   

  

 (62)  

Such simple reducing observations can minimize the amount of 

computation power required to calculate the required query which can in turn 

be evaluated by looping through the two summations and multiplying the 

corresponding conditional probability tables entries on the go [1,p. 523]. Such 

tables need to be given prior to making any queries along with the 

unconditional probabilities of the root nodes. This approach is known as 

inference by enumeration. For a network with Boolean  nodes, the complexity 

of calculation can be as high as        [1,p. 523].  

Researchers have proposed several methods to reduce the amount of 

calculations required to answer queries from a Bayesian network. For 

instance, Kim and Pearl’s message passing algorithm works by performing a 

query in three steps: firstly the probability, or belief, of any node that its 

parents or children have received new evidence is updated, secondly the 

node calculates messages about the new evidence and send them to its 

parent in a bottom up propagation, thirdly the node computes a predictive 

factor and send it to its children  [21,pp 57-59]. The attractive feature of the 



 
Bayesian Artificial Intelligence 58 

 
 

 

Kim and Pearl’s message passing algorithm is that everything is performed 

locally using the idea of estimating messages that reflects the availability of 

new evidences and their impact on the neighbouring nodes. As the number of 

parents connected to a node increases, the computation requirement of 

messages passages increases, in turn, as more cycles are required to update 

the status of the network [21,p. 61]. Alternatively, the variable elimination 

algorithm aims at reducing the amount of repeated calculations by saving 

them for later use [1,p. 524]. It starts by evaluating terms in a bottom up 

fashion, or in the case of equation 62, from right to left order, then as each 

term in equation 62 is a function of some variable and constant parameters, 

the portion of calculations that is variable independent is computed first and 

stored as cache complete further computations that are variable dependent 

[1,p. 524].  Once again, the amount of computation requirement of the variable 

elimination algorithm depends on the structure of the network and the amount 

of queries it is required to answer [1,p. 529]. It works best in networks where 

there is only one path connecting any two nodes which are known as singly-

connected, polytree or forest networks [21,p. 56]. The upper half of the lung 

cancer patient shown in figure 7 is an example of a polytree network. If the 

network has more than one path between any two nodes then it is referred to 

as multiply-connected [1,p. 528]. 

The clustering algorithm belongs to the family of exact Bayesian 

network inference [1,p. 528]. It aims at reducing the complexity of multiply-

connected networks by joining nodes together in order to transform a multiply-

connected network to a singly-connected one. Figure 9 shows how that can 
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be achieved. Figure 9(a) is a multiply-connected network which can be 

simplified into singly-connected network if nodes B and C are merged together 

to form node B&C shown in figure 9(b). Then the belief updating or the 

variable elimination algorithm can be applied to the result [21,p. 67].  

 

 

 

 

 

 

 

However, the transformation step might be greatly involved if the network 

is highly interconnected. Consequently, the amount of memory requirement 

for the transformation will also increase [21,p. 67].  

An improved algorithm over the clustering approach is called the junction 

trees [21,p. 68]. It aims at increasing the efficiency of clustering through a 

methodological approach that starts by connecting all the parents together 

and removing their arrows pointers which produces the so called moral graph, 

then adding arcs to every groups of nodes larger than 3 which will result in a 

triangulated graph, then identifying the new merged nodes from the 

triangulated graph so as to produce a junction tree, and finally creating 

separators from the arcs that results from the intersection of adjacent nodes 

[21,p. 68]. As soon as the network is simplified, the algorithm proceeds to 

   

      C 

A 

B 

Multiply-connected nodes 

(a) 

Singly-connected nodes 

(b) 

 D 

   

 B&C 

A 

 D 

Figure 9. Grouping nodes together with the clustering algorithm 
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calculate the new probability tables for the new combined nodes and then 

update the probabilities across the network by the message updating 

algorithm [21,p. 68]. Once more, the junction tree algorithm adds a substantial 

overhead to making queries through the transformation phase although it only 

needs to be done once. In addition, the new probability tables may have many 

entries that are simply zeros and thus takes occupy unnecessary memory 

[21,p. 69].  

In general, the exact inference approach in BN reduces the task of 

evaluating an exponentially increasing joint probability tables by dynamic 

programming or transformation. However, exact inference is still bound by the 

worst case scenario of an exponential performance such as the case with 

some Bayesian networks build to model pixels in an image [20,p. 336]. In 

addition, new challenges will be introduced to the exact inference approach if 

the network variables were continuous rather than discrete [20,p. 337]. 

Particularly, when the new joint probability tables are calculated.   

 The exact approach to inference in Bayesian network is usually used for 

small to medium sized network in which the number of nodes is up to about 

three dozen [21,p. 72]. For networks with higher amount of nodes or multiply-

connected network with high density of connection, an approximate inference 

should be followed [21,p. 72]. There are several approaches to approximate 

the inference process in Bayesian networks however the most common ones 

are those which depends on performing stochastic simulation such as the 

logic sampling methods [21,p. 72] also referred to as the direct sampling 

methods [1,p. 530]. In these methods, the network is used to generate cases 
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based on random initiation of evidences, then the posterior probabilities of the 

child nodes are estimated from the direction of roots to leaves, finally the 

procedure are repeated while the estimated probability of the queried 

conditional probability, like P(X/E) is updated. In order to estimate the value of 

P(X/E), the number of cases where both X and E are true are counted and 

divided by the number of cases where only E is true. According the law of 

large numbers, the updated probability estimate should converge to the exact 

value [21,p. 72]. Equation 63 gives the mathematical formulation of how the 

approximate posterior probability is calculated [21,p. 72]: 

      |     
        ,     

          
 (63)  

 

Hence the sampling methods become mathematically inefficient when  the 

chosen evidence is unlikely as some of the cases which do not contribute to 

the count of equation 63 will be discarded [21,p. 74].  In addition, the process 

of inference is directed, its power can mostly be observed in directed networks 

[20,p. 540].  

The performance of the direct sampling methods can be enhanced by giving 

more attention to cases that are more consistent with the evidences [1,p. 532]. 

One example of such approach is the likelihood weighting algorithm which 

arises from the importance sampling technique in statistics but modified for 

Bayesian inference [1,p. 532]. If the posterior probability P(X/E) is queried, 

then the evidence nodes E values are set as constant while the other nodes 
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are samples as to generate cases, then each case is weighted by the 

likelihood of that evidence combinations [21,p. 74]. Although the weighting 

likelihood is more efficient than the direct sampling method, its performance 

will start to degrade as the number of evidences increase.  

Another simulation based algorithms is the Markov chain Monte Carlo 

simulation methods (MCMC). MCMC works not by randomly initializing every 

case and manually working out the posterior probabilities but rather by making 

some random changes to the current case so as to obtain the next case [1,p. 

535]. For example, the Gibbs sampling method works by an arbitrarily 

initialization of a case where the evidences are fixed at their observed values 

then the next case is obtained by applying random changes to one of the 

unobserved variables such as Xi which is then conditioned on the Markov 

blanket Xi [1,p. 536].  

There are many other approximate inference methods that don’t use the 

random case generation approach. For example, the search methods that 

instead of generated cases randomly, they try to pay more attention to cases 

with high likelihood. Therefore they don’t generate an unbiased posterior 

probability estimate but a good upper and lower bound [20,p. 540].  Although, 

sampling methods are widely used to make good approximate to posterior 

probability in many Bayesian networks configurations, their performance is not 

easy to expect. In particular with complex probability distribution where the 

estimate obtained from generating cases is considerably inaccurate [20,p. 

541].  
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In summary, although Bayesian networks provide simplified graphical 

representation of the joint probability table of some random variables, there 

are many instances where even the resulting joint probability is 

computationally expensive to query. Thus a need for better inference 

algorithms is justified and reflected by ever-active research efforts to reduce 

the time and computation power required to query a Bayesian network. In 

general, inference can be classified as exact and approximate. In the exact 

inference, the complex structure of the network is often reduced so as to 

obtain a new structure that is known to be more computationally efficient. 

Approximate inference relies on simulating cases so as to generate a large 

amount of samples that would converge to the value of the posterior 

probability resulted from exact inference. Exact and approximate methods can 

be combined together to obtain an algorithm  that mosaic-wise combine the 

features of the two [20,p. 541]. Finally, the performance of the two approaches 

is bounded by factors like the complexity of network, the amount of 

connections between nodes, the complexity of distribution and the likelihood 

of evidences. 

2.3.4 Dynamic Bayesian Networks 

The previous section has shown the advantages of Bayesian networks as a 

simplified graphical representation of the joint probability of some random 

variables defined over a given process. The resulting network can then be 

used to answer any probabilistic query given the availability of some 

evidences. For example, the BN of the lung cancer patient shown in figure 7 

can be used to estimate the likelihood of a patient having lung cancer giving 
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that he/she is a smoker. However, the network assumes that all patients’ 

cases can be represented by the same variables connected together in a fixed 

structure fashion. This type of modelling is referred to as variable-based 

modelling [20,p. 199]. There are many applications where the process 

changes over time and we are more interested in capturing the dynamic 

behaviour of it. For example, in the case of inferring patients’ states in an ICU, 

the states of the patients change over time in a way that the next state 

depends on the current one and some observed variables that are samples at 

some time intervals such as heart rate, blood pressure and urine output. While 

an ordinary BN can model the relationship of current patient state in terms of 

some observed variables, it fails to capture the dynamic nature of how that 

state evolves over time and, in turn, fails to represent the distribution of the 

patient’s state over time. In addition, there are other classes of problem where 

the structure changes with every case. Consider, for example, the modelling 

of a genetic inheritance.  In this case, each family has its own members which 

in turn have their own variables [20,p. 199].  Nonetheless, the way in which 

genes are inherited is the same for every family [20,p. 199]. This calls for a 

better way of representing dynamic processes then a mere variable-based 

fashion such as Dynamic Bayesian Networks (DBN). DBNs are models that 

work as templates to represents the temporal dynamics of an entire class of 

distribution in a compact way [20,p. 199]. The basic assumption of a DBN is 

that the world consists of successive temporal snapshots where each one has 

some random variables which are either observed or hidden [1,p. 567], and 

that the way the system evolves over time, called transition model, depends 

on a fixed number of previous states so as to prevent the transition probability 
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between the current and next state from becoming infinitely unbound [1,p. 

568]. This assumption is known as the Markov assumption and the process 

that satisfies it is known as Markov chain [1,p. 568]. If the next state in a 

temporal transition model depends only on the previous state, then it is called 

a first order Markov chain whereas if it depends on the previous two states 

then it is called second order Markov chain [1,p. 568].  The set of system 

states at a given time instant like t is often designated as Xt and the set of 

evidences as Et [1,p. 567]. Thus the transition model of a first order Markov 

chain can be expressed as [1,p. 568]: 

    |            |      (64)  

Whereas the transition model of a second order Markov chain can be 

expressed as [1,p. 568]: 

    |            |    ,       (65)  

 

In addition, the transition model is assumed to be fixed over time. That is to 

say the temporal-based conditional probability is constant regardless of the 

current time. Using the chain rule of probability, the temporal joint probability 

distribution of a Markovian process can be expressed as [20,p. 201]: 

             ∏    + |     

   

   

 (66)  
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The Markov assumption can be further extended to the case of evidences. 

Evidences, or observed variables, may also depend on previous variables as 

well as the process states. However, careful modelling of the process states 

would make it suffice to generate the observed variables entirely so that the 

Markov assumption of the evidence, known as the sensory model, can be 

written as [1,p. 568]: 

    |    ,             |    (67)  

Combining equation 67 with 66 yields the general template temporal model of 

DBN that satisfies the Markov property given in equation 68 [1,p. 569]: 

      ,            ∏    |     

 

   

    |    (68)  

Equation 68 assumes that the evidences, or observations, start to arrive from 

time slice 1. Hence at time slice 0, there are no evidences to have a 

conditional probability and the only information available about the process is 

its unconditional probability which is an intuitive conclusion giving that the 

unconditional probability of a variable is its likelihood in the event of no 

available evidences. In addition, equation 68 shows that a DBN can be 

represented by three sub-models: the transition model     |      which 

structures the evolution of the process variables between the current and next 

time slice, the sensor model     |    that connects the current process states 

with the observed sensors, and the unconditional probability distribution of the 

process variables       [1,p. 591]. Hence, it is more convenient to only plot 
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one slice of the DBN that shows the prior unconditional variables, the 

transition model, and the sensory model [1,p. 591]. Figure 10 shows a DBN 

representation of patient monitoring in ICU. 

 

 The state variables are shown as oval shapes whereas evidences are shown 

as circles. For simplicity, the state of the patient (denotes as S) can either be 

true or false. A true state indicates that the patient is a live whereas false 

indicates that the patient is deteriorating. The sensory model consists of three 

variables: heart rate (H), blood pressure (B) and oxygen saturation (O). The 

probability tables are filled with arbitrary values to serve as a demonstrating 

example of how it would look like. Although, figure 10 only specifies the 

sensor probability table of the heart rate sensor, the remaining tables follows 

the same structure of the heart rate probability table. As similar to the sate 

variable, the sensor conditional probability table can assume any of two 

states: beating or non-beating. The event of patient deteriorating while the 

heart rate sensor is still showing beating is assigned a probability of 0.1 to 

emphasize the likelihood of sensor failure. It represents the simplest modelling 

of a sensor  failure commonly known as the transient failure model [1,p. 593]. 

 S0   

B1 

O1 H1 

P(S) 

0.95 

S0 

true 

P(S1) 

false 

0.95 

0.05 

S1 

true 

P(H1) 

false 

0.90 

0.1 

Figure 10. Simple DBN for monitoring patients at ICU 
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It makes it possible to distinguish between nonsensical sensor reading due to 

sensor failure and reliable readings. If the predicted likelihood of non-beating  

heart rate sensor state giving all the past patient states is much less than the 

probability of transient sensor failure then the best explanation of the previous 

event is that the sensor has failed [1,p. 593]. Equation 69 gives a 

mathematical criterion of detecting the event of heart rate sensor failure at 

time slice t: 

               |                       |         (69)  

While the transient model helps smooth out the recorded history of sensor 

readings by removing the less probable ones according to equation 69, it still 

fails in cases where the failure is persistent [1,p. 593]. For example, if the 

heart rate sensor lead attached to the patient is disconnected. In order for the 

DBN to accommodate persistent failure, a persistent sensor model needs to 

Figure 11. Modified DBN of figure 10 
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be developed where the sensor itself will have a hidden state that would be 

interpreted using the available evidences. If the state of a sensor is 

designated with a prefix of (Is), the DBN of figure 10 can be expanded to that 

of figure 11 which introduces three new states describing the conditions of the 

sensors.  

Inference in DBN can also be classified as exact or approximate and the 

same techniques used to query an ordinary BN can also be used with a DBN 

[1,p. 595]. However, the basic models of figures 10 or 11 need to be 

replicated, or unrolled, until it fits the present amount of observations [1,p. 

595]. Figure 12 shows the unrolling of figure 10 to time slice 3 where the three 

observations nodes are combined into one node for simplicity of drawing. 

There are many inference techniques proposed by researcher to reduce the 

amount of computations required to accomplish the task of probabilistic 

querying. Reference [20] discusses some of them in more details.  
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Figure 12. DBN of figure 10 rolled to time slice 3 
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2.3.5 Decision networks 

In order to make good decision under uncertainty, two factors need to be 

known; i) the likelihood of every possible outcome, and ii) the preferences of 

the decision-maker with regard to each of the outcomes. Bayesian networks 

provide a sound methodology to obtain the probability of outcomes as 

discussed in the previous sections. Combining Bayesian networks with 

preferences will give a powerful foundation of making decisions under 

uncertainty [21,p. 89]. As discussed in section 1.3, preferences are better 

expressed in terms of a utility function the maps an outcome to a numerical 

value that conveys a useful aspect of the outcome to the decision-maker. 

Once the utility function is defined, the expected utility of each decision is 

calculated by [21,p. 89]:  

    |   ∑    | ,   

 

    |   (70)  

where     is i-th the possible outcome, A is the actions  for outcome  , 

    |   is the expected utility of each outcome when action A is made and 

    | ,    is the conditional probability of the i-th outcome giving the current 

evidences E and action A is made. The action with the highest utility is often 

selected if the principle of maximum expected utility is followed [21,p. 90]. The 

principle of maximum expected utility states that rational agents have a 

tendency to prefer the action that results in the maximum possible utility [21,p. 

90]. Decision networks may be expressed graphically by extending BN graph 

with decisions and utility nodes [21,p. 91]. Decisions, or actions, are often 
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represented with a rectangular shape and the utility nodes with diamond 

shapes.  

For example, the BN for monitoring an ICU patient given in figure 10 can 

be extended by considering what decisions a nurse would make for every 

possible state of the patient and the utility of each decision. Since there are 

only two possible states for the patient: alive and deteriorating then the nurse 

may only make one decision which is to contact the doctor in case the patient 

is deteriorating and to continue monitoring otherwise. The expected utility of 

contacting the doctor has an effect on the next state of the patient so a second 

node should be added to simulate temporal relationship between the current 

state of the patient, next state and the undertaken action. The utility function 

itself is used to map the decision of contacting the doctor to a numerical value 

that reflects whether the decision led to the recovery of the patient or further 

deterioration, see figure 13. 
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Figure 13. A simple decision network based on the DBN of figure 10 



 
Bayesian Artificial Intelligence 72 

 
 

 

The decision block A belongs to the class of actions known as 

intervening actions [21,p. 97]. Intervening actions are those actions that have 

an effect on the probability of the outcome of the network. In the case of figure 

13, making a decision to call the doctor would change the likelihood of the 

current state of the patient. Non-intervening actions are those which do not 

affect the probability of the system for example, betting in a gambling game 

[21,p. 97]. Although the decision network of figure 13 is very simple, it can be 

extended to include more than one decision in a sequential decision-making 

fashion such as to approximate what decision-maker would do in a course of 

actions. For example, the nurse may decide to make some test before 

deciding to contact the doctor to further confirm that the patient is really 

deteriorating. Such type of actions are referred to as test nodes [21,p. 98]. 

However, by the time the test is performed, it may be too late for the patient so 

a test node should be accompanied by a cost node. Similarly to the expected 

utility node, the cost node maps a cost-wise aspect of performing a test into a 

numerical value [21,p. 98]. A test has an effect on making further decision and 

can be regarded as evidences but it has no effect on the states of the process. 

Figure 14 shows a simple addition of a test node (T) with cost (C) that a nurse 

can undertake to confirm the readings of the ICU monitors. 

The dashed arrow between the test node (T) and the action node (A) 

shows which one should be performed first and is known as the precedence 

link [21,p. 98]. In order to evaluate the utility of each decision, the decision 

network is transferred into a decision tree model [21,p. 101]. Each possible 

outcome of an action or test is represented by a branch starting with the 
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action/test that has the highest precedence and continue to divide each 

branch according to the possible actions/tests in the sequence of 

actions/tests, then the tree is further branched based on the possible 

outcomes of the states nodes and finally each ending leaf is weighted by its 

expected utility. Once the decision tree diagram is plotted, the calculation of 

the expected utility of actions follows from the bottom leaves where the utility 

nodes reside to the action/test node of the highest precedence by multiplying 

the value of the expected utility by its likelihood and then summing over the 

next branch until the root is reached [21,p. 103]. Once the utility of each 

decision is estimated, the one with the highest utility is selected if the principle 

of maximum expected utility is followed. Although analyzing the decision 

network through a decision tree seems appealing from simplicity point of view, 

it is computationally inefficient as it involves repetition of similar mathematical 

terms. It can be improved using the same techniques introduced in the 
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Figure 14. The addition of a test node to the network of figure 13 
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previous section for Bayesian network inference such as structure 

transformation and variable elimination [21,p. 104]. Decision nodes can also 

be added to a DBN so as to model the temporal evolution of actions through 

time and thereby creating a dynamic decision network (DDN). Figure 15 

shows how the decision network for monitoring an ICU patient of figure 13 can 

be combined with the DBN of figure 12.  

 

 

 

 

 

 

 

 

 

The DDN of figure 15 assumes that the sequence of actions (shown as A1, 

A2 and An) starts after the arrival of the first evidence and that they have 

precedence from left to right as indicated by the dashed arrow. In addition, it 

assumes that the decision-maker is interested in the utility of making the first 

(n) sequence of evidences which is modelled by the inclusion of only one 

utility node after unrolling the DDN for (n) times. If a utility node is added to 
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Figure 15. An example of DDN based on figure 12 
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each slice, then the measured utility will be the change in utility from between 

the previous and the current action [21,p. 110].  

2.3.6 Learning Bayesian Network 

Up until now, we have seen several approaches to answer probabilistic 

queries over some random variables and how, in turn, the results can be used 

to make decisions or even further queries. In addition, we have seen how to 

computationally reduce the requirements of performing a query through 

structure and variable transformations.  However, the availability of a model 

that fully describes the variables is assumed a priori. Such a model is not 

always available in the domain where a process is to be modelled [20,p. 697]. 

Firstly, it may be too much work to construct a model that describes a very 

complex process with hundreds of underlying variables or there can be no 

expert who fully understands the process to come up with a causal model that 

describes the interconnection between the inputs, system states, and the 

outputs. Secondly, the more the model becomes detailed and involved the 

more inflexible it gets because the model would need to be modified in order 

to fit another process within the same domain. Hence, an expert is needed to 

update the model every time the process changes or upgraded in some sort 

[20,p. 697]. Finally, the resultant model needs to be thoroughly tested with 

examples for the results are known but the accuracy of the model under 

circumstances where it was not fully tested would be unknown. However, 

there are many cases where we have an extensive amount of data that shows 

input-output or situations-results pairing that could work as examples derived 

from the distribution to be modelled [20,p. 697]. For example, a flight data 
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analysis program normally has access to an extensive set of flight data 

recorded during the flight time of an aircraft, known as flight data recorder 

(FDR). If an anomaly occurred during the flight time of an aircraft, then an 

investigation will be initiated and the causes of the anomaly will be identified. 

In such case, the flight data analysis program has access to both situations 

and labels of the data that can be used to construct the probability distribution 

that describes the relationship between the FDR recorded variables at a given 

time instance and the normality/abnormality. Similarly, hospitals often have 

periodic tables that list the conditions of patients throughout their admittance 

to the hospital. A patient data may include several key variables that can be 

used to model the relationship between the current symptoms and the 

diagnostic suggested by a doctor.   

In this section, we will briefly introduce a common technique to learn the 

distribution of a process from sets of examples. This approach is generally 

performed to learn either the model underlying the variables or the probability 

distribution over them. In addition, a goal or a set of goals are defined to 

describe the end result of the learning process so as to measure the 

convergence of the learnt model to the data from the actual process [20,p. 

698]. 

Sewall Wright pioneered the work on using graphical models to make 

probabilistic inference in early twentieth century [21,p. 153]. His work was 

mainly focused on using linear models to represent casual representation to 

estimate the coefficients of such models in an approach that later became to 

be known as path modelling and gained extensive popularity in social science 
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[21,p. 153]. In essence, the relationship between three variables such as X, Y, 

and Z in a linear model can be expressed as [21,p. 153]:  

          (71)  

where a and b are coefficients that  determine the contribution of X and Y to Z 

and U is the amount of Z that could not be approximated by the linear model. 

Hence, equation 71 shows that X and Y are statistical causes of Z. This fact 

can, in turn, be used to construct casual models. A typical procedure to 

accomplish that would be to search for correlations among the variables, 

inventing a casual model that would explain the correlations between them, 

then use Wright’s decomposition rules to estimate the coefficients of the linear 

model and, finally, to test the model using some examples and measure the 

model accuracy [21,p. 160].  Wright’s decomposition rules are guidelines that 

relate the observation of correlation to the way the weights of the linear model 

coefficients can be estimated [21,p. 155]. However, in order to use Wright’s 

approach within the artificial intelligence realm, a computerized approach to 

inventing the casual models need to be developed. One realization of such 

approach is to observe conditional independence within the data. Conditional 

independence is the cornerstone that BN uses to reduce the amount of 

calculations needed to construct the joint probability tables of random 

variables. Thus, knowing that X is independent of Y giving Z would give us an 

idea of how to graphically represent the relationship between X, Y, and Z. The 

conditional independence learner algorithm is one example of such an 

approach [21,p. 161]. However, this leaves the question of how to know the 
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actual conditional independence between variables unanswered. The PC 

algorithm answers that question by the introduction of statistical significance 

test for conditional independence where independence is represented by the 

remaining correlation between two variables when a third is held constant,  

also known as vanishing partial correlation [21,p. 167]. Although these 

methods are developed for linear systems, they can be further extended to 

non-linear system by non-linear to linear transformation functions [21,p. 153]. 

Another approach to constructing casual network for discrete process is the 

Bayesian Metric (BM) [21,p. 197]. Rather than using statistical test and 

relationships, BM searches the casual model space using a metric conditional 

function like P(∙/e) or an approximation to it and looks for the best model that 

maximizes that function [21,p. 197]. There are many algorithms within the 

family of BM and reference [21, ch 8] lists and discusses them in a 

chronological order. 

2.4 Summary 

 This chapter serves as an introductory stage to the main theory of this 

thesis that will be discussed in chapter 3. Probability calculus is usually build 

upon the principle of counting and how to theoretically estimate the number of 

possible combinations of an experiment or a series of experiments. The 

probability of an event is the proportion of outcomes where the event occurs to 

the total number of outcomes.  The most important conclusions of our modern 

theory of probability are the central limit theorem and the strong law of large 

numbers.  
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 All is needed to answer any probabilistic query in a process is the joint 

probability table, or distribution, over the process variables. However, 

construction of such a table is often not practical with processes that have 

hundreds of variables.  Bayesian networks are graphical representations of 

the joint probability table that greatly simplifies the computations required to 

make probabilistic queries. BN network can be integrated with preferences to 

construct decision network that helps simplify the process of probabilistic 

decision-making. DBN are template based representation of a process with 

emphasis on the dynamic evolution of variables over time. Finally, BN models 

can be achieved through data mining approach by using examples to 

construct the relationship underlying some variables or to estimate the 

probability distribution of the variables. 
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3.  Theory of Comparative 

Probability 

 

In chapter 2, we have seen how probability can be used to represent 

uncertainty and how, in turn, this can be combined with preferences to make 

decisions under uncertainty. In addition, chapter 2 briefly introduced the 

theoretical foundation of the frequency interpretation of probability and its 

relation to combinatorial analysis and well-known distributions such as the 

Gaussian or normal distribution.  It serves as an entry point to emphasise the 

importance of the joint probability distribution/table in answering probabilistic 

queries. More importantly, it contains a discussion of the use of BN to simplify 

the creation of a joint probability table and the construction of these networks 

in the light of the information age, where an extensive set of examples is more 

likely to exist for use in constructing a BN or estimating the probability density. 

However, the availability of examples may turn into a curse rather than 

a blessing because the amount of computational power and time required to 

process terabytes of information becomes impractical. In addition, the 

representation power of a probability density estimator for a process that has 

thousands of variables cannot be easily measured because there might not be 

enough examples to adequately profile the sample space. Moreover, many 
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processes have extensive sets of examples that show one mode or a few 

possible modes of operation. For example, a web server access log would 

have many examples of normal behaviour for users connected and browsing 

throughout the sites hosted by that server, but the behaviour of a hacker trying 

to exploit the server is rarely covered by a typical sample from it. As another 

example, consider typical data extracted from the flight data recorder of a 

commercial aircraft during a normal flight between two airports. 

Unquestionably, these examples do not fully represent the normal behaviour 

of the aircraft equipment during normal conditions because there are many 

variables that would drastically change if the weather or the flight route 

changes. 

One way to tackle the problem of extensivity of information and save 

memory is to process the set of examples recursively on-the-fly. In such a 

scenario, the network would not have an offline period where it works out its 

internal structure while processing the given examples, but rather it will be 

available as soon as it is initialized and the first examples start rolling in. Some 

of these techniques can even evolve in the sense of being able to change 

their structure to better represent the data.  However, this approach leaves the 

issue of the representation power of the network during the transient 

initialization period unanswered because the amount of information available 

to the network may be sparse.  

The purpose of this thesis is to investigate similar conditions when an 

online system initialises and there is insufficient information to make a good 

decision. Furthermore, it examines the optimum initialisation values of the 
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unconditional probabilities values without resorting to ad hoc assumptions or 

ignorance. If the assumptions made during initialising an online system are to 

be analysed, it is only logical to study the various meanings of probability and 

the relation of each to the availability of information. Therefore, a few 

background discussion points the need this to be made before we address the 

main theme of the thesis. 

Chapter 3 will introduce more focused probability topics and an 

interesting approach to representing knowledge. It first introduces various 

interpretations of probability and sets the requirement for the best 

interpretation to solve the main question of the thesis.  Then we will walk 

through the proposed interpretation, from its axioms to its advanced results. 

The chapter will conclude by introducing an innovative way to represent 

probabilistic knowledge, which combines the strong points and results of 

various probability interpretations and theories.   

3.1 Interpretation of probability 

 

Consider a factory that produces cubes each having a side length of 

one unit. What will be the probability that a cube made by the factory has a 

side length less than or equal to ½? The answer to this question should be 

obvious from the principles of probability introduced in chapter 2. If the 

manufacturing process has a uniform probability distribution of cubes with side 

lengths between 0 and 1, then the answer is ½ [46]. If we change the 

description of the problem to finding the probability of a cube with a side area 
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of less than or equal to ¼, then the answer would be ¼, assuming the same 

uniform distribution again. Surprisingly, both problems describe the same 

event because a cube with a side length ≤ ½ has a side area of ≤ ¼, yet the 

probability of the former is twice that of the latter. It becomes even worse if the 

same problem is described in terms of the volume, as the probability of a cube 

with a volume ≤ 1/8 is 1/8! The inconsistency described in this example is 

known as the Bertrand paradox [47,p. 77]. It highlights issues with the 

classical interpretation of probability. If the description of the random variables 

in a process is so vague as to lead us to assign different probability values to 

each possible way of describing them, then a decision-maker trying to assess 

a situation where the available evidence, or data, is not enough to clearly 

define its variables may fall into the same situation, resulting in different 

probability values for each different definition of the same situation. Therefore, 

the theory of probability needs to be re-investigated in hopes of finding an 

interpretation that better suits the situation of online learning or decision-

making based on sparse evidence.   

Interpretation of probability is the task of providing analysis of the basic 

concepts of probability or the transformation of informal concepts used during 

everyday use to formal ones suitable for scientific theorizing [46]. There are 

many interpretations of probability in the literature of philosophy and science, 

but they generally fall into one of the three categories: the objective 

interpretation of probability, the subjective interpretation of probability and the 

logical interpretation of probability [48].  Before any candidate from within 

these categories is analysed, a framework of assessment needs to be 
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defined. The criteria help determine the adequacy of the interpretation to a set 

of standards.  The Kolmogorov axioms of probability may provide criteria for 

assessing a candidate, but these axioms can satisfy not only a probability 

system but a non-probabilistic system, as well, such as the volume of a 

sphere. In addition, the Kolmogorov axioms of probability do not tell us much 

about how to assign a probability to an event outside the boundary cases, 

where the probability of all possible events should be 1 and the probability of a 

void event is 0. Salmon proposed three criteria to investigate various 

interpretations of probability [49,p. 63]. Although they are intuitively simple, 

Salmon noted that it is surprisingly difficult to find a candidate that satisfies 

them all. His criteria are: 

a) Admissibility. This criterion ensures that a proposed interpretation 

adheres to the theory of probability and mathematics in general. It 

requires that the terms of an interpretation resolve the formal axioms of 

probability theory into true statements [49,p. 63].  

b) Ascertainability. This criterion requires the availability of methods to 

assess the value of a probability, because the probability theory would 

be useless without the ability to calculate probabilities of events [49,p. 

64]. 

c) Applicability. The interpretation of probability should be useful in the 

sense of being able to predict or to be used to assess some situation 

and have some bearing on which conclusions could be drawn. Its 

driving force is the famous Bishop Butler quote, “Probability is the very 

guide to life” [49,p. 64]. 
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As stated earlier, there are non-probabilistic systems that satisfy the 

axioms of probability. For example, a cube of unit volume divided into several 

smaller cubes will satisfy the axioms of probability because the sum of all of 

these little cubes’ volumes is 1, the volume of the void cube (no cube) is zero 

and all cubes’ volumes are non-negative. In addition, the formal system of 

logic can satisfy the second criteria of ascertainability because the probability 

of a true statement can be regarded as 1 and the probability of a false 

statement as 0 [46], yet we do not consider formal logic as an interpretation of 

probability, although it is admissible, ascertainable and applicable.  

A better approach, at least for scientific-oriented minds, is to focus on 

applicability, the power of the interpretation in explaining common probabilistic 

observation, [46] and its prediction power. After all, the purpose of choosing a 

specific interpretation is to make good predictions in terms of rational choices 

and modelling the behaviour of a process.  

The classical interpretation of probability was championed by Laplace 

but can also be found in the work of Pascal, Bernoulli, Huygens, and Leibniz 

[46]. Estimating the probability of an event proceeds by breaking down events 

of the same kind into simpler events until they become equally possible; then 

the probability of the event is the ratio of the number of times it occurs to the 

number of all possibilities [49,p. 65]. Although chapter 2 referred to such 

probability as unconditional probability, it should be noted that the two are 

fundamentally different. Laplace does not use the frequency of appearance to 

estimate his probability calculation, but rather the sample space of events. 

That means the odds of heads in a coin toss and that of a yes answer in a 



 
Theory of Comparative Probability 86 

 
 

 

wedding proposal are fundamentally the same, which seems absurd. If 

probability is to be the guide for life, then it must be estimated from life a 

posterior; not a priori. Furthermore, Laplace’s interpretation seems to draw its 

conclusion from ignorance, because in the absence of evidence to favour one 

event over the other, which he refers to as equally possible, then how we are 

to conclude that all events are equally possible and, in turn, what use is it as 

predictive tool? In addition, in a deterministic world, we would presume that a 

coin’s side would be determined by the initial conditions under which the coin 

was tossed. Therefore, how would two events be equally possible? Even if we 

artificially set up initial conditions that would favour no side of the coin over the 

other, would it not be more preferable to presume that the coin would land on 

its edge?  Finally, since the outcome: edge is a valid possibility, then there 

should be three possible outcomes, each with a probability of 1/3. It would turn 

out that we need to assign a highly absurd outcome the same probability as a 

normal or expected outcome. Clearly, we can conclude that the Laplace 

assumption—that during initial conditions and with no prior knowledge of the 

likelihood of outcomes, they should be assigned equal probability—will not be 

useful to answer the core question of this thesis.  

3.1.1 Objective interpretations of probability 

One important interpretation of probability that generalises the 

assumptions of the classical interpretation [46] is logical probability or 

probabilistic logic. The importance of the logical interpretation of probability 

comes from the fact that it can be used in science as a deductive tool to 

quantify the supporting power of evidence for a given hypothesis [50]. Hence, 
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it is applicable to the field of artificial intelligence through the automation of the 

process of updating the likelihood of the truthfulness of a hypothesis in the 

light of new evidence. As opposed to the classical interpretation of probability, 

the logical view can assign different weights to different probabilistic outcomes 

and can accommodate evidence [46]. In order for the logical interpretation to 

be useful, the number of hypotheses should be limited and known, which is 

not always possible. Moreover, the probability of each hypothesis is initially 

assigned equal weight [49,p. 73], which seems as if it is utilizing the principle 

of indifference, but certainly not every possible hypothesis should be assigned 

equal probability because ignorance as probability is a measure of possibility, 

not ignorance [50]. Finally, the logical interpretation lacks the ability to adapt to 

new changes in evidence and hypotheses. For example, if the number of 

hypotheses increase or new features or outcomes are discovered then the 

degree of confirmation becomes void and needs to be re-initialized [46]. But, if 

the learning process needs to reinitialize every time we discover something 

new, then we are not updating our confirmation degree regarding the 

truthfulness of a hypothesis but rather measuring its likelihood using a fancier 

term than the mere classical interpretation of probability offers. 

As opposed to the analytical approach of the classical and logical 

interpretations of probability, there is a class of interpretation that regards 

probability as an objective property of things in reality. The frequency 

interpretation of probability introduced in chapter 2 is one example. From the 

frequency interpretation point of view, the probability of an event like A in 

sample space B should be estimated from its relative frequency of occurrence 
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within B. The frequency of occurrence is estimated from experience, where an 

experiment is set up so as to randomly output events from the sample space 

B and the number of times that A occurs is recorded as the experiment is 

repeated indefinitely. The frequency interpretation is de facto in science 

because it can be estimated from empirical observations of some experiments 

and because it can express less frequent events in terms of lower numerical 

probability value. However, the very definition of the frequency interpretation 

of probability raises more issues regarding its suitability for this thesis. A major 

issue is the so-called problem of the single case [46]: what would be the 

probability of an event in an experiment repeated once or a few times? 

Consider, for example, a coin flipped once: The probability of heads will be 

either 1 or 0, depending on which side the coin lands on by mere chance. 

Moreover, if the experiment of flipping a coin is repeated a thousand times, we 

can still consider the one thousand flips as a single case [46], albeit a 

synthetic one, and we will be back to the problem of the single case again. 

Even if we assume the availability of an infinite series of experiments where a 

coin is flipped and the outcome is recorded, we will still arrive at different 

probability values as the order of outcomes is rearranged. In fact, the 

probability of heads could be made to converge to any value from 0 to 1 [46]. 

Finally, how should we deal with imperfections in the collected data? The 

frequency approach seems to assume that the data are a perfect replication of 

reality, which is a very crude assumption. In many cases, the gathered data 

are noisy, incomplete, or even nonsensical. Hence the estimated probability of 

an observation is by itself probable. It will be highly absurd and less useful to 

express the likelihood of an A as the probability of the probability of A. If 
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probability is to be estimated in an objective fashion from a few examples, 

then we should not completely rely on an interpretation that does not work well 

under such circumstances.  

The other “horn” of the objective approach to probability is the 

propensity interpretation proposed by Carl Popper in 1959 [51]. Rather than 

considering the frequency of occurrence as the objective realization of 

probability, the propensity interpretation considers probability as a sort of 

disposition [52], that is, the coin has a tendency to land heads half of the time. 

That tendency is a natural property of the coin, even if it has not been flipped 

yet. Likelihood and chance are viewed as real properties of things that cannot 

be reduced to other properties or systematic set-ups [52]. All philosophical 

issues with the propensity interpretation put aside, it is unclear how to 

estimate the probability of an event and why would it be this value and not any 

other. For example, why does a fair coin land heads half the time? Why does 

this not occur one third of the time? Without a well-defined math for the 

propensity interpretation, it would be of less application to the field of artificial 

intelligence and, in turn, this thesis, although it may serve well to explain some 

mind-boggling observations in quantum mechanics.  

3.1.2 Subjective interpretations of probability 

Subjective interpretations of probability refer to the class of probability 

analysis that aims at rationalizing everyday notations of probabilistic 

statements. For the subjectivists, probability is an epistemic statement about 

reality that expresses a belief in the trustworthiness of statements rather than 

about properties of reality itself, as is the case with the objective prospective. 
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Hence, probability can be applied to single events. In addition, subjective 

probability can be applied even to deterministic outcomes because its 

statement does not convey chances in real world, but rather how much an 

agent believes a particular outcome will result [53,p. 2]. The main difference 

between subjective and objective probability interpretations is the attitude 

toward knowledge extracted from events. For example, the objectivist will 

describe the likelihood outcome of a biased coin flip as P(outcome) ≠  ½, 

whereas the subjectivist would continue to consider the outcome as  

P(outcome) = ½ because the subjectivist does not know the direction of the 

bias so as to favour one outcome over the other [53,p. 2]. In addition, the 

subjectivist would revise the probability assigned to a belief as more evidence 

is discovered about it, whereas the objectivist will assign a constant probability 

that does not change as long as the probability of the evidence stays the 

same. 

Bayesian probability is the well-established member of the subjective 

family of interpretations. Bayesian probability and its application were 

introduced in chapter 2.  Despite being subjective, Bayesian probability often 

relies on the frequency approach to estimate the likelihood of events [45]. That 

is because the quantification of an agent’s belief has to be rationalized in 

some way in order to be admissible and practical. Un-rational agents may 

believe in contradictory statements or assign high probability to impossible 

events or appeal to emotions or authority in their assessment of the truthiness 

of statements. Hence, the Bayesian probability calculus is not purely a 

subjective one, as the frequency counterpart is not a pure objective. An 



 
Theory of Comparative Probability 91 

 
 

 

intensively loyal Bayesian would defend his position by emphasizing that 

rational agents should base their beliefs about the truthiness of a statement on 

the relative frequency of times it turns out to be true. But the requirement of 

having enough data to make rational beliefs about their likelihood leads us 

back to square one, as the purpose of this thesis is decisions based on little 

evidence.  

Terrance Fine in his magnum opus “Theories of Probability” gave 

another analysis of subjective probability based on the so-called comparative 

probability (CP) [54]. Comparative probability is a type of weak subjective 

interpretation of probability that rationalizes informal statements like A is at 

least as probable as B [54,p. 15]. This effort is by no means a new one 

because it was also proposed and defended by de Finetti [55], Savage [56] 

and Koopman [57]. However, for de Finetti, Savage, and Koopman, CP was 

the foundation from which the axioms of probability are derived [58]. Thereby, 

it serves as a more primitive entry point on which the modern theory of 

probability is built. On the other hand, Fine [54], Fishburn [59] and Keynes [60] 

proposed CP as an independent interpretation of probability, with its own 

axioms and calculus.  Although CP received less interest from scientists, 

statisticians, and engineers, Fine highlights the following benefits of the CP 

framework [54,p. 15]: 

1- CP results in a more pragmatic approach to random variables when the 

amount of information and data available are not enough to estimate 

the random variables quantatively.   
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2- There is more than one model to represent the probability in, as 

opposed to the strict one-model approach of the quantitative probability 

estimation.  

3- As is the case with de Finetti approach, CP has the benefit of 

supporting the Kolmogorov axioms of probability. 

4- CP naturally supports decision-making between other applications, as it 

describes probabilities in a qualitative way. 

The justification for 1 comes from the fact that CP offers more relaxed 

claims than the strict numerical values that the other interpretations have to 

come up with. For example, suppose a coin is flipped 10 times, which results 

in 7 heads and 3 tails. A frequentist has to assign the value 0.7 to the 

probability of heads and deals with the critics who may find the drift in results 

from the ideal case of ½, as if the coin was tampered with or more “flips” 

should have been carried out. A comparativist, on the other hand, may 

describe the event as heads are more probable than tails [54,p. 16]. As a 

result, CP seems more suitable to the situations this thesis aims at solving 

than any method discussed so far.  However, CP statements are qualitative in 

nature, which leaves the question of abstracting CP statements in a manner 

compatible with computers. A computer cannot directly deal with qualities like 

(is A > B?) unless A and B have numerical values. A computer should be 

equipped with an intermediate layer to transfer between the higher level 

qualitative description that CP offers and the quantative nature of computers.  

The ability of CP to describe the same event in more than one way gives us 

flexibility that many other methods can not. For example, we can describe the 
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result of the coin flip given previously as heads are at least as probable as 

tails, which would be closer to the frequency interpretation. Point 3 would 

enable us to define formulas to transfer between the space of comparative 

probability and frequency-based probability. The benefit of having such 

transformation is that an algorithm that deals with extracting knowledge online 

should be versatile. For instance, it should be able to present the knowledge 

collected so far in a fashion understandable by frequency-based algorithms. 

CP does not need to replace the current model of probability but rather to help 

represent knowledge when little data is known and to continue to do so until 

enough data is available. This is when CP gets its queue signal to pass the 

control to the frequency-based probability calculations.   

This section discussed two approaches to the analysis of probability: 

objective and subjective. While the objective interpretation of probability is the 

de facto in science and even the subjective approach relies in its realisation 

on objective approach like the frequency interpretation, its performance is 

doubtful when little information is known about a situation. The comparative 

interpretation of probability seems appealing within the context of this thesis 

and will be discussed further in the next section. However, it should be noted 

that CP is a subjective probability approach and, therefore, it does not 

contradict the frequency interpretation of probability, because CP gives 

epistemological statements about reality that describe beliefs rather than a 

quantitative/qualitative representation of reality.   
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3.2 Axiomatic Comparative Probability 

  

      The task of analysing probability aims at formalizing everyday usage of 

probabilistic statements. In the context of comparative probability, there are 

usually binary statements that compare and contrast the likelihood of two 

events, like team A is more likely to win than team B, event C is at least as 

likely as D, or E is as likely as F. In everyday usage, a person may believe in 

statements that contradict one another or appear to be absurd in some 

situations.  The task of axiomising probability is the task of finding the very 

fundamental statements of probability that look as intuitive as possible, so that 

they do not raise any objections or contradict each other. Thereafter, all other 

probabilistic assertions should be built upon these statements.  For CP, the 

pursuit of axiomization should consider other important factors, such as the 

relationship to quantitative probability—in particular, the Kolmogorov axioms—

the usefulness of the axioms to generate predictable results that can be 

observed empirically, and the applicability to decision making and DBN [54].  

      The notations for CP that will be used throughout this thesis 

follow those of both Fine and Fishburn [54, 59] but will also adhere to 

the notations of chapter 2. Let Ω be a sample space of finite outcomes 

labelled {ω1, ω2,…, ωn}, where ωn is the nth possible outcome, or 

subset of outcomes, from within the sample space  Ω, we denote the 

comparative relationship ω1 is at least as probable than ω2 as[54]: 
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      (72)  

the comparative relationship ω1 is as probable as ω2 as [54]: 

      (73)  

and the comparative relationship ω2 is not as probable as event ω1 as [54]: 

      (74)  

Fishburn [61] used a radically different notation to the intuitive notations 

presented in 72 to 74. He used real-valued function representations rather 

than inequalities, for example: 

             ,       (75)  

Since   is real-valued, it enables us to establish a bridge to the quantitative 

counterpart of probability, since under the assumption of simple linearity, 75 

can be re-written as: 

                      (76)  

However, what would be the assumptions of CP that can be set as axioms for 

their simplicity and intuitively? First, the axioms should not point out trivial 

facts or non-probabilistic assertions. In order to achieve that, possible events 

should have a probabilistic value such that the comparative probability of the 
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sample space—that is, all possible events—is more probable than the 

impossible events: 

                          (77)  

where   is the empty set or the set of impossible to occur outcomes from the 

sample space   [54]. Consequently, an event like ω is not more certain or 

impossible than it is probable, or in CP terminology:  ω is more probable than 

the impossible, which is the null or empty set [62]: 

                     ℎ                         (78)  

Second, two comparative probability statements should not contradict each 

other. If ω1 and ω2 are both possible outcomes from the sample space  , 

then the two statements, ω1 is at least as probable as ω2 and ω2 is at least as 

probable as ω1, cannot be both true, that is [54], 

                                 (79)  

Third, another candidate for the axiom of CP comes from the property of 

transitivity in the mathematics of inequalities [63]: 

                             3        3 (80)  

       However, the axiom of transitivity did not go unchallenged, as May [64], 

Tversky [65] and Fishburn [59] showed that in multidimensional events, cyclic 

patterns can arise, which would violate the implication of 80. Fishburn’s [59] 
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example of  a cyclic pattern assumes a hypothetical situation where an agent 

named Sue is supposed to meet a famous author named Mike. She has not 

met him before but has the following expectations about his attributes: 

Height (ht): 6'.0"    6'.1"   6'.2", 

Age (ag): 40   50   60, 

Hair Colour (hc): brunette    red   blonde. 

Based on these three attributes, Mike may be any of the following 

composites: 

A = 6'.0" 60-year-old redhead;  

B = 6'.1" 40-year-old blonde;  

C = 6'.2" 50-year-old brunette 

Sue would consider one of these composites more probable than the others if 

at least two of its attributes are more probable than the others. Hence A   B, 

B   C, but C   A. As plausible as the objection to the axiom transitivity 

appears to be, it received less attention from other researchers, who continue 

to consider it as an axiom [58, 66, 67], albeit with caution [54]. It is worth 

noting that Sue’s decision regarding the probability of how Mike will look is un-

formalized and rather breaches the some of the basic rules of calculus. One 

central requirement of this thesis is for the interpretation and usage of 

probability to be admissible, that is, to comply with the theory of calculus.  

      More rationalised and more formalised analysis of the previous 

situation requires us to notice that the composite event of how Mike would 



 
Theory of Comparative Probability 98 

 
 

 

look is the joint probability of height, age and hair colour P(ht, ag, hc). It 

seems reasonable to assume that the three attributes are independent, hence: 

  ℎ ,   , ℎ     ℎ         ℎ   (81)  

 

If   ℎ    .       ℎ    .    ,            ℎ      and   ℎ  

    e  e    ℎ      ,  then:  

  ℎ    .   ,      ,          e 

   ℎ    .   ,      ,     ed  
(82)  

But one cannot infer that B   C because on one hand, we have: 

   ℎ    .   ,           ℎ    .   ,        (83)  

and on the other: 

   ℎ             ℎ            (84)  

       So, a rational agent will be indifferent to the likelihood of B and C 

because 83 and 84 cannot mathematically be combined together to yield 

either B   C or B   C. Since the rational agent has no way to favour one over 

the other, he/she will assume they are equiprobable. A classical frequentist 

may approach the problem by applying the principles of counting: There are 

3×3×3= 27 possible “looks” for Mike and there is only one way to count each 
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of A, B or C. Therefore, they are all equiprobable, which agrees with the 

results of personal subjective analysis.  Consequently, we can intuitively set 

as an axiom the claim that if ω1 is not more probable than ω2 and ω2 is not 

more probable than ω1, then ω1 is as probable as ω2: 

                3  

      3 
(85)  

 

Based on the previous five axioms, one can easily conclude the following 

consequences [54]: 

                (86)  

      Equation 86 states that if an event like   is a subset from the sample 

space  , then it will make perfect sense to assume that the probability of 

every possible event or set of events is higher than the probability of a single 

event or set of events. Consequently, 86 can be generalized to: 

               (87)  

Since CP is a binary and linear relationship, if one event is more probable 

than another, the negation of that event is less probable than the negation of 

the other [68]: 
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  (88)  

If we hold true the definitions of joint and union of events from chapter 2, then 

if the joint of two events is null, and [54]: 

          3            3          3         (89)  

Further conclusions are possible and were discussed in [63]. Generally 

speaking, the axiomization of CP starts by selecting either       as the very 

basic foundation of CP or       [59]. However, we have followed a mixed 

approach to that, where we started with the latter and then used the former to 

strengthen the weaker assumptions of CP that often generate controversy. As 

CP is still an infant concept as compared to other well-established probability 

interpretations, the axioms discussed so far are by no mean presented as 

complete or unchallengeable. They can be regarded as a guide to formalize 

everyday pseudo-rational statements regarding probabilities of events, but 

more importantly, they present how the quantitative probability can be 

deducted from the qualitative probability. The latter is the subject of the next 

section.   

 

3.2.1 Compatibility with quantative probability 

 At first glance, CP seems to be compatible with quantative probability 

and its axioms, put forward by Kolmogorov.  It seems plausible that every 

probability axiom of the Kolmogorov probability (KP) is compatible with the five 
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CP axioms developed earlier. Unfortunately, this is not the case because CP 

is defined on lexicographical order sample space, whereas KP is defined over 

numerical order sample space. A numerical set like [0,1] can have an infinite 

number of subsets but a lexicographical set like [a,b,c,d] can have only limited 

sets. Therefore, it is perfectly possible to think of a situation where the infinite 

becomes contradictorily finite [54,p. 18]. Consider, for the sake of the 

argument, that CP is defined over a topological space (Rn) like Ω = [0,1], 

having subsets that adhere to the Borel field of Ω. This choice is not 

coincidental but rather represents the best candidate for space that could 

become the bridge between the quantities and qualities of probabilistic 

statements.  In addition, let λ(A) be the Lebesgue measure of subset A 

defined in Ω. Furthermore, let φ(A) be another measure of A dominated by 

λ(A),  such as the triangular density.  If the comparative relationship     is 

defined as: 

                                     ≥      (90)  

then the definition satisfies all the axioms of CP presented in the previous 

section and thereby represents a compatible one-to-one relationship between 

CP and KP. This is evident because if A is the set (1-x,1) and B is the set (0,x) 

where 0 < x < 1, then              and            ≥         

[54,p. 18] satisfies equations 77,78,79,80,85 and 90.  However, this results in 

a contradiction, because x can be any value out of infinitely many values in 

the range [0, 1], whereas the lexicographical order space has only finite sets. 

Thereby it would contradict the existence of a one-to-one relationship. To 
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alleviate the possibility of contradiction, a new axiom should be added to the 

inventory of CP axioms, so that it guarantees the compatibility between the 

collation of lexicographical and numerical.  

       One way to define such an axiom is to imagine a topological space like 

R having a collection of subsets τ such that (R, τ) has a countable base or (R, 

τ) has an accountable order dense set [69, 70]. However, the axiom of 

countable base does not admit, or guarantee, a unique probability value for an 

event; rather, we can define as many functions as we like that satisfy the 

axioms of CP and are compatible with quantitative probability. Fortunately, if 

CP is to be compatible with KP, then we can simply choose the probability 

function that satisfies P(Ω) = 1 [54,p. 19].  

      In order for CP to be fully compatible with KP, it should be compatible 

with the finite additivity and in turn with the third axiom of KP, that is to say, if a 

comparative relationship satisfies the six axioms of CP, then there should 

exist a function like G of two variables, such that [54,p. 22] 

                     ,       (91)  

and it should also be symmetric, strictly increasing, and associative. However, 

Kraft [71] proved that such a function cannot exist, challenging the previous 

six axioms. An example of situation where 91 is not satisfied is evident when 

Ω={a,b,c,d,e} and τ is all the subsets of the following order [54,p. 22]: 



 
Theory of Comparative Probability 103 

 
 

 

                                 

                             

                                

   

(92)  

        Equation 92 satisfies the six axioms of CP; however, there is no such G 

to satisfy 91. To see that, let P(a) = A,  P(b) = B, P(c) = C, P(d) = D and P9e) 

= E; then from 92, it follows A + C < D, A + D < B + C and C + D < A + E, 

which can be simplified to: A + C + D < B + E, hence acd   be, which 

contradicts 92 [54,p. 22].  One way around this contradiction is to introduce a 

condition that CP should satisfy in order to become fully compatible with finite 

additivity. Luce [72] introduced such sufficient a condition. Although others 

have proposed different approaches [56], Luce’s seems more appealing [54,p. 

25]. Luce used results from the theory of extensive measurement to prove his 

theorem by proposing the criterion [72]: 

                       ,   ,          

       ,  ,     ,            

(93)  

        Equation 93 is appealing because it does not require the sample space 

to be strictly infinite, as Savage and Kraft’s proposals do [54,p. 25]. Since CP 

is now compatible to an acceptable extent with finite additivity, the next step is 

to look at countable additivity. If CP is compatible with countable additivity, 

then it will be compatible with KP.   
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       In the measure and probability theory, countable additivity becomes 

equal to finite additivity if the following condition holds true [73]: 

       3              
   

        (94)  

The condition given in 94 is also known as the continuity condition, which was 

adopted by Kolmogorov as an axiom for the KP [74]. Hence, 93 can be 

relaxed to accommodate for continuity condition: 

             ⋂   

 

   

            (95)  

However, having CP compatible with countable additivity is not always 

desirable. De Finetti [54, 74] argued against such an approach, as it would 

result in absurd situations, for example, the experiment of picking a positive 

integer number at random. In this experiment, the sample space Ω can be 

thought of as being Ω = {1,2,3,….}, which is clearly an infinite space.  The 

power set of all positive integers is also infinite and the probability of each 

element within the power set is 0. Hence the probability of Ω, which is a 

member of the power set as well, is 0! But KP requires P(Ω) = 1. In addition, 

how are we to rationally justify that the probability of picking the number 1 is 

equal to the probability of picking a number from within the range (1,109) = 0? 

Shouldn’t the latter weigh more than the former? Bertrand Russell viewed a 

set that has itself as a member as paradoxical [75] and required that no set be 

a member of itself. However, the strongest and most traditional argument 

against a subjective approach to probability comes from Ellsberg’s analysis of 



 
Theory of Comparative Probability 105 

 
 

 

Savage’s axioms [76], where he showed two examples of subjective 

judgements leading to absurd results.  Ellsberg’s first example is a traditional 

betting situation, where a gambler is asked to bet on the label of a randomly 

selected ball from an urn of 100 balls. The urn contains 25 balls labelled R1, 

25 labelled B1, and the remaining 50 balls are labelled either R2 or B2, but 

their proportion is known to the gambler. The betting versus winning options 

are: 

r1: wins $1000 if the chosen ball is R1, but nothing otherwise. 

b1: wins $1000 if the chosen ball is B1, but nothing otherwise. 

r2: wins $1000 if the chosen ball is R2, but nothing otherwise. 

b2: wins $1000 if the chosen ball is B2, but nothing otherwise. 

       Presumably, the gambler would think the odds for r1 and b1 are the 

same and since r2 and b2 proportions are known, the gambler would be 

indifferent to any of them. In addition, the gambler would prefer r1 over r2 and 

b1 over b2 because, once again, the quantities of r1 and b1 are known, 

whereas those of r2 and b2 are unknown. Using CP terminology, we can 

specify the gambler’s preferences as follows: 

     ,      ,      ,       (96)  

 

Now, let us assume the game is updated with two further compound 

bets, as follows: 

c1: wins $1000 if the chosen ball is R1 or B1, but nothing otherwise. 
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c2: wins $1000 if the chosen ball is R2 or B2, but nothing otherwise. 

The new bets would seem less ambiguous in the eyes of the gambler because 

the R1+B1 ball count is known, as is R2 + B2. In fact, they both add up to 50. 

Once more, the gambler would give the same odds for each of them. 

                  (97)  

        But if the additive axioms are to hold true and since      ,      , 

then      ,      , which clearly contradicts 96 [61, 76, 77]. One way to 

resolve this contradiction is to involve rational subjective judgements. If a 

rational agent prefers      , then it implies that the number of balls labelled 

R1 is higher than or equal to R2; hence, the number of B2 balls is higher than 

or equal to B1, therefore       a d        cannot be both true at the same 

time because       implies      . Ellsberg’s analysis is just another 

example of why drawing knowledge from ignorance leads to contradictions. 

That is because Ellsberg presumed that because we do not know the 

proportion of R2 and B2, we should be indifferent to their probabilities. It is 

similar to the Laplacian approach to probability we discussed earlier.  

       A more rational standpoint to the Ellsberg example is:  

                           (98)  

Now our gambler can either prefer that       or       but not both. In 

turn, the contradictions that resulted from 97 cease to hold. Fishburn’s 

approach is to add another axiom to CP that requires [61]: 
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           ,       ,        ,       ,    (99)  

and if   is normalized against Ω: 

   ,       (100)  

then Fishburn proved [61] that if A1, A2…,An are disjoint pairwise events and 
similarly forB1, B2,…,Bn, then: 

  

 (⋃   

 

   
,⋃   

 

   
)  

  ∑ ∑     ,    
 

   
      ∑     ,   

 

   
   

 

   

   ∑     ,   
 

   
 

(101)  

 

The advantage of 101 is that it only needs values for   to be specified at the 

most elementary pairs of events, that is, A and B, but Fishburn did not provide 

a systematic way of estimating the values he chose for   apart from an ad hoc 

table with values already there. It is assumed that the values can be chosen 

arbitrarily but within the constraints of not violating his axioms of CP.  

     In conclusion, CP is still an infant approach to the analysis of 

probability. Its main playground is philosophical and logical formalisation of its 

axioms. This section has presented a brief bridge that transposes qualitative 

statements to quantitative statements. The debate about the axioms of CP 
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and its relation to KP is far from conclusive and there are many active 

researchers formalising and criticising the work already done for CP.  

However, the main objective of this thesis is not the minor dilemmas that 

always exist in any formation of axioms in existence. There are as many 

paradoxes for KP as there are for CP and the important lesson to learn, in the 

context of science, is the usefulness of a method in answering a scientific 

inquiry.  

3.2.2 Conditional comparative probability 

So far, we have only been concerned with elementary probability 

representation and relationship. This section expands on the axioms of CP 

developed in the previous sections and the analysis and limitations of CP as 

compared to KP.  

        The derivation of conditional comparative probability (CCP)  follows 

either a ternary or a quaternary approach. In a ternary approach, CCP is  

assumed to be a ternary relationship over the space      , where   is a 

field of events and   is a set defined over   [54,p. 28]. In other words, CCP 

defines a comparative relationship between two variables conditioned over a 

third, read as given by a third. If  ,      and    , then a ternary CCP 

relationship is defined as [54,p. 28]: 

   ,       |   |  (102)  

As is the case with the theory of KP in chapter 2, CCP also satisfies the 

axioms of CP, as well as [54,p. 28]: 
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   ,            |   |     |     |   (103)  

       The importance of TCCP comes from the fact that it can be used to 

calculate posterior probability given some evidence, albeit in a weaker form. 

This is important in situations where a decision must be made in the light of 

some evidence or for estimating the probability of a variable recursively. The 

latter is of higher interest for this thesis, as its intention is to develop a 

theoretical background that deals with knowledge representation under lack of 

data and/or ambiguity.  

       For the quaternary CCP (QCCP) approach, the axioms are direct 

counterparts of the ones developed earlier. In his magnum opus paper, Luce 

introduced seven axioms for QCCP [78]. First, if Ω is the sample space of 

events where   is a subset of it, then: 

     |   |   |   |  (104)  

     |      |  (105)  

                 |    |     |    |      | 

      |  
(106)  
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                   |    |  

(107)  

The beauty of QCCP comes from the fact that it can be used to derive 

a weak form of Bayes’ theorem [54]. Assume that A,C is in field   and 

 ,      but does not include the null set, and that   satisfies L1-L4. Then 

there exists P agreeing with CP axioms and two real-valued functions F and G 

that if   |   |  , then [54]: 

   |    (     |  ,    |   ,    |  ) (108)  

       Equation 108 will enable us to infer the characteristics of  |  from 

 | , |  and  | . Furthermore, Luce’s axioms will enable us to make QCCP 

compatible with KP because axioms L1-L4 can be used to show that there 

exists a P agreeing with L1 to L4, such that [78]: 

     |       |       |   (109)  

       Equation 109 is the CP equivalent of the product rule conditioned on C. 

However, the theory of comparative probability would not be complete without 

the notion of independence. Since CP formally represents a relationship 

between events in a qualitative fashion, the notion of independence would 

only make sense if it was event-wise rather than experiment-wise, as is the 
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case with KP  [54,p 33]. The difference between the two is important in the 

light of subjective probability. Independent experiments refer to experiment 

outcomes being statistically unrelated to each other, which is justified by the 

combinatorial calculus, whereas independent events are those where the 

occurrence of one does not change our expectations about the occurrence of 

the other, which is justified by axiomisation.  If A and B are both events from 

the sample space Ω, then the simplest axiom that can be drawn from the 

independence of A and B is that if A is unrelated to B, then the same goes for 

B and A [54,p 33]: 

            (110)  

where   exemplifies independence, or unrelatedness, between two events. 

Furthermore, an event is a subset of Ω, so the occurrence of one is unrelated 

to the other, as it does not change one’s belief about the likelihood of the 

other. Using the same justification, we can intuitively see the validity of the 

following axioms [54,p 33]: 

        (111)  

             (112)  

         ,             (113)  
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Further intuitive axioms are also possible, and a weaker experiment-wise 

independence could also be driven, but they are not essential to the purpose 

of this thesis. For convenience, this section will conclude with a box of all the 

axioms of CP, which will be easier to refer to later on.    
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Axioms of CP (114) 

𝐶    𝐴  𝐵  𝐴′  𝐵′  𝜙  𝐴|𝐶  𝐴′|𝐵′  𝐵|𝐶  𝐵′|𝐶′  𝐴 𝐵|𝐶  

𝐴′ 𝐵′|𝐶   …   (114.11) 

𝐶   𝑃 Ω  𝜙  …       .   

𝐶   𝑃 ω  𝜙  …       .   

𝐶  𝜔  𝜔   𝜔  𝜔  …       .   

𝐶   𝜔  𝜔    𝜔  𝜔3    𝜔  𝜔3   …       .   

𝐶    𝜔  𝜔    𝜔  𝜔3    𝜔  𝜔3   …     .   

𝐶   𝐴  𝐵   𝜆 𝐴  𝜆 𝐵     𝜆 𝐴   𝜆 𝐵   𝜑 𝐴 ≥ 𝜑 𝐵  …     .    

𝐶      𝐴𝑖   𝐴𝑖  𝜙  ⋂ 𝐵 

 

𝑖  

𝜙  𝐴  𝐴𝑖  𝜙   …       .   

𝐶8  𝐴 𝐵  𝜙  𝜌 𝐴 𝐵,𝐶  𝜌 𝜙,𝐶   𝜌 𝐴,𝐶  𝜌 𝐵,𝐶  …       .8  

𝐶   𝑋|𝑋  𝐴|𝐵 𝑋|𝑋  𝐴|𝐴 …       .   

𝐶    𝐴|𝐵  𝐴  𝐴|𝐵 …       .    

𝐶    𝐴  𝐵  𝐶  𝐴′  𝐵′

 𝐶′  𝐴 𝐵  𝐴′ 𝐵′ 𝐵 𝐶  𝐵′ 𝐶′   𝐴 𝐵  𝐵′ 𝐶′ 𝐵 𝐶

 𝐴′ 𝐵′  𝐴 𝐶  𝐴′ 𝐶 …       .    

𝐶    𝐴  𝐵  𝐵  𝐴  …       .    

𝐶    𝐴  Ω  …       .    

𝐶    𝐴    𝐴      …       .    

𝐶    𝐵 𝐶  𝜙,𝐴  𝐶  𝐴   𝐵 𝐶   …       .    
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3.2.3 Comparative probability: Decision-making prospective 

 So far, we have only been concerned with CP from mathematical, 

logical and philosophical standpoints. Philosophy is an arena of debate, 

whereas science is one of research, analysis of empirical observations and 

application of theories to yield useful products. Therefore, it will be of value to 

know whether CP has managed to escape the “ballrooms” of philosophical 

debates and mathematical theorising into the realm of practical 

implementation.  In section 3.1, we looked at the criteria of a good 

interpretation of probability, and CP should not be an exception to them. The 

emphasis of a good probability theory should be on its applicability as a 

framework is simply useless to science if it cannot be utilized in any way.  

        There are many frameworks in the literature regarding the formalisation 

of CP axioms and sometimes for developing some guidelines as to how it 

would be used for decision-making and inference. As much as these 

frameworks are packed with long mathematical formalizations, they are short 

on comparison to their quantative probability counterpart. Without justification 

for preferring CP over the de facto interpretation of probability in science, 

which withstood the test of time and was there during all of our scientific 

endeavours, why would anyone choose CP? In this section, we will be looking 

at some of the interesting frameworks in CP, their applications, and limitations. 

        Peter Fishburn is one of the well-known names in decision-making and 

the axiomisation of CP as an independent interpretation of probability [59, 61, 

70, 79, 80]. The previous section has already presented some of his 

contributions to CP. The main framework of Fishburn was answering de 
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Finnite’s question on the existence of an order-wise relationship that is 

sufficient for the existence of order-preserving probability measure [80]. The 

answer to the question was to introduce more basic but constraining limits on 

CP in order to preserve the order-wise nature of CP while solving any 

paradoxical objection to it [61]. Fishburn showed an example of how his 

version of CP can solve Ellsberg paradoxical examples of subjective 

probability through the introduction of the skew-symmetric function   [61]. As 

mentioned earlier, there was no discussion on how the performance of CP 

compares to KP. Such a comparison, if it was in favour of CP, would prove the 

case of CP as an interesting alternative to KP that scientists should start to 

use, rather than shelve it along with the other mathematical constructs with 

internal inconsistencies. In addition, Fishburn did not provide us with a clear 

algorithm that explains in a step-by-step fashion how to use his framework to 

solve problems in decision-making beyond some isolated examples and more 

mathematical constraints.  

        Terrence Fine is another example of the independent interpretation 

approach to CP [54, 69, 81]. However, Fine’s approach seems relaxed and 

less constrained than Fishburn’s or Luce’s, as examples [54]. Fine developed 

five axioms that characterize a rational decision-making process and 

expectations, all in terms of comparative-like inequalities [54]. However, all of 

these axioms were incomplete in showing a single example of how to use 

them to come up with a rational decision within any context, not even a game 

of chance.  Fine admitted the existence of the problem of measuring 

subjective probability or preferences and even the psychological factors 
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leading to constraining the process of extracting those from decision-makers 

[54,p. 233].  Along with Walley, the framework seemed to be shifted toward 

establishing a unified framework of upper and lower probability, or imprecise 

probability [82, 83].   Imprecise probability refers to classes of mathematical 

models that deal with uncertainty and the availability of partial information [82]. 

Walley tried to unify many of the proposed models of imprecise probabilities, 

including CP itself, using the subjective framework of Bayesian networks [82].  

When there is not enough data to infer a descriptive probability distribution, 

then upper and lower bounds are defined and the gap between the upper and 

lower limit is supposed to decrease as data is gathered, until the gap is closed 

and what was imprecise is now precise [84]. Walley’s focus was on the 

mathematical level of generality that will be needed to achieve such unification  

[82]. His framework was further applied to graphical models’ [85] belief 

functions [86], among others. Walley’s framework seems interesting within the 

context of this thesis; however, it still has the drawback we mentioned earlier, 

namely, no step-by-step algorithm was specified that could aid a decision-

maker in making the decision and no comparison with KP was attempted.  

        The third example of CP framework is Andrea Capotorti, who proposed 

some interesting CP axioms that can be described algorithmically and 

implemented on computers [66, 87]. For Capotorti, the reason a decision-

maker would prefer CP over the other interpretations of probability is that they 

are not compatible with the psychology of human preferences and sometimes 

even violate the axioms of KP [66], not to mention the “where are all the 

numbers coming from?” argument [66]. However, the same argument goes 
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against CP because if it was valid for us to wonder where the frequentists take 

their quantities from, then by the same logic it is valid to wonder where the 

comparativists get their qualities from.  The Capotorti algorithm works by 

constructing qualities and constraints that describe a situation [66]. For 

example, if heads was more probable than tails, then we can describe it as 

             ℎ       . The algorithm continues to use constraints and 

new information to update the qualities until a decision, or inference, is 

possible [66], although it was not clearly specified how such an update is 

made. In addition, it seems like interfacing with such DSS, if ever 

implemented, will be extremely difficult because it does not provide a 

quantified output, nor does it have an objective procedure for converting 

sensor measures into qualities. Finally, it relies heavily on expert knowledge to 

come up with the qualities that represent a situation. 

        In conclusion, this section tried to summarize the most important 

frameworks of CP as a tool for inference and decision-making. We have seen 

how CP frameworks were shifted when faced with different challenges in 

regard to measuring personal preferences, restricting their flexibility by the 

addition of more axioms and pitching for unification with other frequency-

based probabilistic theories. We have also seen that the closest framework to 

the objectives of this thesis was that of Peter Walley, which aimed at unifying 

CP with the upper and lower probability model of imprecise probability. What 

steps are required in order to improve Walley’s axioms? Will it be possible to 

propose an algorithm that automates the process of inference in a way that 

proves more beneficial than the current conventional methods? If so, how do 
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they compare? We will explore the answers to these questions in the next 

section. 

3.3 Proposing a new approach to CP 

 

Up to this point, we have discussed various concepts in probability 

theory, from the basics to some of its advanced concepts and results. 

Moreover, we took a step back to understand where probability comes from 

and how we should interpret it. Our aim was to search for a better 

representation of knowledge in situations when little information is available. 

From within the discussion, a candidate emerged that seemed to be up to the 

task of answering the question, which we referred to as CP.  But CP is still far 

from complete, both as a theory and as a practice.  It is more a philosophical 

concept than a scientific method. However, this is not to say that CP literature 

is sparse but rather to emphasize the fact that, apart from making very simple 

decisions, it has not been used for much. Therefore, if we want to keep 

thinking that CP is the promising answer to our questions, then what 

modifications, if any, are necessary to make it work? The answer to the 

question requires us to specify the concepts of probability theory that we 

would like to keep and what sort of utility we would like CP to work with. 
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3.3.1 Requirements, assumptions and aims 

First, CP should not replace KP or provide a standalone interpretation 

of probability that works completely parallel to KP or even contradicts KP. The 

reason behind this requirement is that KP is well established and has been 

used in almost every scientific discipline. It would not make sense to throw 

away a very successful theory such as KP, given how widely it is used and 

how successful it is as a scientific tool. In addition, we would like to utilize the 

greatest results of the modern theory of probability without worrying about 

them not being compatible with CP’s axioms.  Results such as the central limit 

theory and the strong law of large numbers are so much appealing to any 

researcher that it would be desirable to have them in scientific endeavours. 

Hence, the first requirement simply states that KP and its results are true a 

priori. 

Second, we assume that probability exists as an objective property of 

things in reality and that it can be determined through experiments and 

empirical observations.  This assumption is backed by both scientific and 

philosophical justifications. The scientific justification is based on the fact that 

empirical observations are the essence of the scientific method. Therefore, the 

quantification of the properties of an observable phenomenon in reality should 

reflect the objectivity of the property itself. The philosophical justification 

comes from our conceptualizing of probability as being the guide to life. If 

probability is to guide life, then it should not be mere analytical statements, for 

analytical statements do not describe reality nor provide a guide for it. 

Probability should be inferred from reality in order for it to become the guide 
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for life. In other words, probability should be estimated from data posterior, not 

from the space of possibilities, as is the case with the Laplacian probability. If 

no data is available, then probability still exists but it is unknown. 

Third, when the number of experiments is high enough, then the 

probability of an outcome should be quantified using the relative frequency 

interpretation of probability. This requirement is important because without a 

way to objectively quantify a probability it will be useless, for an unknown 

quantity that can never be measured is worth nothing in the context of 

science. The third requirement is also essential because we want to use CP to 

write algorithms that are integrable with others. Hence it should “speak” the 

same language that the state-of-the-art algorithms speak. What is essential to 

our CP theory is to be able to give a hand to probability estimations in an 

online scenario, up to the point where the algorithms are ready enough to do it 

on their own.   

Finally, we accept the relative frequency position that if an experiment 

is repeated often enough, then the probability of an outcome approaches its 

relative frequency of occurrence. Consequently, CP becomes a background 

tool, while KP is the foreground methodology for estimating probability. This 

assumption sets the new approach apart from that of Savage, Fine, Fishburn, 

and others because CP was either considered a standalone interpretation for 

some of them or an approach to the frequency interpretation for the others.  

Since the process of scientific theorizing revolves around usefulness 

and utility, the new approach should prove useful in terms of its results when 

compared to other similar tools in inference and decision-making. But proving 
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the usefulness of a tool in making decisions or inference is not by itself 

enough to make a good case, because making good decisions under 

uncertainty only works on average. A process of decision-making may 

sometimes lead to a very bad decision but if it was compensated by other 

decisions that will overall produce positive utility, then we would still consider 

the process of making the decision a valid one. Instead, the benchmark 

should prove to be useful as a predictive tool; after all, scientific theories 

should be able to predict some measurable observations upon which the 

theory can be validated. Since the central aim of the thesis is to produce a 

theory to better represent knowledge in terms of probabilistic statements, then 

in order to prove the case of this thesis, the resulting theory should be better 

in estimating and representing probability than all the known competitors.  

In conclusion, in order to propose a good approach to CP that proves 

useful as a scientific tool, some assumptions and compromises need to be 

made in order to ensure that the end results are on target. We require that CP 

should be fully compatible with KP, that CP is a way of representing 

probabilistic knowledge about reality where probability exists objectively, and 

that the probability of an event is its relative frequency of occurrence only 

when the number of experiments over the space where the event belongs is 

high enough. The proposed theory should prove useful in terms of 

probabilistic predictivity.  

3.3.2 Axioms and theories of the proposed approach 

The previous section sets the requirements of a good solution to have 

in this thesis. It is clear that the requirements favour the relative frequency 
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interpretation but use the comparative probability interpretation as a way of 

describing knowledge that may be subjective. How can we incorporate all of 

these ingredients to produce an online, real-time, dynamic probability 

estimator? 

First of all, we presume the probability of an outcome or a set of 

outcomes defined over a sample space to exist and to have a single value like 

       ,  . The exact value of       may be unknown, but we can 

subjectively suspect that it lies within a region of doubt like ε, such that the 

subjective upper and lower limits of      within which      should exist are: 

          
 

 
  …       .   

          
 

 
  …       .   

(115)  

where      is   the  subjective probabilistic upper bound of     ,      is the 

corresponding lower bound and   denotes an “as probable as” CP 

relationship. The reason for using comparative relationship here is to allow for 

unsymmetrical upper and lower bounds; otherwise,      will be simply the 

mathematical average of      and     . In addition, we are using the term 

subjective in an epistemological fashion to convey the fact that the upper and 

lower bounds are not “real” probabilities but rather a belief about probability. 

From equation 114 we can infer that: 

               (116)  
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Since the estimation of      should be available in real-time while the data, or 

the experiment’s outcomes, roll in, we will define  ̃     to be the approximate 

value of      at experiment number (n), which should eventually converge to 

     as the number of  experiments increases indefinitely. As is the case with 

    ,  ̃     should also be within the upper and lower bound of the region of 

doubt: 

 ̃           ̃          (117)  

and: 

   
   

( ̃    ,     ,     )       (118)  

In chapter 2, we saw how an estimate of probability can be achieved 

using Markov and Chebyshev inequalities and how they can be used to prove 

that the average of a random variable converges to its expected value as the 

number of experiments increases in the well-known strong law of large 

numbers. But, these two inequalities, although very useful, are not enough to 

provide us with a powerful way to update our probability estimates as new 

experiments become available. For that end, Chernoff bounds provide a better 

and more restricted estimate [18, 88, 89].  For Bernoulli variables, the 

Chernoff bound is given by [90]: 

  (        ̃      
 

 
)    

    

  (119)  
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Equation 114 defines the upper bound, or tail, of     . Since our goal is to 

better estimate       given  ̃    , we want to decrease the size of the 

uncertainty region as more data starts rolling in. Therefore: 

    (          ̃        
    

 
)    (        ̃      

  

 
) (120)  

Using equation 87, equation 120 implies that 

(          ̃        
    

 
)  (        ̃      

  

 
) (121)  

Since: 

    

 
≥

  

 
 (122)  

then: 

          ̃                ̃      (123)  

and: 

  
         1

 

 ≥   
    

 

  (124)  

Since the lower limit of         ̃      is 
 

 
, using equations 115 and 124, we 

can solve for       :  
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 (125)  

Similarly: 

              √
 

   
             

̅̅ ̅̅ ̅̅     
 
 (126)  

where 

       
 

 
∑  

 

 

 (127)  

is the mathematical average of  . Since   is a binary variable, its average is 

also its probability when the number of experiments is approaches infinity. 

Notice that 125 and 126 do not give the upper and lower tail of Chernoff 

bounds but rather a mirrored upper tail and a mathematically mirrored tail. In 

order to show how the above two equations can be used to estimate 

epistemologically stricter bounds for the upper and lower probability, we will 

use a coin flipping example. Let us assume a decision-maker is asked to 

predict the upper and lower probability bounds of heads in an experiment of 

coin flipping. The coin may be biased to heads or tails, but that is unknown to 

the decision-maker. Since the decision-maker is indifferent to whether the coin 

is biased or unbiased, he would assume an initial probability of ½ for the 

probability of heads, making the upper and lower probability as probable as 
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heads itself. The decision-maker is hoping to update the bounds as more 

experiments are performed. She/he decided to use equations 125 and 126. 

Let us imagine the experiment of tossing a coin was repeated 1,000 

times. The decision-maker would like to calculate the accuracy of equations 

125 and 126. Using Matlab, we can generate pseudo-coin flips with uniform 

probability distribution. Figure 16 shows a plot of the upper bound (in green), 

the lower bound (in black) and the average probability calculated over the 

course of the 1,000 experiments. 

 

Figure 16. The upper (in green) and lower (in black) bounds of probability 

Notice how the uncertainty gap between the upper and lower bounds starts to 

close with the increase in experiments. Let the error of representation be 

defined as the mathematical average of deviation of the current calculated 

probability from the ideal probability, which in this case is ½. The lower bound 

value will be in error if it was higher than ½, whereas the upper bound value 

will be in error if it was lower than ½. With that in mind and using figure 16, the 

average error in representing the lower probability is 0.03, the average error in 



 
Theory of Comparative Probability 127 

 
 

 

representing the upper probability is 0.0013 and the average error in using the 

relative frequency interpretation, equation 127, is 0.057. This clearly proves 

CP’s upper and lower bounds as a better representation of probability. But it 

may seem ad hoc to assume the initial probability to be ½ and then prove that 

it is the case; after all, not every coin is a fair coin. In order to prove that the 

upper and lower bound method would still work in any other situation, let us 

imagine two situations where the decision-maker suspects the coin to be 

biased but it is not and where the decision-maker does not suspect any bias 

but the coin is biased. Figure 17 shows the first situation, where a decision-

maker assigned P(heads) = 0.3 to the upper and lower probability values. 

Nonetheless, his/her belief starts to update towards the correct end pretty 

quickly. 

 

Figure 17. The upper (in green) and lower (in black) bounds when changing the initial 

probability to 0.3 rather than 0.5. 

For the second case, the simulation of coin flipping was set so as to 

produce more heads than tails, with a ratio of 7:3, but as the decision-maker is 
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indifferent to that, he/she initially assigned P(heads) = ½ . Figure 18 shows the 

results. Notice how the upper and lower bounds almost always represent the 

ideal probability correctly, as it always lies within the region of uncertainty. 

This result is intuitive, given the power of Chernoff bounds and CP. 

 

Figure 18.The upper (in green) and lower (in black) bounds for a biased coin with p(heads) = 

0.7 

Finally, because the thesis advocates better knowledge representation on 

less data, it will be of value to focus the lens on the performance of the upper 

and lower bounds on the first few experiments. Figure 19 shows 100 coin 

flipping experiments simulated with Matlab. Once more, the upper and lower 

bounds, although wider, came closer to the ideal probability of ½.   
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Figure 19. The upper (in green) and lower (in black) bounds for 100 coin flip experiments with 

p(heads) = 0.5 

Table 1. Summary of determining the upper and lower probability bounds for a coin flip 

No of 

experiment 

Initial 

probability 

Actual 

probability 

Average 

error in 

      

Average error 

in the lower 

bound 

Average error 

in the upper 

bound 

1000 0.5 0.5 0.057 0.03 0.0013 

1000 0.3 0.5 0.018 0.00005 0.0021 

1000 0.5 0.7 0.20 0.17 0 

100 0.5 0.5 0.068 0.0138 0 

 

Table 1 shows a summary of the previous four experiments. The 

results should not be surprising at all, as the upper and lower bounds provide 

a more relaxed way of describing what the probability is. What is important 

here is that although the relative frequency of heads moves above and below 
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the actual probability, the bounds stay on target, widening up when the 

number of experiments is low and narrowing down as the number of 

experiments increases. Equations 125 and 126 provided us with a way to 

change the representation of knowledge dynamically and online. To 

emphasize this point more, the four experiments show that we can use 125 

and 126 to make decisions right from the beginning of the process, system, or 

observations. No period of offline time is needed to calculate the probability of 

an outcome; it will be computed dynamically online and in real-time. This very 

simple result in concept was not possible without CP to represent knowledge 

and KP to quantify the knowledge. Finally, we can summarize the algorithm 

used to estimate the probability of heads in the previous four experiments as 

follows: 

 

 

 

    

 

 

 

 

 

Algorithm 1: Probability update of a Bernoulli variable 

1- Start with n=1 and let  𝑃 𝜔  𝑃 𝜔  𝑃 where P is a subjective 

belief or an unconditional probability of a similar variable. 

2- Calculate the average occurrence of the variable using equation 

127.  

3- Calculate 𝑃 𝜔 ,𝑃 𝜔  using equations 125 and 126 

4-  Get the next experiment outcome and increment n. 

5- Repeat 2,3, and 4 until the difference between 𝑃 𝜔 ,𝑃 𝜔 ,𝑃 𝜔  is 

less than a predefined threshold like 0.05. 
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Step number 5 defines the stop criteria for the algorithm, which we 

have not touched on yet. Since the purpose of the algorithm is to help 

represent knowledge only when little data is available, then the algorithm 

should pass control to the KP representation when enough data are available. 

How do we quantify that? One way is to measure the uncertainty gap or 

difference between the upper and lower bounds to see how close they are to 

the numerical value of relative frequency probability. Another way is to 

calculate the confidence in the value of the current probability using the 

Chernoff bound: 

    ≥   
    

 

  (128)  

Hence, the algorithm stops if the confidence (Conf) is more than 0.95. 

However, there are instances where the algorithm might fail, for example, if 

the decision-maker decided to start with a probability of 1 or 0, and it 

happened that the first experiment resulted in heads. This scenario is an 

example of an extreme case where a decision-maker is choosing inrational 

value, for if the probability of an outcome is believed to be 1 then there is no 

need for probability in the first place, because 1 denotes a deterministic 

outcome rather than a probabilistic outcome. However, the decision-maker 

can still use a value very close to 1, such as 0.99, to avoid such a situation.  

In addition, we can use the same method to estimate conditional 

probability since conditional probability is also a probability, that is, it obeys 

the KP axioms. In such case, we can estimate P(Xn+1/Xn) and thereby provide 
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a dynamic,  online and real-time predictor of the next outcome based on the 

current one, with accuracy that increases with the availability of more data. 

3.3.3  Other types of distributions 

All the discussion and results of the previous section were under the 

assumption of Bernoulli variables applied to the very basic problem in 

probability, which is that of flipping a coin. Therefore, the algorithm developed 

so far would not be of much help to solve any scientific problem. How do we 

modify it in order to make it applicable to a wider range of random variable 

types? 

For that end, two approaches are proposed. First, we can derive a new 

Chernoff bound for whatever variable type is in question, or we can modify our 

algorithm to make it applicable to the variable type. The second approach 

appears to be easier than the first are, although, literature is full of examples 

of Chernoff bound for various trails like the Poisson one [91]. Consider a 

random variable like X with outcomes (a,b,c and d). Clearly, X is not a 

Bernoulli variable, but we can make it look like a Bernoulli variable if we let 

P(success) = p = P(a), and P(failure) = q = 1 – p = P(b)+P(c)+P(d). Then we 

can use algorithm 1 to estimate p = P(a) and q, and we can repeat for the 

other variables and normalize them to 1 (see algorithm 2). 
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However, algorithms 1 and 2 assume independent trials, which is an 

assumption not always valid. If the trials are dependent then we can map 

them into a sum of variables that are not.  One way to do so is detailed in 

reference [88]. 

3.4 Summary 

The theory of probability is filled with rich concepts and results, from the 

philosophical debate on the nature and meaning of probability to the practices 

and theories of quantifying it in a given context. A good grasp of both ends is 

of great value in analyzing the needs and requirements for an adequate 

solution to a problem. 

Although there are many interpretations of probability in the literature of 

philosophy, probabilistic logic and mathematics, CP stands out from the crowd 

as a relaxed approach to represent probabilistic statements when little or no 

Algorithm 2: Probability update of discrete independent variables 

1- With n =1, Get the next outcome and assign it to p. 

2- Estimate the probability of p using algorithm 1 leaving step 5. 

3- Repeat 1 and 2 until all variables are estimated. 

4- Normalize all probabilities so that they sum up to 1. 

5- Repeat until step 5 of algorithm 1 is satisfied.   
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information is available about some situations. In this chapter, we have seen 

how CP can be made compatible with the quantative interpretation of 

probability and how it can be combined with KP to produce a simple formula to 

update the upper and lower probability bounds in real-time. Although the 

assumptions upon which the formula was built are simplistic, the resulting 

algorithm can be taken steps further to make it applicable to more complex 

and interesting problems. Such problems are introduced in chapters 4 and 5, 

where we will attempt to apply the CP approach to probability to two 

interesting problems: aviation safety and patient monitoring in ICU. 
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4.  Application to aviation safety 

 

Having introduced the proposed approach of using comparative probability 

to make sense of data as they evolve over time, it is time to apply the 

proposed approach to an active area of research and measure the benefits 

and drawback of the new algorithms. After all, a theory of probability is of no 

use if it cannot be applied to science in any constructive way. In this chapter, 

the CP approach to Bayesian networks will be applied to some interesting 

problems in aviation safety. Aviation is one of the highly active industry 

sectors, with millions of passengers transported every year. It is where safety 

is held at a high priority through state-of-the-art diagnosing equipment of 

potential faults and highly detailed procedures to ensure safe and comfortable 

journeys for the passengers. In such situations, high safety standards will be 

maintained through online and offline monitoring and analysis of aircraft 

equipment. In the online phase, the aircraft sub-systems are constantly swept 

for indications of faults. If a fault is detected, a diagnosis subroutine is initiated 

to identify the fault and isolate its source. The process of detecting, identifying 

and isolating a fault will ensure that the pilot is aware of the existence of the 

fault and that it is attended to before the situation worsens. On the hand, the 

offline phase is the process of analysing the flight data stored in the flight data 

recorders (FDRs) to look for abnormalities in equipment behaviours, to 

measure the pilot performance, and to categorize the type of flight to sets of 
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types. Such analysis of data, whether online or offline, presents researchers 

with unique problems that call for novel solutions. It would be safe to say that 

all of the techniques and algorithms used in analyzing data to detect 

anomalies involve a step in which the results have to be labelled either normal 

or abnormal. In other words, the algorithms have to make a decision regarding 

the normality of the data it is analysing. Researchers may use different terms 

to refer to such phases, such as if-then rules [92], threshold detection [93, 94], 

or classification [95], but such decision-making phases are the main theme of 

the thesis.  

The previous chapter introduced several approaches to CP and detailed a 

hybrid approach to it that tried to combine the benefits of CP and KP.  

However, it is still unclear how the proposed techniques can be applied to any 

real world scenario beyond the basic coin and dice rolling examples. The 

purpose of this chapter is to investigate the application of CP to some 

interesting problems in aviation safety. The first problem is the real-time fault 

detection and the diagnosing of equipment onboard. The main challenge of 

this problem is how to identify a fault in an environment in which every piece 

of information is doubtful. The second problem is a DSS design where many 

cues collected from various pieces of equipment are combined to present the 

pilots with the bigger picture and to help them make better decisions through 

recommendations.  

 

This chapter will start by establishing a context with current methodologies 

used in aviation safety’s fault detection and diagnosis through a literature 
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review. It will then discuss the requirement for an online equipment readings 

validator / fault detector. The result will be used to build a decision tree to 

come up with recommendations to the pilot in order to draw better navigation.  

4.1 Literature review 

The current state of the art in data analysis methods can be loosely divided 

into two major categories:  

1) model-based, and 

2) data-driven (see Figure 20 [96]).  

 

 

 

 

 

 

Model-based algorithms can be either physics-based or AI-based. Physics-

physics-based approach relies on first order depiction and/or modelling of the 

system, such as differential equations representation [97], whereas the AI-

based uses classic AI techniques such as expert systems, finite state 

machine, or classical decision making. For example, thresholds can be 

defined for each parameter recorded in an FDR and the instances when these 

parameters exceed those thresholds can be used to trigger IF-THEN rules to 

Prognostic Methods 

Model-based Machine Learning 

Physics-based 

Classical AI 

Off-line 
On-line 

Figure 20. Classification of data processing methods 
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instantiate a consequential action or a report [98]. On the other hand, data-

driven algorithms use historical records of data to model the process. They 

use either mathematical models or machine learning to achieve that goal. 

Some examples of these techniques are given in the following sections. 

 

4.1.1 Model-Driven Data Analysis Approach 

The model-based diagnosis approach is focused on finding relationships 

between system variables. These relationships can either be represented 

quantitatively, such as with mathematical equations, or qualitatively, such as 

with IF-THEN rules [94]. This approach dates back to the early 1970s and has 

been applied to jet engine diagnosis by Baskiotis and colleagues. They 

developed a general methodology for diagnosing a system in which one can 

mathematically represent the relationship between its internal mechanical 

state and its external performance [99]. Since then, various approaches have 

been implemented in this category. Reference [100] gives an introduction 

along with some examples of such approaches as applied to an actuator, a 

combustion engine, and a passenger car.  

In general, model-driven diagnosis systems follow a two-step procedure. 

Firstly, they monitor for discrepancies (also referred to as residuals) between 

the actual and expected status of some measured parameters. These 

discrepancies can either be identified by an added redundant hardware such 

as sensors or analytically through functional representation connecting the 

inputs, states, and the outputs of the system together. Residuals can be 

thought of as features that need, ideally, to be triggered by only one fault type. 
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Secondly, they transfer residuals to their matching fault type through, for 

instance, a decision tree of IF-THEN rules [95, 101].          

However, diagnosing systems are often hybrids of the above types. They 

may use quantitative and qualitative approaches to diagnose a residual. One 

recent approach in aviation safety is to verify the data obtained from an FDR 

with mathematically simulated data that is generated using, for instance, the 6 

DoF representation of that aircraft. The deviation between the recorded data 

and the checking data is used for prognosis of potential faults in the aircraft 

[102].  

In conclusion, the development of a prognostic algorithm requires the 

availability of high accuracy models of an aircraft. Such models are sometimes 

only available through the manufacturer. The greater the number of variables, 

states, and parameters to be modelled, the more complex the model becomes 

and the more it requires computational power. In addition, the growing 

complexity of avionics might put the modelling process beyond practical 

realization, let alone the increase in cost. Model-based diagnosis systems are 

generally limited to linear process, otherwise, they require the implementation 

of a piecewise linear approximation resulting in a possibility of poor 

performance. Model-based systems are also prone to errors due to 

uncertainties arising from parameter drift [95]. Finally, one obvious limitation is 

that they require all faults to be known beforehand. Otherwise, the system 

cannot detect residuals for labelling as unknown faults.  
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4.1.2 Data-Driven data analysis approach 

In contrast to the model-based approach, the data-driven method, also 

known as the process-history-based method, does not require prior 

knowledge of a process, either quantitatively (such as the mathematical 

relation between the process variables) or qualitatively (such as rule-based 

interaction between inputs, states, and outputs of the process), but rather 

relies on extracting knowledge from historical data [103]. The process of 

extracting knowledge can be loosely classified into  

a)  parametric, and  

b) non-parametric.  

In the parametric approach, historical data is used as training examples to 

model the process into a parameterised model. Once that has been done, the 

training examples can be discarded as they are now represented by the model 

structure and the parameters. The model is then used to predict the next 

example. In contrast to this, the non-parametric approach does not generate 

parameters or learn from examples but rather uses the whole data or a 

selected sub-set of it as instant training examples to substitute the real 

process and/or predict the next one. Some of the approaches of that class do 

not require a training phase, parameters being generated, or models being 

built on the data. The system would be available instantly upon the availability 

of data, and it is hence called instant-based learning or memory-based 

learning [1,p. 737].  
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An example of the non-parametric approach is the k-nearest neighbour, 

which was employed by the so-called ORCA algorithm. ORCA is a data-driven 

anomaly detection algorithm proposed by S. Bay and M. Schwabacher in 

2003. It was designed to overcome the requirement of high computational 

power for large high dimensional dataset and achieved near linear scaling 

performance [104]. C. Chiu and others proposed the use of the Case-Based 

Reasoning (CBR) to improve aircraft maintenance support [105]. CBR is a 

relatively new approach in machine learning, whereby similar past problems 

are used to solve the current problem on the basis of its similarity to the past 

ones. CBR has also been proposed for troubleshooting aircraft engines [106] 

and prediction of component replacement [107]. Support Vector Machine 

(SVM) is the most popular non-paramteric algorithm. It’s attractiveness is 

related to the optimality property, its ability to construct maximum margin 

separators in which the distance from the boundary decision to the training 

examples is maximized, its ability to map the training data to a higher 

dimensional space where linear separation is otherwise not possible, and the 

sparse representation (its need to retrain only small proportion of the training 

examples rather than the whole data which lead to less memory utilization and 

less computational power [1,p. 737]). S. Das and colleagues have proposed 

an improvement over the ORCA and other algorithms for flight data anomaly 

detection through the use of the multiple kernel learning method. Their 

algorithm is applicable to both continuous and discrete data streams. 

However, their analysis was limited to flight levels below 10,000 ft [108].  
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On the other hand, the parametric approach can also be sub-divided into 

qualitative or quantitative. In the qualitative approach, the historical data of a 

process is used to extract expert rules such as the case with expert systems 

or to predict the trend of the process, such as the case with qualitative trend 

analysis (QTA) method. The quantitative approach can be either non-

statistical or statistical. Neural Networks are examples of non-statistical 

methods whereas clustering and principle component analysis (PCA) are 

cases of statistical techniques [109] (see Figure 21 [109]). 

 

 

 

 

 

 

 

In expert systems used to define normal behaviour and, based on this, to 

extract anomalous behaviour that can be associated with a fault using, IF-

THEN linguistic rules are usually used. Knowledge about the system can 

either be described as the state of a system, usually referred to as facts, or 

the relationship between these facts and the state of the equipment [110]. The 

diagnostic procedure can either use forward or backward reasoning.  In 

forward reasoning, an observation or a fact, such as a residual, would form 

the antecedent part of some if-then rule to trigger a production rule, or a 

Parametric data-driven 

approaches 

Qualitative Quantitative 

Expert systems 

QTA 

Non-statistical 
Statistical 

Figure 21. Classification of parametric data-driven approaches. 
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consequence, which can be an alarm, or another if-then rule, as it has now 

become a new fact. In backward reasoning, an observation represents a 

hypothesis that is used to search the entire consequent parts of the 

knowledgebase for matches. The antecedent parts of these matches are then 

used as new hypotheses for new searches, and the process continues 

recursively until one hypothesis proves to be false or the entire knowledge 

base is verified [110]. The main problem with the expert system approach is 

the so-called ‘curse of dimensionality’, which is related to the fact that one 

needs a huge number of rules in order to describe all possibilities. Another 

issue with traditional expert systems is the subjective element and the fact that 

they lack adaptability. These problems have been addressed successfully by 

fuzzy logic [111], which works in a manner similar to expert systems but 

allows partial degrees of fulfilment and overlap. In this way, a small number of 

much more powerful rules (which may be partially satisfied – the degree of 

their activation is inversely proportional to the distance to prototype) can cover 

the whole data space [112]. These are in general very specific to a process 

and very difficult to update [109]. 

In qualitative trend analysis, the evolution of historical data is abstracted 

into symbols called primitives. It approximates the time development of each 

parameter by linear segments and then it labels them as:  

a) increasing,  

b) decreasing, or  

c) steady.  
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Successive segments with similar primitives are aggregated together to 

form trends [113]. Trends are used to predict the future state of the system 

and consequently analytically to diagnose the system by comparing the 

analytical state of the system with the actual state. The power of QTA comes 

from its ability to represent development of a parameter in understandable 

terms, such as ‘steady’ or ‘increasing’, often used by experts in many fields, 

e.g. doctors monitoring patients’ conditions [113]. QTA has been applied to 

trend equipment malfunctioning in commercial aircraft using historical reports 

from the Service Difficulty Reporting (SDR) system [114]. The main problem 

with this approach is that the resulting model was too specific to one aircraft 

type and operator. No evidence was given as to how the resulting model can 

be used or even modified to become applicable on operators with mixed 

aircraft fleet. Additionally, the amount of computation power required to trend 

and analyze a process increases significantly as the number of parameters 

representing the process increases. However, PCA has been suggested to 

reduce the number of monitored parameters [115].  Finally, abstracting trends 

for non-linear time series requires a more complex segmentation method than 

a simple triangulation, if the number of resultant segments is to be reduced. 

Several approaches have been suggested, such as using neural network, or 

calculating the first and second derivative of the parameter changes over time 

[109].  

Under the non-statistical category, we find Artificial Neural Networks (ANN) 

to be the most utilized approach to diagnosis. Artificial neural networks are 

attractive due to their rapid development speed and their ability to model 
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highly nonlinear processes. There is huge amount of literature that suggests 

ANN for fault detection and/or isolation. They have been used to detect 

aircraft sensor abrupt faults using the virtual sensor concept, in which ANN is 

used to reconstruct what the output of the system should be and, thereby, 

compare it with the actual output while monitoring for errors [116], self-

calibrating sensors [117]. ANN has also been proposed for real-time control 

surface fault detection and isolation (FDI) using the same virtual sensor 

concept mentioned earlier [118]. A slightly different approach has been 

proposed by Ali and Tarter. In their method, instead of modelling sensors 

input/output pairs, the aircraft engine noise level during the flight profile is 

modelled and used for comparison [119]. Additionally, Savanur and others 

used an adaptive neuro-fuzzy approach to diagnose aircraft actuator faults 

[120]. However, ANN might be prone to misclassification error near the class 

boundary where the training data is sparse [121]. As is the case with the 

previously mentioned approaches, ANN has been applied to only a fraction of 

what a modern flight data recorder stores, and is also unable to detect 

unknown anomalies where no classes where defined during the training 

phase. 

Whether a process is modelled through expert knowledge or by extracting 

knowledge from data, the resultant model is deterministic in a way that the 

future developments of parameters are uniquely and non-randomly dictated by 

their past states. This is not the case with every parameter recorder in an 

FDR. For instance, the sequence of pilot inputs involves elements of 

randomness. In such a case, the probabilistic/stochastic approach is more 
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reasonable when every observation is of a probabilistic nature and the 

majority of observations are assumed to be normal and a significant deviation 

from the normative is considered anomalous. Traditional quality control 

monitoring is one of the oldest users of statistical data-driven fault detection 

[109]. 

Samara and colleagues showed how to design a one-versus-one case 

statistical fault detector that was utilized for the angle of attack (AoA) sensor. 

Their statistical fault detector used a fixed-length sliding window to feed 

statistical calculation of the mean and standard deviation of the residual. 

However, it wasn’t clear why some of their thresholds were chosen the way 

they were, apart from an ad hoc justification of reducing the number of false 

alarms [122]. Chu and colleagues used a least square (LS) regression 

approach to detect performance anomalies in flight data. They considered 

anomalous those samples that deviate from the scatter as a result of 

turbulence and system errors. The model requires the availability of huge 

amounts of historical data, which were generated artificially using one of 

NASA’s medium fidelity flight simulators. Requiring thousands of flight 

examples of an aircraft type for training puts the method beyond practical 

consideration; in addition, the model has not been applied to real flight data 

[123]. Extended Kalman Filter (EKF) has also been proposed for fault 

detection [124]. EKF is the nonlinear counterpart of the widely distributed 

Kalman filter [125], which is a probabilistic state estimator that tries to estimate 

the states of a system when only noisy observations are presented. Since 
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data from FDR could contain both discrete and continuous parameters, it is 

unclear how accurate EKF can be when applied to continuous processes.    

Cluster Analysis is one of the most used tools in the statistical analysis 

toolbox. Its popularity is probably the result of its powerful ability to organise 

data into groups (called: clusters) based on similarity in an unsupervised 

manner. There are generally two types of clustering algorithms:   

a) on-line, and  

b) off-line. 

In hierarchical clustering, data are organized into nested groups of 

hierarchical fashion so that a data point is part of a sequence of nested 

partitions. The organization of data into hierarchical clusters can either follow 

a bottom-up (commonly known as: agglomerative) or a top-down (also known 

as divisive) approach [126]. On the other hand, partitional algorithms assign 

each data sample to a certain cluster. In fuzzy clustering [127], a data point 

can partially belong to more than one cluster. There are many approaches to 

achieving partitional clusters in the literature. They are usually divided into: 

centre-based, prototype-based, graph-based, and density-based, to name a 

few [126]. In the centre-based and prototype-based approaches, the clusters 

are represented in terms of centres (called: centeriods) and the data is 

assigned to that cluster where the distance to the centre is minimum. A 

centeriod of a cluster is the arithmetic mean of all data points within that 

cluster. The resultant shape of a cluster is of convex shape hyper-sphere (if 

Euclidean) and ellipsoid (if Mahalonobis) distances are used. The graph-

based approach begins with a graphical depiction where data points can be 
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connected together, based on similarity, to form hyper-graphs. The approach 

works best if the data points are well separated. The density-based approach 

assumes that clusters are those special regions where the data points are 

denser that the other regions [126]. It is quite tolerant to noise and is 

mathematically efficient. The model of the data density distribution is often 

incorporated into the algorithm in terms of constraints or geometric properties 

of the co-variance matrix [126].  

Clustering analysis has been widely used to detect anomalies. Only certain 

key-methods that have been applied to aviation safety, or that have the 

potential of being so, are mentioned. Thomas R. Chidester has applied the 

cluster-based approach to flight data collected from about 1300 flights. He 

used the resulting clusters to generate what he referred to as a ‘morning’ 

report, which measures the similarity of a flight data signature to the cluster 

obtained from the analysis. The similarity is then used as a score of how 

typical a flight is [128]. However, the analysis was limited to a given proportion 

of the flight data. Moreover, since the clustering method is centre-based, the 

resulting clusters are intolerant to noise. Finally, since the shape of the 

resulting clusters are hard determined by the algorithm and not by the 

distribution of the data itself, a flight signature could be misclassified into a 

wrong cluster, which may result in an increase in the number of false 

negatives (FN) or false positives (FP). Mark Ford reported an approach based 

on the use of clustering analysis that was conducted by the British Air 

Accidents Investigation Branch (AAIB), QinetiQ, and specialists from engine 

manufacturers to detect anomalous signatures in fuel flow to the engines of a 
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Boeing aircraft. They analysed 178,000 flight data and performed several 

experiments to understand the formation of ice and, thereby, augmenting the 

instances where the collected data is sparse. They started by cutting the 

recorded flight data into phases and then they focused on only two 

parameters: fuel flow and fuel temperature [129]. Although the report 

mentioned several tools for data mining, there was little discussion on which of 

them were actually used, what assumptions were made, and any other 

technical or mathematical processing of the parameters used. S. Budalakoti 

and colleagues developed what they called the SequenceMiner algorithm, 

which detects anomalous sequences of switch triggers inputted by a pilot in an 

aircraft’s cockpit. They used a modified version of the k-medoids clustering 

algorithm by finding medoids within randomly selected regions of the entire 

dataset. They then used the Bayesian decision tree to model the differences 

and similarities of sequences within the clusters as a way of characterising the 

detected anomaly [130]. While the SequenceMiner works very well when 

applied to discrete sequential data, this is not the case on continuous ones 

[108].      

There is also a growing research interest in using so-called artificial 

immune system to detect anomalies in flight data. Artificial Immune System 

(AIS) is a set of mathematical models that attempts to mimic the biological 

immune system (BIS) found in vertebrates. In recent years, there has been a 

rise of interest in AIS due to its adaptability, optimizability, and potential to 

detect anomalous behaviour. One important application of AIS are situations 

in which much information is known about the normal behaviour of a system 
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and a little or no information is known about the anomalous behaviour of a 

system. In computer security, for instance, the behaviour of a normal user 

connected to a server could be known through the analysis of raw access 

files, whereas the behaviour of a hacker trying to exploit the system is not 

always known, particularly with respect to the discovery of new vulnerabilities 

and methods to exploit a system. AIS are built on clustering, whereby one can 

use clustering to analyze the normal behaviour of a process. The resulting 

clusters space is referred to as the ‘self’ and one then uses the 

complementary space, known as the ‘non-self’, to generate detectors and 

apply them to the classification of new data as either the ‘self’ or ‘non-self’, i.e. 

an anomaly [131]. Jennifer N. Davis used an evolutionary algorithm to 

efficiently generate detectors that cover the complementary space where the 

clusters representing the normal behaviour of a system reside. The method 

was applied to data collected from flight data recorders [132, 133]. K. Krishna 

Kumar studied several potential models of AIS to be applied in aerospace 

applications and questioned the adequacy of these models to replicate the 

immune system metaphor [133]. In addition, there were further concerns 

regarding the representative power of the generated ‘self’ space over the 

normal behaviour of a system [134], and it has further been shown that the 

detectors generated over the Hamming-shape space are not well suited for 

online anomaly detection problems [135].     

All of the methods reviewed thus far, except kNN, require a stage of offline 

training so as to extract knowledge from available historical data, except for 

the non-parametric approach, in which the system is available instantly once 
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the historical data is available. However, the computational power required for 

implementing a pure non-parametric system is tremendous given the huge 

dimensionality of the data recorded by an FDR. However, a recently proposed 

approach that has attracted much interest in online knowledge extraction 

algorithms where the parameters of the system are estimated and re-

configured on the fly as the data is being passed to the algorithm. Some of 

these techniques can even “evolve” in the sense of introducing new clusters 

and rules to better describe the system [130]. One such evolving algorithm is 

based on the Takagi-Sugeno realization of fuzzy systems (commonly referred 

to as: eTS). eTS uses a density-based clustering algorithm called eClustering 

plus recursive LS (RLS). This results in a flexible structure rule-based model 

of the process that can be used to predict its next state. The structure of the 

system is able to evolve (add new rules or modify existing ones) according to 

the data density dynamic changes. Evolving systems have been used for 

anomaly detection, albeit in other industries such as detecting anomalies (or 

novelties) in video streams [136], machine health prognostic [137], and real-

time characterization of car driver behaviour [138]. As this approach has not 

been applied to the aviation industry, it would be one of the aims of the team 

to estimate its potential for flight data processing, which is specifically the case 

for this project. One could think of an anomaly from a statistical point of view 

as those samples that statistically deviate from the normative represented by 

the majority of other samples. Thus, the detection of novelties boils down to 

estimating the density and defining the deviation from the mean density. A 

sample can be considered anomalous if this deviation is larger than two or 

three times the variance of the data, known as sigma [139]. For the estimation 



 
Application to aviation safety 152 

 
 

 

of pdf to be computationally efficient, a recursive approach should be 

undertaken, such as the case with recursive density estimation (RDE) 

approach. RDE has been used as a novelty detector in video streams as 

opposed to the traditional kernel density estimation (KDE) approach [140]. 

4.1.3 Types of anomalies 

An anomaly can be defined as a data-point, or a sequence of data-points, 

that does not conform to a well-defined perception of an expected behaviour 

[141]. Researchers use many terms to describe the task of detecting 

anomalous behaviour, often with different terminology. These include novelty 

detection, outliers detection, exception mining, or surprise detection [141]. In 

addition, the definition of anomalous behaviour is another area of debate, as 

research assumptions are often influenced by the availability of data, nature of 

application domain, and availability of validating model [142]. One of the 

earliest definitions of an anomaly comes from F. Grubbs, where it was defined 

as: 

An outlying observation, or outlier, is one that 

appears to deviate markedly from other members 

of the sample in which it occurs [143]. 

Hence, the random variations in observed values of a samples are assumed 

to be the result of a determined system of causes which, acting together, are 

considered normal, while anomalies are the result of another set of causes – 

such as human error or equipment malfunction – which cause the 

observations to further deviate from the normal distribution of the sample. If 

we assume a null hypothesis of: observation    conforms to the normal 
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Gaussian distribution of its belonging sample, then a simple way of testing that 

hypothesis is [143]: 

    
      ̅ 

 
 (129)  

where  ̅ is the arithmetic mean of the sample and   is the standard deviation 

calculated with   –    degrees of freedom given by: 

   {
∑       ̅  

   

   
}

 
 ⁄

 (130)  

The value of    obtained from (129) is compared to a critical value that 

represents the likelihood of recording that observation by chance given the 

size of the sample. The likelihood is often referred to as: the significant level 

and common values of it are: 1%, 2.5%, and 5%. The critical value of T is 

often given in table format which lists a value of T for a given significance level 

and sample size (see reference [143] for an example). Once an anomaly is 

detected, it would be removed from the data-set and the mean and standard 

deviation values are re-calculated once again, and a search for anomalies is 

initiated again. The same procedure continues until no further anomalies can 

be detected [141]. However, if the number of anomalies is small compared to 

the size of the data-set, one could sacrifice the accuracy of the sample 

distribution for computation power efficiency [141]. Another approach is to use 

unsupervised classification, also known as clustering. Within the clustering 

approach, there are two types of anomalies: 
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1) An outlier can be thought of as a point in space lying outside those regions 

considered normal. Figure 22 shows a process represented by a space of 

two features. Points inside regions A and B belong to the class of normal 

behaviour. However, point X, which lies outside those regions, is 

considered anomalous. Hence the name: outlier. 

 

 

 

 

 

 

2) A surprise is a point assigned to a cluster where it was expected to be 

assigned to a different one due to the current sequence of events. Figure 

23 shows that point X is assigned to cluster B where it should have been 

assigned to cluster C. An application for a surprise is removing 

misclassified nodes from a decision tree [144].  

 

 

 

 

 

 

Figure 22. Point X is an outlier because it resides outside the normal region 

represented by A and B. 
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Figure 23. Point X is an outlier because it should truly be assigned to C not B. 
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A statistical approach to anomaly detection has the benefit of not requiring any 

prior knowledge of the application but it requires the availability of an 

adequate number of sample observations in order to estimate the normal 

distribution of that sample. This approach is sometimes referred to as the 

Type I approach [141]. In contrast to the Type I approach, Type II deals with 

the anomaly detection as a supervised classification problem. Data should be 

pre-labelled as normal or abnormal, but there could be several subclasses 

under the class of normal or abnormal. The system uses these labelled data 

to construct a model that can be used to classify a new data-point. Finally, the 

Type III anomaly detection approach requires the availability of data from one 

class, which is usually the normal class. The system would then use the 

complementary space of the normal class region to construct an anomaly 

detector [141]. 

4.2 Demonstrating a model-based diagnostic decision tree for 

validating aircraft navigation system accuracy 

 

This section will detail the steps involved in designing a novel model-based 

fault detector and isolator to help pilots validate the accuracy of their 

navigation system. The designed system will be packed by a CP based 

Bayesian network to improve the performance of the system at times of less 

available information. In addition to proving the versatility of CP, the 

introduced system proposes a novel solution to fault detection and equipment 
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monitoring in the aviation industry. The reasons behind the proposed solution 

will also be discussed in the following subsections. 

To assist the effort for aviation safety and increase navigation accuracy, 

large aircraft are required to use redundant measuring equipment. The 

accuracy of the navigation system can be verified by comparing the readings 

from two or more different equipment groups. For instance, an accurate 

altitude can be assumed when the altimeter reading of the pilot’s panel is 

identical to that of the flight officer’s panel. Otherwise, a search for the 

defective component is initiated which, in turn, might involve manual 

procedures such as switching to alternative air data or observing the status of 

the altimeter for visual defection cues such as a fluctuating pointer [8]. 

However, manual observations require the pilots to be in a high state of 

situational awareness where they would be able to comprehend the states of 

the aircraft and, in turn, make reasonable decisions [145]. This negates the 

purpose of a decision support system (or redundant measuring equipment) as 

they are supposed to raise  pilot’s situational awareness instead of the other 

way around. 

 One fault detection and isolation method that has received much 

research interest is the detection filter proposed by Beard in the early 1970s, 

where a fault is associated with a subspace of error state space called the 

detection space [146].  In this context, Caliskan and Hajiyev have studied four 

algorithms used to verify the co-variance matrix in a Kalman filter (KF) from a 

performance point of view [147]. However, since all KF-based algorithms 

follow signal-based modelling methods in which only the output signals are 
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monitored, these algorithms can only detect deviations from assumed normal 

behaviors. The enhancement to fault diagnosis and detection (FDD) proceeds 

on a strictly ad hoc manner, without any solid foundation to enhance generic 

applicability [148]. Other methods used to enhance fault detection are 

discussed in [149], including both the Multiple Model Adaptive Estimation 

(MMAE) and the Interacting Multiple-Model (IMM) algorithms. 

 Little attention has been given to establishing a framework to develop 

an FDD system that deals with navigation systems as a grid of mathematically 

and physically inter-related quantities in which the accuracy of a reading can 

be mathematically verified. Such verification could be worked out by a 6 

Degrees of Freedom aircraft mathematical model. When the sensor states 

and mathematical states of an aircraft do not resemble each other, a search 

for a fault is initiated that involves qualitative fault isolation. In this 

demonstration, we will use the Bayesian diagnostic tree method to point to the 

most probable culprit of mismatching. The Bayesian diagnostic tree also 

serves as recursive Bayesian estimators to evaluate the probability density 

function of a given fault. Implemented with CP, we will also demonstrate the 

beneficial value of the implementation.  

4.2.1 6 Degrees of Freedom Equations of Motion 

When it comes to building a simulation model for a flying body with high 

fidelity, the 6 Degrees of Freedom (6DoF) is often the popular choice as it can 

be used to simulate displacement and rotation in three-dimensional space 

[150]. A rigid flying body (such as an aircraft) in free motion is able to move 

and rotate freely along any of the three perpendicular axes of a three-
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dimensional space, hence providing the six forms of motion. The 6DoF 

equation of motion follows from applying Newton’s second law of motion to a 

flying body subjected to aerodynamic and thrust forces f ,  and the earth’s 

gravitational field.  This can be written as [150]: 

       
  f ,      (131)  

Where m is the body’s mass and    
  is the velocity of it with respect to the 

inertial frame (I). If the body to be modeled flies relatively close to the earth, 

the earth is often assumed to be the reference frame (E), and, for these 

purposes, assumed to be flat. To solve the previous equation, one needs to 

be able to access the forces applied to the body (B) with B taken as the 

reference frame. This change in reference frames is done through Euler 

transformation. Thus, equation (131) can be re-written as [150]: 

        
           

  f ,      (132)  

 

The calculation is best carried out using software packages that facilitate 

state-vector variable integration and matrix manipulation [150]. In this 

feasibility study, MATLAB was chosen as the simulation environment. 

4.2.2 Aircraft Modelling 

 The use of high fidelity models to simulate aircraft motion in space is 

required for accurate validation in a non-simulation environment. The 

development of such a model requires extensive resources and modelling 
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time. A high fidelity model of a specific aircraft would require the knowledge of 

complete aerodynamic and thrust tables, flight control design, mass 

parameters, and the logic of the navigation and sensor operations. Only then 

could such a developed model be tested and its reliability thoroughly validated 

[150]. Unfortunately, such detailed considerations in modeling all onboard 

equipment would greatly affect the robustness of the model, and limit its 

application to other aircraft types.  

 As the focus of this demonstration is FDD/qualitative fault isolation, and 

given the time and resource constraints of this study, the decision was made 

to use a generic out-of-the-box model. The selection criteria for the model 

were primarily on their integration with academically-proven simulation 

environments, such as MATLAB, and trajectory visualizing software packages, 

such as FlightGear. AeroSim blocksets of MATLAB/Simulink block library 

developed by Unmanned Dynamics provide modules for rapid and fast aircraft 

modelling. A complete aircraft 6DoF model can be defined by generating a 

configuration script that specifies the aerodynamics and engine parameters for 

a specific aircraft type. It also provides a parser for importing FlightGear v. 

0.9.2 models such as CESSNA-310. In the development phase of this study, 

the North American Navion was chosen to carry out the simulation. The 

models of the Aerosim block library are limited to only conventional aircraft 

with single piston engine and fixed pitch propeller. Nevertheless, this limitation 

was not deemed to affect the validity of the proof of concept, as the design of 

the system is modular and can be ported to use other aircraft types given an 

accurate mathematical model.  
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 Figure 24 [151] shows a simplified block diagram of the internal 

structure used in Aerosim to simulate a complete aircraft. Controls from the 

pilot joystick are used by the aerodynamics, propulsion, and inertia models to 

calculate the total forces and moments applied to the aircraft giving the 

simulated atmospheric conditions and reference frame. These in turn are used 

to solve the equations of motion and obtain the aircraft position (altitude, 

latitude, and longitude), orientation (heading, roll, and pitch), and velocity. 

These vectors are used to update the atmospheric and earth model as a 

change in aircraft position might have an impact on the atmospheric 

conditions (e.g. pressure and gravitational forces). The sensor measurements 

are then derived directly from the calculated aircraft state. One drawback of 

Atmosphere
Model

Earth 
Model

Aerodynamic
Model

Propulsion 
Model

Inertia
Model

Equation of
Motion

Winds Controls Reset

Sensors

Figure 24. The internal structure of the complete aircraft block. 
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the Aerosim library is that there are no models developed to simulate 

appropriate aeronautical sensors [8], and generic analog and digital sensor 

blocks were thus used instead. This lack in specific modeling was also judged 

not to have a negative impact on the assumption and validity of this feasibility 

study as the sensors and vector states are treated as black boxes with 

variations artificially generated through the application of noise and scaling 

factors. 

4.2.3 Current Functional Procedures 

To compensate for sensor errors that equipment may encounter during 

operation, modern aircraft are fitted with redundant systems that work 

independently. The value of the measurements is then taken and the value 

displayed to the pilot is made through a majority rule or least square method. 

Since in most cases an aircraft in good condition might only experience a 

malfunction in a single piece of equipment, this error would be compensated 

for by the vote of the other redundant systems (assuming two or more 

redundant systems). 

 However, majority rule might fail if the cause of the malfunction is 

systemic in such a way as to affect the other redundant systems that are 

concurrently working out the same measurement. For example, the 

measurement of airspeed involves sampling pressure from outside the aircraft 

using special probes, called pitot probes. If an environmental condition such 

as icing could affect one pitot probe, it is not unreasonable to also expect 

some impact on the other, identical redundant probes.  
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 Therefore, it is of great interest to be able to calculate the conditional 

probability of a malfunctioning sensor, given that another sensor has 

malfunctioned using the same process for measurement. Figure 25 shows a 

simple Bayesian network representation of two sensors (labeled S1 and S2) 

working out the measurement of a quantity in an influential environment (E). In 

this case, it is safe to assume the conditional probability of having a wrong 

reading given that E has occurred identically for both sensors, i.e.: 

 

 

 

 

 

 

 

P   |   P   |  …     (133)  

We are most interested in calculating the probability that the second sensor 

might be malfunctioning given that S1 has malfunctioned and E has occurred, 

i.e., we want to calculate: P   | ,    . One way of calculating this is: 

P   | ,     
P   |  ,   P   |  

P   |  
 

P   |  P   |  

P   |  
 P   |   (134)  

E

S1S2
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PS1PS2

P(S1 | E)P(S2 | E)

Fig 1. Baysian network for two sensors S1 
and S2  in environment E

Figure 25. Bayesian network for two sensors S1 and S2 in 

environment E 
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The result of equation 134 means that if there are evidences for the 

occurrence of environment E, then the probability of one sensor 

malfunctioning has no statistical influence on the other. Both sensors would be 

influenced by E to the same probabilistic degree, whereas if E is assumed not 

to have a global influence, then the probability of having two wrong readings 

out of three is: 

P        f    P   P   (135)  

The probability of two wrong readings out of three for sensors that have 

independent “ways” of working out a reading is dramatically lower than the 

probability of two wrong readings for those sensor types with a similar way of 

calculating a measurement. Thus, it is desirable to have a validating system 

that uses, to the maximum extent possible, independent methods of 

calculating the current states of an aircraft. 

4.2.4 BADA and TEM 

BADA (Base of Aircraft Data) provides performance operation data and 

aerodynamics parameters for about 151 types of aircraft. These parameters 

are the results of developing a mathematical model for a given aircraft using 

the total energy model (TEM) [152]. Consequently, the parameters can be 

used to check if an aircraft is operating within a set of recommended speed, 

rate of climb or descent (ROCD), or fuel flow. This could, in turn, provide a 

way of validating a current on-board situation in case the data being logged for 

any of these parameters goes beyond safe, recommended, or normal range. 

In this section, this process will be labeled BADA check or “Is exceedance”. 
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This type of validation could detect exceedances in real time rather than by 

the end of the trip, as is the case with the one described in [153]. As a side 

benefit, since the checking is performed against recommended operational 

data, commercial airliners would greatly benefit from the resultant fuel saving 

and maintenance, as pilots would be more likely to comply with recommended 

speed, ROCD, and so on. We will expand further on BADA usage as a DSS in 

section 4.4.  

4.2.5 Assumptions and Proposed Design 

 The diagnostic decision tree network developed in this feasibility study 

is based on two assumptions: 

1. The airplane is in good and airworthy condition such that the source of a 

problem could be traced back to one or two causes at most.  

2. Mathematical aircraft model (called Math Engine) has some impact on the 

calculated parameters of the airplane vector state. This is borne out in 

aerodynamic theory: 

 Wind speed affects ground speed, position, and Euler angles.  

 Control surfaces (for pitch, roll, and yaw) affect ground speed 

position and Euler angles. 

The reasoning of the proposed diagnostic decision tree is a natural extension 

from the two previous assumptions. If any sensor reading used as input to the 

Math Engine (ME) is affected by a malfunctioning, we would expect to find all 

the calculated parameters from the ME to differ from those of the onboard 

sensors (due to the second assumption). Since the probability that this 



 
Application to aviation safety 165 

 
 

 

“disagreement” is due to malfunctioning of all equipment on-board is 

extremely low (due to the first assumption), the more logical explanation is 

that one of the ME input parameter is wrong. 

Figure 26 shows the proposed algorithm for diagnosing differences in 

readings of different equipment/sub-systems. It starts with a simple check of 

whether every sensor’s reading of the Primary System (PS) is similar to that of 

the Redundant System (RS) and that of the ME. Readings are considered 

similar if the error is within a tolerated value that can be set appropriately. If all 

readings are similar, the confidence that everything is working fine increases. 

Nevertheless, this could be a false negative, as the network might have failed 

to detect anomalies in an equipment reading. Therefore, a more expensive 

test is performed to check for false negative which was accomplished by 

adding “is exceedance” checks, in which the readings from equipment are 

compared with the recommended operation levels taken from BADA.  

 However, if the readings differ, then the next observation that has to be 

noted is the proportion of disagreed cases that have been detected. If only 

one case of disagreement is detected, it is most likely that the ME output is 

true (this is evident by ME = PS = RS for the other parameters). The reading 

that is in disagreement with the calculated ME value is highly likely to be the 

culprit.  

 



 
Application to aviation safety 166 

 
 

 

 

Figure 26. The proposed investigation engine 

 

However, all of the readings differing from each other leads to the conclusion 

that one (or two) of the inputs to the ME are incorrect. A check of all the input 

parameters of the ME is needed. It is possible to check the Control Surface 

(CS = pitch, roll, yaw) by comparing its values with those extracted from the 

pilot CS input. Checking the other parameters to make sure they follow the 

same procedure is not implemented in this study. For example, it is fairly easy 

to check if the wind speed is measured correctly by this simple equation: 

T1 

T2 T3 

T4 
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   d         (136)  

Where GS is the ground speed, and TAS is the true air speed. Figure 27 

shows a block diagram of the proposed system. 

 

 

4.2.6 Mathematical formulation and analysis 

In this section, the Bayesian network equivalent of Figure 26 is developed. 

In addition, we will derive the mathematical formulation of it. Since Figure 26 

gives a diagnostic tree view of the network, all we need to do is convert it to its 

Bayesian network equivalent. However, it is much easier to think of the 

proposed design as an inference-type Bayesian network because constructing 

a Bayesian network from the point of view of cause-to-effect is easier and 

more straightforward than the other way around, from effect-to-cause.  

Math 

Engine 

Aircraft 

Pilot 

Joystick 

Wind 

Dissimilarity 
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Figure 27. Block diagram representation of the proposed network 
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Let the aircraft vector of states be denoted as   and an individual state 

number n from within the vector as   . Additionally, let   be the vector of 

input variables to the Math Engine and the simulated aircraft in Figure 27. 

There are four tests to perform, as shown in Figure 26, labelled T1 to T4 and 

shown with dashed oval shapes. T1 has four possible outputs depending on 

the similarity between the vectors of states from PS, RS and ME. These are 

summarized in equation 137. 

        ,   ,    

 {

 
   

a   e e        
 

…      .           
(137)  

where   is some function that outputs the number of similar states of PS, RS 

and ME. It can be as simple as a threshold detector or as complex as a 

clustering algorithm. In this demonstration, a threshold detector is used. The 

number of similar states can either be as high as n, which indicates that the 

vectors of states are identical, that all but one are identical, that some are 

identical and some are not, or that they may all differ. T2 and T3 have yes/no 

outputs, whereas T4 has three possibilities as in 138: 

       ,   ,   ,     {
P 
  

   e
 (138)  

With these assumptions in mind, the Bayesian network can be plotted as in 

Figure 29.  
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The three circular nodes represent the output vectors of the primary 

system (PS), the redundant system (RS) and the math engine (ME). Their 

status can be either healthy or faulty and the way the status would be 

determined is through the four test nodes. Test nodes are action nodes, but 

since tests can have probabilistic results conveying the accuracy, or the error 

percentage, they could also be considered as probabilistic nodes. The 

Bayesian equation for Figure 28 is: 

P P ,   ,  ,   ,   ,  3,    

 P   |P ,   ,   P   |   P  3|   P   |  , P ,   ,   

 P P  P    P     

(139)  

The evidences available to us are the results from performing tests T1 to T4 

and the probabilistic query would regard the status of primary or secondary 

   PS RS ME 

T1 

T2 T3 T4 

ΘPS ΘME 
ΘRS 

Figure 28. The Bayesian network equivalent of Figure 26. 
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systems. Taking a query for the status of the primary system as an example, 

we can write: 

    |  ,   ,   ,     
    ,   ,   ,   ,    

    ,   ,   ,    
      ,   ,   ,   ,    

  ∑∑ P P ,   ,  ,   ,   ,   ,    

    

 
(140)  

Substituting equation 139 into 140 yields: 

    |  ,   ,   ,    

  ∑∑P   |P ,  s, e P   |   P  3|   P   |  , P ,  s, e 

    

 P P  P  s P  e  

(141)  

Equation 141 gives the exact inference formula to estimate the status of PS, 

giving the results of the four tests. The same procedure can be followed to 

infer the status of RS. Any of the approximate inference algorithms discussed 

in chapter 2 can also be used. However, the problem regarding the question 

as to where the numbers come from remains to be solved. The answer from a 

Bayesian point of view is to use subjective probability or, on the other end, to 

use statistical data to estimate the required probabilities. The approach 

adopted in this thesis is a hybrid of these two. It starts from a subjective 

degree of confidence to estimate an upper and lower bound that close down 

to the expected average of a variable as the amount of data increases. A 

decision-maker can initially assume that his/her tests are 100% accurate and 
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then revise the degree of confidence as collected data prove otherwise. In this 

demonstration, we follow the algorithms of determining the upper and lower 

bounds in chapter 3, algorithm 2 and that exact inference of equation 139 is 

used.   

4.2.7 Experiment Set-up 

 The demonstration is conducted by setting up a simulation environment 

in MATLAB. The complete aircraft block from AerSim blockset is used to 

simulate an aircraft. The sensors and states outputs were labeled primary 

system (PS) and redundant system (RS), which represent a generalized way 

of identifying a reading from one of two independent sources, for example, a 

barometer or a GPS reading. Since the objectives of this study did not include 

investigating the systematic or environmental causes of malfunctioning 

equipment, but rather aimed to validate the readings, aircraft sub-systems 

(equipment) were treated as black boxes, and errors in equipment readings 

were simulated by the addition of random noise and/or by multiplying a 

reading by a scaling factor. The output of the investigation engine was 

monitored to determine if the faulty equipment in which the error was 

introduced was correctly detected. 

 To test the operation of the network, scenarios have been created in 

which a malfunctioning equipment event was introduced while the output of 

the investigation engine was logged. The aim of these scenarios was to test 

the accuracy of the proposed investigation engine, and its ability to pin-point 

the faulty equipment whenever a fault was introduced. The first two 

simulations used a deterministic environment in which the investigation engine 
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operated at perfect (100%) accuracy and output was either 0 (for “no fault 

detected”), or 1 (for “fault detected”). The sampling frequency was 0.008 

seconds. The purpose of the first two scenarios was to show the improvement 

of the developed FDD over the current procedures, whereas that of the third is 

to show the advantages of CP in comparison to the approaches of scenario 1 

and 2.   

4.2.8 Scenarios 1: Fault in Primary System Pitch 

 The first scenario run was meant to test the operation of the network 

when simulating a malfunction in the sensor equipment responsible for 

 (a). Pitch (in rad) calculated by the Mathematical Engine (ME). 

 (b). Pitch (in rad) from the Primary System (PS) sensor.  

 (c). Output of the investigation engine, port: Fault in PS Pitch   

Figure 29. Results of scenario 1 
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displaying the current pitch attitude. The simulation time was set to 50 

seconds, and throughout the simulation, the value of the aircraft pitch attitude 

was constantly changed by means of a pilot joystick. Figure 29 (a) shows the 

theoretically calculated pitch altitude, while (b) shows a graph of the pitch 

altitude sensor’s reading. During time 0 to 20.5 seconds, the two values 

resembled each other and the investigation engine’s port: Fault in PS Pitch 

was zero (figure 29 (c)). However, when a malfunction was introduced into the 

primary system’s pitch sensor at time t=20.5 seconds, the investigation engine 

was successful in pin-pointing the faulty equipment. The fault was held for 10 

seconds, during which the investigation engine’s output port “Fault in PS 

Pitch” stayed at 1, producing a positive result for the test scenario. 

4.2.9 Scenarios 2: Fault in Primary and Redundant Speed Sensors 

The second scenario demonstrates the superiority of the network over 

current systems when using two sensors to independently calculate the same 

physical quantity. Once again, the simulation was set up to run for 50 

seconds, and Figure 30 (a) shows the theoretically calculated airspeed values 

against time. Figure 30 (b) and (c) shows the airspeed’s sensor reading on the 

Primary System PS (e.g. the pilot panel) and Redundant System RS (e.g. the 

co-pilot panel) respectively. Before time t=20 second there was no malfunction 

simulated, so the three graphs of ME, PS, and RS airspeed readings were the 

same. After time t=20 second, a malfunction was simulated on both the PS 

and RS sensors so as to indicate the same incorrect reading. Routinely, such 

faults might be hard to detect as, for example, both the pilot and the co-pilot 

would each confirm the same reading ignorant of the presence of a 
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malfunction in both systems. Since the mathematical engine relies on 

equations to estimate the correct airspeed value, it will report a dissimilar 

airspeed value which, in turn, is supplied to the investigation engine to identify 

the source of the malfunction. Figure 30 (d) and (e) show output ports “fault in 

PS airspeed sensor” and “fault in RS airspeed sensor” as changing from 0 to 1 

during the time of the fault indicating a successful diagnosis. 

 

 (a). Airspeed (in m/s) calculated by the Mathematical Engine (ME). 

 (b). Airspeed (in m/s) from primary system (e.g. pilot panel) 

 (c). Airspeed (in m/s) from redundant system (e.g. co-pilot panel) 

 (d). Output of the investigation engine, port: Fault in PS airspeed sensor 

 (e). Output of the investigation engine, port: Fault in RS airspeed sensor 

Figure 30. Results of scenario 2. 
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4.2.10 Scenario 3: Faults in more than single equipment 

 The two previous scenarios demonstrated the performance of the FDD 

algorithm but under single sensor/equipment fault or more than a sensor 

measuring the same quantity. The performance of the system from a 

deterministic and probabilistic point of view can be considered identical if the 

degree of confidence in the test results is high. The conclusion of at most a 

single fault followed our assumption that the aircraft is in good condition. 

However, modern aircraft have many complex systems measuring many 

quantities concurrently and it may be absurd to assume a single fault at any 

given time. Hence, the aim of scenario 3 is to record the performance of the 

network under two or more faults from two or more different equipment. We 

have already demonstrated, in scenario 2, the advantages of using the math 

engine as a third independent source of information in triple checking the 

health of equipment. However, if we assume a deterministic diagnostic tree, 

then we may not be able to deterministically pinpoint the faulty equipment. To 

see this, assume that the registered speed from the primary sensors was 250 

m/s and from the secondary sensor was 250m/s, while the math engine 

indicated that it should have been 180m/s. In this case, we will be inclined to 

belief the data from the math engine. But suppose a second sensor group also 

registered the same phenomenon, where PS=RS≠ME. Once more, we may 

be inclined to consider the math engine’s calculated value as accurate, but if 

that continues then at a certain point we may start to realize that ME is the 

culprit and that PS=RS simply obtains because they are correctly measuring 
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what they are measuring. Hence, when we have two or more dissimilarities, 

we will not be absolutely sure about the source of the fault.  

An ordinary probabilistic approach may not perform well because it 

requires the conditional/unconditional probability tables for all of the tests in 

the network. Since the proposed design is essentially novel, such tables are 

not available. In addition, equipment performance data are not standardized in 

any known way for the use of a sample and the labelling of typical data. 

Hence, CP approach seems more suitable than any other.     

The simulation was carried out using the Bayes Net Toolbox for Matlab 

developed by Kevin Murphy [154] for its ability to make exact and approximate 

inferences. Firstly, the system was run for an hour without introducing any 

fault of any type to calibrate for any false positives that may result from 

processing discrepancies between Airsim, ME, and Bayes Net toolboxes. The 

run resulted in nine false positives from where the aircraft was at initialization 

and from times at which a manual hard roll was issued. The initialization 

phase resulted in false positives because the aircraft was initialized at a 

certain altitude, velocity and orientation, but the internal states, momentums, 

power settings, throttle, and control surface were not yet set to yield an aircraft 

in the initialization position, so the aircraft would oscillate for a short time until 

the simulation stabilized. The false positives were removed from the scenario 

results. Afterward, the aircraft was set to run in holding circulating above 

runaway for about four hours, during which faults were introduced and the 

degree of confidence in the reported fault location logged, as in Figure 26. Six 

pieces of equipment from each subsystem were monitored (speed, rate of 
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climb/ descend, altitude, pitch, roll and yaw). Table 2 shows a summary of the 

results. 

Table 2. Simulation results of scenario 3 

Time 
(HH:MM:SS) 

No of 
simulated 

faults 

number of 
Detected 

faults 
Accuracy 

Weighted 
average 

degree of 
confidence 

00:10:00 1 1 100% 100% 

00:15:00 2 2 100% 91.17% 

00:16:00 3 3 66.67% 62.4% 

00:17:00 4 2 50% 39.98% 

00:18:00 5 1 20% 40.1% 

00:19:00 6 6 100% 99.9% 

01:10:00 1 1 100% 99.8% 

01:15:00 2 2 100% 94.4% 

01:16:00 3 3 66.67% 60.04% 

01:17:00 4 4 75% 51.8% 

01:18:00 5 3 60% 77.7% 

01:19:00 6 6 100% 99.8% 

02:10:00 3 3 66.67% 59.57% 

03:10:00 3 3 66.67% 54.04% 

04:10:00 3 3 100% 66.67% 

The number of simulated faults increased from one to six at an interval of 1 

minutes starting after 15 minutes of the simulation start time. An accuracy of 

100% indicates that the FDD network has successfully pinpointed the source 

of the fault, whereas an accuracy of 66.67% when three faults were simulated 
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indicates that the FDD network managed to identify only two correct faults. It 

is quite clear that the network is weaker when the number of simulated faults 

is around three, which is half the total number of simulated sensors. However, 

the performance begins to increase slightly with time, as we see during the 

third and fourth hour, when the only focus of simulated faults was on the 

weaker case. Although scenario 3 provides a proof of concept for how CP 

behaves under a sparse amount of data, the result does not completely prove 

it. This is the case because the simulation was not run for days – or even 

weeks – to ensure that the system will still perform well, but, as the purpose of 

the proposed technique is short-term usage during the first initialization hours, 

the non-necessity of such a scenario is justified. However, due to the 

probabilistic nature of the proposed technique, the simulation should be re-run 

many times and the weighted average of the calculated probabilities should be 

recorded. Due to limitations of time and resources, however, this was left for a 

future extension of the demonstration.  

 

4.3 Demonstrating an On-board Navigation Decision Support 

System using BADA 

 

 The second demonstration of this chapter is aimed at creating an 

online, real-time and onboard DSS that can help pilots navigate better, 

understand the bigger picture and enhance the results of the FDD of the 
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previous demonstration, on which it is built. Once more, the aim of the 

demonstration is to show successful and meaningful recommendations in real 

time as soon as the system initializes. The underlying DSS utilizes BADA 

operation data as a navigation support system in the sense of estimating 

efficient ranges of operation for speed, rate of climb or descent (ROCD), and 

fuel flow in terms of flight level, current speed, mass, and flight profile. It 

estimates such ranges of operations and uses probabilistic reasoning to 

calculate the beneficial value of the estimated ranges based on the reliability 

of equipment readings. 

4.3.1 BADA Database Overview 

BADA is a collection of text files that lays down operation performance 

parameters, airline procedure parameters and performance summary tables 

for more than 300 aircraft types [97]. It was developed and is maintained by 

the European Organization for the Safety of Air Navigation 

(EUROCONTROL). The information contained in these files was obtained 

using the mass-varying kinetic approach to aircraft modelling. It models an 

aircraft as a point along with the underlying forces acting upon it which causes 

its motion. Figure 31 [155] shows the structure of the BADA Aircraft 

Performance Model (APM). 
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The model is organized into five sub-models, namely: characteristics, 

actions, motion, operation, and limitations. The arrows represent the 

dependencies between the sub-models. The actions sub-model is used to 

calculate various forces acting on the aircraft, whereas the motion sub-model 

accounts for geometrical, kinematics, and kinetic parts of motion using the 

Total Energy Model (TEM) method. The operations sub-model is used to 

simulate the different operation modes of an aircraft, such as flying with a 

constant Mach number. The limitation sub-model mimics the operational limit 

of the aircraft such as the maximum altitude, throttle limit, and maximum 

airspeed. Finally, the characteristics sub-model contains coefficients that 

characterize an aircraft such as the wing span [152]. Each modelled aircraft is 

parameterized into three text files. First, an Operations Procedure File (OPF) 

holds aerodynamic constants such as thrust, fuel, and drag coefficients.  

Second, an Airlines Procedures file (APF) contains parametric information 

about the recommended speed procedures during different flying phases, and 

third, a Procedure Table File (PTF) represents the recommended operation 

procedures in the form of look-up tables [152]. This demonstration utilizes the 

Limitations 

Aircraft Characteristics 

Actions 

Motion 
Operations 

Figure 31. Structure of BADA APM 
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look-up table of a specific aircraft that is contained within a PTF file as it gives 

the user direct access to performance data without the need to implement the 

complete TEM [97], which in turn reduces the complexity of the developed 

network. 

The PTF file contains the recommended operating producers for airspeed, 

rate of climb/descent (ROCD), and fuel flow at different flight levels of a 

specific aircraft. (An example of a PTF file can be found in [156].) The header 

section of the PTF file specifies general information about the type of the 

aircraft, creation date, speeds, temperature data, maximum altitude and mass 

levels. This is followed by the table of performance data, where the operation 

information is organized into three sections: cruise, climb and descent [152]. 

In this demonstration, a script was written to subtract the performance table of 

a PTF file of a specific aircraft and organize the data in a look-up table that is 

more suitable for analysis by MATLAB. In addition, the script verifies the 

validity of the PTF file by checking for the presence of some permanent text 

within the header section of the file. 

4.3.2 Assumptions and Proposed Design 

We propose a framework that facilitates the base of aircraft data (BADA) 

as a navigation planning decision support system for pilots to make informed 

decision about navigation planning. The decision support system is 

implemented as a software tool to extract performance data of an aircraft type 

from BADA database, integrate with other on-board fault detection and 

isolation systems, and estimate the beneficial value of these 

recommendations. The designed network presented in this section is an 
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extension of the diagnostic decision trees described in section 4.2. Figure 32 

shows the structure of the proposed design. 

 

 

 

 

 

 

 

To ensure that the BADA unit receives navigation readings of high 

accuracy, a check for equipment faults is added to the network. The fault 

detection algorithm follows a model-based approach (see section 4.2) 

whereby the measured aircraft states are verified with a reading that has been 

calculated using a simulated aircraft running in parallel to the actual aircraft. 

The simulated aircraft uses the high-fidelity 6 Degrees of Freedom (6DoF) 

model to simulate displacement and rotation of an aircraft in three-dimensional 

space. The 6DoF model is contained within the Math Engine Unit (MEU). The 

states from the aircraft and the math engine block are applied to the Fault 

Detection Unit (FDU), where a state of no fault is assumed if the two data 

sources are identical. Otherwise, the FDU will start a diagnostic procedure to 

isolate the malfunctioning equipment using Bayesian diagnostic decision 

trees. As a result, the BADA Unit (BU) can select the most reliable source of 

Figure 32. Structure of the proposed design 
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data to be compared to the recommended operation records, which were in 

turn obtained from the BADA database unit throughout the converter script.  

The BU recommendation algorithm begins by checking for sources of 

reliable readings and the utility associated with making the recommendation. If 

no reliable information could be obtained, the BU will display a warning 

message informing the pilot about the situation. Otherwise, the BU begins by 

detecting the flight phase of the aircraft (i.e. cruise, climb, or descent). BU 

uses the value of the angle of attack, landing gear position and ROCD to 

detect the flight phase. Low ROCD and low angle of attack along with landing 

gear at the up position would indicate cruising phase. Otherwise, the aircraft is 

either climbing or descending. In order to detect which of these the aircraft is 

in, BU uses the ROCD values of the climb and descent from the PTF file as a 

feature search space. The nearest five neighbours to the current ROCD of the 

aircraft is calculated using the k-nearest neighbour algorithm, then the flight 

phase is determined based on basic majority vote. To reduce the amount of 

calculation, BU can be programmed to treat negative ROCD as descending 

indicator and positive ROCD as climbing indicator, which might be beneficial 

in situations in which no PTF file is available. When the flight phase is known, 

the corresponding look-up table for that specific phase is selected to obtain 

the recommended procedure data. If the measured aircraft states are not 

within the tolerated limit of the values recommended by BADA,  the BU will 

inform the pilot about the situation and recommend changing his/her 

navigation parameters accordingly. 
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4.3.3 The Utility of the Recommendations 

Maintaining high accuracy navigation requires the pilot to be in a state of 

high situation awareness where he or she can evaluate the fidelity of the 

aircraft’s equipment readings and detect cases when an equipment reading is 

unreliable. It has been suggested that the highest level of situation awareness 

can be achieved by a thorough grasp of some key elements that, if put 

together, will synthesize the prevailing status of an environment [7]. Therefore, 

it is valuable to measure the benefit of giving some recommendations 

regarding operation procedures as the information used to derive the 

recommendation itself could be unreliable. The measured benefit would serve 

as a criterion to decide whether a specific recommendation would increase the 

pilot’s situation awareness about his/her environment and, in turn, display that 

recommendation, or that the measured readings are unreliable to the degree 

that no recommendation is possible. To decide which situations would not be 

beneficial with respect to increasing situation awareness, we have used the 

principle of maximum expected utility in probabilistic theory, where each 

decision is associated with a utility function that represents the cost or benefit 

of making some decision. Figure 33 shows the structure of the decision 

network. 
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Figure 33. Structure of the decision network 
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Probabilistic variables are represented with the oval shapes labelled R and 

F. The variable R represents equipment reading whereas the variable F 

denotes the probability of detecting a faulty reading. Action (or decision) 

nodes are depicted in the rectangular shapes MEU and BU. The decision 

associated with each node is whether to go down the road of executing the 

block. Finally, the diamond shaped blocks U1 and U2 represent the expected 

utility associated with making decision MEU and BU respectively. Using 

equation 70 (from chapter 2), the expected utility of making the decision U1 is: 

       |    ∑P    |,          |    

 

 (142)  

Similarly, the expected utility of making the decision U2 is 

       |    ∑ P    |,          |    

 

 (143)  

Using the product rule of probability calculus, equation 142 and 143 can be 

written as: 

       |    ∑
P    |,    

P  ,    
      |    

 

 (144)  

       |    ∑
P    |,    

P  ,    
      |    

 

 (145)  

Thus, the overall expected utility is 
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(146)  

Since reliable recommendation follows the presence of reliable 

equipment readings, the utility of executing the BU will depend on the 

presence of a reliable source of speed, flight altitude, etc. In other words, the 

probability of detecting faulty reading F should be low. Since airspeed in 

modern aircraft is obtained from one or more inertial navigation subsystems 

and one or more navigational reference subsystems, we can assume U2 to be 

0 if all airspeed data sources were unreliable and 1 otherwise. Furthermore, if 

there is (n) identical equipment (for instance: pitot probes), the subjective 

unconditional probability of faulty equipment (X) is: 

P X  fa      
 

 
 (147)  

4.3.4 Experiments Simulations 

Once again, the demonstration is conducted through setting up a 

simulation environment in MATLAB. To test the operation of the network, 

scenarios have been created in which an event of equipment malfunctioning is 

introduced while the output of the BU is logged. Scenarios represent test data 

that can be used to validate system design requirements [157]. In the context 
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of aviation safety, the use of scenarios as test data has been widely proposed 

and well documented in the literature as a means of measuring the 

compliance of a design to the requirements of safety standards within civil 

aviation sector [158]. In order to generate a graphical presentation of the BU 

instead of a text-based recommendation, five output ports have been added to 

the BU representing the five possible state/recommendations that can be 

given by the unit. The first port states the detected flight phase represented in 

numeric format in which the numeric value 0 is used to represent the climbing 

phase, 1 to represent cruising, and 2 to represent descending. The second 

port states the availability of reliable airspeed reading, in which 0 represents 

that availability and 1 represents no reliable airspeed data. The following three 

ports are ROCD, True Airspeed (TAS), and fuel flow recommendations 

respectively. Each one of these ports can take the value 1 to represent 

information that is out of the BADA recommendation limit, 0 to indicate 

information that is within the recommended limit, or 2 to indicate that the 

information is not available yet. Figure 4 shows a block diagram of the 

experiment setup. All of the scenarios described below were for the Boeing 

737 aircraft with an initial flight level (FL) of 75 and TAS of 300 knots 

simulated by the JSBSim library of aircraft models. 

4.3.5 Scenario 1: Fuel Flow exceeding normal limit 

The first scenario that was set up in this demonstration was to simulate 

events when fuel flow exceeded the value recommended by BADA. The aim 

of this scenario was to validate the ability of the network to detect anomalous 

fuel flow rate. Anomalous fuel flow rate could be a sign of a much more 
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hazardous engine problem or simply an unnecessary added cost. The events 

of this scenario were obtained by changing the aircraft angle of attack as to 

change the flight phase from climbing to descending. Anomalies to the amount 

of fuel flow to an engine were constantly introduced during the scenario while 

the outputs of the BADA unit were recorded. The simulation time was set to 20 

seconds. Figure 34 shows the simulation results. Figure 34(a) shows the 

malfunctioning fuel flow graph of scenario 1. At FL of 75 and TAS of 300 

knots, the recommended fuel flow should be around 210 kg/min during 

climbing phase and about 32 kg/min while descending. Since both values 

were significantly deviated from those recommended values, BU output port 

signalled the value 1 to indicate that the information fell outside of the 

recommended operation limit. This verifies the principle of operation of the 

unit. 

 

 

 

  

 

 

 

 

 

Figure 34. Simulation results of Scenario 1. 



 
Application to aviation safety 189 

 
 

 

4.3.6 Scenario 2: No reliable Airspeed data 

 The second scenario demonstrates the case in which the airspeed 

measuring equipment is unreliable. The scenario was designed to show the 

BU response to that worst case setup in which the airspeed readings received 

from both the inertial and navigation sub-systems are defective and the fault 

detection unit has identified both systems as malfunctioning.  Figure 35 shows 

the simulation results. 

 

 

 

 

 

 

 

Figure 35 (a) shows one of the malfunction airspeed equipment readings 

(the other equipment reading is identical). The value was dramatically higher 

than expected. Therefore, the BU indicated unreliable data to give a 

recommendation and halt operation. This result proves the validity of the 

decision-making network developed in this demonstration. 

 

 

Figure 35. Simulation results of Scenario 2 
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4.4 Summary 

 

Ensuring a safe journey for passengers is of a high priority in the aviation 

industry. It is an aim that continues to motivate researchers to build more and 

more complex systems and procedures to enhance safety. Early detection of 

faults is a must-have in aviation, not just to ensure passengers’ safety but also 

to decrease maintenance cost and to prevent faults from advancing to a stage 

where an intervention would be useless.  

Chapter 4 presented a novel approach to FDD in aviation, which 

introduces an independent source of measurement that works concurrently 

with the aircraft systems to double check the validity of their status. The 

approach treats every piece of information it collects as doubtful until it is 

double-checked. We showed, with synthetic scenarios, how the proposed 

FDD compare to the state of the art methods and how it can be further 

enhanced using CP approach to a Bayesian network.  

However, detecting faults is not all that is required for a safe flight. The 

pilot also needs to be aware of any problems, as well as their source and 

severity. In addition, too much information could overwhelm pilots and, in turn, 

slow down their responses. Hence, the information about faults and the status 

of equipment should be summarized and presented in an easily 

understandable form. Our second demonstration showed how a database 

developed for calculating trajectory could be modified to work as a DSS. Once 
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more, we showed the benefits of CP based Bayesian network in decision-

making.  
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5.  Application to Intensive 

Care Units 

 

 In the previous chapter, we saw how CP could be applied to aviation 

safety to enhance the performance of a fault detection and determination 

system. In addition, we saw an application of CP to decision-making by 

utilizing BADA as a DSS to draw better navigation plans. The results 

illustrated the feasibility of the CP for both problems. In this chapter, we will 

expand the application of CP to the field of medical informatics, more 

specifically to the monitoring of patients in ICUs.   

 Unlike the model-based approach of chapter 4, patients cannot easily 

be modelled. While it would be of great scientific value to model how the 

human body functions, this is often too complex to be feasibly accomplished. 

Not only do the functions and interconnections of organs need to be modelled, 

but also their interactions with foreign bodies such as germs. In addition, such 

requires modelling the response of an organ to a medicines, stimuli, or even 

surgical procedures. Moreover, the model should accommodate for all 

possible variations in the human genetic pool and racial traits. Consequently, 

a high fidelity model will be one that makes a suitable trade-off between 

representation power and flexibility. Experts will need to construct a model for 
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each age group, race, sex, and medical condition. Undoubtedly, such 

requirements are too broad to be achievable not only within the scope of the 

thesis but even for big research centres. Researchers have often chosen to 

follow the route of simplifying the model and accepting the loss of generality. 

The approach adopted in this thesis is a data-driven approach. In chapter 2, 

we have seen that the major setback of the Bayesian network was the fact 

that it is model-based and we saw how we could use examples from data to 

come up with a model. However, this approach requires some offline period in 

which the network learns to model itself from the examples before it is ready 

to make inferences. Another phase of training is also required to estimate the 

probability density functions of the various nodes within the network. The goal 

of this chapter is to design a novel system that is available immediately as the 

first data from a patient arrives and is consequently able to make decisions 

regarding patient care and to predict the future evolution of the patient 

condition while still in the ICU.  

As with chapter 4, this chapter begins with a quick literature review of the 

available research in patient monitoring and patient state prediction. Then it 

will introduce the MIMIC II (the Multiparameter Intelligent Monitoring in 

Intensive Care) database. This is followed by a discussion of the proposed 

design and its mathematical formulations. Finally, the experiment setup and 

results will be provided. 
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5.1 Literature Review 

 

 The biomedical literature is full of research frameworks that adopted 

Bayesian networks to solve various problems. In fact, medicine is one of the 

most active application fields of  Bayesian networks [6]. Since Bayesian 

networks are casually interconnected graphical models, they can be used to 

simplify the modelling process and to incorporate the experience of medical 

experts into the model through cause-to-effect interconnections. In ICUs, BN 

have been used to diagnose the cause of observed symptoms, to make future 

prediction about the state of a patient, and to monitor the stability of  patients’ 

vital signs [6]. Classically, the BN research frameworks in biomedical 

engineering have been dominated by an expert knowledge approach where 

the expertise of medical practitioners are used to construct the model [6]. One 

example of such an approach is the ALARM (A Logical Alarm Reduction 

Mechanism) network [159]. The ALARM network is a diagnostic BN designed 

as a DSS that outputs messages to provide information about possible 

problems. It has 8 connected diagnoses, 16 findings and 13 hidden variables 

[159]. Despite the popularity of the ALARM network, it does not provide a 

means by which it can be generalized or adopted to other problems [6]. In 

addition, it is not quite known how the network would perform when only a 

portion of the parameters is known or if they have been measured irregularly. 

Finally, since the ALARM network is a static BN, it cannot display the temporal 

evolution of patients’ statuses over their staying period in ICU.   



 
Application to Intensive Care Units 195 

 
 

 

 Newer approaches, such as the BN binary classifiers by Sierra and 

others, use data-driven or a hybrid model and data driven approaches [160]. 

They used a genetic searching algorithm to find the optimal structure of a 

Markov Blanquet BN that can classify ICU patients according to their 

survivability prognosis [160].  While the approach seems sound, the network 

would need an offline phase during which the training examples are batch 

applied to it until it converges to an optimal solution. This requirement sets this 

framework outside the objectives and aims of this thesis.  

 Ramon and others have compared four data mining algorithms to 

predict the progress of patients mortality risk in ICUs [161]. The four methods 

were Decision Tree Learning (DTL), First Order Random Forests (FORF), 

Naive Bayesian networks (NB) and Tree Augmented Naive Bayesian 

networks (TAN)  [161]. Their approach was to use the change in a monitored 

parameter value rather than the absolute value at a given time [161]. As a 

result, it is not clear how any of the algorithms can distinguish between a 

normal steady value of a stable patient and an abnormal steady one. For 

example, a steady heart rate of 72 may indicate that a patient is in a good and 

stable condition whereas a steady heart rate of 50 may indicate a problem. 

Their results showed the superior performance of the BN [161]. In fact, NB 

scored an accuracy of 85% as compared to the risk level assigned by nurses 

and physicians [161], which makes sense as NB is naturally structured for 

prediction problems. Once again, however, the approach involves a phase of 

training in which the system is not able to make predictions.   
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Another example of using a Bayesian network for estimating the risk of 

mortality is provided by Mu, Jaglal and Nylon [162]. They used data collected 

from about 13,000 patients who underwent cardiac surgery in six surgery 

institutions in Ontario, Canada  [162]. They then used many potential risk-

indicating factors to construct the network, including age, sex, left ventricular 

function, type of surgery, urgency of surgery and repeat operation [162]. The 

novel aspect of the study may be the six risk factors with which the study 

concluded. However, the study is not of much help for the aim of the thesis 

because it does not provide a generalized algorithm that can be applied to 

other problems with the framework of BN in ICUs. 

Nonetheless, the DBN approach is not by any means a vacant one. Many 

research frameworks suggested DBN for patient monitoring and assessment 

in ICUs. Charitos and others have used DBN to construct a diagnostic network 

for ventilator-associated pneumonia (VAP) in ICU patients [163]. A DBN slice 

has 30 variables, of which 6 are input variables, 8 are observed and 16 are 

hidden [163]. Their DBN slice is actually an extension of a static BN 

developed by Lucas and others through expert knowledge [164]. They proved 

the validity of the network using Brier scoring of 20 patients only [164], which 

figure seems very low. In addition, the improvement of the DBN over the BN in 

terms of the averaged receiver operating characteristics, from which it was 

derived, did not seem significant enough.   

Other approaches include feature extraction and clustering into discrete 

risk levels [165], logistic regression [166], neural networks [167], and fuzzy 

logic [168]. Most of these approaches require a phase of training or modelling 
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using expert knowledge. Since the structure is fixed once the training phase is 

over, the amount of data would be great to allow for training a network to 

predict the future state of patients from different age groups, sexes, medical 

backgrounds, race, and geographical regions. One way around this limitation 

is to allow the network to reconfigure itself in real time. The use CP can 

potentially solve the issue of data requirements because it needs less 

information to make decisions than any other method. In addition, due to the 

law of averages, CP could reach the correct estimation of the probability 

distribution function of a variable with time. In turn, CP provides real time 

learning from data as they arrive to the system. 

Overall, the purpose of this section was not to provide an extensive survey 

of algorithms and methods in analysing ICU data but rather to establish a 

context of the use CP as an approach to Bayesian Networks. The work 

presented in this chapter does not necessarily contradict the BN frameworks 

surveyed in this section, as all the CP does is support the decision-making 

and the quantification of probabilities when the amount of information is 

sparse. The import of the proposed system tends more towards the end of 

showing the versatility of the methods proposed in this thesis by mean of 

examples. However, this is not to say that there are no novel contributions in 

the DBN proposed in this chapter. In fact, the novelty comes from proposing 

an architecture that would work best in various situations, would adapt to 

solve various problems, and would present the results of analysis in the most 

meaningful way.  
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5.2 The MIMIC II Database  

One of the main objectives of this thesis is to facilitate the making of 

decisions with little available information and the real time evolution of the 

process as more information becomes available. However, it is essential for 

any research to have as much data as possible to validate the predictions of a 

new proposal. In addition, data could be used to achieve a better estimation of 

the unconditional probability that would otherwise become the result of purely 

subjective speculation.  

Usually, biomedical research relies on data collected from hospitals during 

the study period or through a third party. The time limitations of this thesis 

restrict the feasibility of the first choice. The acquisition of clinical data is an 

involved process that requires ethical permission, anonymizing the data and 

cleaning the data. A better choice, from the time management point of view, is 

to use a third party database where most, if not all, of the ethical and technical 

procedures have been carried out. 

One of the widely used databases is the MIMIC (Multiparameter Intelligent 

Monitoring in Intensive Care) database [169]. It has records of more than 

31,000 admissions of more than 25,000 patients, of which around 20,000 are 

adults and 5,000 are neonates [169]. The data was collected in the Beth Israel 

Deaconess Medical Centre for about 7 years and is currently managed by MIT 

[169]. Typical researches conducted using the MIMIC database include 

predication of mortality rate in patients with kidney disease [170], retrospective 

comparative analysis [171]  and artificial vector modelling [172]. An extensive 

list of publications can be found at the physionet website [173].  
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 Essentially, the MIMIC database is comprised of two types of data: 

clinical data that are stored in a relational database and waveforms data 

stored in flat files [169]. However, only 3,000 patients has waveform data and 

only about 2,500 patients have their waveform data associated with the 

clinical data [169].  In addition, many patients’ cases have missing data, noisy 

values and typo errors. Some researchers have developed algorithms to deal 

with the missing data issue, in particular, the waveform data [174]. Others 

suggested applying rules derived from medical experience [170]. While 

dealing with missing data is essential to increase the size of the sample of 

patients under study, it is not essential to this research. Instead, we chose to 

discard any patient if any of his/her records is missing.   

Once the system has calculated the conditional and unconditional 

probabilities of typical patients’ cases using as accurate and clean data as 

possible, they would be used in cleaning and replacing missing data using a 

linear Kalman filter, for instance. In an online scenario, the system can be 

used to distinguish between data that does not make sense, such as a 

disconnected monitor probe that could result in an apparent heart rate of zero. 

In this study, we will be using both the waveform and the clinical data to 

predict various aspects and parameters that are usually monitored in ICUs.  
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5.3 System Overview 

 

As is the case with chapter 4, the patients monitoring system uses 

Bayesian networks to predict, diagnose and analyse the clinical data collected 

during a patient’s stay in a hospital. However, since we are interested in the 

evolution of the patient’s state over time, DBN is used to accommodate for the 

dynamic nature of the problem. Since DBNs are recursive probability density 

estimators, the system can learn from past events to progressively enhance 

its own prediction representation ability of a patient case.  

The novelty of the system comes from several improvements to the state-

of the-art DBN. Firstly, it is available as soon as it is initiated and there is no 

need for prior knowledge, although prior knowledge can be used to enhance 

the performance and accelerate the learning process. Secondly, it does not 

require an offline phase during which the information is batch processed by 

the system to calculate its internal parameters. Lastly, the system is an open 

platform. By that, we mean new parameters can be plugged into the system 

without the need to redesign the system from scratch. This means that each 

parameter is modelled separately and assumed to be independent of the 

others. Since most collected clinical data, such as blood pressure, heart rate 

and temperature are independent, the assumption is valid and applicable in 

many situations. Figure 36 shows a block diagram of the proposed system. 

For clarity, each sub-block is labelled with a number. The following is an 

explanation of each sub-block: 
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Figure 36. Overall block diagram of the system 
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1) The patient’s array of sensors consists of several sensors that gather a 

patient’s vital signs and/or other parameters into the system. Each sensor acts 

as an active listener tuned for a specific parameter. The sensors are to be 

seamlessly integrated into the current state of the art patients monitoring 

equipment, for example: heart rate, oxygen saturation, blood pressure…etc. 

However, in simulations, the data from patients are sequentially retrieved from 

the MIMIC database. The actual acquisition of patients’ clinical data in 

realtime is left for future work in order to use the limited time of the study for 

building and refining the system itself rather than the acquisition of data. 

2) Data logger. A good experimental set-up requires the gathering of as much 

information as possible to be analysed once the experiment concludes. 

Nonetheless, a system running in a production environment would also benefit 

from the logging of events and/or data for debugging purposes.    

3)  State Predictor. The output of the sensors unit is fed to a Bayesian state 

predictor, which works to find the most likely explanation for extraordinary 

band readings, which in turn reduces the rate of false positives. For instance, 

if the heart rate is logged as zero, it would be of great value to be able to tell 

whether this is because the sensor lid has dropped or because the patient’s 

heart has stopped. The Bayesian state predictor uses a Dynamic Bayesian 

Network (DBN) algorithm to compare the current sequence of reading from a 

sensor with the most probable ones. If the readings do not match the most 

probable ones, then the sequence of readings is marked to be anomalous.   
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Figure 37 shows the detailed block diagram of the state predictor. It starts by 

calculating the next most probable parameter value to be received from the 

sensors. This is done by calculating the conditional probability of all possible 

next parameter values given that the current one has occurred and taking the 

maximum of them. The same procedure is repeated (n) number of times and 

the results are stored in a temporary storage. Then the calculated probabilities 

for the next state parameter values are compared with the actual ones coming 

from the sensors. If the distance between the predicted next state and the 

actual next state for a sequence of (n) inputs is higher than the tolerance 

threshold, the state predictor will assume an abnormal reading, report it to the 

users, and log the events for further analysis. Otherwise, normal conditions 

are assumed. 

4)  Patient Status Predictor. The data acquired from the physical world is 

now ready for analysis. The block labelled “patient status predictor” uses the 

raw collected data to work out the probability density function (PDF) of every 

monitored parameter using a Bayesian recursive estimator in order to 

calculate the projected future value of each parameter after an adjustable 

amount of time.   

5) Risk Prediction Algorithms. The system can automatically calculate the 

current and/or future score for different types of ICU scoring systems such as 

Figure 37. Data Preparation Unit 
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IRIS, SAPS II, SAPS III, and APACHE II, although only the IRIS score is 

calculated during the simulations. The calculation of a score is conducted 

through two stages. A score predictor will calculate the most likely individual 

score of a parameter if the future score is required, and then these individual 

scores are combined in order to derive the overall score. The same procedure 

is carried out to predict other medical conditions such as renal failure, 

infection, or respiratory failure. Figure 38 shows a block diagram of the 

calculation of the IRIS score: 

 

 

 

 

 

 

 

6) The Interpretation unit uses the individual and/or overall score to display 

some recommendations based on a customizable lookup tables stored in a 

knowledge base. It can also be configured to display a recommendation 

based on a diagnostic tree derived from a database of extensive recorded 

patients’ case studies. In addition, a user can define a set of 

recommendations on an individual patient basis, according to a medical class, 

or completely define custom messages from scratch. Finally, users can 

provide feedback from the feedback unit to better enhance the diagnostic tree 

accuracy in real-time. 

Figure 38. IRIS score calculation 
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7) Graphical User Interface. The patient’s status can be monitored through 

the graphical user interface unit. It also provides the user with easy access to 

the configuration of the system and customization of the knowledge base and 

diagnoses as well as viewing of the raw logged date. 

8) User Feedback allows users to provide feedback to the system. The 

feedback can be parametric, such as lab test results that could be needed to 

predict the future state of a patient, or nonparametric, such as the current 

diagnosis (or medical class) of a patient. All the information supplied by users 

is logged and used to enhance the operation of the network. 

9) Server. All the results of the system such as the recommendation and 

predicted values are sent to a server where the data is stored in a secure 

database. Access to the data within the database is provided through a 

server-side script running under a web server. A patient’s state can be 

accessed virtually from anywhere via the internet, if the user has the proper 

permission to do so. The results can be viewed on various types of devises 

including iPhones, iPads, tablets, PCs, and the like. 

 

As stated previously, in order to reduce the computation power, not all of the 

blocks are simulated simultaneously. In the next sections, we will show two 

simulation setups showing the predictors in action along with their accuracy of 

predictions. The network shown in Figure 36 represents the extent of what 

could be accomplished by using CP-equipped Bayesian network, although CP 

is not necessary for the implementation of the system in Figure 36. If one can 

collect enough information to estimate the conditional probability tables 

required for the Bayesian network to operate, then CP is not required. 
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However, the very unavailability, or inadequacy, of such information justifies 

the use of CP. 

5.4 Mathematical Analysis 

      

The heart of the ICU monitoring system shown in Figure 36 is the 

predictor block, which calls for a good prediction algorithm. A good prediction 

algorithm is one that keeps a record of the current system estimates and 

updates it as new evidence is received [1,p. 571]. In this way, the algorithm 

becomes mathematically efficient, as it does not have to go back through time 

and do the calculations from the start all over again every time new evidence 

is gathered. Such an algorithm is referred to as a recursive estimator [1,p. 

571]. DBNs can be used as recursive probability density estimators if a good 

temporal transition model is constructed. Let X be a hidden state variable that 

is to be estimated and let e be the available evidence on which X is to be 

estimated. Under the Markov assumption, it can be shown [1,p. 572] that X is 

given by: 

P X + |e   +     P e + |X +  ∑P X + |X  P X |e    

X 

 (148)  

Equation 148 is of the most importance because it shows that the current 

estimate of a variable is the product of the conditional probability of the current 

evidence times the likelihood of X on the basis of all the past evidences. The 

likelihood of the current X is simply a one-step prediction. Therefore, Equation 

148 shows that the estimation of X involves updating its prediction by the 
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newly acquired evidence. Hence, the state of X at time (t+k) can recursively 

be predicted using the following equation [1,p. 573]:  

P X + + |e     ∑ P X + + |X +  P X + |e    

X + 

 (149)  

Hence, the prediction of X at time (t+k) requires only the transition 

model of X [1,p. 573]. In addition, the arrival of new information will serve as a 

training hub that revises the current estimates of the model and keeps it up to 

date. This process is commonly known as filtering, which is the basis for 

estimating the likelihood of a sequence of evidence and for smoothing [1,p. 

571]. One way to compute the likelihood of a sequence of evidences, shown 

in Figure 36 as state predictors, is to use Equation 148 to estimate  Xt and 

then summing out Xt  [1,p. 573]. However, it becomes mathematically 

inefficient as time passes [1,p. 573] so we opted to use the method described 

in the previous section, albeit without mathematical formulation.   

Consider a monitoring system that utilizes four parameters and let the 

parameters be the heart rate (HR), the arterial blood pressure (ABP), the 

oxygen saturation (SO) and the respiration rate (RSP). These parameters will 

serve as the evidence on the basis of which the state of the patient (X) is 

inferred, which is represented by Markovian transition model. Figure 39 show 

how the DBN of such a system can be drawn. Assuming that E is the vector of 

evidence compromising HR, ABP, SO and RSP, the prediction of the state of 

the patient at time t+k can be found using Equation 149 as: 
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P X + + |e     ∑ P X + + |X +  P X + |e    

X + 

 (150)  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
However, such a system violates our requirement to have an open system 

because, if we are to add a new parameter, then the current estimate of states 

will become invalid and will need a considerable amount of time to recalculate 

the estimate in the light of the new parameter. We have also seen that an 

essential requirement of DBN is that its structure should stay fixed. To 

overcome this limitation, we note that under most circumstances the four 

parameters are independent. Therefore, it will prove easier if each parameter 

has its own DBN model, which may be used to predict the future projection of 

its current and past values. Consequently, the prediction estimates coming 

from the individual models are used for further analysis such as calculating the 

future IRIS score or the probability of developing a complication. Hence, the 

DBN will boil down to a simple sensor model where the evidence represents 

the apparent measurement that should be used to infer the real measurement. 

 
X0  X1

ABP1 HR1 

RSP1 SO1 

 
X2 

ABP2 HR2 

RSP2 SO2 

Figure 39. Four parameters DBN for monitoring patients’ states 
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The practical benefit of such a model is in cases where the measured data are 

noisy, doubtful and/or irregular. We will denote the apparent measurement 

with a lower-case letter like (e) and the real measurement by an upper-case 

letter like (X). Hence, a typical individual sensor model is shown in Figure 40.  

 

 

 

 

 

 

 

5.5 Experiment Set-up 

 

Although all the data used in this study was real data obtained through the 

MIMIC database, the testing of the system operation and performance is 

conducted by simulation only. Two types of experiments have been carried 

out. The first is by using the MIMIC waveforms portion of the database to 

predict the evolution of patients’ vital signs throughout time. The second 

utilized the clinical data portion of the database to infer the mortality risk of a 

patient about 24 hours in advance.  

In each set-up, patients are randomly assigned into two groups. The first 

group is used to train the network. The training is the simple estimation of the 

conditional and unconditional probability tables of each variable. While this 

 
X0  X1 

e1 

 X2 

e2 

 Xt 

et 

Figure 40. A typical individual sensor model using DBN 
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step is not strictly necessary, as the network can initialize without prior 

knowledge, the result will become more accurate using probability tables that 

makes sense rather than starting from purely subjective speculations, as the 

researcher is not a trained physician. Once the training is done, the second 

group of patients is used to validate the accuracy of prediction. MATLAB is 

used as the simulation environment. The connection to the database is done 

locally through a JDBC driver. The MIMIC database itself is managed by 

postgreSQL. To reduce the latency resulting from database access time, a 

script is developed that retrieves all the required patients’ data and converts 

them to MATLAB binary data. The accuracy of the system is measured using 

various techniques, as will be discussed in the following sections. 

5.5.1 Predicating the IRIS Score 

IRIS (Intensive-care Risk Identification System) is a lookup table used to 

profile the seriousness of patients’ conditions in ICU [175]. It converts a 

physiological parameter to a score of, for example, between 0 and 3, with 0 

representing a stable condition and 3 representing a deteriorating condition. 

An example of an IRIS lookup table is shown below [175]. 

Table 3. An example of IRIS lookup table 

 Intensive-care Risk Identification System (IRIS) Value 

Variable 3 2 1 0 1 2 3 

Respiratory Rate <6 7-8 9-10 11-16 17-20 21-24 ≥25 

Systolic Blood 

Pressure 
<69 70-79 80-99 100-150 151-160 161-179 ≥180 

Pulse (heart rate) <40 40-49 50-59 60-100 101-110 111-130 ≥131 
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Sp02 <90 91-93 94-96 96-100    

 

 The aim of the simulation is to predict the value of the overall IRIS score, 

which is simply the mathematical sum of the individual scores given by Table 

3. The prediction is simply done using equation 148 to predict the projected 

future value of the respiratory rate, systolic blood pressure, pulse and oxygen 

saturation SpO2. A sample of 200 patients was used in the study. The 

patients were assigned randomly to training and testing groups. Each group 

comprised 100 patients. Then the system is run for a simulated period of 

10,000 seconds (about 2 hours and 46 minutes). At every second, a prediction 

of the monitored parameter after k seconds is estimated and then compared 

with the actual one. Then the simulation is repeated with a different value of k. 

In this study, we started the prediction period with k= 30 seconds and then we 

incremented the prediction time by 30 seconds until k= 600 seconds. The 

average accuracy of predicting the heart rate for each run is shown in Figure 

41. The average accuracy is calculated as: 

     a   
 

 
∑(  

                        

 
)

 

 (151)  
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Figure 41. The average accuracy of predicting the IRIS score versus time 

  The time axis of Figure 41 starts at k=30 where the average prediction of 

heart rate is 99.9%. However, the accuracy of prediction drops as the 

predication period increases but stabilizes at k= 8-10 minutes at about 83%. 

There are two reasons for the drop of accuracy. Firstly, as the algorithm 

continues to predict in the future, the next estimated value starts to saturate 

and would stay fixed at a given value during the upcoming prediction cycles. 

In fact, the developed algorithm will halt the prediction as soon as it detects 

that the predicted value is saturated, that is, when it continues to be the same 

for a given number of cycles. The saturation state that is reached by the 

algorithm is known as the stationary distribution [1,p. 573]. The stationary 

distribution reflects the fact that, as the predicated time increases, the odds for 

every possible outcome become equally likely. Secondly, not all the possible 

outcomes of a parameter are equally estimated during training because there 

are always more data in the stable regions than the deteriorating regions. This 

will cause the algorithm to fall back to CP and estimate the upper bound of 
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probability of a parameter. For example, Figure 42 shows the predicted heart 

rate (in red) and the measured heart rate (in blue) versus time for a patient 

case when the prediction time is set to 30 seconds. The two curves coincide 

with each other almost everywhere except around t ≈0, where CP dominates. 

However, at k= 300, the effect of saturation becomes clearer (see Figure 43). 

Although the predicted heart rate diverges from the real measured one at 

these times when the patient heart rate starts changing rapidly, the effect on 

the calculated IRIS score is minimal because it only results in a ±1 error in 

IRIS calculation. An error of ±1 translates into an accuracy of 75%. 

 

Figure 42. Predicted heart rate (in red) and the measured heart rate (in blue) versus time for a 

patient case when k= 30 
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Figure 43. Predicted heart rate (in red) and the measured heart rate (in blue) versus time for a 

patient case when k= 300 

The same prediction accuracy is obtained for the other parameters. In 

addition, the results stay valid even if we add a new parameter like the arterial 

blood pressure (ABP). Figure 44 and 45 show the predication of ABP at k=30 

and k=300. 
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Figure 44. Predicted ABP (in red) and the measured heart rate (in blue) versus time for a 

patient case when k= 30. 

 

Figure 45. Predicted ABP (in red) and the measured heart rate (in blue) versus time for a 

patient case when k= 300. 

 

Using Matlab’s GUIDE (GUI Development Environment), a graphical user 

interface (GUI) was built to enable potential users to explore the features of 
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the demonstration and verify, in realtime, its accuracy. The GUI allows users 

to monitor up to four subjects simultaneously. Each subject can have his/her 

own predefinded IRIS score presets, monitoring time scale and the choice of 

which physiological parameter to plot.  Figure  46 shows a snapshot of the 

developed GUI.  

The versatility of the developed algorithm can be shown in different ways.  

Figure 46. A snapshot of the developed GUI 
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With respect to GUI design, the algorithm can be wrapped with an interface 

Figure 47. A GUI demonstration how the algorithm can be used to infer the probability of 

infection 
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that requires users to login before they can use the system. Once logged in, 

they can choose which patient to monitor, switch a physiological parameter to 

the main axis plot, and estimate the IRIS score and the predicted IRIS score. 

Figure 47 show an example of such possibility. It also shows how the 

algorithm can be used to infer the probability of infection and the status of 

monitors. 

 

 

 

5.5.2 Predicting Mortality Risk in Patients with a History of Cardiac 

Surgery.  

 The second scenario demonstrates the use of the clinical data portion 

of the MIMIC II database. As the clinical data is essentially data filled out 

manually by hospitals staff, it presents different challenges than the waveform 

data portion did. Firstly, clinical data are acquired less frequently than the 

bedside monitors are. While a bedside monitor may sample the data at a 

frequency of 125Hz, the clinical data may only be recorded once per an ICU 

admission, if at all. Secondly, the waveform data are acquired electronically 

whereas the clinical data is acquired from different sources, such as the 

hospital archives, lab test results, free text nursing notes and ECG reports 

[169]. While the challenges of processing electronically acquired data may be 

limited to dealing with noise and missing data due to equipment failure, 

disconnection, or synchronization, data acquired manually through archives 

and reports are more prone to typo errors, mistakes, irregular delay between 
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measuring and recording, or ignorance. In addition, not all the physiological 

variables are samples at the same rate even for the same patients. In some 

cases, a patient’s blood pressure is measured every 15 minutes, and then the 

rate changes to every hour and so on. The way we dealt with irregularities is 

by neglecting patients’ cases where not enough information is recorded or 

where there are many missing or empty variables. Then we re-sampled the 

data at a rate of one sample per hour through linear interpolation. This 

approach may not be the best since linear interpolation assumes the data to 

adhere to linear transition model without any justification of such a model. 

However, the use of other modelling and/or techniques is left for future 

research work. 

The aim of the experiment is to estimate the mortality risk of a patient with 

a history of cardiac surgery about 24 hours before their date of the death. The 

MIMIC II version 2.5 has about 5,200 such patients, which we identified by 

running SQL queries that searched the nurses’ notes for traces that indicate 

the existence of cardiac surgery within the records of the patients. However, 

not all of these patients have enough data to work with. After screening the 

patients with not enough or unclean data and randomly dividing them into 

testing and training groups, we had 1,106 patients for testing the algorithm 

and 2,580 patients for training. The physiological parameters chosen for 

predicting the mortality risk are blood pressure, oxygen saturation, heart rate, 

temperature and creatinine level. Figures 48 through 52 show the amount of 

records collected for the sample of patients within the last 24 hours.  
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Figure 48. The number of records of temperature measurements of patients in the last 24 

hours of their admission 

 

Figure 49. The number of records of blood pressure measurements of patients in the last 24 

hours of their admission 
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Figure 50. The number of records of creatinine level measurements of patients in the last 24 

hours of their admission 

             

 

Figure 51. The number of records of heart rate measurements of patients in the last 24 hours 

of their admission 
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Figure 52. The number of records of oxygen saturation measurements of patients in the last 

24 hours of their admission 

It is evident from the five last figures that the number of records per patients or 

per parameters varies significantly. Creatinine levels are mostly measured 

once per admission. We have assumed that the creatinine level per patient did 

not change during the time of admission. Temperatures are measured 6 times 

per the last 24 hours in the patient stay in the ICU, whereas the heart rate, 

blood pressure and oxygen saturation are measured almost every hour. 

Hence, interpolation is not of high concern for the validity of the study since 

patients, on average, have already one record per hour for the potentially 

rapidly changing parameters.  The patients from the training set were used to 

develop the conditional/unconditional probability tables necessary for 

prediction the evolution of these parameters during the last 24 hours of their 

admissions. Since the values of these parameters should be associated with a 

classification space of either survived or died, we used the predicted value to 
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search the space of the training sample for the classes of 10 nearest 

neighbours. If these classes are within the survived group, then the patient is 

considered a low risk. Otherwise, the patient is a high risk. The risk factor of a 

patient is calculated using the number of nearest neighbours to the class of 

deceased patients divided by the total Mahalanobis distance to them. Hence, 

the further away the predicted parameters are from the class of deceased 

patients, the smaller the risk will become, and vice versa. The algorithm is 

validated using the testing patients group and then the mathematical average 

of each prediction per the last 24 hours is calculated. Figures 53 and 54 show 

the results obtained during the validation of the algorithm. 

 

Figure 53. Average mortality risk of the portion of the testing patients group who were 

discharged from the hospital (survived). 

  



 
Application to Intensive Care Units 224 

 
 

 

 

Figure 54. Average mortality risk of the portion of the testing patients group who did not 

survive 

Figure 53 shows only the portion of patients from the testing group who were 

discharged from the hospital. The time is displayed in reverse order, that is, 

time 0 means 24 hours before discharge. It is evident from Figure 53 that the 

average risk is below 0.27. In addition, the risk level decreases as the patients 

approach their discharge time. Figure 54 shows the portion of patients who 

have died. The mortality risk associated with them are 3 times higher than that 

of those in Figure 53, which shows a very good isolation of the portion of 

patients with higher risk from those of lower risk. In addition, the mortality risk 

increases as the time of reported death of patients becomes more near. 

Despite the change in the risk level throughout the 24 hours not being 

significant, the difference in the risk level between the two portions (figures) 

proves the validity of the algorithm.  
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5.6 Summary 

 

This chapter presented another application of the CP approach to BN. In 

contrast to chapter 4, which showed application to it using static BN, this 

chapter focused on dynamic BN. It presented a novel approach to the 

monitoring of patients in intensive care units. 

Many research frameworks use artificial intelligence to analyze patients’ 

vital signs in ICU and use these to predict their survivability, manage the 

admission of medicine or make other decisions. The extent of applications that 

researchers are currently proposing falls far beyond the scope of a single 

thesis chapter.  

The focus of chapter 5 was on building systems and algorithms that predict 

the evolution of patients’ physiological variables throughout their stay in an 

ICU, or hospital. The predictions can be utilized in several ways. They can be 

used to determine the likelihood of a sequence of measurements, to make 

decisions, or to estimate the stability of a patient.    

We have presented two experiments using the MIMIC II database. In the 

first experiment, we predicated the evolution of patients’ parameters up to 10 

minutes in advance with an accuracy of up to 99%. In the second experiment, 

we predicted the mortality risk of a group of patients and showed the average 

evolution and levels of risk within each group. 
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6.  Conclusion 

 

The core objective of this thesis was to enhance the current procedure of 

designing decisions support systems when the available amount of 

information is significantly limited. In addition, it aimed to facilitate a better 

representation of information without falling back on the fallacy of extracting 

knowledge from ignorance or presuming situations in an ad hoc fashion 

without sound justifications. Nonetheless, the thesis took a practical approach 

to the matter at hand by applying the proposed theory to two interesting and 

challenging research areas: aviation safety and patient monitoring in ICUs.  

In chapter 1, we showed that a decision-maker is, in essence, a gambler in 

the sense that every decision made involves an element of uncertainty. 

Unforeseen factors make the outputs of decisions uncertain. When dealing 

with uncertainty, decision-makers often need a method with which to quantify 

the likelihood of an outcome. The theory of probability provides a foundation 

for representing the doubt and trustworthiness of an outcome from both 

subjective and objective points of view. This has found a wide range of 

application in scientific research, from social science to engineering to 

quantum mechanics.  

However, the mere representation of information is not sufficient to make 

decisions because the more decisions that are available at the hands of 
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decision-makers, the greater the chance of outcomes that are more 

favourable than the others are. Combining probability with preferences is the 

foundation for the modern theory of decision-making. Preferences are 

expressed in the form of utility functions. Utility is not a semantic equivocation 

of the notion of value but rather a transfer function that maps a decision to its 

relative usefulness. While deriving a good utility function for a given decision 

problem may be controversial and subjective to a certain extent, it is the 

analysis and estimation of probability that take most of the effort. From a 

Laplacian point of view, probability can be estimated objectively just by looking 

at the sample space of an event. However, an analytic approach to the event 

may not be the best way to infer matters of reality, as analytical judgements 

infer nothing more than the relationships between concepts, ideas, and 

meanings. Analytically, the odds of a coin toss landing on heads are the same 

a “yes” answer in an engagement proposal, while in reality we would consider 

such thinking absurd. The frequency interpretation of probability seems to us 

to provide the best answer, because it is objective and is estimated from the 

real world a posteriori. Nonetheless, estimating the probability of events in this 

way requires an extensive amount of data. Therefore, the theoretical 

framework of this thesis has sought to find the best interpretation of probability 

in the context of limited information. 
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6.1 Meeting the objectives 

In order to meet the objectives of this thesis, both theoretical and practical 

approaches were adopted. The main objective is to find a better framework 

that can fully hold the expectations of decision-makers in making better 

decisions under sparse knowledge or in time-critical situations where the 

availability of information begs for more time than a decision-maker has.  

Firstly, the common approach to decision-making, and in turn knowledge-

based decision support systems, is to use probability theory backed by the 

utility functions to come up with the expected utility of making a decision. This 

approach was necessary if the designed DSSs in this research were to remain 

compatible with the current state of the art DSS. In addition, the research 

result proposed in this thesis should integrate to the repositories of science in 

a way that other researchers can make use of it. Hence, the approach should 

not deviate much from the direction of the current arrow of designing DSS. 

Secondly, as the theory of probability is accepted as the main framework 

for representing knowledge with uncertainty, we analyzed many 

interpretations of probability in order to find the most suitable one that works 

with as little information available as possible without falling back on a strictly 

analytical approach or ignorance. A common criterion for assessing an 

interpretation of probability is given by Salmon (see chapter 3). It has three 

aspects, which emphasise the importance of usefulness, admissibility and 

ascertainability of an interpretation. We have analysed several candidates 

from many philosophical and mathematical approaches to the analysis of 

probability. These range from the Laplacian interpretation to the logical to the 
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comparative probability. The choice made was to use the comparative 

probability approach because it offered the best way to represent knowledge 

in circumstances in which little information is available, it could be made 

compatible with the Kolmogorov axiomatic probability, and it has many 

modelling options from which one can choose. 

Thirdly, we surveyed the research done in the theory of comparative 

probability, its axioms, and application to computer science. We found that CP 

has been used for at least two purposes. The first purpose was as a 

standalone interpretation of probability that rivals all the quantitative probability 

theories. The second was a relaxed approach to quantitative probability and, 

to some extent, to provide a justification of the modern Kolmogorov axiomatic 

probability. The choice between the two approaches to CP was based on the 

requirements laid down in section 3.3.1. The requirements aimed at 

compatibility with other DSS and to utilize the strongest results of the 

Kolmogorov axiomatic probability, namely: the law of strong numbers and the 

central limit theorems. Hence, the second approach to CP proved more 

promising for the aims of the thesis. 

Fourth, we strengthen the requirements of the best-fit theory with 

assumptions that will secure a place for the proposed theory in the current 

frameworks of both CP and KP research and ensure that probability continues 

to be considered the very guide to life. We assumed probability to be 

objective, just as the frequency interpretation of probability is. Probability 

should be inferred from data a posteriori, not from the space of possibilities. If 

no data exists, probability still exists but its objective value is unknown. That 
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means that CP is nothing more than a way of representing how much 

knowledge we attain about reality. This knowledge can be as high as an exact 

replica of reality or as low as a basic outline of it. As the amount of data 

acquired from an experiment increases, the probabilities of its outcomes are 

quantified using the frequency approach to probability. That will make the 

proposed theory compatible with the state of the art DSS as the probability 

calculated by it matches that of most frequently adopted approach.  

Fifth, we used the Chernoff bounds to come up with a novel approach to 

updating probability bounds between successive experiment results. Chernoff 

bounds were used as upper and lower estimates of probability at a given 

experiment while taking into account all the previous experiment results. As 

the number of experiments increases, the gap between the upper and lower 

bounds becomes smaller until it approaches the expectation of the outcome of 

the experiment. The expectation of an experiment is nothing other than its 

probability. Hence, a mathematical foundation between CP and KP was 

established with a dynamic nature that puts CP as a foreground methodology 

to evaluate KP. 

Sixth, we recognized that even with the availability of a simple approach to 

representing knowledge, the size of the joint probability tables may become 

too large to process, so we used a Bayesian network to simplify the 

processing of probabilistic queries and reduced the amount of mathematical 

backgrounds required to answer them.  

Seventh, as probabilistic decision support systems work on averages, it 

would be unfeasible to attempt to justify the principles of the proposed 
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approach using an example or two. Instead, we adopted two approaches to 

tackle the issue. Firstly, we used scenario-based validation. Scenarios are 

ways of generating test data, which can be used to validate system design 

requirements. The second approach was the ability of the system to predict an 

output with high accuracy. We have shown examples of the first approach in 

chapter 4 and the second approach in chapter 5.  

Eighth, we suggested two new enhancements to the detection and 

isolation of faults in aviation and to the optimising the navigation planning (see 

chapter 4). In the first experiments, we proposed a new method for detecting 

faults that should overcome any limitations that result from using majority vote 

coming from primary and redundant systems. Whereas, in the second 

experiment, we proposed a novel application to the BADA database as a DSS 

for navigation planning. Both experiments where implemented with CP to 

show the usefulness, admissibility and ascertainability of CP. 

Ninth, an innovated ICU patient monitoring system was designed (see 

chapter 5). The novel system outperforms all current monitoring systems in 

terms of its versatility and prediction capabilities. We have shown how it can 

be used to predict the evolution of patients’ physiological parameters over 

time and how it can predict the mortality risk in patients with a history of 

cardiac surgery even 24 hours before patients’ date of death. 

These nine points show the development of the reasoning according to 

which this research was conducted, starting from defining the research 

question to documenting the results. The research method dictates that a 

good theory should be able to predict some observations that can be 
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measured and compared to what the theory proposes. In the light of such 

requirements, it is the belief of the author that the thesis stands on very solid 

grounds with respect both to meeting the objectives and verifying the 

soundness of its theory. 

6.2 Future Work 

 

While an extensive amount of work has been put into this thesis in terms of 

both theoretical analysis and practical implementation, there are still some 

research questions and opportunities waiting to be fulfilled.  The requirements 

and objectives of this thesis made it clear that the proposed theory should be 

integrable to science and that it should establish a context for the current 

frameworks of various areas in artificial intelligence, aviation and biomedicine. 

As such, it will become open to opportunities and criticism that extend far 

beyond the simple mean of two different applications and peer review process 

of all the papers published during the time of conducting this study.  

On the opportunity side, the monitoring system described in chapter 5 has 

been filed for a patent in the UK. This has made possible a collaboration 

between Manchester University and Rinicom Ltd. In addition, the fault 

detection and isolation method described in chapter 4, along with the 

utilization of BADA network, enabled the School of Computing and 

Communication Systems at Lancaster University to secure funded research in 

the SVETLANA project to enhance the current procedures and performance of 

flight analysis programs. It was originally conducted in a contract to RNC 



 
Conclusion 233 

 
 

 

Avionics Ltd through the North West Development Agency Voucher Award. In 

addition, the work is continuing to apply CP to various methods in online 

clustering analysis, such as the Evolving Takagi Sugeno fuzzy model. In 

addition, it has been partially applied to noisy audio signal classification but 

the results are far away from complete.  

One the criticism side, the major limitation of the work is the assumption of 

independent variables while using Chernoff bounds. This is, in fact, a limitation 

of Chernoff bounds. Proposed future directions of work would be to convert 

the dependent variables to independent, but no work has been done towards 

that yet. It will be of great value to find a way to extend the results of this 

thesis to dependent variables as well as to other types of random variables. 

Moreover, it will be of value to bring the MIMIC II up to its full potential by first 

finding a better way to clean up the data and replace missing information, and 

second to extend the open platform architecture proposed in chapter 5 for fast 

prototyping and deployment.  
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6.3 Final Remarks 

 

As the case with any novel proposal, the comparative probability approach 

proposed in this thesis is not yet complete. The best way to show the power of 

it is through applying it to a wider range of applications and engineering 

problems while ironing out any issues that arises along the way. While this 

thesis worked as proof of concept for CP application to DSS and artificial 

intelligence in general, it is the belief of the author that it has achieved its 

objectives and still maintaining the de facto interpretation of probability intact. 

After all, it would not be of benefit to the scientific community to propose the 

seizure of their very best guide to life.   
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