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Abstract

This thesis describes work on inflationary cosmology, specifically in relation to observations.

After reviewing the theory of inflation and dark matter, we introduce a model, ‘S-inflation’,

in which a gauge singlet scalar S (with quartic self-coupling �s) is both thermal relic dark

matter and the inflaton. This is made possible by its non-minimal coupling �s to gravity, where

�s√
�s

∼ 4.6 × 104 at tree level. Reheating occurs primarily through a stochastic resonance to

Higgs bosons, which then annihilate to relativistic particles. Primary importance is given to the

predictions the model makes for the Higgs mass (mℎ), spectral index (n) and S mass (ms). Under

reasonable assumptions, 130 GeV < mℎ < 170 GeV, 50 GeV < ms < 1 TeV and n > 0.966. All

of these are in principle within reach of the LHC, Planck and direct detection dark matter

experiments, such as XENON100.

We then show that the renormalization group improved effective potential is a superior

method to the standard Coleman Weinberg potential for calculating inflation observables. Then,

we compare the predictions of S-inflation to those of pure Higgs inflation and Higgs inflation

with an additional scalar. For mℎ ≳ 130 GeV, the models are in general distinguishable through

the spectral index n, with n > ncl for S-inflation models and n < ncl for Higgs inflation. For Ñ

e-foldings of inflation, ncl ≈ 1− 2
Ñ

− 3
2Ñ2

≈ 0.966.

We next explain the origin of the apparent violation of unitarity at energy scales greater than

Λ ∼ Mp

�s
(Mp is the reduced Planck mass). As we demonstrate, the calculation of the unitarity

bound is done perturbatively, while the theory is non-perturbative at the energy of unitarity

violation. Therefore, it is not possible to conclude whether or not unitarity is violated in the

model. The model may instead be strongly coupled, meaning that the calculation of scattering

amplitudes at E ∼ Λ becomes non-perturbative, while the analysis of inflation is unchanged.

If unitarity is shown to be violated in the original model, a new, unitarity conserving version
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of the model can be considered. This has a simple form in the Einstein frame, and predicts a

larger spectral index (n ≈ 0.975) than the original model.

ii



I dedicate this thesis to two of my grandparents

Dr. Natalie Hope Lerner and Professor Laurence David Lerner

for their continued support, encouragement and interest in my education.



Acknowledgements

I first wish to thank my supervisor, Dr. John McDonald, for always making time for me, and

for patiently encouraging and supporting me during my three years in Lancaster. I have bene-

fited hugely from many stimulating and thought-provoking discussions about cosmology. I look

forward to collaborating in the future!

It is also a pleasure to thank members of the Cosmology and Astroparticle Physics Group,

past and present, who have been the source of many interesting discussions. I owe particular

thanks to the technical and administrative staff in the Department of Physics, who have made

my time here run so smoothly.

While writing this thesis, I was supported by the Science and Technology Facilities Coun-

cil (STFC) through a postgraduate studentship. I also acknowledge the generous support of

the European Union, through the Marie Curie Research and Training Network “UniverseNet”

(MRTN-CT-2006-035863).

Finally, I wish to thank those close to me for their encouragement and support. I extend

particular thanks to my mum, my dad, Ele and Ros.

iii



Declaration

The contents of Chapter 3 were previously published in [1]. The chapter results from original

work done mainly by myself, under the guidance of my supervisor, John McDonald (with the

exception of Sections 3.2.4 and 3.2.5, which were a collaborative effort between myself and John

McDonald). Chapters 4 and 5 are mainly my own work and have not previously been published.

The work in Chapter 6 was done in collaboration with John McDonald and is partially based on

a published paper [2] and a paper in press [3].

Except where otherwise declared, this thesis is my own work and has not been submitted for

the award of a higher degree elsewhere.

Rose Lerner

John McDonald

iv



Contents

1 Introduction 1

1.1 Status of Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Problems of the Hot Big Bang . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Friedman and fluid equations . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 The scalar inflaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Slow roll approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The primordial curvature perturbation . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Fluctuations during inflation . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 The curvature perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Parameters of the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Relationship to observations: the CMB spectrum . . . . . . . . . . . . . . 10

1.4 After Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Minimal extensions to the Standard Model . . . . . . . . . . . . . . . . . . . . . 16

1.7 Inflation with the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Effective potential, renormalization group and bounds on field theories 19

2.1 Field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 The concept of a field theory . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 The effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.4 Scattering amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.5 Radiative corrections, regularisation and renormalization . . . . . . . . . 24

2.1.6 The Callan-Symanzik equation . . . . . . . . . . . . . . . . . . . . . . . . 26

v



2.1.7 The Standard Model Coleman-Weinberg effective potential . . . . . . . . 27

2.1.8 The RG improved effective action . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Bounds on the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Vacuum stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Perturbativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Connecting inflation and dark matter 34

3.1 The S-Inflation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Non-minimally Coupled Gauge Singlet Scalar Extension of the Standard

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Conformal transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Jordan and Einstein Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.4 Slow Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Radiative corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Coleman-Weinberg Potential . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Suppression of Scalar Propagators . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 RG equations for scalar couplings . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.5 RG equations for �s and �ℎ . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.6 RG equations for gauge and Yukawa couplings . . . . . . . . . . . . . . . 46

3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Vacuum stability and perturbativity . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Constraints from slow-roll inflation . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Thermal relic dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Parameter space for S-inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Reheating in S-inflation 59

4.1 Evolution of the oscillating inflaton . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Reheating via stochastic resonance . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Evolution of the Higgs boson modes . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Stochastic resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 An alternative mechanism of reheating . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Relic density of the inflaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Determining the temperature of radiation domination . . . . . . . . . . . . . . . 71
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Chapter 1

Introduction

This thesis deals with the connection between the beginning of the observable Universe and

particle physics. Specifically, we will consider the observational predictions and theoretical basis

of ‘S-inflation’ — a minimal model of inflation where the inflaton also serves as dark matter.

This model will be tested by future cosmological observations and particle physics experiments.

We use this introductory chapter to motivate the work contained in this thesis. First, in

Section 1.1, we outline the status of cosmology at present. Section 1.2 introduces inflation and

the slow roll formalism, which is developed in Section 1.3 to describe the primordial curvature

perturbation and its connection to observations. Consideration of the transition between the

end of inflation and the current Universe is essential and will be discussed in Section 1.4. Our

work concerns the connection between inflation and dark matter — so in Section 1.5 we discuss

the evidence for dark matter and the Lee-Weinberg approximation, used to calculate the current

density of dark matter. Many (often well motivated) extensions to the Standard Model are com-

plicated — such as supersymmetry (SUSY). However, in this thesis we consider a very minimal

extension of the Standard Model. In Section 1.6 we discuss this philosophy of minimalness and

review a particular minimal model known as the �MSM. Finally, Section 1.7 discusses inflation in

the context of minimal models. Further background — mainly field theory and renormalization

— is contained in the following chapter.

Conventions

In this thesis, Mp is the reduced Planck mass, defined by Mp = (8�G)−
1
2 . The constants c, kB

and ℏ are set to 1 unless explicitly stated. Unless otherwise defined, a dot (e.g. �̇) is a derivative

with respect to cosmic time t and a dash (e.g. V ′) is a derivative with respect to the relevant

field. Our sign convention is (+,−,−,−).
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1.1 Status of Cosmology

In general, cosmology is a discipline of observation rather than experiment — we cannot re-

create the formation of the Universe. Fortunately, these observations are becoming extremely

precise — specifically, observations of the cosmic microwave background (CMB) radiation and

of the distribution of large scale structure in the Universe. High energy particle physics and

high energy astroparticle physics experiments also contribute towards our understanding of the

Universe. The Large Hadron Collider (LHC) at CERN should reach a centre of mass energy

of 14 TeV in the next few years — much lower than the energy of the big bang, but hopefully

high enough to discover new particles. The Planck satellite, launched in May 2009, will measure

the anisotropy of the CMB radiation over the whole sky, improving on earlier observations by

WMAP (Wilkinson Microwave Anisotropy Probe) and COBE (COsmic Background Explorer).

This will provide precise measurements of the spectral index of the CMB anisotropy, as well as

measurements or improved upper bounds for the ratio of scalar to tensor modes and the running

of the spectral index, all of which should help to constrain models of inflation. Just as important

are direct and indirect dark matter detection experiments such as CDMSII (Cryogenic Dark

Matter Search), XENON100 and DAMA/LIBRA (DArk MAtter / Large sodium Iodide Bulk for

RAre processes). The model presented in this thesis, S-inflation, could easily be ruled out or

favoured by any of these experiments.

Hot Big Bang

In 1929, Hubble published measurements of the velocities (v) and separations (r) of a selection

of galaxies [4]. This gave the relationship v ≃ H0r (where H0 is known as the Hubble constant),

which means that each galaxy is receding from each other galaxy at a speed proportional to

the separation of the two galaxies. Assuming the cosmological principle, which states that the

Universe is homogeneous and isotropic on large scales, we can draw the conclusion that all space

is expanding, carrying the non-expanding gravitationally-bound structures (such as galaxies and

galaxy clusters) along with it. Extrapolating backwards from this, we can suppose that the

Universe was once very hot and very dense — this is the Hot Big Bang. Inflation, discussed in

Section 1.2, provides the necessary initial conditions for the hot big bang (the initial conditions

for inflation then become the important issue).

Starting from this hot and dense period, the Universe expanded and cooled. It became

energetically favourable to form protons and neutrons, and then atoms. Different particle species

stopped interacting with each other and began to evolve separately. The CMB was formed

(approximately 380,000 years after the beginning of the hot big bang) when photons could no
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longer interact with atoms and so travelled unhindered1. As the Universe expanded, CMB

photons cooled to a current temperature of 2.73 K [5]. The CMB radiation was discovered by

Penzias and Wilson [6], who observed microwave radiation (at one wavelength) with the same

effective temperature at each point in the sky. It has now been confirmed (by COBE, WMAP and

Earth-based experiments) that the radiation is blackbody radiation with a temperature in each

direction in the sky which is the same to one part in 105 (once the dipole has been subtracted).

Robertson-Walker metric

The metric g�� relates coordinates to the invariant interval,

ds2 = g��dx
�dx� . (1.1)

The cosmological principle states that the Universe is homogeneous and isotropic on large scales.

This has not been conclusively proven by observations and is an assumption that we will use

throughout this thesis. The cosmological principle greatly restricts the form of the metric.

Assuming the cosmological principle, the Universe can be described by the Robertson-Walker

metric in either physical coordinates (a(t)xi and t) or comoving coordinates (xi and �), where

the expansion of the Universe has been factored out. If the Universe is flat (the main evidence

for this is given by CMB observations [5, 7], for example), it is

ds2 = −dt2 + a2(t)

3
∑

i=1

dx2i

= a2(�)

(

−d�2 +
3
∑

i=1

dx2i

)

(1.2)

where a(t) is the scale factor (which must only be a function of time because of the assumed

homogeneity and isotropy). For fixed t, spatial slicings are homogeneous and isotropic; the

threading is orthogonal to this slicing. Eq. (1.2) is only valid for the background homogeneous

and isotropic evolution of the Universe, not for the evolution of perturbations.

Energy density of the Universe

The amount of matter in the Universe is usually measured in terms of the density parameter

Ω =
∑

i

Ωi =

∑

i �i
�c

, (1.3)

1Almost... small effects such as the Sunyaev-Zeldovich effect do involve interactions with CMB photons.
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where �c is the critical density of the Universe:

�c =
3H2

8�G
(1.4)

and the Hubble parameter H is

H =
ȧ

a
. (1.5)

Components contributing to Ω include relativistic matter, non-relativistic baryons, dark matter

and dark energy.

1.2 Inflation

Inflation is a short period of extremely rapid (nearly exponential) expansion of space defined by

the acceleration of the scale factor:

ä > 0 . (1.6)

In contrast, the expansion of the Universe in the Hot Big Bang is decelerating (ä < 0). Equiv-

alently, inflation is any period of time when the comoving Hubble radius (the event horizon),

H(t)−1, is decreasing. We believe that the entire (observable) Universe has grown from a tiny,

causally connected patch. Inflation sets the initial conditions for the hot big bang as a flat,

homogeneous, isotropic and hot Universe in thermal equilibrium.

Since the beginning of the hot big bang, light could have travelled a distance equal to the

particle horizon. Events separated by more than the particle horizon could never have had a

common causal root. The particle horizon Xpℎ in comoving coordinates (assuming the metric

Eq. (1.2)) is [8]

Xpℎ(t) =

∫ t

t0

dt

a
, (1.7)

where t0 is some early time where the metric is valid. The event horizon Xevent is

Xevent(t) =

∫ ∞

t

dt

a
. (1.8)

1.2.1 Problems of the Hot Big Bang

Various observations are not easily explained purely within the Hot Big Bang model. Inflation

provides an explanation for these observations — and this is discussed below. However, inflation

also raises questions of its own, particularly questions about how inflation could begin. It is

beyond the scope of this thesis to discuss the initial conditions for inflation in detail.
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The Universe is flat

While the Universe is decelerating (most of its history), ∣Ω−1∣ increases2. The current measured

value of Ω is very close to 1. Therefore, at the beginning of the big bang, Ω must have been

even closer to 1. This is considered to be a very finely tuned initial condition and in need of an

explanation. Inflation offers the explanation: in an accelerating Universe, Ω is driven towards 1

— so any initial Ω before inflation would still lead to our currently observed value.

The Universe is homogeneous

We mentioned above that the CMB is the same temperature in all directions, to high accuracy.

From the beginning of the hot big bang until now, opposite sides of the sky could never have

been in causal contact as they are separated by much more than the current particle horizon

(Eq. (1.7))3. Therefore, without inflation, there is no clear way to explain how the temperatures

are the same. The inflation explanation is that the entire observable Universe was originally in

causal contact. During inflation, the comoving Hubble radius decreases. Therefore, at the end of

inflation, the entire Universe is no longer in causal contact although it is at the same temperature

due to the fact that it was once in causal contact.

We do not observe monopoles

We do not observe monopoles, topological defects or various other particles which could (in

theory) be produced at high enough energies. Inflation explains this: any particle species existing

before inflation would be diluted out of existence in only a few e-foldings. The hot big bang begins

after inflation at a finite temperature (the exact temperature depends on the particular model

of inflation and reheating) which can be low enough to avoid thermal production of the particles

which we do not observe. However, this is not a strong motivation for inflation on its own, as it

can be explained if the Hot Big Bang had a maximum temperature much lower than the GUT

(Grand Unified Theory) temperature (1016 GeV). In that case we would not expect monopoles

(which are GUT particles) to be produced in thermal equilibrium, thus removing the problem.

Monopoles would only be produced anyway if the GUT group is semi-simple.

Perturbations are the seeds for galaxies

This is the most important motivation for inflation. The CMB is measured by COBE and

WMAP to have small perturbations in its blackbody spectrum ( �TT is approximately 10−5). The

perturbations have a clear, oscillating power spectrum over a wide range of angular scales. These

2Unless ∣Ω− 1∣ is initially exactly equal to zero.
3It is important to note that we have no real understanding of physics at the Planck scale, so for example the

Universe could have some strange causal structure at the Planck scale.
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temperature perturbations are due to perturbations in the energy density (through the Sachs-

Wolfe effect). The density perturbations are due to perturbations in a field during inflation

according to the inflationary paradigm. As the density perturbations evolved after the time

of decoupling, gravitational collapse occurred and structure in the Universe began to form. A

power spectrum of the large scale structure (LSS) can be made, and its features mapped onto the

CMB power spectrum4. Inflation can explain the fluctuations in the CMB as random quantum

fluctuations which are ‘frozen in’ during inflation as each scale leaves the horizon. Perturbations

produced during inflation are mostly Gaussian (matching observation) and naturally occur on

superhorizon scales (again matching observation). It is difficult to produce Gaussian superhorizon

perturbations by any other mechanism.

1.2.2 Friedman and fluid equations

Einstein’s field equation is

R�� − 1

2
g��R =

1

M2
p

T�� (1.9)

where T�� is the energy-momentum tensor, R�� is the Ricci tensor and R is the Ricci scalar. In a

homogeneous and isotropic Universe, the 0-0 component of Eq. (1.9) is known as the Friedmann

equation:

H2 =
�

3M2
p

− K

a2
(1.10)

where H = ȧ
a . We only consider a flat geometry in this thesis (according to observation), so

K = 0 from here onwards.

A second useful equation is known as the fluid equation:

�̇+ 3H (�+ p) = 0 (1.11)

where � is energy density and p is pressure. This is derived using the expression ∇�T
�� =

0. A third equation, not independent of the Friedmann or fluid equations, can be derived by

differentiating the Friedmann equation (Eq. (1.10)) and using the fluid equation (Eq. (1.11)):

ä

a
= − 1

6M2
p

(�+ 3p) . (1.12)

This is known as the acceleration equation.

4The features of the LSS power spectrum are less clear than for the CMB due to many non-linear processes
occurring between the formation of the CMB and structure formation.
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1.2.3 The scalar inflaton

To achieve ä > 0 necessary for inflation, according to Eq. (1.12) we require p < − �
3 . The simplest

way to achieve this is for the Universe to be dominated by a homogeneous scalar condensate with

energy density

� =
1

2
�̇2 + V (�) (1.13)

and pressure

p =
1

2
�̇2 − V (�). (1.14)

Provided that �̇2 ≪ V (�), then p ≃ −�. The condition p < − �
3 must hold for long enough to

create the flat, homogeneous Universe that we observe.

1.2.4 Slow roll approximation

Considering a homogeneous single field � (called the inflaton) which dominates the Universe, the

Friedmann equation is

3M2
pH

2 = V (�) +
1

2
�̇2 (1.15)

and field equation (derived in Section 2.1.1), is

�̈+ 3H�̇+
dV

d�
= 0. (1.16)

Most models of inflation satisfy the slow roll approximation which assumes

∙ the �̇ term in Eq. (1.15) is negligible, so

3M2
pH

2 ≃ V (�), (1.17)

∙ the �̈ term in the field equation (Eq. (1.16)) is negligible, so

3H�̇ ≃ −dV
d�

≡ −V ′ (1.18)

∙ and that differentiating Eq. (1.18) is valid, so

�̈ ≃ − Ḣ
H
�̇− V ′′

3H
�̇. (1.19)

7



These can equivalently be written in terms of the slow roll parameters � and �:

� ≡ M2
p

2

(

V ′

V

)2

≪ 1 (1.20)

∣�∣ ≡
∣

∣

∣

∣

M2
p

V ′′

V

∣

∣

∣

∣

≪ 1. (1.21)

Subsequent slow roll parameters can be defined. We will use5

# ≡M4
p

V ′V ′′′

V 2
≪ 1. (1.22)

1.3 The primordial curvature perturbation

Quantum mechanics dictates that a field will always have fluctuations about its classical value.

The fluctuations during inflation are frozen as they leave the horizon. Under suitable conditions,

the spectrum of the fluctuations of certain fields can form the curvature perturbation, which

is constant on superhorizon scales6. The curvature perturbation gives the perturbation in the

total energy density and can be seen imprinted on the CMB and the spectrum of structure in

the Universe. Other forms of primordial perturbation include the tensor perturbation and the

isocurvature perturbation; however our main concern is the curvature perturbation.

1.3.1 Fluctuations during inflation

Well before a particular scale exits the horizon, fluctuations of the inflaton field are vacuum

fluctuations in a flat space-time background because these subhorizon scales are less than the

curvature radius H−1 (the scalar curvature is R ∼ H2). In conformal time � , the perturbation

of � is

 k ≡ a��k (1.23)

which obeys the mode equation [8]

d2 k(�)

d�2
+ !2

k(�) k(�) = 0 (1.24)

where

!2
k = k2 − 2

�2
. (1.25)

5This is usually denoted by � but we use # to avoid confusion with the non-minimal coupling.
6It is constant provided that pressure depends only on the energy density.
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Well after horizon exit, the solution is [8]

 k(�) = − i√
2k

1

k�
. (1.26)

The spectrum is the two-point correlator, and is defined as

⟨��k⃗��k⃗′ ⟩ =
2�2

k3
P�� �

3(k⃗ + k⃗′). (1.27)

The spectrum of �� (conformal time for H ∼ constant is � = (aH)−1) is therefore

P�� =

(

H

2�

)2
∣

∣

∣

∣

∣

k=aH

. (1.28)

This is evaluated at ‘horizon crossing’ when the wavelength of the perturbations becomes equal

to the size of the event horizon. After this, the perturbations are frozen in and do not change (in

comoving coordinates). Due to the above, the typical perturbation of the field is �� ≈
√

P�� =

H
2� .

1.3.2 The curvature perturbation

On a flat slicing7, the first order curvature perturbation is [8]

� = H�t = −H ��

�̇
. (1.29)

The curvature perturbation spectrum is given by

⟨�k⃗�k⃗′ ⟩ =
2�2

k3
P� �

3(k⃗ + k⃗′). (1.30)

Given that the spectrum of �� is given by Eq. (1.28), the curvature perturbation spectrum is

therefore

P� =
1

4�2

(

H2

�̇

)2
∣

∣

∣

∣

∣

k=aH

. (1.31)

Using the slow roll approximations (Section 1.2.4) we can write this as

P� =
1

24�2M4
p

V

�

∣

∣

∣

∣

k=aH

. (1.32)

7A slicing of spacetime is defined by considering hypersurfaces with fixed x0. A flat slicing has zero spatial
curvature.
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The tensor perturbation

In the slow roll approximation, the primordial tensor perturbation spectrum is [8]

Pℎ(k) =
8

M2
p

(

H

2�

)2
∣

∣

∣

∣

∣

k=aH

. (1.33)

The tensor to scalar ratio is given using Eq. (1.32) and Eq. (1.33):

r ≡ Pℎ

P�
≈ 16�. (1.34)

1.3.3 Parameters of the spectrum

Assuming the spectrum of the curvature perturbation can be parameterised as a power law

P� ∝ kn−1, (1.35)

the spectral index is given by

n(k)− 1 =
d lnP�

d ln k

∣

∣

∣

∣

k=aH

(1.36)

where d ln(aH) ≃ Hdt (assuming Ḣ is negligible). Using the slow roll approximations and the

spectrum Eq. (1.32), the spectral index can be written in terms of � and � as

n = 1 + 2� − 6�. (1.37)

Similarly, the running of the spectral index is given by

� ≡ dn

d ln k

∣

∣

∣

∣

k=aH

= −16��+ 24�2 + 2#. (1.38)

1.3.4 Relationship to observations: the CMB spectrum

We observe the CMB anisotropy and the distribution of galaxies. This allows us to reconstruct

the curvature perturbation, P�(k) and compare with predictions. The quantities P�(k0), n, r

and � are calculated from the theory at horizon exit during inflation. Ignoring the monopole

and dipole moments8), the brightness function Θ is [8]

�T

T
≡ Θ(�, x⃗, n⃗) =

∑

lm

(−1)lYlm(n⃗)Θlm(�, x⃗). (1.39)

8The dipole moment has �T
T

∼ 10−3 and is probably due to the Earth’s motion in the CMB rest frame.
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This has been expanded in terms of spherical harmonics Ylm, where n⃗ is the direction of the

photon momentum and � is conformal time.

Now considering the fourier component of the brightness function for scalar modes only, we

see that [8]

Θ(�, k⃗, n⃗) =
∑

l

(−i)l
√

4�(2l + 1)Yl0(n⃗)Θl(�, k⃗), (1.40)

where

Θl(k⃗) = Tl(k)�k. (1.41)

Eq. (1.41) defines the transfer function, Tl, which encodes the effects of the physical processes be-

tween horizon exit during inflation and photon decoupling. The spectrum of the CMB anisotropy

is then

Cl = ⟨∣Θlm∣2⟩ = 4�

∫ ∞

0

T 2
l (k)P�(k)

dk

k
. (1.42)

1.4 After Inflation

Inflation needs to last for only a brief moment and usually ends when the inflaton field rolls

quickly towards the minimum of the potential, violating the slow roll conditions. Reheating

is the transfer of energy from the inflaton field to a relativistic radiation-like gas. This is the

beginning of the transition to low energy particle physics described by the Standard Model. Some

time later, electroweak symmetry breaking occurs (in the Standard Model this is a crossover

process) followed by chiral symmetry breaking (when QCD becomes strong enough to form a

quark condensate). Around this time, the quarks form into hadrons.

It is assumed that the net baryon number in the Universe is initially zero, because leptons are

formed in pairs with anti-leptons and hadrons with anti-hadrons. Thus we need a mechanism to

create a net baryon number; this is known as ‘baryogenesis’. Baryogenesis could also take place

through leptogenesis, where a net lepton number is generated and transformed into a net baryon

number by non-perturbative processes which violate B+L. Nucleosynthesis — the formation of

nuclei (particularly hydrogen and helium) begins at T ∼ 1 MeV, about 3 seconds after the end

of inflation.

1.4.1 Reheating

As the inflaton � nears the minimum of its potential it begins to oscillate with a frequency ! and

amplitude �end. A simple reheating mechanism is for the inflaton to decay to Standard Model

particles as it oscillates; other mechanisms usually fall under the category of ‘preheating’. For

simple reheating, the decay rate is Γ ∼ g2

4�m where the decay could be through gauge couplings
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(g ∼ 0.1), gravitational strength couplings
(

∼ m
Mp

)

or anything else in between. For this decay

to be effective we need Γ ∼ H and Γ ≲ ! (in order to have time for the inflaton to oscillate).

In most models of inflation, the coupling of the inflaton to the Standard Model is unknown,

so the precise details of reheating cannot be calculated. In a realistic model it is likely that a

combination of mechanisms contribute towards reheating the Universe.

It is not sufficient only to produce relativistic particles. These must then thermalise in order

to complete the process of reheating. This is not trivial and requires 2 → 3 process to occur.

We can usually ignore the expansion of the Universe, as the production of relativistic particles

occurs in a time much shorter than the characteristic timescale of the expansion, H−1. Inflation

gives the initial condition that the occupation number of all states (except the zero mode of the

inflaton) is small: nk ≪ 1. This is because the inflaton is a homogeneous condensate and all

other particle species have been diluted to tiny occupation numbers by inflation.

Preheating

While standard reheating requires a small vacuum expectation value (vev) or oscillations of the

inflaton, this is not required for preheating. In general, preheating produces a non-equilibrium

gas which should decay or scatter to produce thermal radiation. Assuming the inflaton vev is at

zero and that it couples to another field � (with negligible mass), the potential is

V =
1

2
m2

��
2 +

1

2
g2�2�2 + ⋅ ⋅ ⋅ .

The equation of motion for the modes of � is

�̈k + Ek(t)
2�k = 0

where E2
k(t) =

(

k
a

)2
+m2

�(t). There are no � particles during inflation, because Ek only varies

adiabatically. After inflation, � oscillates and m2
�(t) = g2�2end sin

2 (m�t). This gives a Mathieu

equation

d2�k

dz2
+ [A(k)− 2q cos(2z)]�k = 0 (1.43)

where A = k2

m2
�
+ 2q, q =

g2�2
end

4m2
�

and z = m�t. For particular values of A and q, �k can grow

rapidly, giving a parametric resonance which quickly drains energy from the inflaton field.

Other mechanisms of preheating exist and include instant preheating [9] and tachyonic pre-

heating [10]. Instant preheating occurs very quickly and the inflaton only passes through zero

once. This is because a strong coupling to fermions means that � can decay very quickly at

its oscillation maximum, draining energy almost instantly from the inflaton field. Tachyonic
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preheating produces excitations of the inflaton. The background inflaton has a negative mass-

squared, becoming more negative with time. Excitations of � are created when the mass-squared

becomes negative, as it is non-adiabatic at this point. The excitations can then annihilate or

decay to produce thermal radiation, through 2 → 3 processes.

1.4.2 Baryogenesis

In order for baryogenesis to occur, three conditions (known as the Sakharov conditions [11]) must

be met. These are

∙ (i) baryon number must be violated in some process(es),

∙ (ii) C (charge) and CP (charge-parity) symmetries must be broken (otherwise any baryons

created would be cancelled by an equal number of anti-baryons) and

∙ (iii) the processes must be out of equilibrium, otherwise everything is just as likely to

occur in reverse, producing no net baryon number (equivalent to CPT (where T is time)

violation).

There are a number of scenarios where baryogenesis occurs. Particularly interesting for this

thesis are Electroweak baryogenesis which occurs at the electroweak transition, and baryogenesis

via resonant leptogenesis.

1.5 Dark Matter

If the Universe is at the critical density, Ω = 1, then it has a flat geometry (K = 0 in Eq. (1.10)).

CMB fluctuations [5, 12] and data from distant supernovae [13, 14] confirm that this is true (it

is also a consequence of any inflation model). The amount of baryonic matter that we observe

in clusters and dust is not sufficient to account for Ω = 1 today; it only gives ΩB ≃ 0.04. There

are two components to the remaining 96% of the energy density — dark matter and dark energy.

Dark energy has a negative pressure and if it dominates, it causes acceleration expansion of the

Universe. It makes up the proportion of Ω which is not accounted for by baryonic matter or dark

matter, but is only dominant at late times, so will not concern us in this thesis. Dark matter

makes up about 23% of Ω. A number of observations are explained by dark matter and these

include the following.

∙ Bullet cluster — a collision between two galaxies clusters provides direct observational ev-

idence for dark matter. Visible matter is mostly in the centre of the system as observed

by x-rays (when the clusters collided, visible matter was slowed by electromagnetic inter-
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actions). However weak gravitational lensing shows most of the mass to be further away

(dark matter was not slowed by electromagnetic interactions) [15, 16].

∙ Formation of structure in the Universe — simulations including dark matter closely match

the spectrum of structure observed [17].

∙ Rotation curves of galaxies — the speed of rotation of stars in galaxies is approximately

constant with distance from the centre. However, the visible matter present corresponds to

a Newtonian potential where the rotation speed would fall with distance. Therefore there

must be some non-visible matter present [18].

∙ Gravitation lensing — independently from the dynamical measurement of rotation curves,

general relativity can be used to determine the gravitational mass of clusters through

gravitational lensing. This mass is much greater than expected, given the amount of

luminous matter present, implying the presence of dark matter.

∙ CMB spectrum — the height and position of the peaks is fitted well by a model containing

cold dark matter (CDM).

Dark matter could be composed of anything that does not interact except through gravita-

tional attraction (or interacts extremely weakly) with particles in the Standard Model. Candi-

dates with zero pressure (CDM) are currently favoured by observations, although do give rise

to the substructure problem and the cuspy halo problem, discussed below. CDM can either

decouple from thermal equilibrium at some temperature (candidates include the lightest super-

symmetric particle or some scalar particle) or be produced via some non-thermal process, such

as the homogeneous condensate of scalar particles (candidates here include the axion). Thermal

relic CDM is particularly well motivated because particles with masses between a few GeV and

a few TeV, with cross sections of electroweak strength (known as WIMPs, or weakly interacting

massive particles), naturally produce a relic density of the correct order of magnitude. This is

known as the WIMP miracle.

Simulations of CDM show there to be many more small halos or substructures than have

been observed [19]. This is the substructure problem. There are two possible solutions to this.

It is possible that the small clusters of dark matter are too small to have formed a visible galaxy,

so do exist but have not been detected. Another possibility is that these dwarf galaxies did form,

but were tidally stripped or accreted by larger galaxies. The second problem is that cosmological

simulations show dark matter distributions to be cuspy (sharply increasing in dense parts of the

Universe), which is not observed (this is known as the cuspy halo problem) [20, 21]. There is no

clear explanation of this at present.
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Thermal relic densities using the Lee-Weinberg approximation

If we know the mass of a WIMP and its coupling to the Standard Model, we can calculate the relic

density ΩDM that it would produce upon freezing out of thermal equilibrium. Alternatively, we

can use a measurement of ΩDM to determine the WIMP mass, given its coupling(s). In this thesis

it will be sufficient to use the Lee-Weinberg approximation [22] to calculate the relic density.

The number density of dark matter particles is reduced as the Universe expands and can

change through annihilations or pair production (assuming stable dark matter). The rate equa-

tion is [23]

dn

dt
= −3H(t)n− ⟨�v⟩(n2 − n2

0) (1.44)

where n0 is the equilibrium number density and � the annihilation cross section. For T ≪ m,

n0 is given by the Maxwell-Boltzmann distribution:

n0 =

(

mT

2�

)3/2

e−
m
T . (1.45)

Assuming radiation domination, this can be re-written in terms of f = n
T 3 and f0 = n0

T 3 :

df

dT
=

⟨�v⟩(f2 − f2
0 )

K
(1.46)

where

K =

(

�2g∗(T )
90M2

p

)
1
2

(1.47)

and g∗(T ) is the effective number of relativistic degrees of freedom at temperature T .

In order to solve this, we make several assumptions. The first is that the dark matter particle

is the only particle that freezes out of thermal equilibrium near the dark matter freeze-out

temperature Tf (this means that g∗(T ) is approximately constant). The second is that the

Universe is radiation dominated. Then we assume that the dark matter is in exact thermal

equilibrium (f = f0) until T = Tf . At temperatures lower than Tf , f0(T ) = 0. Thus, defining

xf = m
Tf

, we get

x−1
f = ln

(

mx2f ⟨�v⟩
K(2�xf )3/2(1− 3

2xf )

)

. (1.48)

This enables calculation of the current relic density of the dark matter particles [24]:

ΩS ≡ �S
�c

=
g(T)

g(Tf)

K

Txf ⟨�v⟩

(

T 4


�c

)

(1− 3xf/2)

(1− xf/2)
, (1.49)

once the thermally averaged annihilation cross sections for the particular dark matter candidate
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have been computed.

1.6 Minimal extensions to the Standard Model

Although the Standard Model of particle physics (discussed in the next chapter) reproduces

experimental results well, it does not provide a mechanism for inflation, dark matter, baryogenesis

or neutrino masses. Therefore it cannot be the complete theory of particle physics. Theories

which attempt to explain these observations usually involve a new scale between the weak scale

and the Planck scale and many additional particles. The Standard Model is then viewed as

the low energy remnant of some more complete theory9, which is only valid up to some cut off

Λ < Mp.

An alternative philosophy is to add to the Standard Model the minimal number of new fields

that are needed to address these issues. One example is the �MSM [26, 27], which is the Standard

Model extended by three singlet fermions to account for neutrino masses. In this case dark matter

can be explained by a keV-scale sterile neutrino, while baryogenesis occurs via leptogenesis due

to sterile neutrino oscillations [28]. Therefore neutrino masses, dark matter and baryogenesis can

all be explained within a very minimal extension of the Standard Model (although this imposes

non-trivial conditions on the sterile neutrino masses and couplings [29]). A scale-invariant but

very weakly-coupled scalar may also be added to serve as the inflaton [30]. Reheating in this

model (with the additional scalar-inflaton) occurs at a low temperature and bounds the inflaton

mass to be either 0.1 GeV ≲ m ≲ 10 GeV or 300 GeV ≲ m ≲ 1 TeV [31].

One motivation for considering weak-scale extensions of the Standard Model is the idea that

the hierarchy problems of non-supersymmetric particle theories can be avoided if there is only

one mass scale in the effective field theory below the Planck scale [25]. The gauge hierarchy

problem is that quantum corrections to the Higgs mass diverge quadratically (due to heavy

particles running in loops), and therefore must be cancelled in some way. To achieve this, the

theory must be finely tuned either at tree-level (for a SUSY model) or to each order up to ∼ 13

loop order (for a non-SUSY model). However, if the effective theory has no new mass scale below

the Planck scale, then no fine-tuning is necessary (provided the minimal-subtraction scheme for

regularisation is used [25]).

In this case (with no new scale), the Landau pole appearing in various couplings (which

makes the theory mathematically inconsistent) can be shifted to a value above the Planck scale,

where quantum gravity would be expected to provide a UV completion of the theory. Provided

9A particular motivation for theories with a new energy scale (such as GUTs) is that they can cause the
gauge couplings to unify at some scale. Currently they intersect only in pairs, between 1013 and 1017 GeV. This
apparent unification could either be just a coincidence, or one may wonder if a theory of quantum gravity could
cause unification at Mp [25].
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this is done, the Standard Model can be a mathematically consistent theory, up to the Planck

scale. It still cannot be a complete theory, as many observations remain unexplained (neutrino

masses, neutrino oscillations, baryogenesis, inflation and many more). However, the additions to

the Standard Model do not necessarily need to introduce a new scale.

1.7 Inflation with the Standard Model

Recently it has been suggested that inflation might be explained purely within the framework

of the Standard Model, with the Higgs field itself serving as the inflaton [32]. This is possible

if the Higgs has a large non-minimal coupling to gravity and has been extensively investigated

in a number of papers [32, 33, 34, 35, 36, 37, 38, 39, 40]. However, in order to account for dark

matter, baryogenesis and neutrino masses, it is still necessary to extend the Standard Model. This

might be achieved by combining Higgs inflation with the �MSM — but other extensions which

are consistent with entirely weak scale particle physics could also be considered. As discussed

in Section 1.5, stable particles with weak scale masses and electroweak strength interactions

(WIMPs) produce a thermal relic dark matter density which is naturally of the correct order of

magnitude. Therefore there is a strong motivation to extend the Standard Model by the addition

of a particle with these properties.

The main aim of this thesis is to propose a minimally-extended version of the Standard Model

(as an alternative to the �MSM plus Higgs inflation) which is able to explain both the mechanism

for inflation and the presence of thermal relic dark matter. We call the model ‘S-inflation’ and

it is the addition of a stable gauge singlet scalar S to the Standard Model. This is the simplest

extension of the Standard Model which obeys gauge symmetry and can account for dark matter

[24, 41, 42, 43, 44]. A discrete Z2 or a global symmetry U(1) must be imposed to ensure stability

of the scalars; in the former case it is natural to consider real scalars, in the latter case complex

scalars.

After discussing in Chapter 2 aspects of field theory necessary for the remainder of the thesis,

we discuss various aspects of the model. In Chapter 3 we show that S can serve simultaneously

as a thermal relic dark matter particle and as the inflaton, producing the correct density of dark

matter while at the same time obeying the observational constraints on the spectral index n and

other inflation observables. Effectively we are replacing the Higgs scalar of Higgs inflation by the

dark matter scalar S. As we will show, the model has the potential to relate particle physics,

dark matter detection experiments and inflation observables — a connection that will be brought

into focus in the near future by the LHC, the Planck satellite and future dark matter detectors.

Next, in Chapter 4, we show that reheating is possible in the model, in spite of the symmetry
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which prevents S from decaying. In Chapter 5, we compare the experimental predictions of S-

inflation to those of Higgs inflation. We first clarify the confusion in the literature regarding the

predictions of Higgs inflation by comparing the two methods of calculating the effective potential,

before comparing the predictions of the two models. Chapter 6 includes a discussion of the issue

of naturalness and unitarity violation in this class of models. We conclude that it is not possible

at present to conclusively determine whether or not the model is safe. We also present a new

model of Higgs inflation which, under certain assumptions, we believe conserves unitarity and

thus secures the future of non-minimally coupled models, should unitarity prove to be violated

in the original version. In Chapter 7, we present our conclusions.

18



Chapter 2

Effective potential,

renormalization group and

bounds on field theories

2.1 Field theory

The aim of this chapter is to explain the concept of, method of obtaining and validity of the

effective potential (which is necessary to calculate inflation observables). First, we introduce the

idea of a field theory — the action, Lagrangian and symmetries of the theory. As an aside we

explain the Higgs mechanism and discuss the calculation of scattering amplitudes. We will make

use of the Higgs potential in this thesis, and it is important to understand its motivation as a

mechanism for giving mass to particles.

In the second part of the chapter, we introduce radiative corrections, divergences and renor-

malization. We discuss the concept of the effective potential, present the Callan-Symanzik equa-

tion, and use it to derive two forms for the effective potential. We introduce the renormalization

group (RG) equations for couplings. Finally, we discuss some general bounds on the validity of

theories: the concept of a stable vacuum, perturbativity and unitarity (conservation of proba-

bility). A comprehensive review of the field theory contained in this chapter can be found in

[45, 46], for example.

2.1.1 The concept of a field theory

We are able to make a relatively simple mathematical model of the interactions of all known

elementary particles, using quantum field theory. Each particle corresponds to a field (which is

an operator in the field theory). We start with the action S, which gives the laws of physics

through the action principle:

�S = 0. (2.1)
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The action for a field theory with one scalar field � in flat space can be written

S ≡
∫ +∞

−∞
ℒ(�, ∂��)d4x (2.2)

where ℒ is the Lagrangian density. For curved space, a factor
√−g, where g is the determinant of

the metric tensor g�� , is inserted so that the action is invariant under coordinate transformations.

Applying the action principle gives the Euler-Lagrange equations of motion (one equation for

each field �):

∂�

(

∂ℒ
∂(∂��)

)

− ∂ℒ
∂�

= 0. (2.3)

For example, the simple scalar Lagrangian ℒ = 1
2g

��∂��∂�� − V (�) with a Robertson-Walker

metric (Eq. (1.1)) gives the equation of motion, Eq. (1.16), once we assume a homogeneous field.

To derive ℒ for the Standard Model, we need two ingredients: (i) the fields and (ii) a procedure

for choosing which terms to include. There are two main types of particles — fermion (spin 1
2 )

and boson (spin 0 or 1). They transform differently under Lorentz transformations and therefore

are represented by different types of field (fermions by spinors, spin-1 bosons by vectors and spin-

0 bosons by scalars). Cosmology often deals with spin 0 scalars (particularly for inflation), which

have simple transformation properties. The main principle for writing down the terms in the

Lagrangian is that the Lagrangian must be invariant under certain symmetry transformations.

These include both external transformations (such as Lorentz transformations and coordinate

transformations) and internal transformations. The Standard Model is invariant under internal

SU(3)c × SU(2)L × U(1) transformations. After imposing all these restrictions, we write down

the terms which remain1.

Gravity and the Planck scale

The gravitational part of the Lagrangian is

ℒgrav =
1

2
M2

pR+
1

2

∑

i

�i�
2
iR (2.4)

where R is the Ricci scalar and �i are scalar fields. The second term is usually omitted but

is in fact required by the renormalizability of the theory in curved space [47]. Whichever field

theory we choose, Einstein gravity (Eq. (2.4)) gives a maximum UV cut-off, which is the Planck

scale. Above Mp, there is a conflict between general relativity and (standard) quantum field

theory2. Some new theory, such as string theory or loop quantum gravity, must therefore become

1There are some exceptions to this rule, such as that terms with more than two derivatives are usually excluded.
2This can be illustrated by comparing the vacuum fluctuations of a massless scalar field within a region of size

R to the corresponding Schwarzchild radius. The Schwarzchild radius is rs ∼ 1

RM2
p

for the vacuum fluctuation
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important at (or before) this point. All quantum field theories are effective theories, which are

valid (well) below some UV cut-off (which could be Mp) — but we do not need to know the high

energy theory in order to make low energy calculations.

2.1.2 The Standard Model

The Standard Model can be described by the group of transformations it is invariant under:

SU(3)c×SU(2)L×U(1). The Lagrangian contains all terms permitted by the symmetries and is

described fully in [48], for example. Once the symmetry is spontaneously broken (by the Higgs

mechanism, described below), the theory contains the following particles and their antiparticles:

∙ three families of leptons, each with one massive charged lepton and one massless neutrino,

∙ three families of quarks, each with two massive quarks with three colours,

∙ three massive vector gauge bosons (W+,W− and Z),

∙ one massless gauge boson (the photon) and

∙ one real scalar Higgs boson.

We have direct experimental evidence for all spin 1 (boson) and spin 1
2 (fermion) particles. The

Higgs boson has yet to be discovered — but is essential in order to give mass to the gauge

bosons. Masses of the fermions are generated through gauge invariant couplings to the Higgs.

A measurement of the Fermi constant gives the Higgs vev v = 246.22 GeV but provide no

information on mℎ.

The Higgs mechanism

We explain the Higgs mechanism by considering a local U(1)Y × SU(2) transformation (Y is

hypercharge). In the theory there is a complex scalar doublet Φ (containing four real fields).

Invariance with respect to a local U(1)Y transformation requires a vector gauge field, B�, to be

introduced. Invariance with respect to a local SU(2) transformation requires three vector gauge

fields W a
� to be introduced. The gauge invariant Lagrangian density is

ℒ = − ∣D�Φ∣2 + V
(

∣Φ∣2
)

− 1

4
W a

��W
a �� − 1

4
B��B�� (2.5)

where the covariant derivative is defined as

D� ≡ ∂� +
ig

2
B� +

ig′

2
W a

��
a, (2.6)

with energy E ∼ 1

R
. If the theory is valid above the Planck scale, i.e. R ≲ M−1

p then rs > R and spacetime has
strong curvature seemingly corresponding to the production of black holes [8].
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where �a are the Pauli matrices. The field strength tensors are defined by

B�� ≡ ∂�B� − ∂�B� (2.7)

and

W a
�� ≡ ∂�W

a
� − ∂�W

a
� + g′�abcW b

�W
c
� . (2.8)

The mass term

Δℒ =
1

2
m2

WW�W
�

is forbidden because it explicitly breaks the SU(2) symmetry. Hence, the symmetry U(1)Y ×

SU(2) must be spontaneously broken in order for the gauge bosons to acquire a mass.

Considering the Higgs doublet Φ = (�+, �0)
T with the SU(2) invariant potential

V (Φ†Φ) = �

(

Φ†Φ− v2

2

)2

,

the state of lowest energy (vacuum state) is a degenerate state: any value of Φ where ∣Φ∣ = v√
2
is a

vacuum state. The symmetry is spontaneously broken once Φ leaves the unstable (but symmetric)

maximum at the origin and falls in an arbitrary direction to the minimum. It is this which breaks

the symmetry, leaving the U(1)EM symmetry of electromagnetism: SU(2)× U(1)Y → U(1)EM .

In the unitary gauge, Φ = 1√
2
(0, v + ℎ)

T
. The four physical gauge fields (W+

� ,W
−
� , Z�

and A�) are formed from linear combinations of W a
� and B�. They have masses M2

W = g2v2

4 ,

M2
Z = (g2+g′2)v2

4 and M2
A = 0. Three degrees of freedom of Φ have become the longitudinal

degrees of freedom of the massive gauge bosons. A physical Higgs scalar, ℎ, remains. A full

description of the Higgs mechanism can be found in [45, 48, 49], for example.

2.1.3 The effective action

The effective action gives the field equations for the classical field �c, including quantum correc-

tions. It is defined by first adding a source J(x) to the Lagrangian, so ℒ(�, ∂��) → ℒ+J(x)�(x).

A generating functional W (J) is defined using the classical action S =
∫

d4x[ℒ+ J(x)�(x)] by

eiW (J) =

∫

[d�]eiS(�) = ⟨0+∣0−⟩J , (2.9)

which is the transition (in the presence of the source) from the vacuum to the vacuum. The

classical field is

�c(x) =
�W

�J(x)
=

[⟨0+∣�(x)∣0−⟩
⟨0+∣0−⟩

]

J

. (2.10)
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The effective action is then defined by a functional Legendre transformation:

Γ(�c) =W (J)−
∫

d4xJ(x)�c(x). (2.11)

With J = 0, the field equations are given by

�Γ

��c
= 0. (2.12)

The effective action, Γ, can be expanded in position space as

Γ =

∫

d4x

(

−V (�c) +
1

2
(∂��c)

2Z(�c) + ...

)

(2.13)

where the effective potential, V (�c), is the quantum corrected scalar potential. Its minimum

corresponds to the vacuum expectation value (vev) of the field �c. The n
tℎ derivative of V is given

by the sum of all 1PI graphs with n external legs. In this thesis we look at the effective potential

including the leading order radiative corrections. Z(�c) is the wavefunction renormalization.

2.1.4 Scattering amplitudes

It seems a daunting task to take a field theory and calculate the rate for a scattering process.

Fortunately, the use of Feynman diagrams and the associated rules greatly simplify the process.

The cross-section for a particular process is given (approximately) by integrating the amplitude

over the available phase space. The amplitude is given by Feynman diagrams, provided that

perturbation theory can be applied.

A Green’s function G(n) is an n-point correlation function. With ∣Ω⟩ representing the ground

state of the (interacting) theory, the renormalized Green’s functions are

G(n)(x1...xn) = ⟨Ω∣T�(x1)...�(xn)∣Ω⟩connected. (2.14)

where T is a time-ordering operator. For example, G(2) is the amplitude for a particle to propa-

gate between y and x.

Calculating the amplitude or correlation function can be done using an elegant formalism

of Feynman diagrams. Connected Feynman graphs are drawn, to a particular order in a loop

expansion. For a scalar field, each vertex contributes a factor −i�, each propagator i
p2−m2+i�

(where � is a tiny constant to facilitate integration). At each vertex, energy momentum conser-

vation is then imposed, and any 4-momenta not fixed must be integrated over. A factor counting

combinations is also included. Similar rules apply to fermions and gauge bosons and can be
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found for example in [45, 46].

2.1.5 Radiative corrections, regularisation and renormalization

The leading order scattering process in perturbative theory is known as the tree level process.

However, there are also many other higher order ways for a process to occur, usually involving

loops. First order processes contain one loop, second order contain two loops, and so on. To make

an exact calculation, we would need to sum over all terms in this loop expansion. Fortunately

we often work with perturbative field theories where contributions from successive orders are less

important, and the tree level effect dominates.

In this thesis, we will need to consider the radiative corrections to an inflationary potential.

To allow for slow roll inflation, the potential must be reasonably flat, which we arrange at tree

level by our choice of model. Thus it will be particularly important to consider if radiative

corrections spoil the flat tree-level potential.

Radiative corrections

Calculating radiative corrections involves integrating over momenta in closed loops. This gives

divergent results. However, when we make measurements of these quantities in experiments,

they are found to be finite. Thus we need to reformulate our theory in order to make reasonable

predictions. This is done by first regularising the divergence — that is writing it as a finite

part plus a divergent part (there are many ways to do this), then renormalizing the divergence,

leaving only the finite part as a physical observable. We explain this further below.

We will demonstrate the method using the simple example (following [50]) of a single massless

field � with self interactions. The tree-level Lagrangian is

ℒ =
1

2
(∂��)

2 − �

4!
�4. (2.15)

The one-loop contributions include an infinite series of n-sided polygons, which give a contribu-

tion

ΔV = i

∫

d4k

(2�)4

∞
∑

n=1

1

2n

(

1

2

��2c
k2 + i�

)n

, (2.16)

clearly divergent as k → 0 (�c is the classical field).

Regularisation

Regularisation is the process of adding a new scale Λ to the Lagrangian with the aim of writing

the previously divergent quantities as finite terms plus divergent terms. The divergence will then
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be parameterised, as it will only appear in terms containing Λ when Λ is taken to some particular

value (often 0 or ∞).

Examples of methods of regularisation are:

∙ integrating only up to a sharp momentum cut-off Λ — this suppresses terms at E ≳ Λ

while leaving processes with E ≪ Λ unaffected

∙ treating space-time as a lattice, rather than as continuous (lattice regularisation)

∙ adding terms directly to the Lagrangian, as in Pauli-Villars regularisation and

∙ using a non-integer number of dimensions (dimensional regularisation).

We now apply a momentum cut-off to our example theory. It gives

ΔV =
�2�4c
256�2

(

ln

(

��2c
2Λ2

)

− 1

2

)

(2.17)

by first doing the sum over n, then doing a Wick rotation (t → it) and the integration, and

finally dropping terms which disappear as Λ → ∞.

Renormalization

The process of renormalization will absorb the divergent terms, order by order, into the bare

couplings and masses of the Lagrangian. It is the process of taking the momentum cut-off Λ

to infinity (or otherwise taking the limit of the regularisation procedure). To do this, we add

counter-terms to the original Lagrangian that exactly cancel the divergent terms. We impose

renormalization conditions which define the mass and couplings of the theory at some arbitrary

scale �. These conditions fix the counter terms.

For our example, we first add counter terms to the Lagrangian Eq. (2.15) which becomes

ℒ =
1

2
(∂��)

2 − �

4!
�4 −ΔV +

1

2
A(∂��)

2 − 1

2
B�2 − 1

4!
C�4 (2.18)

whereA, B and C are the renormalization counterterm coefficients. As an example, we determine

B and C order-by-order in the loop expansion by imposing the renormalization conditions

d2V

d�2c

∣

∣

∣

∣

�c=�

= m2 = 0 (2.19)

and

d4V

d�4c

∣

∣

∣

∣

�c=�

= � . (2.20)
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Applying these gives

B = − �Λ2

32�2
and C = − 3�2

32�2

(

ln

(

��2

2Λ2

)

+
11

3

)

. (2.21)

So, we can write the renormalized one-loop effective potential as

V =
�

4!
�4c +

�2�4c
256�2

(

ln
�2c
�2

− 25

6

)

. (2.22)

We note that there is no dependence on the cut-off scale Λ. The scale � is completely arbitrary,

and can be changed without altering the effective action of the theory. This is a core concept

in renormalization and is the basis of the Callan-Symanzik equation, discussed below. If � is

changed to �′, then the masses and couplings also change, as they must now be defined at �′.

The way they change as � changes is described by RG equations. If we were to work to all

orders in perturbation theory, then the invariance with respect to � would be exact. However,

we usually only consider one-loop or two-loop calculations. For this reason, � is often chosen to

be equal to �, to minimise the corrections to the theory.

2.1.6 The Callan-Symanzik equation

We consider a general, renormalized Green’s function G
(n)
R (pi; gR, �) for a single field with cou-

pling g. G
(n)
R is independent of the cut-off Λ. The corresponding bare Green’s function is

G
(n)
0 (pi; g0,Λ), which is independent of the renormalization point, �. The functions are related

by [45]

G
(n)
0 = Zn/2G

(n)
R (2.23)

where n is the number of fields and Z is the wavefunction renormalization. Considering

�
dG

(n)
0

d�
= 0. (2.24)

gives the Callan-Symanzik equation:

[

�
∂

∂�
+ �(gR)

∂

∂gR
− n(gR)

]

G
(n)
R (pi; gR, �) = 0 (2.25)

where

�(gR) ≡ �
dgR
d�

(2.26)
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and

 ≡ −�
2

d log(Z)

d�
. (2.27)

In a more general theory, there is a � for each coupling and a  for each field. They can be

calculated from the renormalization counter terms of the theory. The beta-function �(gR) gives

the rate of change of the renormalized coupling gR as the renormalization scale is increased.

Therefore it can be used to calculate couplings at any scale (in the case of multiple couplings,

the beta-functions usually need to be integrated numerically). The change of the wavefunction

renormalization (actually lnZ) is given by .

We consider two methods for calculating the effective action of a theory. The first was originally

due to Coleman and Weinberg [50] and the second computes the corrections to the whole action

using the Callan-Symanzik equation. Both are discussed below.

2.1.7 The Standard Model Coleman-Weinberg effective potential

This is derived in the same way that the example calculation was done — so for a massless

�4 potential, the Coleman-Weinberg potential is given by Eq. (2.22). For the Standard Model

calculation, we assume all fields other than the physical Higgs field to be at their vevs.

General expressions for the one-loop correction can be used. For a tree-level polynomial scalar

potential U(�c) the expression is [51]

V
(1)
scalar(�c) =

Λ2U ′′

32�2
+

(U ′′)2

64�2

(

ln

(

U ′′

Λ2

)

− 1

2

)

(2.28)

where U ′′ = d2U
d�2

c
. Equivalent expressions for fermions and vector bosons can be found in [51].

So, for the Standard Model, including only one fermion (the top quark), following the pro-

cedure of calculating the counter terms and summing over colours, the one-loop order effective

potential is [52]

16�2V (1)(�c) =
1

4
H2

(

ln
H

�2
− 3

2

)

+
3

4
G2

(

ln
G

�2
− 3

2

)

+
3

2
W 2

(

ln
W

�2
− 5

6

)

+
3

4
Z2

(

ln
Z

�2
− 5

6

)

− 3T 2

(

ln
T

�2
− 3

2

)

, (2.29)

where

W =
g2�2c
4

, Z =

(

g2 + g′2
)

�2c
4

, T =
y2t �

2
c

2
, H = m2

� + 3�ℎ�
2
c and G = m2

� + �ℎ�
2
c . (2.30)

In order for this to be independent of �, all couplings must vary with �. The resulting RG
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equations for our model (including the effect of the non-minimal coupling to gravity) can be

found in Chapter 3. The Coleman-Weinberg potential is valid over the range of field values �a

to �b provided
∣

∣

∣

∣

� ln

(

�a
�b

)∣

∣

∣

∣

≪ 1, (2.31)

where � is the largest coupling in the theory.

The RG equations in this thesis are defined in the MS (modified minimal subtraction) renor-

malization scheme [45, 53, 54]. The theory is written in terms of d = 4 − � dimensions (this

is dimensional regularisation). When the resulting divergences are renormalized the poles
(

1
�

)

are removed, along with extra terms involving log(4�) and . These arbitrary constants usually

occur alongside the poles and are removed purely to simplify the equations.

2.1.8 The RG improved effective action

An alternative method for computing the effective potential uses the Callan-Symanzik equation

(Eq. (2.25)) directly. It will yield a form for the effective potential which is valid provided that

the couplings are perturbative — a wider range of � than the Coleman-Weinberg potential.

Considering a �4 theory as an example, the Callan-Symanzik equation for the effective action

Γ is [45]
[

�
∂

∂�
+ �(gR)

∂

∂gR
− (gR)

∫

dx�c(x)
�

��c(x)

]

Γ(�c; gR, �) = 0. (2.32)

Using the expansion (Eq. (2.13)), we see that

(

�
∂

∂�
+ �

∂

∂�
− �c

∂

∂�c

)

V (t, �) = 0 (2.33)

and
(

�
∂

∂�
+ �

∂

∂�
− �c

∂

∂�c
− 2

)

Z(t, �) = 0. (2.34)

Dimensionally, the effective potential must have the form

V =
y(�, t)�4c

4
. (2.35)

Using the definitions

t = ln
�c
�
, �̄ =

�

1 + 
, and ̄ =



1 + 
, (2.36)

the equations become [51]
(

− ∂

∂t
+ �̄

∂

∂�
− 4̄

)

y(t, �) = 0 (2.37)
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and
(

− ∂

∂t
+ �̄

∂

∂�
− 2̄

)

Z(t, �) = 0. (2.38)

Renormalization conditions are necessary in order to properly define the theory. This can be

done at any scale, and here we use �c = � (so t = 0):

y(0, �) = � and Z(0, �) = 1. (2.39)

Applied to Eq. (2.37) and Eq. (2.38), they give

̄ = −1

2

∂

∂t
Z(0, �) and �̄ =

∂

∂t
y(0, �)− 4̄�. (2.40)

These can be calculated in perturbation theory, using a loop expansion and the associated Feyn-

man rules. Defining �′ through
d�′

dt
= �̄(�′), (2.41)

with �′(0, �) = �, the solutions of Eq. (2.37) and Eq. (2.38) are therefore

Z(t, �) = exp

(

−2

∫ t

0

dt ̄(�′(t, �))

)

(2.42)

and

y(t, �) = �′(t, �)Z(t, �)2. (2.43)

The RG improved effective potential for a �4 theory is therefore given by

V (t, �) =
�′(t, �)Z(t, �)2

4
�4c . (2.44)

In the notation of Chapter 5, Z ≡ G2, so V = �′

4 G
4�4c .

2.2 Bounds on the theory

2.2.1 Vacuum stability

The scalar potential for the Standard Model,

V (H†H) = �ℎ

(

H†H − v2

2

)2

(2.45)

29



has a minimum at H†H = v2

2 . The direction is arbitrary but is usually taken to be along the real

part of H . An important question for the stability of the Standard Model is to consider whether

this is the global minimum of the theory. Other minima can only be tolerated if either (i) the

minima appears above the scale Λ where we expect new physics to enter or (ii) the transition

from our Standard Model vacuum to the other vacuum has a lifetime of at least the age of the

Universe, and the transition could not have been induced by cosmic rays [55]. In practice we will

exclude the second possibility as it only changes the allowed range for the Higgs mass slightly (see

Fig. (23) of [51]). So, our requirement is that V (H†H) > 0 for large H†H , which implies �ℎ > 0

for all ∣H ∣ < Λ. Vacuum stability gives the lower bound for the Higgs mass to be mℎ ≳ 130 GeV

[56], if Λ =Mp for the Standard Model.

Additional scalar fields

The constraints are more complicated when we include additional scalar fields. In the direction

of any field �i we will find that the self-coupling �i must be positive:

�i > 0. (2.46)

There are also constraints on interaction terms, from considering an arbitrary direction �j = ��i

for large field values. The potential is

V = �i�
4
i + �j�

4
j + �ij�

2
i�

2
j (2.47)

and becomes

V = �4i
(

�i + �4�j + �2�ij
)

. (2.48)

Requiring V > 0 for all � gives

�2�ij > −
(

�i + �4�j
)

. (2.49)

The minimum with respect to � is at �2 = − �ij

2�j
. Substituting into Eq. (2.49) gives the conditions

on �ij for vacuum stability:

�ij > −2
√

�i�j . (2.50)

This can be expanded to theories with more fields by considering directions where only two fields

are non-zero.
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2.2.2 Perturbativity

The renormalization group equations (�-functions), introduced in Section 2.1.5, describe how the

couplings change as the renormalization scale (�) increases. (Usually � is chosen to be the energy

scale of the process under investigation.) If ��

(

∼ d�
d�

)

is positive for a particular coupling �,

then � will continue to grow as � is increased, reaching an infinite value at a particular value of �.

This is a Landau pole and its existence means that a theory is mathematically inconsistent. We

therefore require there to be no Landau pole below some scale Λ (where new physics is expected

to take over and resolve the inconsistency). An alternative view is that new physics may not be

necessary if the theory enters a strongly coupled regime for � ≳ 1. In this regime, loop expansions

and other perturbative processes are no longer the correct method to do calculations. Again, we

must require that this does not occur below the energy scales we are interested in.

The upper bound mℎ ≲ 170 GeV [51] on the Higgs mass in the Standard Model is calculated

by requiring the Higgs coupling �ℎ to remain perturbative up to the Planck scale.

2.2.3 Unitarity

Unitarity is the requirement that the sum of probabilities equals one. Therefore, if we calculate

any quantity and find that it does not obey unitarity, either our theory is not valid at that

energy scale, or our method of doing the calculation is not valid (i.e. it may be a non-perturbative

process). Within the Standard Model there are occasions (e.g. e+e− →W+W−) where unitarity

does not appear to be obeyed until several Feynman diagrams are summed over and all problem

terms cancel out.

We next outline the origin of the condition for unitarity conservation which can be written

as

Im[al] ≥ ∣al∣2 (2.51)

or equivalently

∣Re[al]∣ ≤
1

2
, (2.52)

where al is a partial wave amplitude. A general scattering amplitude A can be expanded in

terms of partial waves3 al:

A = 16�

∞
∑

l=0

(2l + 1)Pl(cos �) al , (2.53)

where � is the angle between the outgoing and incoming particle, l is the total angular momentum

and Pl(cos �) are Legendre polynomials. Partial waves are radial wavefunctions centred on the

3This is valid for scalar particles with zero spin and zero helicity — a slightly more complex expression applies
for particles with spin.
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point of interaction.

The Optical Theorem

The Optical Theorem relates the total scattering cross section for 2 → anything to the 2 → 2

cross-section for elastic scattering (with � = 0):

�total =
1

s
Im [A(� = 0)] , (2.54)

where s = E2
CM is a Mandelstam variable. This is derived directly as a result of the unitarity of

the S matrix as outlined below. The interaction part (T ) of the S matrix can be separated out:

S = 1+ iT . Considering the transition from ∣�⟩ to ∣�⟩, we can write this in two different forms.

On the left we have inserted a complete set of states and on the right we have used the unitarity

of S (S†S = I). The expression therefore is

⟨�∣(1 − S)†(1− S)∣�⟩ = ⟨�∣(1 − S)†∣�⟩+ ⟨�∣(1 − S)∣�⟩

⇒
∫

d⟨�∣(1− S)†∣⟩⟨∣(1− S)∣�⟩ = ⟨�∣ − iT ∣�⟩† + ⟨�∣ − iT ∣�⟩

⇒
∫

d ∣⟨∣T ∣�⟩∣2 = 2 Re (⟨�∣ − iT ∣�⟩)

= 2 Im (⟨�∣T ∣�⟩) . (2.55)

The right hand side is the imaginary part of the forward scattering amplitude, ∣�⟩ → ∣�⟩. The left

hand side is the total scattering probability from a state ∣�⟩ to any final state ∣⟩. Conventional

scattering amplitudes are in the form ⟨�∣T ∣�⟩ = (2�)4�4(p� − p�)A��. Expressing Eq. (2.55) in

terms of A gives the result Eq. (2.54).

Deriving the unitarity constraints

In terms of partial waves, the elastic scattering cross section for 2 → 2 scattering is

�el =
1

64�2

∫ ∣A∣2
s
dΩ

=
16�

s

∞
∑

l=0

(2l + 1)∣al∣2. (2.56)

The elastic cross section cannot be larger than the total cross section:

�total ≥ �el. (2.57)
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Writing this in terms of partial waves, using Eq. (2.54) and Eq. (2.56), gives

16�

s

∞
∑

l=0

(2l + 1)Im[al] ≥
16�

s

∞
∑

l=0

(2l+ 1)∣al∣2 . (2.58)

As this is a sum of independent cross sections, it must be true for any l. Therefore, if unitarity

is conserved, this gives Eq. (2.51). We can write this in terms of Re[al] by substituting ∣al∣2 =

Re[al]
2 + Im[al]

2 into Eq. (2.51), giving

Re[al]
2 ≤ Im[al]− Im[al]

2 . (2.59)

Maximising the right hand side gives Eq. (2.52). We will use both of these inequalities in

Chapter 6.
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Chapter 3

Connecting inflation and dark

matter

In this chapter we present our model, S-inflation, where the inflaton S is a gauge singlet scalar

— a stable particle which can also account for the currently observed density of dark matter,

ΩDM .

The chapter is organised as follows. In Section 3.1 we introduce our model and make a

conformal transformation to the Einstein frame. In Section 3.2 we set out the calculation of the

radiative corrections and derive the RG (renormalization group) equations. In Section 3.3 we

discuss constraints coming from stability and perturbativity of the potential and constraints from

slow-roll inflation observables. In Section 3.4 we discuss S as dark matter, relating the Higgs-S

coupling �ℎs and the S-mass ms. Then, in Section 3.5 we present the allowed parameter space

in terms of �ℎs versus mℎ and in terms of ms versus mℎ. We also discuss how the spectral index

varies with the parameters of the model.

3.1 The S-Inflation Model

3.1.1 Non-minimally Coupled Gauge Singlet Scalar Extension of the

Standard Model

The Jordan frame is a frame where the matter part of the action is a simple function of the

mertic and matter fields only, i.e. Sm(g�� , �m) [57]. We define the action for our theory (in the

Jordan frame) to be

SJ =

∫ √−g d4x
(

ℒSM + (∂�S)
†
(∂�S) + (D�H)

†
(D�H)

−M
2R

2
− �sS

†SR− �ℎH
†HR− V (S†S,H†H)

)

(3.1)
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where V (S†S,H†H) = V (0) + V (1) + ⋅ ⋅ ⋅ . The tree-level potential is

V (0)(S†S,H†H) = �s
(

S†S
)2

+m2
soS

†S + �ℎsS
†SH†H + �ℎ

(

H†H − v2

2

)2

(3.2)

and V (1), V (2), ... are the 1-loop and higher-order quantum corrections. ℒSM is the Stan-

dard Model Lagrangian density minus the purely Higgs doublet terms. The parameter m2
so

is the constant contribution to the total S mass squared, m2
s. This also gains a contribution

from the coupling to the Higgs. For now we consider only the physical Higgs field ℎ, where

H = 1√
2

⎛

⎜

⎝

0

ℎ+ v

⎞

⎟

⎠
and ℎ is real. We consider the cases of both real S and complex S and

choose the direction of inflation such that S = s√
2
where s is real. Although it is not strictly

correct to ignore the unphysical components of H or the imaginary part of the complex S, the

discussion of this will be postponed to Chapter 6. A discrete Z2 (real S) or a global symmetry

U(1) (complex S) must be imposed to ensure stability of the scalars.

Our aim is to make predictions that can be tested by observation and experiment. We will

calculate the observables of inflation: the spectral index n, the tensor to scalar ratio r and the

running of the spectral index �. This is best done using the slow-roll approximation, which

cannot easily be formulated in the Jordan frame due to the non-minimal gravitational sector.

We will therefore make a transformation of the whole action, including radiative corrections, to

the Einstein frame, and redefine the fields (s → �s, ℎ→ �ℎ) to ensure canonical normalisation.

The Einstein frame is a frame where the couplings to gravity are minimal. From here on we set

M = Mp, since the correction to M due to the Higgs expectation value is tiny compared with

Mp.

3.1.2 Conformal transformation

The Jordan frame and the Einstein frame are related by a conformal transformation which

transforms the metric (and hence all other quantities) in a field dependent way. These two

frames are mathematically equivalent. The action of S-inflation was defined in terms of the

Jordan frame metric in Eq. (3.1). The Jordan frame is usually used for particle physics; its

metric is obtained when we define a unit of time in terms of the inverse of an atomic frequency

and take the speed of light c = 1 to define a unit of distance [57]. In this sense, the Jordan frame

is the ‘real world’ frame, where we make measurements in a standard manner. The usefulness of

transforming to the Einstein frame is that it transforms away the non-minimal coupling to gravity,

leaving the Lagrangian in a familiar form, where methods for calculating physical quantities are

well known. In contrast, units of time and distance in the Einstein frame are field dependent —

certainly not units in which we are used to making measurements.
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For general ℎ and s, the conformal transformation to the Einstein frame is defined by

g̃�� = Ω2g�� (3.3)

with

Ω2 = 1 +
�ss

2

M2
P

+
�ℎℎ

2

M2
P

. (3.4)

We can use

R = Ω2R̃+ 6Ω∇̃�∇̃�Ω− 12g̃��∂�Ω∂�Ω (3.5)

and

∂�Ω =
���

M2
PΩ

∂��+
���

M2
PΩ

∂�� (3.6)

to write (disregarding the total derivative which comes from Ω−1∇̃�∇̃�Ω)

S =

∫

d4x
√

−g̃
[

ℒ̃SM + 1
2

(

1
Ω2 +

6�2ss
2

M2
pΩ

4

)

g̃��∂�s∂�s+
1
2

(

1
Ω2 +

6�2ℎℎ
2

M2
pΩ

4

)

g̃��∂�ℎ∂�ℎ

+
6�s�ℎ s ℎ g̃�� ∂�s∂�ℎ

M2
pΩ

4 −M2
P R̃
2 − V (s,ℎ)

Ω4

]

. (3.7)

We can then redefine the fields using1

d�s

ds
=

√

Ω2 + 6�2ss
2/M2

P

Ω4
and

d�ℎ

dℎ
=

√

Ω2 + 6�2ℎℎ
2/M2

P

Ω4
, (3.8)

resulting in the Einstein frame action

SE =

∫

d4x
√

−g̃
(

ℒ̃SM − M2
P R̃

2
+

1

2
g̃��∂��ℎ∂��ℎ +

1

2
g̃��∂��s∂��s

+A(�s, �ℎ)g̃
��∂��ℎ∂��s − U(�s, �ℎ)

)

(3.9)

where

A(�s, �ℎ) =
6�s�ℎ
M2

PΩ
4

ds

d�s

dℎ

d�ℎ
ℎs, (3.10)

U(�s, �ℎ) =
1

Ω4
V (s, ℎ)

and

U (0)(�s, �ℎ) =
1

Ω4

(

�ℎ
4
(ℎ2 − v2)2 +

�s
4
s4 +

1

2
m2

sos
2 +

�ℎs
4
s2ℎ2

)

. (3.11)

1These are only total derivatives in the limits ℎ → 0 and s → 0 respectively.
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3.1.3 Jordan and Einstein Frames

All observables must be conformal-frame invariant — which means that at a classical level the

frames are physically equivalent [57]. However, the situation may change when quantum effects

are included, although this depends on the approximations used. For example, quantising a full

quantum gravity theory in different conformal frames is likely to give differing results. This has

been shown explicitly for a certain example in [58]. If instead a semiclassical approximation is

used, where both the scalar fields and the metric are treated classically, then frames are physically

equivalent [57]. However, if only the metric is treated classically, then the conformal frames are

not generally equivalent [59], although this is probably due to the approximations used [57].

The scenario applicable in this thesis is that of an effective field theory: this means that

the equivalence theorem [60, 61] of non-linear field re-definitions applies. This states that “the

scattering matrix is invariant under non-linear local field redefinitions” [57]. In the context of

this thesis, it means that tree-level particle scattering computations will be the same in any

conformal frame. In Chapter 6 we use this theorem to compute scalar scattering cross sections.

As well as scattering amplitudes, we wish to compute the curvature perturbation in the

Einstein frame. After inflation, the frames will be identical (as S†S
�s

≪ Mp and H†H
�ℎ

≪ Mp).

Therefore the curvature perturbation spectrum as calculated in the Einstein frame will be suitable

to be compared to measurements made in the Jordan frame. It has been shown explicitly in [62]

that the spectral index for induced gravity inflation is identical in the Jordan and Einstein

frames, provided that a different slow roll expansion is used in the Jordan frame. The Jordan

frame spectral index for a non-minimally coupled theory was calculated (although not explicitly

compared to the Einstein frame result). In the context of extended inflation [63], “well after

extended inflation the Jordan and Einstein frames coincide so that the curvature fluctuations in

both frames are the same”. This applies equally as well to our model. As the Einstein frame

Lagrangian is minimally coupled to gravity, with a canonical kinetic term, the Einstein frame is

the correct frame to calculate the curvature perturbation.

Our procedure is to define the theory, including all radiative corrections, in the Jordan frame.

In the Jordan frame, we use the RG equations to run the couplings to an appropriate scale. We

then transform to the Einstein frame in order to calculate the spectral index n, tensor-to-scalar

ratio r and running of the spectral index �. Quantities in the Einstein frame will be denoted by

a tilde (e.g. g̃��). As the two frames are equivalent at low values of the fields and all inflation

observables are calculated when perturbations re-enter the horizon (i.e. at late times when the

fields are small), the results calculated in the Einstein frame are the same as if we had calculated

them with the non-minimally coupled scalar field in the Jordan frame.
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Figure 3.1: Einstein frame potential, in limit s ≫ MP /
√
� (dashed) and exact (solid). This figure is plotted for

real S with mℎ = 160 GeV, �s(mt) = 0.01 and �ℎs(mt) = 0.

3.1.4 Slow Roll Inflation

We will be interested in inflation purely along the s direction2. In this case (during inflation)

ℎ = 0, A(�s, �ℎ) = 0 and Ω2 = 1 + �ss
2

M2
P
. When considering the potential, there are three

approximate regimes (for �s ≫ �ℎ):

∙ (i)
√
�ss
Mp

≪ 1 giving Ω2 ≃ 1, s ≃ �s and

U(�s) ≃
�s�

4
s

4
; (3.12)

∙ (ii)
√
�ss

Mp
≪ 1 ≪ �ss

Mp
giving Ω2 ≃ 1, �s ≃

√

3
2
�ss

2

Mp
and

U(�s) ≃
�sM

2
p

6�2s
�2
s ; (3.13)

∙ (iii)
√
�ss
Mp

≫ 1 giving Ω2 ≃ �ss
2

M2
p

and �s ≃
√
6Mp ln

(√
�ss
Mp

)

with [32] (for �s ≫ 1)

U (0)(�s, 0) ≈
�sM

4
P

4�2s

(

1 + exp

(

− 2�s√
6MP

))−2

. (3.14)

The third regime, s ≫ Mp/
√
�s, is relevant for inflation and the Einstein frame potential

Eq. (3.14) is shown in Fig. (3.1) along with the full tree-level potential. It should be noted

that for �s ∼ O(1), we require a large value of �s ∼ 104 in order to reproduce the observed

2Inflation in the ℎ direction for real S was considered in [64].
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curvature perturbation spectrum. This large value of �s seems unnatural.

Thus, U(�s, 0) ∝ 1/�2s . Similarly, along the ℎ direction (with s = 0), U(0, �ℎ) ∝ 1/�2ℎ for

ℎ≫Mp/
√
�ℎ. Therefore, if �s ≫ �ℎ then the minimum of the potential at large s and ℎ will be

very close the ℎ = 0 direction and so inflation will naturally occur along the s direction. In the

remainder of this chapter we will consider the limit where the Higgs boson is minimally coupled

to the Ricci scalar at the weak scale, �ℎ(mt) = 0, but we allow for its running by including the

RG equation for �ℎ. Although inflation can easily occur with A ≃ 0, this term cannot be ignored

when considering particle scattering (where ℎ ∕= 0). This issue is explored in Chapter 6. However

for now we will proceed under the assumption that this term does not cause any problems.

3.2 Radiative corrections

It is important to calculate quantum corrections to the tree level potential and we do this in

the Jordan frame using the RG equations to run the couplings from the Standard Model scale

(mt) to the inflation scale. We then use those values of the coupling constants to calculate the

Coleman-Weinberg correction to the potential, V = V (0) + V (1) [50, 52], where V (0) is given by

Eq. (3.2). The potential is then transformed to the Einstein frame to study slow-roll inflation.

In Chapter 5, we will compare different methods for calculating the radiative corrections to

this type of model and show how the Coleman-Weinberg potential is not adequate for inflation

along the ℎ direction, due to the variation of the non-minimal coupling (�ℎ) during inflation,

which is not accounted for by the Coleman-Weinberg potential. This effect is, however, much

less important for S-inflation and we will find that our results do not change much, therefore

justifying the use of the Coleman-Weinberg potential.

3.2.1 Coleman-Weinberg Potential

Constraints on the scalar couplings will come from the stability of the electroweak vacuum and

the requirement that the potential remains perturbative for field values less than Mp. This is

important for inflation and for particle scattering, so we will impose the conditions for vacuum

stability and perturbativity along both the ℎ = 0 and s = 0 directions. We assume this is an

adequate check on the potential (the constraints should in fact be applied to arbitrary directions

of the full potential3). We use the ms renormalization scheme throughout. The one-loop potential

3However, as the ℎ = 0 and s = 0 directions are limiting cases, this assumption seems reasonable.
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for the s direction is

16�2V (1)(s) =
1

4
H2

s

(

ln
Hs

�2
− 3

2

)

+
3

4
G2

s

(

ln
Gs

�2
− 3

2

)

+
1

4
P 2
s

(

ln
Ps

�2
− 3

2

)

+
1

4
Q2

s

(

ln
Qs

�2
− 3

2

)

, (3.15)

where

Hs = m2
ℎ +

1

2
cℎ�ℎss

2, Gs = m2
ℎ +

1

2
�ℎss

2,

Ps = m2
so + 3cs�ss

2 and Qs =

⎧



⎨



⎩

0 (real S)

m2
so + �ss

2 (complex S).
. (3.16)

The one-loop correction for the ℎ direction is

16�2V (1)(ℎ) =
1

4
H2

ℎ

(

ln
Hℎ

�2
− 3

2

)

+
3

4
G2

ℎ

(

ln
Gℎ

�2
− 3

2

)

+
1

4
P 2
ℎ

(

ln
Pℎ

�2
− 3

2

)

+
1

4
Q2

ℎ

(

ln
Qℎ

�2
− 3

2

)

+
3

2
W 2

(

ln
W

�2
− 5

6

)

+
3

4
Z2

(

ln
Z

�2
− 5

6

)

−3T 2

(

ln
T

�2
− 3

2

)

, (3.17)

where

W =
g2ℎ2

4
, Z =

(

g2 + g′2
)

ℎ2

4
, T =

y2t ℎ
2

2
, Hℎ = m2

ℎ + 3cℎ�ℎℎ
2, Gℎ = m2

ℎ + �ℎℎ
2,

Pℎ = m2
so +

1

2
cs�ℎsℎ

2 and Qℎ =

⎧



⎨



⎩

0 (real S)

m2
so +

1
2�ℎsℎ

2 (complex S).
(3.18)

In these equations cs and cℎ are suppression factors to be discussed in the following section.

3.2.2 Suppression of Scalar Propagators

The non-minimal coupling to gravity in the Jordan frame means that the scalar field propagator

(proportional to the commutator [�(x⃗), �̇(y⃗)]) is modified. The technique for calculating this

modification was introduced by [65] and first applied to the case of Higgs inflation by [38].

The modified commutator

The scalar fields are quantised in flat space, in the Jordan frame. Thus we will need the com-

mutator [�(x⃗), �̇(y⃗)]. The standard commutator

[�(x⃗), �(y⃗)] = i ℏ�3(x⃗− y⃗). (3.19)
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applies in the Einstein frame where the gravitational term is minimal and the canonical momen-

tum � can be calculated. It is

� =
∂ℒ

∂(∂0�)
=
√

−g̃
(

g̃0�
(

d�

d�

)2

∂��

)

= Ω2

(

d�

d�

)2 √−g
(

g0�∂��
)

. (3.20)

Using the commutator Eq. (3.19) and rearranging, the result (for flat space) is

[�(x⃗), �̇(y⃗)] =
1

Ω2

(

d�

d�

)−2

iℏ�(3)(x⃗− y⃗)

= iℏ c� �
(3)(x⃗− y⃗). (3.21)

Thus, the commutator in the Jordan frame is suppressed by a factor c� where [65, 66]

c� =
1 +

���
2

M2
p

1 + (6�� + 1)
���2

M2
p

. (3.22)

The commutator and the RG equations

The commutator [�(x⃗), �̇(y⃗)] enters into calculations through the scalar propagator — which will

be suppressed by a factor c� compared to its minimally coupled value. In our case, all scalars

�i are in principle suppressed by differing factors c�i . However, only the field which has a large

value (i.e. the inflaton) is actually suppressed. This can be seen by considering the suppression

factor for a field � with zero expectation value, which is given by Eq. (3.21):

c� =
1

Ω2

(

d�

d�

)−2

=
Ω2

Ω2
= 1. (3.23)

Note that Ω2 can be arbitrarily large without affecting c�. In practice, when calculating the

RG equations or the Coleman-Weinberg potential, one suppression factor is inserted for each ℎ

or s propagator in a loop but not for the scalars corresponding to imaginary part of S or the

unphysical degrees of freedom of H . The suppression factor for the field which is not the inflaton

is then set to 1. The suppression factors will have a significant effect on the running of the scalar

couplings.

We include some factors of cℎ in the two loop equations, following [38]. There is a minor

difference between our work and [64] relating to a factor of c� (s in [64]) in the �ℎ RG equation.

The term in �� proportional to �ℎ is suppressed by a factor (1 + c2�) in Eq. (A2) of [64], but

(1 + c�) in our work [1]. We believe that the latter is correct because only one physical Higgs ℎ

runs in the corresponding loop.

41



3.2.3 Initial conditions

We take the initial values of the coupling constants to be defined at the renormalization scale

� = mt, with mt = 171.0 GeV and v = 246.22 GeV. The gauge couplings are given by

g2(mt)

4�
= 0.03344,

g′2(mt)

4�
= 0.01027 and

g23(mt)

4�
= 0.1071. (3.24)

The couplings g and g′ are obtained by an RG flow from their values at � =MZ , which are given

in [67], while g3 is calculated numerically. (See [37] and references within for details.)

We use the pole mass matching scheme to set the initial conditions �ℎ(mt) and yt(mt). This

relates the physical pole masses to the couplings in the ms renormalization scheme through the

following expressions:

�ℎ(mt) =
m2

ℎ

2v2
(1 + 2Δℎ)

yt(mt) =

√
2

v
mt(1 + Δt) (3.25)

where Δℎ and Δt account for radiative corrections and are given in the appendix of [56].

The remaining coupling constants are not fixed by observation and we are free to choose them.

We take �ℎ(mt) = 0 (as discussed earlier) and choose �s(mt) such that the model is correctly

normalised to the COBE results at the inflation scale [68, 69]:

U

�̃
= (0.0271Mp)

4. (3.26)

As �s(mt) is not directly measurable, we take two reasonable values: 0.2 and 0.025. The higher

of these corresponds to �s(mt) close to its perturbativity limit. �ℎs(mt) is treated as a free

parameter, although it is in principle measurable through the thermal relic S dark matter density

and scattering rate in dark matter detectors, as well as through the Higgs decay width to S pairs

(if it is kinematically possible).

If �ℎ(mt) were not zero then we would expect greater running of �s. In this case, a lower

�s(mt) would be required to obtain the same value of �s at the scale of inflation. We would

also expect differences in the spectral index due to the running of �s — see the next chapter.

However, as we require �s ≫ �ℎ for inflation to occur solely in the s direction, we do not consider

these possibilities.
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Figure 3.2: Showing the running of the scalar couplings �ℎ (solid red), �s (green dashed) and �ℎs (blue dashed)
and the suppression factor cs (black dotted). The figure is plotted for real S with mℎ = 150 GeV, �s(mt) = 0.2,
�ℎs(mt) = 0.1 and xis(mt) ≈ 16500 (chosen to match COBE normalisation of curvature perturbation). The
figure is plotted in terms of t = ln (�/mt), from � = mt to � = Mp. The suppression factor becomes important

at the scale Λ ∼ Mp

�s
.

3.2.4 RG equations for scalar couplings

In our analysis we use the two-loop RG equations for the Standard Model and modify these to

include the leading order contributions of S. We also include the propagator suppression factors

for the s and ℎ directions which are given by Eq. (3.22) with � = s, ℎ. The Standard Model one

and two loop equations can be found in [38] and [56]. Using the technique detailed in [70, 71, 72]

and applied to the case of S-inflation in the Appendix (page 113) we find that the one-loop

�-functions for the scalar couplings are

16�2�
(1)
�ℎ

= −6y4t +
3

8

(

2g4 +
(

g2 + g′2
)2
)

+
(

−9g2 − 3g′2 + 12y2t
)

�ℎ

+
(

18c2ℎ + 6
)

�2ℎ +
1

2

⎧



⎨



⎩

c2s�
2
ℎs (real S)

(

1 + c2s
)

�2ℎs (complex S),
(3.27)

16�2�
(1)
�ℎs

= 4cℎcs�
2
ℎs + 6

(

c2ℎ + 1
)

�ℎ�ℎs −
3

2

(

3g2 + g′2
)

�ℎs + 6y2t �ℎs

+

⎧



⎨



⎩

6c2s�s�ℎs (real S)
(

6c2s + 2
)

�s�ℎs (complex S)
(3.28)
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Figure 3.3: Showing the running of the non-minimal couplings �ℎ (solid red) and �s (green dashed). The figure
is plotted for real S with mℎ = 150 GeV, �s(mt) = 0.2, �ℎs(mt) = 0.1, �ℎ(mt) = 0 and xis(mt) ≈ 16500 (chosen
to match COBE normalisation of curvature perturbation). The figure is plotted in terms of t = ln (�/mt), from
� = mt to � = Mp.

and

16�2�
(1)
�s

=
1

2
(c2ℎ + 3)�2ℎs +

⎧



⎨



⎩

18c2s�
2
s (real S)

(

18c2s + 2
)

�2s (complex S),
(3.29)

where t = ln �
mt

, yt is the top quark Yukawa coupling and �� = d�
dt . We choose the value of �

in order to keep the log terms in the Coleman-Weinberg potential small, setting � = sÑ , where

sÑ is the field value Ñ e-foldings before the end of inflation. An example showing the running

of the scalar couplings, in the s-direction is in Fig. (3.2).

3.2.5 RG equations for �s and �ℎ

We also obtained the RG equations for the non-minimal couplings to one-loop order. The

resulting equations are

16�2 d�s
dt

= (3 + cℎ)�ℎs

(

�ℎ +
1

6

)

+

(

�s +
1

6

)

⎧



⎨



⎩

6cs�s (real S)

(6cs + 2)�s (complex S)
(3.30)
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and

16�2d�ℎ
dt

=

(

(6 + 6cℎ)�ℎ + 6y2t −
3

2
(3g2 + g′2)

)(

�ℎ +
1

6

)

+

(

�s +
1

6

)

⎧



⎨



⎩

cs�ℎs (real S)

(1 + cs) �ℎs (complex S).
(3.31)

Fig. (3.3) shows the running of the non-minimal couplings in the s-direction. We observe �ℎ

increasing from its initial value of zero, but always remaining much smaller than �s. This is

important for the consistency of our model since inflation will occur along the s direction only

if �s ≫ �ℎ. Otherwise we would expect inflation to occur along a more general flat direction

in the (s, ℎ) plane. The initial value of �s is approximately 104 — necessary for the curvature

perturbation to match the COBE value. This seems to be an unnaturally large value and is a

major downside to the model4.

Deriving the RG equations for �

The equations were obtained considering a general theory of scalars5 �i with mass terms and

non-minimal couplings in the Lagrangian:

ℒ ⊃ −1

2
m2

ij�i�j −
1

2
�ij�i�jR . (3.32)

Following the procedure of regularisation and renormalization (discussed in Chapter 2) the renor-

malization group equations can be calculated. Parameters that exist in the flat space theory have

the same form in the curved space theory [47]. The bare and renormalized parameters of the

theory Eq. (3.32) are related as follows [47]:

m2
0 ij = Zkl

2 ijm
2
kl; (3.33)

�0 ij = Zkl
2 ij�kl − Z3 ij . (3.34)

At one-loop level, Z2 and Z3 are related by the fixed point of the theory: �ij = − 1
6�ij (this was

first shown in [73] and proved in [74]). Evaluating Eq. (3.34) at the fixed point gives

Z
(1)
3 ij = −1

6

(

Z
(1) kl
2 ij �kl − �ij

)

, (3.35)

4We might hope that a better understanding of quantum gravity provides an explanation for the large value
of �s.

5See pages 105–127 of [47] for a full discussion.
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Figure 3.4: Showing the running of the gauge and Yukawa couplings: g (solid red), g′ (green dashed), g3 (blue
dashed) and yt (black dotted). The suppression factor cs does not directly affect these couplings. The figure is
plotted with mℎ = 150 GeV, with t = ln�/mt (from � = mt to � = Mp).

so, at one-loop,

�0 ij = Zkl
2 ij

(

�kl +
1

6
�kl

)

+
1

6
�ij . (3.36)

As Z2 is known from the flat space mass renormalization, it is relatively easy to calculate �� by

applying the scalar potential RG equations to the 1-loop effective potential in order to obtain

the �-function of the mass term [52], �m2
ij
≡ ̄abij m

2
ab. The RG equations for � are then given by

�
d�ij
d�

=

(

�kl +
1

6
�kl

)

̄klij . (3.37)

Finally, the equations must be modified at large s or ℎ by suppressing the propagator for the

corresponding real scalar field as explained in Section 3.2.2.

3.2.6 RG equations for gauge and Yukawa couplings

The two-loop RG equations for g, g′, g3 and yt are given below. They are taken from the

Appendix of [56] and include suppression factors for all components of H running in a loop.

This is in fact an error (only the physical ℎ should be suppressed) which is corrected in our later

analysis (Chapter 5). We assume that only the top quark Yukawa coupling is important. The

two-loop equations are

�g = −20− cℎ
6

g3 +
g3

16�2

(

3

2
g′2 +

35

6
g2 + 12g23 −

3

2
cℎy

2
t

)

, (3.38)
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�g′ =
40 + cℎ

6
g′3 +

g′3

16�2

(

199g′2

18
+

9g2

2
+

44g23
3

− 17cℎy
2
t

6

)

, (3.39)

�g3 = −7g33 +
g33

16�2

(

11

6
g′2 +

9

2
g2 − 26g23 − 2cℎy

2
t

)

, (3.40)

and

�yt = yt

(

−9

4
g2 − 17

12
g′2 − 8g23 +

9

2
cℎy

2
t

)

+
yt

16�2

[

− 23

4
g4 − 3

4
g2g′2 +

1187

216
g′4 + 9g2g23 − 108g43

+
19

9
g′2g23 +

(

225

16
g2 +

131

16
g′2 + 36g23

)

cℎy
2
t + 6

(

−2c2ℎy
4
t − 2c3ℎy

2
t�ℎ + c2ℎ�

2
ℎ

)

]

. (3.41)

An example showing the running of these couplings is given in Fig. (3.4).

3.3 Constraints

We calculate the bounds on mℎ and �ℎs(mt) by applying three constraints: (i) stability of the

electroweak vacuum, (ii) perturbativity of the potential and (iii) consistency with the observed

spectral index n and with limits on the tensor-to-scalar ratio r and running spectral index �.

A possible fourth constraint, ‘wrong-way-roll’
(

dU
d�S

> 0
)

, which plays a role in Higgs inflation

[64], is generally not violated in our model. This is because ��s > 0 and ��s is small. In Higgs

inflation, ��ℎ
can become negative, causing dU

d�ℎ
to become negative.

3.3.1 Vacuum stability and perturbativity

We require stability of the electroweak vacuum for s and ℎ up to Mp. We do not consider the

possibility of a metastable vacuum, which depends on the cosmological evolution of the vacuum

state. As discussed in Section 2.2.1, this imposes the constraints

�s > 0, �ℎ > 0 and either �ℎs > 0 or �2ℎs < 4�ℎ�s. (3.42)

We will check the stability of the vacuum in both the s direction (with cℎ = 1) and the ℎ direction

(with cs = 1).

We also require the coupling constants to lie within the perturbative regime (see Section 2.2.2)

up to the Planck scale, in both the s direction and the ℎ direction. We apply the perturbativity

condition �′i < 4� to the coupling constants �′i defined through the potential

V (s, ℎ) =
1

4!
�′ℎℎ

4 +
1

4!
�′ss

4 +
1

4
�′ℎss

2ℎ2. (3.43)
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The couplings in this potential appear in the Feynman vertices without additional numerical

factors. �′i < 4� then ensures that loop corrections are smaller than tree-level processes. This

leads to the conditions on the couplings as defined in our potential

�ℎ, �s < 2�/3 and �ℎs < 4�. (3.44)

3.3.2 Constraints from slow-roll inflation

The observational constraints on inflation from WMAP five-year data (combined with baryon

acoustic oscillations and supernovae data) are n = 0.960±0.013, r < 0.22 and−0.068 < � < 0.012

[5]. (The error on n is given to 1-�, meaning that 0.947 ≤ n ≤ 0.973 to 66% confidence.) Inflation

occurs through the standard slow-roll mechanism, which we formulate in the Einstein frame. The

potential in the �s direction is

U(�s) =
1

Ω(�s)4

(

�s
4
s4(�s) + V (1)(s(�s))

)

, (3.45)

where V (1)(s) is given by Eq. (3.15). The slow roll parameters are similar to those in Section 1.2.4

but defined with respect to �s:

�̃ =
M2

p

2

(

1

Ũ

dŨ

d�S

)2

, �̃ =
M2

p

Ũ

d2Ũ

d�2
S

and #̃2 =
M4

p

Ũ2

dŨ

d�s

d3Ũ

d�3
s

. (3.46)

From these we can calculate the observable quantities

n = 1− 6�̃+ 2�̃ , r = 16�̃ and � =
dn

d ln k
= −16�̃�̃+ 24�̃2 + 2#̃2. (3.47)

Using the tree-level potential and the approximation �ss
2

M2
p

≫ 1 we estimate the tree-level

slow-roll parameters to be �̃ ≃ 4
3

M4
p

�2ss
4 , �̃ ≃ − 4

3

M2
p

�ss2
and #̃2 ≃ 16

9

M4
p

�2ss
4 , where s

2
Ñ

≈ 4M2
P Ñ/3�s. A

calculation of the classical (i.e. without including radiative corrections) spectral index, tensor-

to-scalar ratio and running spectral index then gives

ncl ≈ 1− 2

Ñ
− 3

2Ñ2
+O

(

1

Ñ3

)

= 0.966 ; (3.48)

r ≈ 12

Ñ2
+O

(

1

�sÑ2

)

= 3.3× 10−3; (3.49)

� ≈ 2

Ñ2
+

12

Ñ3
+O

(

1

Ñ4

)

= 6.1× 10−4 . (3.50)

Thus r and � are negligibly small when compared with the observational limits. One may wonder

whether the above precision is reliable. This is discussed below.
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Radiative Corrections

Radiative corrections have a significant effect on the slow-roll parameters, particularly �̃. This is

not surprising, as the tree level potential is exponentially flat and the radiative corrections add

a small but significant slope. Including radiative corrections the slow roll parameters are

�̃ =
M2

p

2

(

ds

d�s

)2(
4

sΩ2
+

1

1 + Θ

Ls

s

)2

(3.51)

and

�̃ = M2
p

(

ds

d�s

)2(
12

s2Ω4
− 12�s

Ω4M2
p

+
8Ls

s2Ω2(1 + Θ)
− Ls

s2(1 + Θ)

)

+M2
p

d2s

d�2
s

(

4

sΩ2
+

Ls

s(1 + Θ)

)

. (3.52)

In these equations,

Θ =
4Ω4

�ss4
U (1),

dΘ

ds
=
Ls

s
, (3.53)

Ls =
1

16�2�s

⎛

⎜

⎝

(

c2ℎ + 3

2

)

�2ℎs +

⎧



⎨



⎩

18c2s�
2
s (real S)

18c2s�
2
s + 2�2s (complex S)

⎞

⎟

⎠
, (3.54)

where Ls does not depend on s and

d2s

d�2
s

=
1

2Ω6

(

ds

d�

)4 [
12�3ss

3

M4
p

+
2�sΩ

2s

M2
p

− 12�2ss

M2
p

]

. (3.55)

The terms originating from U (1) are subdominant in �̃, but for a range of values of �ℎs and �s

they can become more important than the tree-level result in �̃.

Planck scale corrections

It is important to check that Planck scale corrections of the form

ΔV =
ans

n

2
n
2 n!Mn−4

p

, (3.56)

where the couplings an are O(1), do not dominate the spectral index. The corrections to �̃ and

�̃ are [33]

��̃ =
4(n− 4)2a2n
3�2s2

n(n!)2

(

s

Mp

)2n−8

(3.57)

and

��̃ =
2(n− 4)2a2n
3�s2n/2n!

(

s

Mp

)n−4

. (3.58)
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For n = 6, this gives Δn = 8.5× 10−6 (higher n corrections will be even smaller). Thus it is safe

to say that Planck scale corrections are negligible.

Number of e-foldings

The number of e-foldings of inflation in the Einstein frame is given by the standard expression

[68]

Ñ =

∫ �Ñ

�end

1

M2
p

Ũ
dŨ
d�S

d�S =

∫ sÑ

send

1

M2
p

Ũ
dŨ
ds

(

d�S

ds

)2

ds , (3.59)

where the end of inflation is defined by �̃ = 1.

We have defined the end of inflation (and therefore Ñ = 0) by � = 1, as this is where the

slow roll parameters break down. The actual end of inflation is where ä = 0 (equivalent to

�̃H ≡ − Ḣ
H2 = 1). (Note that when ä = 0 the slow roll approximation may not be valid, making

computations difficult.) Defining the end of inflation by � = 1 introduces some error in the value

of Ñ . We will therefore take a conservative viewpoint that the total theoretical error in Ñ is ±1.

An error of ΔÑ corresponds to an error on the spectral index of approximately

Δncl ≈ − 2

Ñ +ΔÑ
+

2

Ñ
≈ −2ΔÑ

Ñ2
. (3.60)

For ΔÑ = 1.5 this gives Δncl ∼ 0.001.

We will use Ñ to determine the field value sÑ at the beginning of inflation, which we will

need to calculate �̃ and �̃. The number of e-foldings in the Einstein frame Ñ differs from the

number of e-foldings N in the Jordan frame. This is because the definition of the scale factor in

the Einstein frame and in the Jordan frame are different. They are related via

Ñ = ln

(

ãend
ã

)

= ln

(

aend
a

Ω(tend)

Ω(t)

)

= N + ln

(

Ω(tend)

Ω(t)

)

≃ N − 1

2
ln Ñ , (3.61)

where aend and tend are the scale factor and time at the end of inflation. We use Ñ = 60

corresponding to N ≃ 62.0 in this chapter. This is a reasonable assumption given that the

reheating temperature in this model is high (see Chapter 4).

We calculate the field value at 60 e-foldings before the end of inflation as follows. At tree-level,

s2end ≃ 4

3

M2
p

�s
. (3.62)

Then Eq. (3.59) is integrated using Eq. (3.51) and the approximation Θ = constant to give

Ñ = � ln

(

4 + LSΩ
2
Ñ
/(1 + ΘÑ)

4 + LSΩ2
end/(1 + Θend)

)

− 3

4
ln

(

Ω2
Ñ

Ω2
end

)

, (3.63)
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Figure 3.5: The value of ms as a function of �ℎs(mt) necessary to produce the correct density of thermal relic
dark matter. In this example mℎ = 150.0 GeV. The solid line indicates real S and the dashed line complex S.

where

� =
1 + Θ

2LS�s
+

6(1 + Θ)

2LS
+

3

4
. (3.64)

3.4 Thermal relic dark matter

We assume that dark matter is due to thermal relic gauge singlet scalars. The non-minimal

coupling to gravity will not affect the S dark matter density as the field is at very low values

compared to Mp. If we assume that the gauge singlet scalar is responsible for the observed dark

matter density, ΩDM = 0.228±0.013 [5], then we obtain a relationship between ms and �ℎs(mt).

We use the Lee-Weinberg approximation [22] to calculate the relic density of S (see Section 1.5

for full details).

Here, we give the S annihilation cross-section times relative velocity, ⟨�vrel⟩, and the resulting

dark matter density. We will approximate ⟨�vrel⟩ by the centre-of-mass cross-section for non-

relativistic S annihilation. The tree-level processes contributing to S annihilation are (i) SS →

ℎℎ, (ii) SS → WW , (iii) SS → ZZ and (iv) SS → ff (where f is a Standard Model fermion).

(i) proceeds via a 4-point contact interaction, an s-channel Higgs exchange interaction and a t-

and u-channel S exchange interaction. The resulting ⟨�vrel⟩ is [1, 24]

⟨�vrel⟩ℎℎ =
�2ℎs

64�m2
s

[

1 +
3m2

ℎ

(4m2
s −m2

ℎ)
+

2�ℎsv
2

(m2
ℎ − 2m2

s)

]2(

1− m2
ℎ

m2
s

)
1
2

. (3.65)
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SS →WW, ZZ, ff all proceed via s-channel Higgs exchange. The corresponding ⟨�vrel⟩ are:

⟨�vrel⟩WW = 2

[

1 +
1

2

(

1− 2m2
s

m2
W

)2
]

�2ℎsm
4
W

(

1− m2
W

m2
s

)
1
2

8�m2
s

(

(4m2
s −m2

ℎ)
2
+m2

ℎΓ
2
ℎ

) , (3.66)

⟨�vrel⟩ZZ = 2

[

1 +
1

2

(

1− 2m2
s

m2
Z

)2
]

�2ℎsm
4
Z

(

1− m2
Z

m2
s

)
1
2

16�m2
s

(

(4m2
s −m2

ℎ)
2
+m2

ℎΓ
2
ℎ

) (3.67)

and

⟨�vrel⟩ff =
m2

W

�g2

�2f�
2
ℎs

(

1− m2
f

m2
s

)

3
2

(

(4m2
s −m2

ℎ)
2
+m2

ℎΓ
2
ℎ

) . (3.68)

Here the fermion Yukawa coupling is �f = mf/v where v = 246.22 GeV and mf is the fermion

mass. Γℎ is the Higgs decay width. (Fermions should be summed over colours.)

The cross-sections ⟨�vrel⟩ are the same whether the process involves SS or S†S. For real S,

the present total mass density in S scalars is given by Eq. (1.49). The density for complex S is

twice that for real S, due to the additional degree of freedom. For a given �ℎs and mℎ there are

up to four corresponding values of ms which give the correct relic density. An example is shown

in Fig. (3.5) for the case where mℎ = 160 GeV. The cusp-like feature is due to S annihilations

to WW and ZZ pairs close to the Higgs pole. In this region the S mass is relatively insensitive

to �ℎs. Note also that large values of �ℎs are possible for ms slightly below the Higgs pole.

3.5 Parameter space for S-inflation

We now present the results, giving the available parameter space for our model to give 60 Einstein

frame e-foldings of inflation, while all couplings remain stable and perturbative up to the Planck

scale. First, we discuss the parameter space in terms of mℎ and �ℎs, as shown in Fig. (3.6) and

Fig. (3.7).

Small �s

In Fig. (3.6a) we show the case of real S with ‘small’ �s(mt) = 0.025. The range of allowed

Higgs mass is 145 GeV ≲ mℎ ≲ 170 GeV, where the lower bound is from vacuum stability in the

ℎ direction combined with 5-year WMAP 1-� upper bound n < 0.973. The upper bound is from

perturbativity of �ℎ in the s direction. The corresponding range of �ℎs(mt) is ∣�ℎs(mt)∣ ≲ 0.15.

If we were to use the two-� WMAP bound, we find that larger values of n allow larger ∣�ℎs(mt)∣,

up to an upper bound ∣�ℎs(mt)∣ ≈ 0.55 (at n ≳ 0.980), which comes from the perturbativity

bound on �s in the ℎ direction. In this case the lower bound on the allowed Higgs masses is
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(a) Real S, �s(mt) = 0.025

(b) Complex S, �s(mt) = 0.025

Figure 3.6: Allowed region for inflation in the s-direction for �s = 0.025. Excluded regions are shown in grey.
Limits from couplings in the s-direction are shown with dashed lines, those from the couplings running in the
ℎ-direction have solid lines and the 1-� upper limit on n is dot-dashed. In (a) we also show the line n = 0.981
(dot-dot-dash) demonstrating the variation of n.
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(a) Real S, �s(mt) = 0.2

(b) Complex S, �s(mt) = 0.2

Figure 3.7: Allowed region for inflation in the s-direction for �s = 0.2. Excluded regions are shown in grey.
Limits from couplings in the s-direction are shown with dashed lines, those from the couplings running in the
ℎ-direction have solid lines and the 1-� upper limit on n is dot-dashed.
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Figure 3.8: Showing the variation of n with mℎ for �s(mt) = 0.025 and �ℎs(mt) = 0.16. The WMAP central
value and 1-� upper bound are shown with short dashed lines; classical n for S-inflation is shown with a dashed
line.

shifted downwards to 130 GeV ≲ mℎ ≲ 170 GeV. In Fig. (3.6b) we show the corresponding

results for complex S. The allowed parameter space is very similar to the case of real S.

Large �s

In Fig. (3.7a) we show the results for the case of ‘large’ �s(mt) = 0.2. In this case the range of

Higgs mass is similar to the small �s case, but now the origin of the bound is perturbativity of

�s in the ℎ direction rather than the WMAP upper bound on n. As �s(mt) increases from 0.2,

the allowed parameter space will rapidly diminish due to the decrease of the �s perturbativity

upper bound on �ℎs(mt). As seen in Fig. (3.7b), the allowed parameter space vanishes for the

corresponding case with complex S.

Very small �s

As will be discussed in Chapter 6, if unitarity violation is a problem in this class of models,

then it may be possible to avoid the problem in S-inflation with a very small value of �s[1].

This was recently considered in [75]. If this were the case we would expect �ℎs to be low —

comparing Fig. (3.6a) and Fig. (3.7a) we see that decreasing �s tends to increase n therefore we

would expect the allowed values to decrease further with even smaller �s. Smaller values of �ℎs

will tend to drive ms closer to the Higgs pole (Fig. (3.5)), increasing the chances that it could

be detected in the near future.
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(a) Real S, �s(mt) = 0.025 (b) Complex S, �s(mt) = 0.025

(c) Real S, �s(mt) = 0.2 (d) Complex S, �s(mt) = 0.2

Figure 3.9: Allowed region for inflation in the s-direction, with a 1-� upper limit on n. Excluded regions are
shown in grey and all masses are in GeV. The dashed line shows mℎ = 2ms. Below this line, production of
S-particles at the LHC (via ℎ → S†S decay) is possible. There is no allowed region in (d).

Comparison with Higgs inflation

An important point is that the value of n can be significantly larger than the classical value

n = 0.966 over the whole range of allowed Higgs mass. In Fig. (3.8) we show an example of

the variation of n with mℎ for fixed �ℎs and �s (this is explored in more detail in Chapter 5,

Fig. (5.8)). This appears to contrast with the case of Higgs inflation (without additional scalars).

Although the predictions in the literature are conflicting, n is either at or below the classical

value at large mℎ. Thus, the predictions of S-inflation appear to be unique. In [38] a significant

increase of n from the classical value is obtained only for mℎ ≲ 132 GeV. Contradicting this,

[37, 64] find that n is significantly below the classical value for both large and small mℎ. These

results are reviewed and discussed in Chapter 5, where we also re-compute the prediction for

Higgs inflation.

Parameter space in terms of ms

We now convert the range of �ℎs to a range of ms. Fig. (3.9) shows the range of ms and mℎ

consistent with S-inflation and thermal relic S dark matter, with n ≤ 0.973 and all vacuum
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stability and perturbativity constraints satisfied. We also show ms = mℎ/2, which is the limit

at which it is possible to pair produce S scalars via Higgs decay at the LHC [76]. For the

case of real S and ‘small’ �s(mt) = 0.025, Fig. (3.9a), we see that ms is mostly in the range

50 GeV ≲ ms ≲ 500 GeV, reaching 750 GeV close to its lower bound. For complex S, ms is

more constrained, with values in the range 50–500 GeV. This can be easily understood since the

dark matter density for a complex S is twice that for a real S of the same mass, therefore a

smaller mass is required to produce the same density. From Fig. (3.9c) we see that �s(mt) = 0.2,

permits a wider range of S mass, with ms in the range 45 GeV to 1 TeV. If instead we were

to consider the 2-� WMAP bound, the parameter space in Fig. (3.9a) and Fig. (3.9b) would

increase, while Fig. (3.9c) would be unchanged.

We note that while a large region of the allowed parameter space is at values of the S mass

which are large compared with the weak scale, there is no reason to expect the S mass to be so

large. The S mass squared is m2
s = m2

so + �ℎsv
2/2. Therefore if mso is of the order of the weak

scale (which is the most natural possibility in a theory based on a single mass scale), we would

expect ms to be no larger than a few hundred GeV. A partial cancellation due to either �ℎs < 0

or m2
so < 0 would also tend to give a weak scale ms.

There is a small region of the allowed parameter space which satisfiesms < mℎ/2. This means

that it is possible for the S inflaton to be produced at the LHC via Higgs decay [76]. Thermal

relic S dark matter would then originate from freeze-out of near resonant S annihilation to

WW and ZZ close to the Higgs pole. If ms is slightly below the Higgs pole, this implies that

�ℎs(mt) can be large, as can be seen from Fig. (3.5). Therefore if ms < mℎ/2 then the S-nucleon

scattering cross-section due to Higgs exchange is likely to be large, enhancing the possibility of

observing S dark matter in direct detection experiments. In this case, the available phase space

for producing S particles at the LHC is small [77].

Particle physics constraints

Collider and direct dark matter detection experiments should be able to constrain the allowed

parameter space6. Combined data from the D0 and CDF collaborations show that a Higgs boson

mass in the range 162 GeV < mℎ < 166 GeV is excluded at 95% confidence level [79, 80]. This

exclusion reduces the available parameter space of the model by a small amount, however it does

not make a large difference to the range of ms, as this is largest at low values of mℎ. Present

bounds on direct detection of S dark matter from XENON10 and CDMSII rule out S mass in the

range 10 GeV to (50,70,75) GeV for Higgs masses (120,200,350) GeV [76, 81]. Comparing with

Fig. (3.9), we see that the upper bound from direct detection is already close to the lower bound

6-ray and antimatter signals can also constrain the model [78].
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on the range of ms allowed by the S-inflation model. Thus, although most of the parameter

space is allowed at present, a substantial part of the (ms, mℎ) parameter space will be accessible

to future dark matter detectors.

In [77], the S-nucleon scattering cross section was plotted for 114.4 GeV < mℎ < 186 GeV

and ms < 200 GeV. The figure is reproduced in Fig. (3.10a). The excluded regions from

XENON10 and CDMSII, as discussed above, are clearly seen (shown by arrows). Most of this

parameter space will be covered by future experiments, including XENON100, XENON1T and

CDMS 100kg. For example, the projected cross section for the XENON1T detector is shown

in Fig. (3.10b). As can be seen in this figure, the XENON1T detector would detect S dark

matter if the cross section is greater than 10−46cm2 — this covers all of the parameter space

in Fig. (3.10a), except perhaps the dark blue stripe corresponding to the pole at mℎ = 2ms.

However, if ms was larger than a few hundred GeV (or very close to the pole at mℎ = 2ms), it is

more difficult to detect. (We have assumed that the local density of dark matter is 0.3 GeVcm−3

[82].)

(a) Figure from [77], showing the S-nucleon scat-
tering cross section (via Higgs exchange) for mℎ

and mD ≡ ms up to 200 GeV. The Tevatron CDF
and D0 95% confidence level exclusion is shown be-
tween dashed lines. The arrows show the exclusion
from dark matter direct searches at CDMSII and
XENON10.
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(b) Showing the WIMP-nucleon cross section
projected for the XENON1T detector, plotted
using [83].

Figure 3.10: Figure showing dark matter cross sections (a) predicted for this model and (b) projected for the
XENON1T detector.
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Chapter 4

Reheating in S-inflation

In this chapter, we first review the mechanism for reheating in the case of pure Higgs inflation

[33, 39]. We then show how reheating is possible in S-inflation despite the requirement that S

is stable and cannot decay. Unlike many inflation models, the coupling of the inflaton s to the

Standard Model is well constrained and we can calculate the temperature of radiation domination

TR. We define TR to be the effective temperature1 when the inflaton energy density is equal to

the energy density in relativistic particles, �R. The temperature at which thermal equilibrium

occurs (the reheating temperature) will be lower than this and could be calculated by considering

2 → 3 processes [84]. Under reasonable assumptions the temperature of radiation domination is

high:

3× 1013 GeV ≲ TR ≲ 8× 1014 GeV. (4.1)

The small range enables us to reasonably estimate Ñ , which is 58 ≲ Ñ ≲ 61, and thus to give

the classical spectral index, 0.965 ≲ ncl ≲ 0.967. A measurement of �ℎs (or ms) through dark

matter detection experiments will further increase the predictiveness of this model.

Reheating in Higgs inflation

Reheating in Higgs inflation occurs through a stochastic resonance [33]. After inflation, the

Higgs-inflaton oscillates in a quadratic potential; the gauge boson masses are proportional to the

modulus of the oscillating inflaton field. When the oscillation modulus is small, non-relativistic

gauge bosons are produced non-adiabatically; when the modulus is large, the gauge bosons easily

decay to relativistic Standard Model particles2 [33]. This prevents the build up of gauge bosons.

However, the expansion of the Universe causes the maximum amplitude of the oscillation to

1This is simply a reparameterisation of the energy density: TR =
(

30

�2g∗
�R

)1/4
where g∗ is the effective

number of relativistic degrees of freedom.
2It is shown in [33] that the relativistic particles produced via gauge boson decays would not dominate the

energy density while the resonant production takes place.
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decrease, which decreases the gauge bosons mass. As the decay rate of the gauge bosons is

proportional to this mass, eventually the gauge bosons no longer decay appreciably and their

density builds up, enabling the stochastic resonance. At this point, the energy of the inflaton is

quickly transferred to the gauge bosons, which in turn quickly annihilate to relativistic fermions.

Reheating via the production of Higgs excitations is also possible, but the stochastic resonance

is expected to occur first [33]. According to [33], the temperature of radiation domination is

3× 1013 GeV < TR < 15× 1013 GeV (where the lower limit is from reheating via the production

of excitations of the Higgs-inflaton).

Reheating in Higgs inflation was also considered by [39]. They find a process of reheating

similar to that described above, but emphasise the role of back reaction from the gauge bosons

to the Higgs condensate. Significant backreaction would narrow the resonance before eventu-

ally shutting it off. The backreaction becomes important approximately 7 zero-crossings before

reheating would complete, in the absence of the backreaction. They therefore conclude that a

further numerical simulation is necessary to determine whether or not this backreaction spoils

reheating. However, their analysis does not include the annihilation of the gauge bosons, which

was shown by [33] to be an important process. Therefore we expect that backreaction will not

spoil reheating. We do not consider the effect of backreaction in our analysis of reheating for

S-inflation.

Reheating in S-inflation

Reheating in S-inflation must occur through H — which can then produce the particles of the

Standard Model. In order for S to be dark matter as well as the inflaton, it must be stable and

cannot decay. This means that any leftover inflaton density can only be transferred to thermal

radiation through scattering with Higgs bosons in the thermal background. This is a potential

problem in this model, and we need to be sure that the inflaton is a subdominant component

of the Universe at the point when the inflaton potential becomes quartic (∝ s4) [85]. In this

case, as we will show, any residual oscillating inflaton density will eventually be thermalised by

scattering from the dominant thermal background. If this were not the case, then the model

of S-inflation may be fundamentally flawed (although it may be possible to still have reheating

when � is oscillating in this quartic potential). Therefore taking a conservative approach, we

require reheating to occur during the (first) quadratic potential stage (Eq. (3.13)). We expect

reheating to occur via stochastic resonance to Higgs bosons through the �ℎs∣S∣2∣H ∣2 term, similar

to Higgs inflation.

60



4.1 Evolution of the oscillating inflaton

The evolution of the S field is the background solution for the rest of the calculations. We

are in the region of the potential where � ≃
√
6�ss

2

2Mp
and U ≃ �sM

2
p�

2

6�2 (see Section 3.1.4). The

Friedmann equation is

H2(t) =
�

3M2
p

=
1

3M2
p

[

!2

2
�2(t) +

1

2
�̇2(t)

]

(4.2)

where

!2 ≡ d2U

d�2
=
�s
3

M2
p

�2s
(4.3)

is the effective mass squared of the inflaton (this is the same for all combinations of couplings,

as �s

�2s
is fixed by the COBE normalisation). The solution is3

�(t) = X(t) cos (!(t− t0))

= X(t) sin (−!(t− tj)) (4.4)

provided that

H2(t) =
!2X2

6M2
p

(4.5)

and

∣Ẋ(t)∣ ≪ !X. (4.6)

The zero crossing occurs at tj , so �(tj) = 0. The oscillating inflaton behaves like matter as

� ∝ 1
a3 [85], giving H = 2

3t . Using Eq. (4.5), this gives

X(t) = 2

√

2

3

Mp

!

1

t
(4.7)

and we can now calculate

∣Ẋ∣
X

=
1

t
. (4.8)

So, provided we consider times much larger than the time for one oscillation
(

2�
!

)

, the approxi-

mation Eq. (4.6) is justified.

3The second line of Eq. (4.4) comes from cos (!(tj − t0)) = 0.
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Inflaton energy density

The energy density of the inflaton field is

�inf =
!2

2
X2. (4.9)

We will look for the point at which the energy density of relativistic particles is equal to this.

This is what we will call the moment of radiation dominance (it is not important whether or not

the particles are in equilibrium at this point). If this point occurs before the inflaton potential

becomes quartic, then we have successful reheating. The transition between quadratic (U ∝ �2)

and quartic (U ∝ �4) behaviour of the oscillating inflaton is defined to be the point where we

match the amplitudes of the solutions in the two regimes. The two solutions are �CR = sCR

(radiation-like) and �CR =
√
6
2

�ss
2
CR

Mp
(matter-like). Equating these gives sCR = �CR ≡ XCR

where

XCR =

√

2

3

Mp

�s
=

√

2

�s
!. (4.10)

4.2 Reheating via stochastic resonance

4.2.1 Evolution of the Higgs boson modes

We consider the Higgs boson to be four real scalars �i. We calculate for one of these, �, and

multiply the final result by four, where necessary. The mode equation is

�̈k + 3H�̇k +

(

k2

a2
+m2

�

)

�k = 0 (4.11)

where k is the comoving wavenumber, a(t) is the scale factor and

m2
� =

�ℎss
2

2
=
�ℎsMp∣�s∣√

6�s
(4.12)

in the Einstein frame, for a quadratic potential. Eq. (4.11) can be written

0 =  ̈k +

(

k2

a2
+m2

� − 3

4

(

ȧ

a

)2

− 3

2

ä

a

)

 k

≃  ̈k + k20(t) k (4.13)

where we have rescaled  k = a3/2�k. The terms proportional to ȧ and ä are assumed to be

always negligible and are not included in k0.
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Adiabatic evolution

When k̇0 can be ignored (∣k̇0∣ ≪ k20) then Eq. (4.13) can be easily solved. This is called the

adiabatic approximation. The solution is

 k =
�j
k√
2k0

e−i�j
k +

�j
k√
2k0

e+i�j
k (4.14)

where

�jk =

∫ tj

0

k0dt . (4.15)

The parameters �j
k and �j

k are constant between zero crossings, but can change when the oscil-

lating inflaton crosses zero, at which point the adiabatic approximation is not valid. For k = 0,

the adiabatic approximation is valid when

∣t− tj ∣ ≫
(
√

�s
2

1

�2ℎs!
2X

)1/3

. (4.16)

At the zero crossings, in our approximation, there is a sudden change in the coefficients �j
k

and �j
k which is described by a Bogoliubov transformation [86]:

⎛

⎜

⎝

�j+1
k e−i�j

k

�j+1
k e+i�j

k

⎞

⎟

⎠
=

⎛

⎜

⎝

1/Dk R∗
k/D

∗
k

Rk/Dk 1/D∗
k

⎞

⎟

⎠

⎛

⎜

⎝

�j
ke

−i�j
k

�j
ke

+i�j
k

⎞

⎟

⎠
. (4.17)

Rk is a reflection coefficient and Dk is a transmission coefficient, satisfying ∣Rk∣2 + ∣Dk∣2 = 1.

Non-adiabatic evolution

At the zero crossings, m2
� approaches zero and can be approximated as

m2
� ≃ �ℎsMp!X(t)√

6�s
∣t− tj ∣. (4.18)

This approximation is valid when sin(!∣t− tj ∣) ≃ !∣t− tj ∣, which is true for

∣t− tj ∣ ≪
√
6

!
. (4.19)

Following [86], we can transform the equation Eq. (4.13), in order to make it possible to

approximately solve in the non-adiabatic regime. Using � = Q(t− tj) and � = ∣k∣
Qa , where

Q3 =
�ℎs

√
�sMp

6�2s
X(tj) (4.20)
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gives

d2 k

d�2
+ (�2 + ∣� ∣) k = 0. (4.21)

By definition, the solution of this is a combination of Airy functions. In our case, the coefficients

are different either side of the zero crossings. The solutions are

 k(� < 0) = A−Ai(−∣� ∣ − �2) +B−Bi(−∣� ∣ − �2) (4.22)

and

 k(� > 0) = A+Ai(−∣� ∣ − �2) +B+Bi(−∣� ∣ − �2). (4.23)

At � = 0 the expressions for  k and their derivatives must be equal.

Matching the two solutions

To complete the calculation, we need to match the adiabatic solution to the non-adiabatic solu-

tion. This is possible when Eq. (4.16) and Eq. (4.19) are simultaneously satisfied4, i.e.

X ≫ �s

12
√
6�2ℎs

XCR. (4.24)

When the above inequality is satisfied, we match the solutions before the zero crossing [Eq. (4.22)

and Eq. (4.14), evaluated at j] and after the zero crossing [Eq. (4.23) and Eq. (4.14) evaluated

at j+1]. This gives (A−, B−) in terms of (�j = �j
ke

−�j
k , �j = �j

ke
�j
k) and similarly for (A+, B+).

Imposing the requirement that the solutions and their derivatives are equal at � = 0 relates

(�j+1, �j+1) to (�j , �j). Dk and Rk are then calculated using the definition Eq. (4.17) and the

resulting expressions are given by [33]:

Rk = −e2i( 2�
3 +�

4 ) Ai′(−�2)Ai(−�2) + Bi(−�2)Bi′(−�2)
[Bi(−�2) + iAi(−�2)]

[

Bi′(−�2) + iAi′(−�2)
] (4.25)

and

Dk = ie2i(
2�
3 +�

4 ) Ai′(−�2)Bi(−�2)−Ai(−�2)Bi′(−�2)
[Bi(−�2) + iAi(−�2)]

[

Bi′(−�2) + iAi′(−�2)
] . (4.26)

Occupation number nk

The occupation number is given by nj
k ≡ ∣�j

k∣2 where [33]

nj+1
k =

∣Rk∣2
∣Dk∣2

+
1 + ∣Rk∣2
∣Dk∣2

nj
k + 2

√

1 + nj
k

√

nj
k

∣Rk∣
∣Dk∣2

cos(�jtot) (4.27)

4It is satisfied for all X > XCR if �s ≥ 29�2

ℎs.
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and �jtot = −2�jk − 2
(

2
3�

3 + �
4

)

+ arg�j
k − arg �j

k. There are two regimes, depending on the size

of nk.

(i) nk ≪ 1: For each time Δt = �
! corresponding to the time between zero crossings, nj

k ≃
∣Rk∣2
∣Dk∣2 scalars �i are produced. The majority of these particles decay (to relativistic Standard

Model particles) before the next zero crossing and there is no significant transfer of energy to

radiation5.

(ii) nk ≫ 1: it is now the second and third terms of Eq. (4.27) that are important and we

can write (for each �i)

nj+1
k = e2��knj

k (4.28)

where �k is an average over the angle �jtot, which we assume to be completely randomly dis-

tributed. We calculate �k using Mathematica, which gives

�k =
1

2�

∫ 2�

0

1

2�
ln

(

1 + ∣Rk∣2
Dk

+ 2
∣Rk∣
∣Dk∣2

cos(�)

)

d�

=
1

2�

[

ln

( ∣Rk∣+ 1

∣Rk∣

)

+ i− ln
(

∣Dk∣2
)

]

≃ − 1

2�
ln
(

∣Dk∣2
)

. (4.29)

In order to have a resonance, we need the reflection coefficient, ∣Rk∣, to be reasonably large. This

means that ∣Dk∣ is small (from the requirement ∣Rk∣2+ ∣Dk∣2 = 1) and this gives the final line of

Eq. (4.29). We are interested in the rate of change of the total number of particles produced, so

must integrate over k. Thus, as the change in nk in a time Δt = �
! is Δnk ≃ 2��knk, we have

dn

dt
≃ !

�

∫ ∞

0

(2��knk)
d3k

(2�)3
. (4.30)

We do not calculate this integral exactly (it would be difficult as ∣Dk∣2 involves products of Airy

functions), but assume that �k is well approximated by �(k = 0) [33]. We use Eq. (4.26) to

calculate B ≡ �(k = 0) = 0.045. This gives for the total number density of Higgs bosons nT

dnT

dt
∼ 4× 2!Bn = 2!BnT . (4.31)

In [33], the components of the W± and Z bosons are treated as scalars. This is not strictly true

for that case but is correct for our calculation using the scalar Higgs boson.

5This was shown in [33] by demonstrating that the relativistic particles produced via boson decays would not
dominate the energy density until well after the resonant production has taken place.
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Figure 4.1: Showing the value of Xsto
XCR

for regions of the parameter space where reheating via stochastic

resonance can complete before XCR.

Decay of the H bosons

Higgs bosons which are produced at the zero crossings can decay in the adiabatic regime when

their mass is large. The Higgs has a large m2
� because the background s field is large. Therefore

it has a minimum at zero and decay is via the Yukawa coupling, to fermion pairs (particularly

the top quark). The (average) decay width of the variable mass Higgs bosons is given by [87]

Γ� =
Ncg

2m2
f

32�m2
W

⟨m�⟩ ≡ C⟨m�⟩ ≃
1

17.65
⟨m�⟩ (4.32)

where ⟨m�⟩ is the average of Eq. (4.12). TheH-bosons are non-relativistic but the decay products

are relativistic.

4.2.2 Stochastic resonance

Once the decay of the produced Higgs bosons becomes subdominant to their production, an

exponential regime can begin. Up to this point, no significant energy transfer from � to the

Higgs bosons occurs. Reheating completes fairly rapidly after this, as once the Higgs bosons

are produced through this stochastic resonance, they can annihilate and produce a thermal

background. The upper limit on reheating is the point at which the decay and the exponential

production are equal. Using Eq. (4.32) and Eq. (4.31) we find that the two processes are equal

at

Xsto ≃ 2�B2

C2

�s
�ℎs

XCR ≃ 4.0
�s
�ℎs

XCR . (4.33)
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This is the absolute maximum value of X for reheating to occur via production of H bosons at

the zero crossings and is shown in Fig. (4.1) for �s > 0.25�ℎs. After � = Xsto, � will rapidly

decrease to XCR, therefore �rad > �inf at XCR. The calculation assumes instant annihilation of

the H-bosons to relativistic particles and a very efficient stochastic resonance. For this reason

all estimates of TR from stochastic resonance are upper limits. It is interesting to note that

increasing the Higgs-S coupling, �ℎs causes reheating to occur later. This is because a large �ℎs

means that m2
� is large, so it can keep decaying for a longer period, preventing the exponential

regime from beginning and therefore delaying reheating.

The time of reheating is dependent on the ratio of couplings �s

�ℎs
. Requiring this process of

reheating to occur before � = XCR gives

�s > 0.25�ℎs . (4.34)

If this condition is not fulfilled, reheating is not ruled out. It could either occur via directly

producing excitations of the inflaton, as discussed in the following section, or possibly during

the quartic potential regime. We do not consider reheating in a quartic potential here as it is

computationally difficult, and because our main aim is to show that reheating is possible in the

model of S-inflation. If reheating occurs in the quartic regime, a lower temperature of radiation

domination TR would be expected.

4.3 An alternative mechanism of reheating

An alternative method of draining energy from the background field is the direct production of

excitations of the inflaton �. These excitations have a mass

m2
� = 3�s�

2 (4.35)

for � < XCR, and the mode equation is given by Eq. (4.11) with m� → m�. As discussed in

[33], this can be solved perturbatively, assuming the number of particles produced is small6. The

particles produced are relativistic, with energy density (valid at late times) [33]

�excitation =
3

11

!5

2�3
t, (4.36)

where t and X are related through Eq. (4.7). We compare this to the inflaton energy density,

Eq. (4.9) and find that if the production of excitations is the only process of reheating, radiation

6If this were not the case, it could still be solved non-perturbatively in the same way as for the production of
Higgs bosons.
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Figure 4.2: Showing the value of Xex
XCR

for regions of the parameter space where reheating via production of S

excitations can complete before XCR. Note that the scale has a much smaller range than Fig. (4.1).

domination occurs at

Xex ≃ 7.3
√

�sXCR. (4.37)

Fig. (4.2) shows the value of Xex when �s > 0.019. If this mechanism of reheating is to occur

before the inflaton potential becomes quartic, we require

�s > 0.019. (4.38)

The relativistic � particles are expected to annihilate to Higgs bosons in order to produce Stan-

dard Model particles. This is most efficient for large �ℎs. We have assumed a real scalar S —

for complex S the process would complete faster.

4.4 Relic density of the inflaton

One should be concerned whether there is any energy density remaining in the inflaton oscillations

after reheating. Given the high TR for this model, in general most of the inflaton oscillation (zero-

mode � particles) will quickly scatter with the Standard Model background (eventually becoming

part of the thermal background, although that requires 2 → 3 processes). The condition for

sufficient scattering with the background is

Γ > H, (4.39)
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where Γ is the scattering rate of the zero-momentum � particles and H is the Hubble parameter.

We will only consider scattering with the Higgs bosons, as it will prove to be sufficient (zero-

momentum � could also scatter with thermal �). The calculation relies on the radiation density

being larger than the inflaton density at XCR. Before calculating Γ and H , we will show that

3Tm > mso where Tm is the radiation temperature when the potential Eq. (3.11) changes back

from quartic to quadratic (at low S).

Transition from quartic to quadratic potential

This transition occurs when

�ss
4

4
=
m2

sos
2

2
, (4.40)

giving

s = Xm ≡
√

2

�s
mso . (4.41)

Given that �rad > �inf (this is true under the conditions discussed in Section 4.3 and Section 4.2.2),

it follows that at the point where s = Xm,

�2

30
g(T )T 4

m >
�s
4
X4

m (4.42)

which gives

3Tm >
1.2

�
1
4
s

mso . (4.43)

It is a reasonable assumption that mℎ ≲ ms — although this does not apply to all the available

parameter space (the worst case is that mℎ ∼ 3ms). So, for any �s < 2.3 (covering all allowed

values of �s), we find that 3Tm > mso and expect that 3Tm > mℎ.

Scattering of the inflaton with the thermal background

We now calculate the scattering rate in the quadratic potential:

Γ = n�v (4.44)

where n is the number density of Higgs bosons, given for relativistic particles (assumed to be

thermal) by [88]

n =
1.2

�2
gH(T )T 3 , (4.45)
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v = 1 is the velocity of the relativistic Higgs particles, gH = 4 and � is the cross-section,

calculated below, given by

d�

dΩa

∣

∣

∣

∣

CM

=
1

64�2

∣M ∣2
&

∣p⃗f ∣
∣p⃗i∣

(4.46)

in the centre of mass frame. For elastic scattering, ∣p⃗f ∣ = ∣p⃗i∣ and the Lorentz-invariant Mandel-

stam variable & is

& = m2
so + 6msoT ≃ 6msoT, (4.47)

where we have used 3Tm > mso as shown above. Integrating over the solid angle Ωa and

substituting ∣M ∣2 = �2ℎs gives the cross section for Higgs-S scattering:

� =
�2ℎs

96�msoT
. (4.48)

Thermalisation of the zero-mode inflaton

In the relativistic limit, assuming �total ≃ �rad, we find

H ≃ 3.4T 2
m

Mp
. (4.49)

In order for thermalisation of the background, we require Γ > H , giving

�2ℎs
24�2

T 2
m

mso

≳
3.4T 2

m

Mp
. (4.50)

This is true provided that

mso < 1.0× 10−4�2ℎsMp . (4.51)

This is easily satisfied, as we expect mso to be less than a few TeV. Therefore, any inflaton

energy density remaining at s ∼ Xm will easily be thermalised7.

Thermal production of WIMP dark matter

Provided that TR is greater than the mass of S then relativistic S particles will be produced in

thermal equilibrium. As the Universe expands and cools, they will become thermal relic dark

matter. We found in Chapter 3 that the S mass is 50 GeV ≲ ms ≲ 1 TeV for �s > 0.01. This is

much lower than TR ∼ 1013 GeV.

7Thermalisation may also occur earlier, during the quartic regime.
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4.5 Determining the temperature of radiation domination

The effective temperature of radiation domination is given by

g∗�2T 4
R

30
≃ !2

2
X2

R (4.52)

where g∗ = 107.75 and XR is Xsto or Xex, depending on the reheating process. For reheating

via excitations, we require �s > 0.019, so

TR ≈ 9× 1013�1/4s GeV. (4.53)

For 0.019 < �s < 0.3, this gives 3×1013 GeV < TR < 7×1013 GeV. For reheating via parametric

resonance, we require �s > 0.25�ℎs. This gives
8

TR ≈ 3× 1013
(

�s
�2ℎs

)1/4

GeV. (4.54)

Imposing a reasonable but arbitrary9 bound, �s

�2
ℎs

≲ 106, gives

3× 1013 GeV < TR < 8× 1014 GeV. (4.55)

The lower bound is similar to that for Higgs inflation [33]. The upper bound for S-inflation is

higher because of the freedom in �s and �ℎs.

A small region of the parameter space is excluded because if �s < 0.019, then we require

�ℎs < 0.08. This is shown in Fig. (4.3). However, we were rather conservative in our reheating

calculations, requiring it to complete before XCR. Some reheating after this point is likely to

occur (but is very difficult to calculate).

4.5.1 Obtaining Ñ from TR

Under certain assumptions, which we detail below, it is possible to obtain the number of e-

foldings of inflation between when a pivot scale k0 exits the horizon during inflation and the end

of inflation. The WMAP spectral index n and power spectrum are calculated at the scale

k0 =
2�

�0
= 0.002 Mpc−1 ≃ 8.5H0, (4.56)

8We have used the tree-level slow roll parameter �̃ and potential Ũ with the WMAP normalisation (this fixes
�
�2

). We saw in Chapter 3 that radiative corrections are not negligible, particularly for �̃. Therefore we would

expect a full calculation to show some variation from these results — although we do not expect the conclusion
to change significantly.

9We do have some constraints on perturbativity grounds (see Section 3.3). Also, �ℎs cannot be too small
otherwise we would not achieve the correct relic density of dark matter.
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Figure 4.3: Showing the regions of the �s and �ℎs parameter space allowed by the constraints of reheating.
The shaded region is excluded. In most of the region marked ‘both’, Xsto > Xex (as can be seen by comparing
Fig. (4.1) and Fig. (4.2)), therefore reheating via stochastic resonance is expected to dominate for the majority
of this region.

where H0 = 70.8 km s−1 Mpc−1 [89]. We use a method similar to [90] and the estimate for

the temperature of radiation domination given in Eq. (4.55). It is important to consider which

frame is appropriate for the calculation. Although it ought to be possible in both the Jordan

frame and the Einstein frame, in practice it is a lot easier to work in the Einstein frame, as the

conventional formalism of inflation and the conventional Friedmann equation applies.

When the conformal factor Ω2 = 1, the Jordan and Einstein frames are equivalent. This point

is reached before the time of reheating. We consider a current physical length �0. At some earlier

time during inflation this length is

�̃(t) =
ã(t)

ã0
�0 =

ãend
ã0

ã(t)

ãend
�0 =

ãend
ãR

ãR
ã0
e−Ñ�0 (4.57)

where ã0 = a0 is the current scale factor, ãend is the scale factor at the end of inflation, ãR is the

scale factor at the time of reheating and the number of e-foldings Ñ is defined by Eq. (3.61).

At horizon exit, �̃ = H̃−1 and so

Ñ = ln

(

ãend
ãR

ãR
ã0
H̃Ñ�0

)

. (4.58)

Assuming complete matter domination between the end of inflation and the moment of reheating

(which we assume to be instant), �̃mat ∝ ã−
1
3 . We can use entropy conservation for the era

72



between reheating and the present day,

g∗T
3
Rã

3
R = g0T

3
0 ã

3
0, (4.59)

which allows us to write

Ñ = ln

(

(

�̃R
�̃end

)1/3(
g0T

3
0

g∗T 3
R

)1/3

H̃Ñ�0

)

. (4.60)

Using the Friedmann equation (Eq. (1.10)) we can write

H̃(t) =

√

�̃(t)

3M2
p

(4.61)

where �̃ is the energy density at time t. During inflation, this is given by the potential energy of

the inflaton, so

�̃ = U =
�ss

4

4Ω4
. (4.62)

Using the approximations s2end ≃ 4M2
p

3�s
and �s

�2s
≃ 3 (0.0275)4

Ñ2
(from Chapter 3), we can estimate

�̃
1/4

Ñ
≃ 8.0× 1015

(

60

Ñ

)1/2

GeV (4.63)

and

�̃
1/4
end ≃ 6.0× 1015 GeV. (4.64)

At reheating, when the Universe is dominated by thermal radiation, we have

� =
�2g(T )T 4

30
, (4.65)

where g(T ) is the effective number of degrees of freedom of the thermal radiation and T is the

effective temperature (Ω = 1 at this point). Just after reheating, g(TR) ≃ 107.75 and at the

present time, g(T0) ≃ 2 (as only photons are part of the thermal background). Putting this

together gives the number of e-foldings of inflation since the scale k0 left the horizon:

Ñ = 58.6− 1

3
ln

(

Ñ

60

)

+
1

3
ln

(

TR
1013 GeV

)

. (4.66)

So, with TR given by Eq. (4.55) we find 59 ≲ Ñ ≲ 60. Due to uncertainties relating to the end

of inflation and calculation of the temperature of radiation domination we assume a theoretical
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error of ±1 on Ñ . Finally this gives us

58 ≲ Ñ ≲ 61 . (4.67)

This allows a fairly precise determination of the observable quantities (such as n and r), in

contrast to models where TR is unknown.
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Chapter 5

Comparing the predictions of

S-inflation and Higgs inflation

In Chapter 3, we discussed the model of S-inflation. It was not possible to make a clear com-

parison with the predictions of Higgs inflation at that stage, due to the variety of Higgs inflation

predictions in the literature. Each collaboration used different methods, and the conclusions

reached (particularly spectral index versus Higgs mass) are somewhat different in each case.

We wish to determine whether S-inflation has a different observational signature to Higgs infla-

tion. To do so, we calculate the predictions of both models using the same method. Before we

make a comparison of the models, it will be necessary to consider the calculation of the effective

potential.

In Section 5.1 we review the methods used in the literature and the corresponding results for

n versus mℎ. In Section 5.2 we compute n versus mℎ for the case of pure Higgs inflation, using

two different methods of calculating the effective potential: the standard Coleman-Weinberg

potential and the RG improved effective action. We find (Section 5.3) that the results differ, due

to the inclusion of ��ℎ in the RG improved method. Then, in Section 5.4, using the RG improved

effective action, we re-compute the experimental predictions for all three variants of the model —

pure Higgs inflation, Higgs inflation with an additional singlet scalar and S-inflation. In this way

we can be sure that any differences in the predictions are due to the fundamental differences of

the models and not the initial conditions, method of obtaining the effective potential or specifics

of the code used. Finally, we show how the spectral index n is able to distinguish between

S-inflation and Higgs inflation in a significant portion of the parameter space.

5.1 Differing approaches to calculating the effective poten-

tial

Here, we summarise the different methods each collaboration has used to obtain the spectral

index for the Higgs inflation model. Only the most recent paper of each collaboration has been
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(a) Showing the results of [38] — see (i) in text.
The spectral index increases for small mℎ and takes
its tree level value (dashed green line) above ∼
130 GeV.

(b) Showing the results of [37] — see (ii) in text.
The spectral index is always below the classical
value (dashed blue line), strongly deviating at mℎ ≲
150 GeV and mℎ ≳ 170 GeV.

(c) Showing the results of [64] — see (iii) in text.
The lowest curve is pure Higgs inflation and the hor-
izontal lines show the one and two sigma WMAP
values for n.

(d) Showing the results of [35] — see (iv) in text.
Deviation from the classical result is most significant
for prescription II with mℎ ≲ 130 GeV.

Figure 5.1: Showing n as a function of mℎ for Higgs inflation, taken from papers in the literature — see text
for details of each method. Although general features are in agreement between some figures (particularly (b)
and (c)), it is not apparent which prediction is to be trusted.

considered and we reproduce the predictions in Fig. (5.1). It is clear from the figure that the

results do not agree. Therefore, in order to make a consistent comparison of S-inflation to Higgs

inflation we must choose and apply a consistent method.

(i) De Simone et al [38] use the RG improved potential (Eq. (5.15)). The RG equations are

given by d�
dt = ��

1+ where � are given to two-loop, � represents any coupling such as g′, �ℎ or

�ℎ. The Higgs commutator is suppressed by a factor s (c� in our notation) which is inserted

when any component of H runs in a loop. This contrasts with our method and with [64] where

the suppression factor is only inserted when a physical Higgs runs in a loop. Consequently, the

RG equations in [38] are different to ours. Corrections to the kinetic and gravitational sectors

are considered to be negligible. The analysis uses Ñ = 60, inflation ends when �̃ = 1 and an

approximate expansion for �̃ and �̃ seems to have been used. The results are shown in Fig. (5.1a).

The spectral index only deviates from its classical value at mℎ ≲ 130 GeV.

(ii) Barvinsky et al [37]1 focus on AI, the ‘inflationary anomalous scaling’ coefficient. This

1The first version of this work (v1) presented very different results as it did not include the running of �ℎ
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includes the contribution from the running of �ℎ and is given by

AI =
3

8�ℎ

(

2g4 +
(

g2 + g′2
)2 − 16y4t

)

− 6�ℎ. (5.1)

The �-functions are equivalent to [38]. Two-loop equations (with suppression of physical Higgs

only) are used to run couplings up to the scale corresponding to the end of inflation. Then an

analytic expression

VJ =M4
p

�end
4�2end

(

1 +
AI(tend)

16�2
log �/�end

)

(5.2)

is used to compute slow roll parameters, with couplings held constant. Inflation ends when �̃ = 3
4 .

Pole mass matching is used for yt and �ℎ. The results are shown in Fig. (5.1b).

(iii) Clark et al [64] consider Higgs inflation in the presence of an additional gauge-singlet

scalar. They use the RG improved effective action, modifying the gravitational, kinetic and

potential sectors of the theory, with one-loop running of all couplings. Clark et al neglect two

loop effects, however these may have a significant effect at low mℎ, especially relating to the

top quark (e.g. using yt(0) =
√
2mt

v instead of the pole mass matching scheme). Clark et al

use Ñ = 60, choose the end of inflation to be at �̃ = 1 and make an accurate calculation of �̃

and �̃ (see their Eq. (22)). Their results for n are shown in Fig. (5.1c), where the lowest curve

corresponds to pure Higgs inflation (Fig. (6a) in [64]).

(iv) Bezrukov et al [35] consider the ‘Chiral Standard Model’ which is the Standard Model

without the physical Higgs — equivalent to setting cℎ = 0. They run the usual RG equations

(but in the Einstein frame) up to the scale Mp/�ℎ then match onto the equations of the chiral

SM. They also consider two different prescriptions for the renormalization scale �, corresponding

to (I) �2 ∝ M2
eff = M2

p + �ℎ2 and (II) � ∝ Mp (both in the Jordan frame). We would expect

the results to be independent of the choice of � and so these results, Fig. (5.1d), showing that n

depends on the renormalization scale are surprising. Prescription (II) corresponds to our work

and the other papers mentioned in this section. They use Ñ = 59 and use pole mass matching

to obtain the initial conditions.

(v) Our previous work [1] studied inflation along the direction of a singlet scalar, coupled to

the Higgs, therefore the results are not directly comparable to any of the papers here, which all

consider the Higgs as the inflaton. We summarise the methods used in [1] for completeness. The

standard2 Coleman-Weinberg potential was used, with the couplings run to two-loop (except ��

which was used to one-loop in common with the other papers, and the additional contributions

due to the singlet scalar, which were also computed to one-loop). A suppression factor was

within the effective potential and all components of H were suppressed, rather than just the physical ℎ.
2No gravitational loops.
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inserted for the inflaton s and for the physical higgs ℎ. Pole mass matching was used to set

the initial conditions, inflation ends at �̃ = 1 and Ñ = 60 was used. �̃ and �̃ were calculated

accurately and the results can be seen in Chapter 3.

5.2 A Comparison of two approaches to calculating the

effective potential in pure Higgs inflation

We now compare two particular methods of calculating the effective potential for the case of

pure Higgs inflation. The Jordan and Einstein frame Lagrangians are the same as in Section 3.1

except that �s = �s = �ℎs = 0 and we use the notation � (rather than h) for the physical Higgs

field. We remind the reader that issues relating to unitarity and naturalness are not the subject

of this chapter and will be discussed in the next chapter.

The first method uses the Coleman-Weinberg potential, with two-loop running of coupling

constants to fixed values — this is similar to our work on S-inflation, and to the work of Sha-

poshnikov et al [35]. The second method uses the RG improved effective action, again with

two-loop running of the coupling constants, but now the couplings depend on the field �. This is

the two-loop version of [64], is similar to [38] (however [38] ignores the RG improvement of the

kinetic and gravitational sectors) and shares similarities with [36]. We first calculate the slow-roll

parameters �̃ (this is important for normalising the potential and thus determining �(mt)) and

�̃ (this gives the largest contribution to the spectral index n). From these we can calculate the

observable quantities n and r, as in Chapter 3.

The gauge and Yukawa RG equations used in this chapter are

�g = −39− cℎ
12

g3 +
g3

16�2

(

3

2
g′2 +

35

6
g2 + 12g23 −

3

2
cℎy

2
t

)

, (5.3)

�g′ =
81 + cℎ

12
g′3 +

g′3

16�2

(

199g′2

18
+

9g2

2
+

44g23
3

− 17cℎy
2
t

6

)

, (5.4)

and

�yt = yt

(

−9

4
g2 − 17

12
g′2 − 8g23 +

(

23

6
+

2

3
cℎ

)

y2t

)

+
yt

16�2

[

− 23

4
g4 − 3

4
g2g′2

+
1187

216
g′4 + 9g2g23 +

19

9
g′2g23 − 108g43 +

(

225

16
g2 +

131

16
g′2 + 36g23

)

cℎy
2
t

+6
(

−2c2ℎy
4
t − 2c3ℎy

2
t �ℎ + c2ℎ�

2
ℎ

)

]

. (5.5)

The initial conditions at mt for g, g
′, g3, yt and �ℎ are the same as in the previous chapter,

Section 3.2.3. We choose �ℎ(mt) such that the model is correctly normalised to the WMAP
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7-year mean value for Δ2
ℛ at the inflation scale [7, 68]:

U

�̃
= (0.00275Mp)

4. (5.6)

For both methods we fix Ñ = 58 and use this to determine �Ñ by exact integration of

Eq. (3.59) with s → �. We use an approximate value of �end, given by �end ≃
√

4M2
p/3�. We

outline below the two methods that we will compare.

5.2.1 The standard Coleman-Weinberg potential

The one-loop effective potential of the Standard Model [52] is

U(��) =
1

Ω4

(

��
4
�4(��) + V (1)(�(��))

)

=
���

4

4Ω4
[1 + Θ(�)] (5.7)

where

Ω2 = 1 +
���

2

M2
p

, Θ =
V (1)

V (0)
, V (0) =

�ℎ�
4

4
, (5.8)

16�2V (1)(�) =
1

4
H2

(

ln
H

�2
− 3

2

)

+
3

4
G2

�

(

ln
G�

�2
− 3

2

)

+
3

2
W 2

(

ln
W

�2
− 5

6

)

+
3

4
Z2

(

ln
Z

�2
− 5

6

)

− 3T 2

(

ln
T

�2
− 3

2

)

(5.9)

and

W =
g2�2

4
, Z =

(

g2 + g′2
)

�2

4
, T =

y2t �
2

2
,

H = m2
ℎ + 3c��ℎ�

2 ≃ 3c��ℎ�
2, G� = m2

ℎ + �ℎ�
2 ≃ �ℎ�

2. (5.10)

We refer to this as the standard ColemanWeinberg potential, which sums over contributions from

particles with �-dependent mass terms [50]. It does not include the effect of the non-minimal

coupling, except through the suppression factor c�. This is an important point which we will

return to.

We use the two-loop RG equations for all the Standard Model couplings, inserting the sup-

pression factor c� for each physical Higgs � running in a loop, as described in the previous chapter

(and g, g′ and yt modified according to Eqs. (5.3) to (5.5)). In this scheme, d�
dt = �� where � is

any coupling. The couplings are run from mt to a scale �, where �ℎ, ��, c�, g, g
′, g3, and yt

are assigned constant values, not varying with �.

The results should be independent of the choice of the normalisation point3, �, which is

3We find that this is approximately true, although increasing � results in a small increase in n. The effect is
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chosen to minimise the corrections to the Coleman-Weinberg potential Eq. (5.9). In practice,

we choose � such that ∣Θ∣ =
∣

∣

∣

V (1)

V (0)

∣

∣

∣ is minimised throughout inflation. This means that
√
�

Mp
� is

approximately (134− 0.94mℎ) for mℎ < 140 GeV and approximately 2 otherwise. By contrast,

�inf ∼ 9Mp√
�
.

A full calculation of the slow roll parameters using

dΘ

d�
=
L

�
and L =

1

16�2�ℎ

(

(

18c2� + 6
)

�2ℎ +
3g4

4
+

3(g2 + g′2)2

8
− 6y4t

)

(5.11)

gives

�̃ =
M2

p

2

(

1

Ũ

dŨ

d��

)2

=
M2

p

2
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d�

d��

)2(
4

�Ω2
+

1

1 + Θ

L

�

)2

(5.12)

and

�̃ =
M2

p

Ũ

d2Ũ

d�2
�

= M2
p

(

d�

d��

)2(
12

�2Ω4
− 12��

Ω4M2
p

+
8L

�2Ω2(1 + Θ)
− L

�2(1 + Θ)

)

+M2
p

d2�

d�2
�

(

4

�Ω2
+

L

�(1 + Θ)

)

. (5.13)

The term d2�
d�2

�
is given by

d2�

d�2
=

1

2Ω6

(

d�

d�

)4
[

12�3��
3

M4
p

+
2��Ω

2�

M2
p

−
12�2��

M2
p

]

. (5.14)

The terms originating from U (1) give a negative, subdominant contribution to �̃ (at most around

0.04× �̃tree). However, terms from U (1) give a substantial positive contribution to �̃ (becoming

dominant for mℎ ≲ 125 GeV and mℎ ≳ 165 GeV), up to 7.3× �̃tree for mℎ = 180 GeV.

5.2.2 The RG improved effective action

The Jordan frame action in the unitary gauge, writing explicitly only the terms directly relevant

for inflation, is given by

SJ =

∫ √−g d4x
(1

2
G2∂��∂

��− M2R

2
− 1

2
G2���

2R− V (�)
)

(5.15)

where

V =
1

4
�ℎ (t(�))G (t(�))4 �4 (5.16)

most significant (a 5% effect) for small mℎ, where we believe higher order effects are likely to be important.
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and4

G(t) = exp

(

−
∫ t

0

dt′(t′)

1 + (t′)

)

. (5.17)

The derivation of this was explained in Section 2.1.8. Making the conformal transformation

g̃�� = Ω2g�� , with

Ω2 = 1 +
�G2�2

M2
p

, (5.18)

gives

S =

∫

√

−̃g d4x
[

1

2

G2

Ω2
g̃��∂��∂��− M2

2Ω2

(

Ω2R̃− 6g̃��∂�Ω∂�Ω
)

− U(�(t))

]

(5.19)

where t = ln �
mt

and U = V (�)
Ω(�)4 . With a canonically normalised kinetic term, this becomes

SE =

∫

d4x
√

−g̃
(

−M
2
P R̃

2
+

1

2
∂̃���∂̃

��� − U(��)

)

, (5.20)

where

d��

d�
=

√

√

√

⎷
G2Ω2 + 6M2

pΩ
2
(

dΩ
d�

)2

Ω4
(5.21)

and

dΩ

d�
=

1

2Ω

��G2

M2
p

(

2− 2

1 + 
+

1

�

d�

dt

)

. (5.22)

G is the wavefunction renormalization5 of � and has initial condition G(t = 0) = 1. The

anomalous dimension of ℎ is given by

� = − 1

16�2

(

9g2

4
+

3g′2

4
− 3y2t

)

− 1

(16�2)2

(

271

32
g4 − 9

16
g2g′2 − 431

96
cℎg

′4

−5

2

(

9

4
g2 +

17

12
g′2 + 8g23

)

y2t +
27

4
cℎy

4
t − 6c3ℎ�

2
ℎ

)

. (5.23)

Our sign convention is the same as [38] but different from some other sources which have

ℎ → −ℎ everywhere (consistently). G and the coupling constant �ℎ are calculated for each

value of �, contrasting with the CW method where the coupling constants are calculated at one

value of the renormalization scale, and then held constant with respect to �. Both methods have

particular calculational advantages. In this method the �-functions are those in Section 3.2.4

4Note that G in this section is related to the field renormalization and is not connected to G� in the previous
section.

5We have not included G2 in the suppression factor c�.
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and Section 5.2, but now (as explained in Chapter 2)

d�

dt
=

��
1 + �

(5.24)

for all couplings (� = g, yt, ��, �ℎ ...).

Slow roll parameters

To calculate � in this framework, we start with the definition

�̃ =
M2

p

2

(

1

U

dU

d��

)2

=
M2

p

2

(

d�

d��

)2(
dU

d�

1

U

)2

. (5.25)

We use

dG

dt
= −G(t)ℎ(t)

1 + ℎ(t)
(5.26)

and

1

U

dU

d�
=

4

�Ω2
+

1

�

(

1

�ℎ

d�ℎ
dt

− 4ℎ
Ω2(1 + ℎ)

− 2�2G2

Ω2M2
p

d�

dt

)

(5.27)

to give

�̃ =
M2

p

2�2

(

d�

d��

)2(
4

Ω2
+

1

�ℎ

d�ℎ
dt

− 4ℎ
Ω2(1 + ℎ)

− 2�2G2

Ω2M2
p

d�

dt

)2

. (5.28)

To find �̃, we begin with

�̃ =
M2

p

U

d2U

d�2
�

=
M2

p

U

(

d�

d�

)2
d2U

d�2
+
M2

p

U

d2�

d�2

dU

d�
(5.29)

This expression will be more complicated than for �̃, so we assume c� = 0 is a good approximation.

This is very reasonable since we will evaluate n and r during inflation, where c� ≃ 0 (see

Eq. (3.22)). Then we have

1

U

d2U

d�2
= − 1

�

1

U

dU

d�
+

1

U2

(

dU

d�

)2

− 8��G
2

Ω4M2
p

− 8G2

(1 + ℎ)Ω4M2
p

d��
dt

+
2�2G4

Ω4M4
p

(

d��
dt

)2

− 2G2

Ω2M2
p

d2��
dt2

+
8�G2(2ℎ + 2ℎ)

Ω4M2
p (1 + ℎ)2

+
1

�2

(

− 1

�2ℎ

(

d�ℎ
dt

)2

+
1

�ℎ

d2�ℎ
dt2

− 4

Ω2(1 + ℎ)2
dℎ
dt

)

(5.30)
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where

d2�ℎ
dt2

≃ − 1

1 + ℎ

dℎ
dt
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dt

+
1
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+
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+
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, (5.31)

dℎ
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+
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and

d2��
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≃ 1

�� + 1/6

(

d��
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+

(

�� + 1/6
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+ 12yt
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− 9g
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)

. (5.33)

To tree level, �̃ and �̃ are the same as calculated using the Coleman-Weinberg potential, once

expanded out. We also need

d2�

d�2
=

1

Ω3

(

d�

d�

)4
dΩ

d�

[

1 + 3M2
p

(

4

(

dΩ

d�

)2

− d2(Ω2)

d�2

)]

(5.34)

where dΩ
d� is given by Eq. (5.22) and

d2(Ω2)

d�2
=

2Ω

�

d(Ω)

d�

1 + 3ℎ
1 + ℎ

− �G2

M2
p

(

2

(1 + ℎ)2
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dt

+
1

�2

(

d�

dt

)2

− 1

�

d2�

dt2

)

. (5.35)

Putting these all together gives us �̃, remembering that the couplings are functions of t(�).

For 130 GeV ≲ mℎ ≲ 170 GeV, radiative corrections to �̃ are negligible. At mℎ ∼ 180 GeV,

radiative corrections cause �̃ to be increased by 13% compared to �tree. For mℎ = 122 GeV, �̃

is decreased by 20% compared to its tree-level value. Radiative corrections have a larger impact

on �̃. At low mℎ ≈ 122 GeV, �̃ is 3 times the tree level value, at mℎ = 160 GeV �̃ = 0.64�̃tree

and at mℎ = 180 GeV �̃, is dramatically reduced to be only 0.14�̃tree.

5.3 RG improved effective action is a more complete method

Fig. (5.2) shows the spectral index n versus Higgs mass mℎ for the Coleman-Weinberg poten-

tial (solid) and RG improved method (dashed). Below about 122 GeV, the potential becomes
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Figure 5.2: Spectral index n versus Higgs mass mℎ for Coleman-Weinberg (solid red) and RG improved (green
dashed) methods.

negative and above ∼ 185 GeV we reach the (arbitrary) limit of perturbativity imposed on

the couplings (�s < 100). For mℎ ≲ 130 GeV, there is agreement between the two methods

and n rises as mℎ decreases. However above ∼ 130 GeV, the Coleman-Weinberg n increases

with mℎ while n decreases with mℎ for the RG improved method, becoming steep at large mℎ.

Fig. (5.3) shows the tensor to scalar ratio r for the Coleman-Weinberg potential (solid) and RG

improved method (dashed), for 122 ≤ mℎ ≤ 180 GeV. Interestingly, this follows approximately

the same shape as n. This is interesting because it allows us to trace the origin of the varia-

tion of n with mℎ. In both cases �̃ is always the dominant contribution to the spectral index:

n = 1 + 2�̃ − 6�̃ ≃ 1 + 2�̃. As we noted in the previous section, radiative corrections to �̃ are

generally very small, so �̃ is well approximated by its classical value and

n ≃ 1− 8

3

Mp

��2
. (5.36)

Thus, the shape of n is determined by ��2. This is determined by �̃, through the normalization

to the COBE data (Eq. (5.6)) and through the integration to get Ñ (Eq. (3.59) with s→ �). For

a given �, at a first approximation, we find Ñ ∼
∫ �Ñ

�end

1√
�̃
d� ∼ ��2. Thus, if radiative corrections

cause �̃ to increase above its classical value, we would expect ��2 to be larger for a fixed Ñ .

This means that the magnitude of �̃ is decreased and so n is increased. This explains the similar

shape of Fig. (5.3) and Fig. (5.2). We must now explain the origin of the strong deviation of �̃

from its classical value, and why this is different for the Coleman-Weinberg and RG improved
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Figure 5.3: Tensor to scalar ratio r versus Higgs mass mℎ for Coleman-Weinberg (solid red) and RG improved
(green dashed) methods.

methods.

For the Coleman-Weinberg potential, consider

16�2LCW ≃ 6�ℎ +
1

�ℎ

(

3g4

4
+

3(g2 + g′2)2

8
− 6y4t

)

(5.37)

(given by Eq. (5.11) with c� = 0). The first term, 6�ℎ, increases with mℎ while the second,

∝ 1
�ℎ

, increases when mℎ decreases (g, g′ and yt have only a tiny variation with �ℎ). Thus, for

both large and small mℎ, L� increases. The placement of cℎ is crucial6: if the whole term ∝ �ℎ

had been suppressed (as for example in [38]), then we would expect L� to increase at small mℎ

— but not at large mℎ.

For the RG improved method, we can construct an equivalent to LCW by expanding out the

terms in �̃ (Eq. (5.28)). This gives

16�2LRGI ≃ −6�ℎ +
1

�ℎ

(

3g4

4
+

3(g2 + g′2)2

8
− 6y4t

)

. (5.38)

At small mℎ, the second term dominates and the behaviour is identical to the Coleman-Weinberg

method. However, at large mℎ, the first term (which is now negative) dominates and LRGI

becomes negative. This negative term has come from the addition of −12(1 + cℎ)�ℎ from the

1
�
d�
dt term in �̃.

We therefore see that the RG improved effective potential gives a more correct result for

6As we evaluate this during inflation, cℎ = 0 for the inflaton, but not for any other scalars.
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the spectral index n. This is because the method takes into account the variation of � during

inflation. The standard Coleman-Weinberg potential does not include the quantum effects of

the non-minimal coupling to gravity (except through the commutator suppression factor c�).

It should be possible to compute a correction7 to the standard Coleman-Weinberg one-loop

potential which would account for the effect of the non-minimal coupling. We also note that the

result at low mℎ is strongly dependent on yt, as only a small increase in yt will cause the negative

term in L to dominate for small mℎ. We believe this is a plausible explanation for why some

previous results have n below the classical value for small mℎ. Future precise measurements of

mt may help to determine the correct behaviour.

Our results mirror those of [38] (Fig. (5.1a)) at low mℎ and mirror those of [37] (Fig. (5.1b))

and [64] (Fig. (5.1c)) at larger mℎ. We believe the discrepancy at low mℎ between our results

and the results of [64] are due to the initial value of the top quark coupling.

Application to S-inflation

At first glance this result (that the RG improved effective potential is more correct) would seem

also to apply to S-inflation. However, we will see that for real S, ��s ≃ 0 during inflation, due

to the suppression factor cs ≃ 0. Consequently we expect the results from both methods to be

similar for S-inflation. This is confirmed by comparing Fig. (3.8) to the results in the following

section, Fig. (5.6). If a complex S were used instead, we would expect the methods to give

somewhat different results — as in that case ��s is not zero during inflation.

5.4 Distinguishing S-inflation from Higgs-inflation through

observations

In this section, we consider the predictions for the spectral index n from three variants of the

model: S-inflation [1], Higgs inflation including S [64] and pure Higgs inflation [32, 33, 34, 35,

36, 37, 38]. We focus on the simplest case where S is real.

5.4.1 Defining the models

We use the RG improved effective action, given by

SJ =

∫ √−g d4x
(

ℒSM − M2
pR

2
− �ℎG

2
HH

†HR− �sG
2
SS

†SR

+G2
H (D�H)† (D�H) +G2

S (∂�S)
† (∂�S)− V (S†S,H†H)

)

(5.39)

7Such corrections have been considered in [91, 92, 93] for example.
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where

V (S†S,H†H) = �ℎ

(

G2
H

(

H†H
)

− v2

2

)2

+ �ℎsG
2
HG

2
SS

†SH†H

+�sG
4
S

(

S†S
)2

+m2
soG

2
SS

†S. (5.40)

The anomalous dimension ℎ is given by Eq. (5.23), while s = 0, giving

GH(t) = exp

(

−
∫ t

0

dt′ℎ(t′)

1 + ℎ(t′)

)

; GS(t) = 1. (5.41)

For inflation in the H direction, we set S = 0 and for inflation in the S direction, we set H = 0.

For pure Higgs inflation, �ℎs = �s = �s = 0.

As before, we make a conformal transformation (see Eq. (3.3) to Eq. (3.10)) with

Ω2 = 1 +
2�ℎG

2
HH

†H
M2

p

+
2�sS

†S
M2

p

(5.42)

resulting in

U(�s, �ℎ) ≃
1

Ω4

(

�ℎ
4
G4

Hℎ
4 +

�s
4

4

s4 +
�ℎs
4
s2ℎ2

)

. (5.43)

Initial conditions are as in Section 5.2, except that we set either �s(mt) = 0 or �ℎ(mt) = 0

as appropriate and normalise the other to the WMAP data. The �-functions are given in

Section 3.2.4 and Section 5.2, but (for all couplings (� = g, yt, ��, �ℎ ...)),

d�

dt
=

��
1 + H

(5.44)

for inflation in the H direction, and

d�

dt
= �� (5.45)

for inflation in the S direction.

Slow roll inflation

As discussed earlier in the chapter, it is the radiative corrections to �̃ which are of prime impor-

tance. We find, where � is either s or ℎ,

1

U

dU

d�
=

4

�Ω2
+

1

�

(

1

��

d��
dt

− 4�
Ω2(1 + �)

−
2�2G2

�

Ω2M2
p

d��
dt

)

. (5.46)

We use the equations of Section 5.2.2 — which also apply to S-inflation — where � is replaced

by ℎ or s as appropriate.
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5.4.2 Theoretical differences

We have introduced two new parameters �s and �ℎs compared to pure Higgs inflation. The second

can potentially be fixed by experiment, when ms is known. There will be a minimum value of

�ℎs below which the S particles cannot account for the observed density of dark matter. In this

section, we examine all values of �s and �ℎs where all couplings (except �) remain < 100 up to

the scale of inflation, including negative values of �ℎs. This limit is less strict than in Chapter 3,

where we required �ℎ, �s < 2�/3 and �ℎs < 4� up to the scale Mp (see Eq. (3.44)). Our aim is

to look at the variation of the spectral index, rather than limits from perturbativity. We have

not imposed limits on the non-inflationary direction. As demonstrated for the S-direction in

Fig. (3.6) and Fig. (3.7), this would impose stronger bounds on the permitted combinations of

mℎ, �s and �ℎs.

The couplings �ℎ and �s always increase with RG running when �ℎs is non-zero, as ��ℎ
and

��s contain terms ∝ �2ℎs. One term in ��ℎs
(Eq. (3.28)) is also ∝ �2ℎs, so is always positive;

the others are proportional to �ℎs. Thus �ℎs will tend to increase in magnitude but retain its

original sign (provided that the term ∝ �2ℎs never dominates for �ℎs < 0). The increase is larger

if �ℎ or �s are large too. The running for negative �ℎs will be less strong.

In Section 5.3 we used the quantity L (the part of dU
d� due to radiative corrections) to explain

how n deviated from its classical value: large L corresponds to large n. We can calculate L for

the models, making the same approximations as in the previous section (for pure Higgs inflation,

we gave the result in Eq. (5.38)). With c� = 0 for the inflaton, and c� = 1 for the other scalars,

we find

16�2LS ≃ 2�2ℎs
�s

− 2
�ℎ
�s

(

12�ℎ + 6y2t −
3

2

(

g2 + g′2
)

)

(5.47)

and

16�2LH ≃ −6�ℎ +
1

�ℎ

(

3g4

4
+

3(g2 + g′2)2

8
− 6y4t +

�2ℎs
2

)

− 2�ℎs
�s
�ℎ
. (5.48)

The terms ∝ �a
�b

are likely to be subdominant. We will use LS and LH to help explain the results

presented below.

5.4.3 Higgs inflation in the presence of an additional scalar

Firstly, we investigate the effect of �ℎs on Higgs inflation and so set �s(mt) = 0 (but allow for its

running). The results are shown in Fig. (5.4) for �ℎs = 0 (red; pure Higgs inflation), �ℎs = 0.1

(green), 0.3 (pink) and 0.5 (blue). The shape of the curves and range of n for all �ℎs are quite

similar (for mℎ > 122 GeV), but two main features can be seen: (i) as �ℎs increases, the curves

shift to the left, also shifting the range of mℎ and (ii) there is a turnover at low mℎ for �ℎs = 0.3.
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Figure 5.4: Spectral index n versus Higgs mass mℎ for inflation in the Higgs direction with �s = 0 and varying
�ℎs: �ℎs = 0 (pure Higgs inflation; red), �ℎs = 0.1 (green), �ℎs = 0.3 (pink) and �ℎs = 0.5 (blue).

These are explained below.

(i) A larger �ℎs increases �ℎ, giving a larger �ℎ for a given mℎ. At large mℎ, LH ∝ −6�ℎ

(Eq. (5.48)), and so n falls faster with larger �ℎs. This explains the shift to the left as �ℎs

increases. The range of mℎ accessible to this model is shifted downwards as �ℎs increases. A

larger �ℎs can prevent �ℎ becoming negative at low values of mℎ. Large �ℎs causes the couplings

to grow faster and the perturbativity limit to be reached at a lower mℎ. Thus, the range of mℎ

is shifted.

(ii) The turnover at low mℎ (seen for the case �ℎs = 0.3 in Fig. (5.4)) is due to the term in

LH ∝ �s
�ℎ
. Small �ℎ means that �ℎ is small (from normalization, Eq. (3.26)). Large �ℎs gives

a large running of �s (remember that �s(mt) = 0) so the ratio �s
�ℎ

is of O(1) at the scale of

inflation8. Thus there is a large negative contribution (last term of Eq. (5.48)) almost balancing

the positive term ∝ 1
�ℎ

.

As shown in Fig. (5.5), �s has a steepening effect on n. However, this is a relatively small

effect for �ℎs(mt) = 0.3. Above about �s = 0.15, we reach the perturbativity limit of �s. The

steepening is due to �s causing �ℎs to increase, therefore exaggerating the effects of Fig. (5.4)

further. The last term in Eq. (5.48), −2�ℎs
�s
�ℎ
, may also play a role. Increasing �s increases �s,

8However, with �s and �ℎ of similar magnitudes, we can no longer assume that inflation is in the H-direction.
Therefore this is perhaps not a valid region of the parameter space — however we do not impose any constraint
on �s

�ℎ
in this chapter.

89



Figure 5.5: Spectral index n versus Higgs mass mℎ for inflation in the Higgs direction, with �s = 0.0 (solid
red) and �s = 0.15 (green dashed).

which may give some contribution to the decrease in n at larger mℎ. For �ℎs(mt) = 0.1 (not

shown) we find that increasing �s has a negligible effect on n (�s becomes non-perturbative at

�s(mt) ∼ 0.3− 0.4 in this case).

We conclude that introducing a real singlet scalar to the model of Higgs inflation can affect

the spectral index prediction, increasing it at low mℎ and decreasing it at higher mℎ. This effect

is controlled mainly by the magnitude of �ℎs which is, in principle, measurable. The addition

of �ℎs also changes the range of mℎ, decreasing both upper and lower limits. Negative values of

�ℎs are allowed and give similar results.

5.4.4 S-inflation

We now consider inflation in the direction of the singlet scalar, S. Firstly, with �ℎs(mt) = 0, the

spectral index does not vary noticeably with mℎ — see Fig. (5.6) (where we show the pure Higgs

inflation case for comparison). This is reassuring, since with �ℎs = 0, the model is completely

decoupled from the Higgs sector. We also see that n does not vary with �s (if �s is increased

much further than shown in the figure, it reaches its perturbativity limit). This is because the

deviation of n from its classical value is determined by LS (Eq. (5.47)) which is ∝ �2ℎs = 0.

We now investigate the effect of varying �ℎs. The results for �s(mt) = 0.1 (solid) and

�s(mt) = 0.01 (dashed) are shown in Fig. (5.7). We see that increasing �ℎs has a dramatic
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Figure 5.6: Spectral index n versus Higgs mass mℎ for inflation in the S-direction with �ℎs = 0.0: �s = 0.01
(solid red) and �s = 0.25 (green dashed). ‘Pure’ Higgs inflation is shown for comparison (solid black)

Figure 5.7: Spectral index n versus Higgs mass mℎ for inflation in the S-direction, with �s = 0.1 (solid) and
�s = 0.01 (dashed). Various values of �ℎs are shown: �ℎs = 0.0 (black), �ℎs = 0.01 (blue), �ℎs = 0.1 (red),
�ℎs = 0.3 (green) and �ℎs = 0.5 (pink).
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Figure 5.8: Spectral index n versus Higgs mass mℎ for inflation in the S-direction (pink circles), for inflation in
the H-direction (blue circles) and pure Higgs inflation (solid green line). Couplings have been varied by 0.1 and
required to remain less than 100.

effect on n. This is because LS ∝ �2
ℎs

�s
. Large ∣�ℎs∣ (at inflation scale) will therefore cause LS

to increase. As described in the previous chapter, this will cause n to increase. Smaller �s gives

larger LS , increasing n further (the effect of �ℎs is dominant).

5.4.5 Distinguishing the models observationally

We show in Fig. (5.8) the approximate range of n for each model, when �s and �ℎs are allowed

to take any values that are multiples of 0.1 (we impose the restriction ∣�∣ < 100 up to the scale

of inflation). Introducing other bounds would cause these areas to decrease in size. We see that

there is a substantial difference in shape between the two models. At mℎ ≳ 150 GeV the possible

values of n are very different9. There is more overlap at lower mℎ — for 125 ≲ mℎ ≲ 135 GeV,

it appears unlikely that n could discriminate between the models. Of course, a measurement of

�ℎs will leave only one free parameter (�s), reducing the number of points available.

We show in Fig. (5.9) the equivalent figure for r, with the same restrictions on �s and �ℎs

as above. We see that r is in general low (r ≲ 0.02) — although for large mℎ (S-direction) and

small mℎ (H-direction), it can take values which are only just within the current WMAP limit

r < 0.22. Thus there is a small chance that r may be detectable by Planck. It should be noted

9The small number of S-direction points with n < ncl are likely to be ruled out by perturbativity and stability
constraints on the couplings.
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Figure 5.9: Tensor to scalar ratio r (log scale) versus Higgs mass mℎ for inflation in the S-direction (pink
circles), for inflation in the H-direction (blue circles) and pure Higgs inflation (solid green line). Couplings have
been varied by 0.1 and required to remain less than 100.

that these extreme points may be excluded when full stability and perturbativity constraints are

applied to the models10. The points with large r may also be excluded because the corresponding

value of n may be outside of the WMAP limits.

It is important to consider the effect of other bounds on the models. In Chapter 3 we required

vacuum stability and perturbativity up to s = Mp and ℎ = Mp. This dramatically restricted

the parameter space (Fig. (3.6)) with the bounds mainly coming from vacuum stability and

perturbativity in the ℎ direction (although the upper limit on mℎ was from perturbativity of �ℎ

in the S-direction). To reach mℎ ≲ 140 GeV we needed �ℎs ≳ 0.3 which in turn requires �s to

be small in order to remain perturbative. So, S-inflation favours 140 ≲ mℎ ≲ 170 GeV. This is

the region where predictions for S-inflation are most distinct from those of Higgs inflation.

The bounds on the couplings for Higgs inflation will be slightly different, due to different

�s and �ℎ affecting the suppression factors cs and cℎ. For inflation in the Higgs direction,

135 GeV ≲ mℎ ≲ 190 GeV, �s(mt) ≲ 0.25 and −0.2 ≲ �ℎs(mt) ≲ 0.3 according to [64] (see their

Fig. (10)). Perturbativity and vacuum stability constraints were applied only in the ℎ direction

up to the scale of inflation. Further regions of this parameter space are ruled out due to ‘wrong

way roll’ of the potential (see their Fig. (5)).

10These constraints should be applied in both directions (ℎ and s), regardless of the direction of inflation, and
should be applied at least to a scale just above the scale of inflation.
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In [94], the range of mℎ allowed by vacuum stability and perturbativity in the Standard

Model is given as 128.6 GeV ≲ mℎ ≲ 175 GeV, where the lower bound is from vacuum stability

and the upper bound is from perturbativity of the Higgs self-coupling up to Mp. We see that the

allowed range in both S and Higgs inflation is somewhat narrower. Therefore both models may

be ruled out relative to the conventional SM if mℎ is observed close to the SM lower or upper

bound. The exact range of mℎ, �s and �ℎs permitted for both models remains to be calculated.

5.4.6 Dependence on Ñ

The classical value ncl = 1 − 2
Ñ

− 3
2Ñ2

which acts as the border between the two models is

dependent on the number of e-foldings of inflation Ñ . The number of e-foldings Ñ is calculable

through the reheating temperature — in Chapter 4 we found 58 ≲ Ñ ≲ 61 for S-inflation

(including a theoretical error ±1). For pure Higgs inflation, the range is given as 58 ≲ Ñ ≲ 59

[33]. The range of Ñ for S-inflation is slightly higher than for Higgs inflation, which means that

ncl for S-inflation could be higher. Although the effect is small, it could help the discrimination

between the models as it may increase the separation between the S-inflation and Higgs inflation

predictions.

For S-inflation, the error on Ñ mainly comes from the error on the reheating temperature

and the error in precisely defining the end of inflation and beginning of post-inflation era. As

discussed in Chapter 3, an error ΔÑ ∼ 1.5 corresponds to Δn ∼ 0.001. Therefore we conclude

that the classical spectral index for S-inflation lies in the range 0.965 ≤ ncl ≤ 0.967.

We see therefore that if we restrict Ñ to the range of 58 ≤ Ñ ≤ 61 and consider the effect

of radiative corrections, then a measurement of n significantly above 0.967 would point to S-

inflation, while a measurement of n significantly below 0.965 would point to Higgs inflation. If

0.965 ≤ n ≤ 0.967 then the uncertainty due to Ñ may prevent us from distinguishing between

the models by means of the spectral index alone. However, the models may be distinguished

once the Higgs mass is known and if the S-particle is detected.

In conclusion, we expect the Planck experiment to measure n to a 2-� accuracy of ±0.005.

If Planck should find n significantly larger than 0.967 while LHC finds a Higgs with mass larger

than 135 GeV, then S-inflation will be compatible with the observations but Higgs inflation will

be strongly disfavoured. If the spectral index n is measured to be significantly less than 0.965

then Higgs inflation will be compatible with the observations and S-inflation is disfavoured.
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Chapter 6

Naturalness and Unitarity

The naturalness of non-minimally coupled inflation models, such as Higgs inflation and S-

inflation, has been questioned. A specific concern is whether or not unitarity is violated in

Higgs or S scattering mediated by graviton exchange1 at a scale Λ ∼Mp/� ≪Mp where � ∼ 104

for pure Higgs inflation. In particular, in [95] it was noted that the effective coupling in tree-level

graviton-mediated Higgs scattering becomes strong at E ∼ Λ, while in [96] it was concluded that

unitarity would be violated in graviton-mediated Higgs scattering at E ∼ Λ. The modification

of the theory suggested by these problems seems to imply that new terms such as (H†H)3

Λ2 will

be added to the effective potential. Given that during inflation ℎ ∼
√

ÑMp√
�

≫ Λ, then it may

be presumed that these terms either spoil inflation or must be fine-tuned in order to allow for

inflation. This fine-tuning would mean that the model is unnatural.

These analyses were based on the original Higgs inflation model, which considered a single

real Higgs scalar in the unitary gauge and neglected gauge interactions. In [2] we noted that

there are no strong coupling or unitarity-violating interactions in the single scalar model when

considered in the Einstein frame, indicating that the apparent strong coupling or unitarity-

violating effects in the Jordan frame at E ∼ Λ do not occur and that the results of [95, 96] are

incorrect. It is an important point to emphasise that if unitarity violation is shown to occur in

one frame, it must occur in the other. Equally, if it is shown not to occur in one frame, it must not

occur in the other frame either. This is due to the equivalence theorem, discussed in Chapter 3.

It means that we can use whichever frame is most suited to the particular calculation . The

absence of unitarity violation in the Jordan frame can be understood in terms of a cancellation

of the leading s-, t- and u-channel contributions to the graviton-mediated Higgs amplitude in

the Jordan frame [97, 98]. However, once longitudinal gauge fields are included in the unitary

gauge (or, equivalently, Goldstone bosons in a covariant gauge), the Jordan frame cancellation

1This is the process in the Jordan frame. As will be shown, it is equivalent to a four-point non-renormalizable
interaction vertex in the Einstein frame.
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of the graviton-mediated Higgs scattering amplitude no longer occurs [98, 99]. This manifests

itself in the Einstein frame as non-renormalizable interactions which cannot be eliminated by

field redefinitions2.

In this chapter, our first aim is to clearly explain the origin of the apparent violation of

unitarity. Then we will discuss the results of [100] which show that perturbation theory will

break down before unitarity violation is reached and that tree-level unitarity violation does not

always mean that unitarity is actually violated. This may point towards strong coupling at

E ∼ Λ, rather than a violation of unitarity. We conclude that a full calculation is necessary

to determine whether or not unitarity is violated. Even if unitarity is violated and new physics

is necessary, it is not clear that such new physics will exclude Higgs inflation. To show this,

we present a unitarity conserving model of Higgs inflation (this has distinct predictions to the

original model). We remind the reader of the conditions for unitarity conservation which were

explained in Section 2.2.3. They are

Im [al] ≥ ∣al∣2 (6.1)

or equivalently

∣Re [al]∣ ≤
1

2
. (6.2)

6.1 Unitarity violation in Higgs inflation models

In this section, we demonstrate the apparent problem of tree-level unitarity violation in Higgs

inflation. The argument applies in general to any non-minimally coupled theory with more than

one scalar. This includes our model of S-inflation with complex or with real S (the Higgs scalars

are coupled to S so the theory still has multiple scalars if S is real).

The Equivalence Theorem for non-linear field redefinitions [57, 60, 61, 101] states that the

S-matrix for scattering processes is invariant under non-linear redefinitions, which implies that

the scattering rate is the same whether calculated in the Jordan or in the Einstein frame. If the

theory violates unitarity, the unitarity violation will be observed in both frames — although it is

sufficient to clearly demonstrate the (non-) violation in either frame. This must be done carefully

— the original claim of Jordan frame unitarity violation for the singlet case was incorrect — a

fact which was obvious when the equivalent process was studied in the Einstein frame [2].

We consider the scattering in the Einstein frame with the conformal factor Ω2 = 1. This is

justified because at scattering energies E ∼ Mp

� , ℎ is given dimensionally by ℎ ∼ Mp

� . We do not

2Although we did not realise the significance at the time, our original S-inflation paper [1] did point out a
cross term in ℎ and s that could not be removed by field redefinitions.
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�1 (p1)

�2 (k1)

�1 (p2)

�2 (k2)

Figure 6.1: Feynman diagram for the scattering of two scalars: �1�2 → �1�2.

use the unitary gauge, so the Einstein frame action is given by

SE =

∫

d4x
√

−g̃
[

−M
2
p

2
R̃+

1

Ω2
g̃�� (D�H)

†
(D�H)− V (H†H)

Ω4
− 1

4
F̃�� F̃

��

+
3

Ω2

�2

M2
p

g̃��∂�(H
†H)∂�(H

†H)

]

, (6.3)

where F̃�� F̃�� represents the total of all gauge kinetic terms. Considering the last term in the

action, ℒint and writing H in terms of four real scalars (setting Ω = 1) gives

ℒint =
3�2

M2
p

∑

i,j

�i�j∂��i∂
��j . (6.4)

We will consider the scattering �1�2 → �1�2, as shown in Fig. (6.1), giving a tree-level amplitude

A = −i× i
6�2

M2
p

(k1.k2 + k1.p2 + k2.p1 + p1.p2) . (6.5)

Working in the centre of mass frame, where

k1 = (E, k⃗), k2 = (E,−k⃗), p1 = (E, p⃗) and p2 = (E,−p⃗), (6.6)

and assuming massless particles (k⃗2 = p⃗2 = E2) we have

A =
36�2E2

M2
p

(

1 +
1

3
cos �

)

. (6.7)

The �-independent part corresponds to the l = 0 partial wave, giving

a0 =
9�2E2

4�M2
p

. (6.8)

With the result in this form, we can apply the unitarity constraint Eq. (6.2) and get the constraint

on E:

E ≤
√
2�

3

Mp

�
. (6.9)
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Thus it appears at energies above ∼ Mp

� , the scattering �1�2 → �1�2 violates unitarity at tree-

level. It is possible to also calculate this in the Jordan frame, where the unitarity limit is from

graviton exchange in �1�2 → �1�2 scattering, and also in the unitary gauge (Einstein frame)

with the process [96] �ZL → �ZL (where ZL is the longitudinal component of the Z-boson and

� is rescaled Higgs).

6.1.1 The singlet scalar case

In a model where the inflaton is a real singlet scalar which is not coupled to any other scalar

fields at all (so it cannot be a complex field and it cannot be coupled to the Higgs doublet), there

is no unitarity violation when considering Jordan frame scattering by graviton exchange (or the

equivalent Einstein frame process). This theory, in the Einstein frame, is a free theory as the

redefinition of s→ � using Eq. (3.8) gives a theory with no interactions in the Einstein frame [2].

As we have seen, the unitarity violating effects come from the interaction terms; therefore it is

not surprising that the problem disappears for a single field. This occurs because the scattering

can occur via three different channels — s, t and u. The sum of these Mandelstam variables is m2

and the unitarity violation (previously seen in just the s channel) cancels out [98]. If additional

scalars are added to the model, then some scattering processes such as �1�2 → �1�2, can only

occur through the s channel, in which case there is no cancellation.

This singlet model has a major problem — with no couplings to the Higgs, reheating will not

be possible through the mechanisms discussed in Chapter 4. Unless reheating is possible through

another mechanism, such as gravitational reheating [102, 103, 104] or a coupling to leptons, this

completely rules out the model. The Fermi exclusion principle means that resonant production

of leptons is not possible, although it might be possible for them to be produced as a result of

annihilations of excitations of the inflaton.

6.1.2 Non-polynomial potential

A completely separate concern is that the non-polynomial potential

Ũ =
1
4��

4

(

1 + ��2/M2
p

)2 (6.10)

is difficult to handle as a quantum field theory. However, we believe this is a quite different

issue from tree-level unitarity violation associated with the non-minimal coupling to gravity

in the Jordan frame. It is a separate issue because tree-level unitarity violation in 2 → 2

Higgs scattering via graviton-exchange is independent of the potential. Therefore the analogous

interactions in the Einstein frame should also be independent of the potential.
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It has been claimed (for example, see [98]) that the non-polynomial potential causes the

theory to fail at E ∼ Λ due to terms in the expansion of the potential. It is claimed that

“the breakdown of this theory would appear in many-particle hard scattering processes” [98].

Expanding the potential in terms of � gives

U(�) =
��4

4
− ��2�6

M2
p

+ ... (6.11)

for �ℎℎ
2 ≪ M2

p . The second term appears to be suppressed by the scale Λ and would therefore

be large at � > Λ. This is a false argument because we know exactly the form of the tree-level

potential. It is non-polynomial, but known. The potential does not have any strange behaviour

at � ≳ Λ. The apparent problem with the second term in Eq. (6.11) is due to the fact that

it is not appropriate to make this expansion of the potential without including all terms in the

expansion. We believe that V (∣H ∣)/Ω4 will not lead to unitarity violation because in the limit

∣H ∣2 ≫ M2
p/2�, there is an almost perfect cancellation of the ∣H ∣4 factors in V (∣H ∣) and in Ω4,

completely eliminating interactions3.

To illustrate how the potential term differs from other terms with respect to unitarity vio-

lation, we can consider perturbations about a large background Higgs field: H = ⟨H⟩ + �H =

(0, v)T+�H (note that v is the large Higgs field that we are expanding about, not 246.22 GeV). In

this case the potential term in Eq. (6.3) tends towards that for massless non-interacting scalars,

with unitarity-violating interactions suppressed by powers of ∣H ∣:

V (H†H) =
�ℎM

4
p

4�2ℎ

(

1− M2
p

�ℎH†H
+ ...

)

=
�ℎM

4
p

4�2ℎ

(

1− M2
p

�ℎv2

(

1− ⟨H†⟩�H + ℎ.c.

v2
− ∣�H ∣2

v2
+ ...

)

+ ...

)

.

Changing to canonically normalised fields �� =
√

M2
p

2�ℎv2 �H , the first non-renormalizable term is

ΔV =
�ℎMp√
�ℎv2

( ⟨H†⟩��
v

+ ℎ.c.

)5

. (6.12)

Dimensionally, this gives the amplitude for ����→ ������ to be
�ℎMpẼ√

�ℎv2 , which violates unitarity

at Ẽ ∼
√
�ℎv

2

�ℎMp
. Taking v to be large, the energy of unitarity violation for the potential can be

arbitrarily large. This contrasts with the second term in Eq. (6.3), for example, which leads to

unitarity violation at E ∼ Mp/
√
�, independent of ∣H ∣. Expanding the term as we did for the

3More generally, we expect that any non-polynomial potential interpolating between renormalizable potentials
at small and large field strength will not lead to unitarity violation.
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potential,

Δℒ =
1

Ω2
(∂��H)†(∂��H)

= (∂���)
†(∂���) +

2�ℎ
M2

p

(∂���)
†(∂���)��†��+ ... (6.13)

we see that the second term violates unitarity at Ẽ ∼ Mp√
�ℎ

independently of the size of ∣H ∣. This

indicates that the derivative term and the non-polynomial potential have quite different behaviour

with respect to unitarity violation, with the derivative term generally more dangerous. Therefore

in the following, we consider apparent unitarity violation from the non-polynomial potential not

to be dangerous.

6.2 Breakdown of perturbation theory and strong coupling

The fact that the unitarity constraint is violated below the energy scale of inflation at tree-level

in models with multiple scalars is not disputed. However, this may not be the end of the story. In

this section we present two results from a paper by Han and Willenbrock [100]. The first result

demonstrates that perturbation theory is not valid at the energy scale of unitarity violation.

As the unitarity bound in Higgs inflation was calculated using perturbation theory, this is a

compelling reason to consider this bound E ≲ Λ ∼ Mp

� more carefully. The second result is

rather remarkable and shows that in the large N limit4 of a theory similar to ours, unitarity is

violated at tree level but not when summed to all orders in a loop expansion. Thus we argue that

to be certain whether or not the theory is unitarity violating, a full, non-perturbative calculation

is necessary. We now review and discuss these results.

6.2.1 Breakdown of perturbation theory before unitarity violation

Following [100] but generalising5 to arbitrary J rather than J = 2, we show how unitarity

violation based on perturbation theory is not consistent. Specifically, that the imaginary part

of the one-loop partial wave is half of the tree-level partial wave, when unitarity is violated. To

show this, we will assume that the tree-level partial wave a
(0)
J is real6. We begin by assuming

that perturbation theory is valid, meaning

∣

∣

∣a
(0)
J

∣

∣

∣

2

≫
∣

∣

∣a
(1)
J

∣

∣

∣

2

≫
∣

∣

∣a
(2)
J

∣

∣

∣

2

≫ ... (6.14)

4N is the effective number of particles.
5We use J (total angular momentum) rather than l (orbital angular momentum) as this result is also valid for

non-scalar particles.
6It is real in our case — see Eq. (6.8).
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where a
(n)
J is the ntℎ order in a loop expansion and a

(0)
J is the tree-level amplitude. If unitarity

is conserved, the inequality Eq. (6.2) is satisfied, so

Re[aJ ] ≤ 1

2

≡ 1

m
(6.15)

where m ≥ 2. We are assuming that Eq. (6.14) is valid, so Im [aJ ] ≃ Im
[

a
(1)
J

]

and ∣aJ ∣2 ≃
∣

∣

∣a
(0)
J

∣

∣

∣

2

=
∣

∣

∣Re(a
(0)
J )
∣

∣

∣

2

. Thus, the other condition (Eq. (6.1)) becomes

Im
[

a
(1)
J

]

≥
∣

∣

∣Re
[

a
(0)
J

]∣

∣

∣

2

. (6.16)

Upon substitution of Eq. (6.15)) this becomes

Im
[

a
(1)
J

]

≥ 1

m
Re
[

a
(0)
J

]

. (6.17)

At the moment of unitarity violation, both inequalities (Eq. (6.17) and Eq. (6.15)) are saturated

and

Im
[

a
(1)
J

]

=
1

2
Re
[

a
(0)
J

]

. (6.18)

At this point, the theory is clearly not perturbative as the one-loop (imaginary) amplitude is

half of the tree-level amplitude.

6.2.2 Tree level unitarity violation can be misleading

We now consider the largeN limit of the theory, with GNN fixed. As GN ∝ 1
M2

p
, taking N → ∞

effectively means we are taking Mp → ∞. The large N limit was first applied to gravity theories

by [105] and this particular calculation was taken from [100]. At tree level, unitarity violation

occurs at the scale Λ ∼ Mp

� . In the limit N → ∞, it is easy to sum over all orders of loop

diagrams. This is because the dominant diagrams for large N are iterations of the one-loop

diagrams [100]. The result is

aJ =
a
(0)
J

1− Re(a
(1)
J )

a
(0)
J

− ia
(0)
J

. (6.19)

Calculating Im[aJ ] and ∣aJ ∣2 we find that they are equal, exactly saturating the unitarity con-

straint Eq. (6.1). This particular theory is unitarity conserving when summed to all orders in

perturbation theory, even though it appears to violate unitarity at tree-level.

The result cannot be directly applied to Higgs inflation (or S-inflation) as these theories have

a finite number of scalars. However, combined with the fact that perturbation theory is not valid
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at the point of apparently unitarity violation, this result does suggest that further investigation

is required before unitarity violation is confirmed. The theory may simply be strongly coupled

as ℎ→ Λ, meaning that no new physics is necessary.

6.3 The future of non-minimally coupled models of infla-

tion

Logically, the action of the original Higgs inflation model is either consistent or inconsistent as

a quantum field theory. If it is an inconsistent theory then we expect unitarity to be violated

at some energy, requiring a completion of the theory. However, if the theory is consistent, then

we would expect any process which appears to violate unitarity to be modified as the energy

approaches that of unitarity violation. Considering the case where unitarity is violated at E ∼ Λ,

we must add new terms to the action to restore unitarity. We develop this idea in Section 6.4.

The model of S-inflation has an unconstrained self coupling, �s. If this is very small, the unitarity

bound may be evaded, even if the model contains additional scalars. This is because the value

of �s is determined by the WMAP normalization (see Eq. (3.26)) which mean that at tree level,

�s ∝
√
�s. The case of small �s is discussed below. (It has also been shown that in a pure singlet

scalar case, there is no unitarity violation [98].)

A non-perturbative analysis is necessary in order to establish unitarity conservation in Higgs

inflation, so it may be difficult to either prove or disprove. In this case the best strategy would

be to consider both possibilities and use collider experiments and precision CMB observations to

establish whether Higgs inflation is consistent with observations. This strategy is feasible because

of the uniquely predictive nature of Higgs inflation. The inflation observables, in particular the

spectral index, are entirely determined by Standard Model couplings and �s. Therefore precision

measurement of the spectral index and the Higgs mass mℎ can, in principle, allow the nature of

Higgs inflation to be determined experimentally. We also discuss these possibilities below.

6.3.1 Avoiding the unitarity bound with small �s

The coupling �ℎ is constrained to be O(0.1) for Higgs inflation, but the corresponding coupling

for S-inflation, �s, is unconstrained. As the WMAP normalization fixes �
�2 , a small �s will give

a small �s. This may or may not avoid the unitarity bound, depending on whether we require

�Ñ ≃
√

Ñ
� Mp < Λ, U1/4 ≃ �1/4

√
2�
Mp < Λ or H∗ ≃

√

�s

3
1

2�s
< Λ (H∗ is the Hubble parameter

during inflation).

The simplest assumption is that the theory is completely modified by new terms in the

Lagrangian which become important once E > Λ. Since the unitarity problem is due to scattering

of the scalar particles, in general we would expect the scalar sector, and in particular the scalar
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Figure 6.2: Showing the ratio U
1
4

Λ
(solid black line). The ratio becomes less than 1 for �s < 4.3× 10−5.

potential, to be modified by terms involving inverse powers of Λ, which completely ruin the

inflation potential. Therefore, the conservative conclusion must be that � < Λ is necessary to

avoid the unitarity bound. In this case, small �s offers no advantage and the S-inflation model

will suffer from the same problems as Higgs inflation.

If instead we were to assume that the new physics involves only terms which do not contribute

to the scalar potential (i.e. involving derivatives of the scalar fields only), then the unitarity

bound is satisfied if the energy scale during inflation is less than Λ. The energy scale during

inflation could be U1/4 (as considered for S-inflation by [75]) orH∗ (as considered by [2, 96, 106]).

For the case U1/4 < Λ, a back-of-the-envelope calculation shows that we would require �s ≲

3× 103 and �s ≲ 5× 10−5 to satisfy the bound. We show in Fig. (6.2) �s versus U1/4

Λ ≈ �1/4
s

√
�s√

2
,

where �s and �s have been obtained using the full radiative corrections and WMAP normalization

of the previous chapters with �ℎs = 0. We find U1/4 < Λ for �s < 4.3 × 10−5. Reheating (via

stochastic resonance) would then require �ℎs < 1.7×10−4. Although this is near the lower bound

of �ℎs required to produce thermal relic dark matter, the scenario is not ruled out. A different

mechanism of reheating, perhaps via couplings to fermions, could loosen the bound on �ℎs.

The loosest constraint is to consider the Hubble parameter during inflation, as �Ñ ≫ U1/4 ≫

H∗. The requirement that the model is unitarity conserving in this case is simply �s ≪ 1. This is

easily satisfied by the S-inflation model and couplings can easily be within the reheating bounds.
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6.3.2 Strong coupling as an alternative to unitarity violation

Higher-order corrections to the scattering amplitude become important in non-minimally coupled

models as the energy approaches that at which tree-level unitarity is violated. As noted in [2],

this leads to the possibility that strong-coupling itself is the new physics required to maintain

unitarity. The possibility that strong coupling could ensure unitarity-conservation was noted

earlier in [34]. The essential point is that if strong coupling can deal with the apparent unitarity

violation in particle scattering processes, then the action of the theory is complete as is, requiring

no new terms. The effective potential and the analysis of inflation can then be carried out

by calculating with this action in the conventional way [34, 35, 36, 37]. This would imply

that calculations of scattering processes would be near-impossible at large energies. However,

this would not affect the calculation of the effective potential necessary to investigate slow roll

inflation, which remains completely unchanged.

The strongly coupled viewpoint is supported by the observations of [100] which we discussed

in Section 6.2. For the case of s-channel scattering mediated by graviton exchange, the imaginary

part of the 1-loop contribution to the amplitude is half of the tree-level contribution at the energy

of unitarity-violation, so perturbation theory may not be appropriate for scattering calculations

at energies E ∼ Λ. Also, in the large-N limit (where N is roughly the number of particles

contributing to the loop corrections), the all-order graviton-mediated scattering cross-section

(excluding graviton loops) is unitary at all energies, even though the tree-level cross-section

violates unitarity.

There are suggestions in the literature that general relativity could be a strongly coupled,

non perturbative theory. For example, loop quantum gravity (see [107] for a review) is a non-

perturbative theory. Whether non-minimally coupled models can be derived from loop quantum

gravity is an interesting question deserving further investigation.

6.4 A Unitarity conserving model of Higgs inflation

If unitarity is not conserved in the original Higgs inflation model, then a modified, unitarity-

conserving model can be considered [3]. We aim to construct a new model of Higgs inflation,

keeping the core idea that it is the non-minimal coupling to gravity that provides a potential flat

enough for inflation. The concern expressed in [95, 96] is that the terms added to the action to

conserve unitarity must include Higgs potential terms suppressed by powers of Λ, spoiling the

flatness of the potential and ruling out slow-roll inflation. However, this is a false assumption,

as we will show. Our goal here is to derive the minimal modification of Higgs inflation necessary

to restore unitarity and to show that it can, in principle, support successful inflation.
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As discussed earlier, the Einstein frame provides a particularly clear way to understand

unitarity violation in graviton-mediated Higgs scattering due to the non-minimal coupling. On

transforming to the Einstein frame, where the non-minimal couplings are eliminated, unitarity

violation manifests itself via non-renormalizable interactions. Therefore the minimal unitarity-

conserving completion of the Higgs inflation Lagrangian in the Jordan frame will correspond to

the Einstein frame Lagrangian which removes all the dangerous non-renormalizable terms.

6.4.1 The unitarity-conserving action

It is clear that the only way to eliminate unitarity violation in the Einstein frame is to replace

the non-minimal Higgs kinetic term with a canonical kinetic term. We must therefore add terms

to the Jordan frame action Eq. (3.1) to achieve this. We consider all terms which are scaled by

inverse powers of Ω in the Einstein frame to lead to unitarity violation, with the exception of

V (∣H ∣)/Ω4 (see Section 6.1.2). The final action in the Einstein frame therefore has the form

SE =

∫

d4x
√

−g̃
(

−M
2
p

2
R̃+ g̃�� (D�H)† (D�H)− 1

4
F̃�� F̃

�� − V (∣H ∣)
Ω4

)

. (6.20)

On transforming back to the Jordan frame, additional terms in SJ which are required to conserve

unitarity up to the Planck scale are generated. The resulting unitarity-conserving action in the

Jordan frame is given by

SJ =

∫

d4x
√−g

(

−M
2
pR

2
− �H†HR+ g��D�H

†D�H − 1

4
F��F

�� − V (∣H ∣)

− 3�2

Ω2M2
p

g��∂�
(

H†H
)

∂�
(

H†H
)

+
2�H†H
M2

p

g��D�H
†D�H

)

. (6.21)

We believe that Eq. (6.21) is the minimal unitarity-conserving action for the Standard Model

Higgs doublet with a large non-minimal coupling to gravity. Since the fundamental assumption

of Higgs inflation is that inflation is due entirely to the non-minimal coupling of H†H to gravity,

Eq. (6.21) will provide a manifestly unitarity-conserving basis for Higgs inflation.

The non-minimal coupling to R plus the additional terms in Eq. (6.21) may be interpreted as

the complete set of terms which must be brought down from the full Planck-scale gravity theory

to the scale Λ in order to maintain the quantum consistency of the theory. A non-minimal

coupling of the Higgs to gravity is generally expected to exist, but it is usually assumed that

� ∼ 1, in which case the associated unitarity violation occurs at E ∼Mp. The effect of increasing

� is to effectively pull down the non-minimal coupling from the Planck-scale gravity theory to

the lower mass scale Λ. Unitarity violation can then be interpreted as a sign that other terms

from the full gravity theory must accompany the non-minimal coupling in order to maintain the
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consistency of the theory.

6.4.2 Cosmology of the unitarity conserving model

Although Eq. (6.21) provides a basis for a unitarity-conserving Higgs inflation model, it is not the

same Higgs inflation model as originally proposed in [32]. To compute the predictions of the new

model, we analyse it in the Einstein frame, where H has canonical kinetic terms and the model

may be treated as a conventional slow-roll inflation model with potential U(∣H ∣) ≡ V (∣H ∣)/Ω4,

just as in Chapter 3. Introducing the physical Higgs field as the inflaton, H → ℎ/
√
2, we obtain

U(ℎ) =
�ℎ4

4
(

1 + �ℎ2

M2
p

)2 . (6.22)

As in the original model, for ℎ≫Mp/
√
�, the potential is flat and slow-roll inflation is possible.

With Ñ = 58, where Ñ ≈ �ℎ4

16M4
p
is the number of e-folding of inflation (from when cosmological

scales exit the horizon) in the Einstein frame, the classical value of the spectral index is given

by n = 1 + 2�̃ − 6�̃, where

�̃ ≡
M2

p

2

(

1

U

dU

dℎ

)2

≃
8M6

p

�2ℎ6
−

16M8
p

�3ℎ8
(6.23)

and

�̃ ≡M2
p

(

d2U

dℎ2

)

≃ −12M4
p

�ℎ4
+

36M6
p

�2ℎ6
. (6.24)

Therefore,

n ≈ 1− 3

2Ñ
+

3

8Ñ3/2
√
�
≈ 0.974 . (6.25)

The tensor to scalar ratio r is given by

r ≡ 16�̃ ≃ 2√
�Ñ3/2

∼ 6× 10−6 . (6.26)

The running of the spectral index � is negligibly small. The curvature perturbation is given by

P� =
�Ñ3

12�2�3/2
, (6.27)

therefore to have a correctly normalised spectrum of density perturbations, P
1/2
� = 4.8 × 10−5,

we require

� ≃ (3.8− 6.5)× 105 (6.28)
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for mℎ in the range 114-170 GeV. The predictions are different from the original Higgs infla-

tion model because the slow roll parameters are defined with respect to different canonically

normalised fields — � in the original model and ℎ in the unitarity-conserving model. The pre-

dictions may be compared with the original Higgs inflation model, n ≃ 1 − 2
Ñ

− 3
2Ñ2

= 0.965,

r ≃ 12
Ñ2

= 3.6 × 10−3 and �
�2 ≃ 3(0.027)4

Ñ2
giving � ≃ 104. These estimates are also based on

Ñ = 58. As the model contains only Standard Model parameters, it is in principle possible to

determine the reheating temperature and hence Ñ precisely. Therefore the model has no free

parameters.

6.4.3 Radiative corrections favour S-type inflation model

So far we have considered the model only at tree-level, without quantum corrections to the infla-

ton potential. The structure of Eq. (6.20) is equivalent to the Standard Model gauge and Higgs

fields plus a potential V (∣H ∣)/Ω4. This suggests that the 1-loop Coleman-Weinberg correction

due to gauge boson loops in the Einstein frame will have the form ∼M4
W logM2

W ∝ ∣H ∣4, which

would spoil the flatness of the potential. In this case a supersymmetric (SUSY) version of the

model will be necessary in order to suppress the quantum corrections to the inflaton potential.

However, if the inflaton was not the Higgs, but instead a singlet scalar coupled to the Stan-

dard Model only via the potential (such as our S-inflation model), then its couplings would be

suppressed by Ω−4 in the Einstein frame and radiative corrections should not spoil the flatness

of the inflationary potential. Thus, if unitarity is found to be violated in the original Higgs in-

flation and S-inflation models, then a unitarity-conserving version of S-inflation, along the lines

of Eq. (6.20) would be favoured, if we require a minimal model of inflation.

Discussion

We have proposed a new Higgs inflation model based on a unitarity-conserving extension of the

original Higgs inflation action. We believe that this is the minimal form of Higgs inflation model

which manifestly conserves unitarity in the presence of a non-minimal coupling of the Higgs to

gravity. This is based on some assumptions, which we discuss below. As such, it may provide

the correct formulation of the model should strong coupling effects fail to eliminate unitarity

violation in the original Higgs inflation model.

The unitarity-conserving model is based on the assumptions:

∙ (i) the non-polynomial potential (∝ 1
Ω4 ) does not introduce unitarity violation

∙ (ii) the kinetic terms scaled by 1
Ω2 must be removed because they do cause unitarity vio-

lation.
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These are the conservative assumptions necessary to allow Higgs inflation without unitarity vio-

lation — the non-polynomial potential is an essential component of the model. The assumptions

seem reasonable. At large values of ℎ the potential tends to a flat potential, whereas terms

with derivatives do not have the same cancellation at large ℎ. This is why we expect them to

introduce unitarity violation. While these arguments are plausible, there is (as yet) no rigourous

proof that the model is both unitarity-conserving and minimal. However, the predictions of the

model can be tested by observation.

Perhaps the most interesting conclusion is that while unitarity-conserving Higgs inflation is

possible, the predictions of the new unitarity-conserving model are quite different from those of

the original Higgs inflation model. In particular, the classical spectral index of the new model

is n = 0.974, which is within the 7-year WMAP 1-� limits on n (n = 0.963 ± 0.012 [7]) but

significantly different from the original Higgs inflation model prediction of n = 0.965. Therefore

it should be possible to observationally distinguish between unitarity-conserving Higgs inflation

and the original Higgs inflation model.

A feature that the unitarity-conserving model shares with the original Higgs inflation model

is that since all the model parameters are Standard Model parameters, they can be fixed exper-

imentally (with the exception of �, which is fixed by the density perturbations). In particular, it

will be possible to precisely compute quantum corrections to the spectral index as a function of

Higgs mass. This should allow for precision tests of the model oncemℎ is determined by the LHC

and n by PLANCK. A caveat is that such quantum corrections are likely to be large in the case

of a non-SUSY Higgs model, in which case a SUSY version following the same strategy will be

necessary in order to maintain the flatness of the inflaton potential. A very minimal non-SUSY

model may still be possible if the inflaton was instead a singlet scalar with a potential coupling

to the Standard Model. We expect that the tree-level predictions of any unitarity-conserving

model, being necessarily based on minimal kinetic terms and V/Ω4 in the Einstein frame, will

remain unchanged, giving n ≃ 1− 3
2Ñ

.
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Chapter 7

Conclusions

In this thesis we have presented the S-inflation model and discussed its observational predictions,

mechanism for reheating, relationship to Higgs inflation and issues of naturalness. The model

consists of the Standard Model plus a stable gauge singlet scalar, S, which is non-minimally

coupled to gravity. We have shown that the S scalar can simultaneously serve as the inflaton

and as a thermal relic dark matter particle.

The consistency of the model with respect to (i) stability of the electroweak vacuum, (ii)

perturbativity of the scalar potential as a function of s and ℎ up to the Planck scale and (iii) the

observed spectral index1, constrains the (�ℎs,mℎ) parameter space. The coupling �ℎs determines

the strength of the interaction between S dark matter and ordinary matter. We find ∣�ℎs(mt)∣ ≲

0.15 for the WMAP5 1-� bound (n < 0.973), which can increase up to ∣�ℎs(mt)∣ ≲ 0.55 for

small S self-coupling and larger n. The range of Higgs masses is 145 GeV ≲ mℎ ≲ 170 GeV for

n < 0.973 and small �s(mt), shifting to 130 GeV ≲ mℎ ≲ 170 GeV for n ≥ 0.980.

Demanding that the S annihilation rate through �ℎs(mt) produces the correct thermal relic

S dark matter density translates each �ℎs(mt) into a discrete set of possible values of ms. This

determines an allowed range of ms, which is 50 GeV ≲ ms ≲ 750 GeV for �s = 0.025, with the

upper limit increasing to 1 TeV for �s(mt) = 0.2. For complex S the range of ms is narrower,

50 GeV ≲ ms ≲ 500 GeV for �s(mt) = 0.025. The parameter space does not exclude the

possibility of producing S pairs at the LHC. As the accuracy of the observed n improves (and

if mℎ can be measured), the parameter space will become much more tightly constrained, which

should allow the consistency of the model to be tested.

A barrier to a precisely predictive model is the dependence on the S self-coupling �s(mt),

which is not directly observable. In principle, there are five observable quantities: n, mℎ, ms,

1The tensor-to-scalar ratio r and the running of the spectral index � are both negligibly small compared with
the observational limits.
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�ℎs(mt) and P�(k0) and five input parameters: mℎ, ms, �ℎs(mt), �s(mt) and �s(mt). Therefore

n cannot be predicted exactly as there will always be a dependence on �s(mt), even if the other

parameters of the model are fixed by experiment. However, we find that there are constraints

on �s from reheating, giving either �s > 0.019 or �s > 0.25�ℎs.

Nevertheless, the S-inflation model makes a clear prediction, that n ≥ ncl for mℎ ≳ 130 GeV,

which can distinguish it from Higgs inflation. The spectral index n can be further constrained

by vacuum stability and perturbativity constraints. In addition, in the limit of small �s(mt),

the model could become effectively independent of �s. In this case we may be able to predict

n if mℎ, ms and �ℎs(mt) are fixed by the LHC and by direct dark matter experiments. If we

are fortunate enough that S-inflation occurs in this limit, then the model can in principle be

completely predictive and testable.

The predictions of S-inflation were made assuming that the relationship �s ≫ �ℎ is satisfied.

For the values of �s that we considered in Chapter 3, this is a reasonable assumption (if it holds

at the weak scale, it also holds at the scale of inflation, provided that the running of �ℎ is not

too large). However, if �s was very small (as discussed in Chapter 6 in the context of avoiding

the unitarity bound), then �s ≫ �ℎ may not be satisfied, as �ℎs could cause the running of �ℎ

to be substantial. This would mean that the minimum for large field values is not along the

S-direction. However, a study of inflation along a general direction would be difficult, as the

fields could not be simultaneously canonically normalised. It should be noted that in order for

the model to produce the observed spectrum of curvature perturbations, �s must take a large

value (∼ 104), which may be unnatural. Unlike Higgs inflation, the coupling �s can instead be

made O(1), at the expense of having an unnaturally small value of �s.

We have shown that S-inflation makes clear observational predictions, which are generally

distinct from those of Higgs inflation. Given that the reheating temperature in both models is

well determined, the classical spectral index ncl of both models will be similar. The key difference

between the models is that for mℎ ≳ 130 GeV, radiative corrections cause n to increase for S-

inflation and decrease for Higgs inflation. Thus, in this case, a measurement of n close to but

above ncl strongly favours S-inflation while a measurement close to but below ncl favours Higgs

inflation. Note that the discovery of a gauge singlet scalar with coupling to the Higgs boson rules

out pure Higgs inflation but does not provide information about the direction of inflation.

The S-inflation model provides a model for inflation and dark matter which is based purely on

weak scale particles and interactions. In order to have a complete model of cosmology, we also

need to address the issues of reheating, neutrino masses and the origin of the baryon asymmetry.

In the case of S-inflation, a concern is that since the particles are stable, the energy in the inflaton
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would not transfer to radiation. In fact, reheating occurs successfully. The primary reheating

mechanism is a stochastic resonance to Higgs bosons, which subsequently annihilate to produce

relativistic particles. Any remaining energy density in the inflaton field is easily thermalised by

scattering with the relativistic background. S dark matter particles are then produced thermally.

Reasonable assumptions give the reheating temperature to be 3×1013 GeV < TR < 8×1014 GeV,

corresponding to 59 < Ñ < 60 (or 58 < Ñ < 61 once theoretical errors of ±1 are included).

For reheating to complete before the inflaton starts to oscillate in a quartic potential, we require

either �s > 0.02 or �s > 0.25�ℎs.

Baryogenesis could occur via electroweak baryogenesis, which may be possible in scalar ex-

tensions of the SM. Additional scalars interacting with the Higgs can produce a sufficiently

strong 1st order electroweak phase transition. This usually requires that the gauge singlet scalar

gains a vacuum expectation value (vev) after the transition [108], therefore a more complicated

model with two or more additional scalars would be required2. Additional CP violation will

also be necessary, as the Standard Model does not provide enough to generate the observed

asymmetry. Neutrino masses and mixings also remain to be explained. As suggested by [75],

an SU(2) triplet scalar field could be introduced, which would introduce neutrino masses in

a type-II see-saw mechanism [109]. Alternatively, baryogenesis could occur via the oscillating

leptogenesis mechanism [28] or low-scale resonant leptogenesis [110] once the SM is extended by

sterile neutrinos in order to account for neutrino masses.

S-inflation, as with all non-minimally coupled models involving more than one scalar, may

violate unitarity at an energy E > Λ ∼ Mp

�s
. The unitarity violation comes from scattering of

non-identical scalars �1�2 → �1�2 via graviton exchange (for the case �1�1 → �1�1, there is a

cancellation and no unitarity violation occurs). If unitarity violation occurs, new terms would

need to be added to the action, which may spoil the naturalness and predictiveness of this type

of theory. One possibility is that these new terms enter only through derivative terms, so do not

affect the scalar potential. In this case, a small self coupling �s could avoid the unitarity bound.

Working under the assumption that unitarity is violated, we suggested a new unitarity con-

serving model of Higgs inflation. The central assumptions of the model are: (i) inflation is caused

by the non-minimal coupling of the Higgs to gravity and (ii) the non-polynomial potential is not a

source of unitarity violation. In this model, the kinetic terms are canonically normalised without

being rescaled. This is the origin of the difference between the predictions of the new model,

n ≈ 1− 3
2Ñ

= 0.974, and the predictions of the original model, n ≃ 1− 2
Ñ

− 3
2Ñ2

= 0.965 (both

tree level, with Ñ = 58). Radiative corrections in the Higgs inflation version of this model would

2We note that it may be possible to evade this if the scalar has an expectation value prior to and during the
electroweak phase transition but its vev vanishes in the vacuum after the transition [42].
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spoil the flatness of the potential, because the one-loop Coleman Weinberg potential due to gauge

boson loops in the Einstein frame is not suppressed by Ω−4, as it is in the original Higgs inflation

model. Therefore, a non-SUSY version of the model strongly favours an S-inflation version, as

in this case the scalar couplings originate from the potential and are suppressed by Ω−4. An

alternative would be to consider a SUSY version of the model.

However, the occurrence of unitarity violation has not been proven. The apparent unitarity

violation could instead be an artefact of using perturbation theory in a non-perturbative regime.

If so, then no modification of the theory is required and the inflaton potential is unaltered. In

general, a full, non-perturbative analysis would be necessary to determine whether or not the

model violates unitarity. Given the clear experimental predictions of the model, we propose it is

sensible to let experiment and observation lead the way in favouring or ruling out the model.

There are a number of issues arising from this thesis which would merit further work. These

include scattering from the non-polynomial potential — an unsolved problem in field theory and

not specific to this work. Further work could be done towards proving whether or not non-

minimally coupled models violate unitarity, and if so, at which scale. (Although as this seems

to require non-perturbative calculations, it may be an unrealistic aim.) If SUSY is discovered

at the LHC, SUSY versions of the model will become particularly interesting to develop. Some

attempts at this have already been made for the case of Higgs inflation [106, 111, 112]. The

radiative corrections for the unitarity conserving model in Chapter 6 remain to be calculated —

they will be large for a Higgs-inflation model, but are expected to be small for an S-inflation

version. Also, the case of small �s (in the original S-inflation model) should be investigated

further. It is particularly interesting because the self-coupling will be determined by �ℎs, through

loop corrections. Thus all parameters could, in principle, be determined by experiment. (It is

likely that reheating would need to be reconsidered in this case.)

The most important piece of future work will be to compare the findings of Planck, LHC

and direct detection experiments to the predictions in this thesis. In contrast to many inflation

models, S-inflation is notable for the close relationship it implies between the observables of

inflation (in particular, the spectral index), particle physics (in particular, the Higgs mass and

Higgs decay width) and the direct detection of dark matter. It can therefore be directly tested

by the experimental and observational advances which are anticipated in the near future as the

LHC, Planck satellite and future direct dark matter detection experiments come to fruition.

112



Appendix: Deriving the RG

equations for scalar couplings

In this appendix, we explain the derivation of the scalar RG equations. We are interested in the

modification to the Standard Model RG equations due to the additional scalar S. In a set of

papers by Machacek and Vaughn [70, 71, 72], hereafter referred to as MV, the RG equations for a

general theory with scalars are given to two-loops in the MS scheme. The anomalous dimensions

and �-functions are expressed in terms of real (reducible) representations of the scalar fields and

Majorana spinors. Thus we must formulate our theory in these terms to apply the general results

of MV.

Representation of scalars

We express the Higgs doublet and gauge singlet scalars as a set of six real scalar fields, �i (i =

1...6), where

H =
1√
2

⎛

⎜

⎝

�1 + i�2

�3 + i�4

⎞

⎟

⎠
and S =

1√
2
(�5 + i�6) . (A-1)

For the case of real S, �6 = 0. The potential is given by

V =
1

4!
�abcd �a�b�c�d. (A-2)

If n, m represent the Higgs scalars and p, q the S scalars, then �nnnn = 6�ℎ, �nnmm =

2�ℎ, �nnpp = �ℎs, �pppp = 3�s and �ppqq = 2�s. Additionally, a factor of cs accompanies

�5 and cℎ accompanies �3.

Writing the scalars as a real representation in the form (�1, �2, �3, �4, �5, �6)
T , the SU(2)L
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generators (�Aab in the notation of MV) are
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The U(1)Y generator is
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(A-4)

where Y = 1/2 is the hypercharge of the complex fields in the Higgs doublet.

Representation of the top quark

The only Yukawa coupling we consider is the top quark Yukawa coupling. In 4-component spinor

notation this is (in the notation of MV)

qH�† cq + ℎ.c. , (A-5)

where H is the Yukawa coupling matrix, q = (uL, dL)
T is the SU(2)L quark doublet and � is

the Higgs doublet. In our case

qH�† cq ≡ tRyttL�
0 − tRytbL�

+ . (A-6)
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(In this we have suppressed colour indices.) We define a reducible representation  i (in the

notation of MV) by ( 1,  2,  3) = (tcR, tL, bL), where tL, bL and tcR are the two-component

spinors which form the Dirac spinors in the chiral representation
(

t ≡ (tL, tR)
T etc

)

, with tcR =

−i�2t∗R. The Yukawa coupling can then be written as

Y a
ij i� j�a + ℎ.c. (a = 1, 2, 3, 4) (A-7)

where

Y 1 =
1√
2
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, Y 3 =
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2
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,

and

Y 4 =
i√
2
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The corresponding SU(2)L generators tA acting on  are

t1 =
1

2

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0

0 0 1

0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

, t2 =
1

2

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0

0 0 −i

0 i 0

⎞

⎟

⎟

⎟

⎟

⎠

and t3 =
1

2
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The U(1)Y generator is

tY =

⎛

⎜

⎜

⎜

⎜

⎝

− 2
3 0 0

0 1
6 0

0 0 1
6

⎞

⎟

⎟

⎟

⎟

⎠

. (A-10)

(Suppressed colour indices should be summed over when taking traces in the formulae of MV.)

Finally, � = 1/2 should be used since  i are two-component spinors.

Calculating RG equations

With these definitions of �A, Y a and tA, the formulae of MV can be used to compute the RG

equations to two-loop order as a function of the t-quark Yukawa coupling, gauge couplings and

the scalar couplings. The suppression factors are inserted by hand, following the procedure in

Section 3.2.2.
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We demonstrate the calculation of ��s . From [72],

16�2��abcd
=

1

8

∑

perms

�abef�efcd (A-11)

(all other terms are zero in this case). For the case of �s, this simplifies to

16�2��s =
1

6

24

8

∑

e

�55ee�ee55

=
1

2

(

3�2ℎs + c2ℎ�
2
ℎs + c2s(6�s)

2 + (2�s)
2
)

, (A-12)

which is equivalent to Eq. (3.29). The other equations are calculated in a similar manner,

although the expressions are more complicated.
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