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1. Introduction

Integrable operators with kernels of the form

W (x, y) =
f(x)g(y) − f(y)g(x)

x − y
(1.1)

have applications in quantum field theory and random matrix theory, where they are used

to describe the asymptotic distribution of large random matrices; see [5, 17, 18]. Tracy

and Widom [19] observed that many important distributions in random matrix theory can

be defined using solutions of systems

m(x)
d

dx

[

f(x)
g(x)

]

=

[

α(x) β(x)
−γ(x) −α(x)

] [

f(x)
g(x)

]

(1.2)

wherem(x), α(x), β(x) and γ(x) are polynomials. In [17, 18], Tracy and Widom considered

the Airy and Bessel kernels which describe the soft and hard edges of generalized unitary

ensembles, and proved the apparently miraculous identities that the operators with these

kernels were squares of self-adjoint Hankel operators; then they used this property to

compute their eigenfunctions and eigenvalues.

Let K be a separable Hilbert space, and L2((0,∞); dx;K) be the Bochner–Lebesgue

space of strongly measurable functions φ : (0,∞) → K such that
∫

∞

0
‖φ(x)‖2

Kdx <∞.

——————

This work was partially supported by EU Network Grant MRTN-CT-2004-511953 ‘Phenomena in High

Dimensions’.
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In [2] we considered a general class of differential equations which gives rise to integrable

operators that have the form W = Γ∗Γ, where Γ : L2(0,∞) → L2((0,∞);K) is a continu-

ous Hankel operator. The general theorem of [2] specialised to the Airy and Bessel kernels,

and in this paper we prove related results which deal with other integrable operators.

After recalling some definitions, we state and prove the main Theorem 1.2, and then

in section 2 give some applications. In section 3 we discuss the scope of Theorem 1.2 as

it applies to (1.2) in reduced forms, and then in section 4 prove another theorem which

encompasses other applications, as in section 5.

Definition (Integrable operators) Let I be a subinterval of R. An integrable operator on

L2(I; dx) is a continuous linear operator W with kernel

W (x, y) = 2
n

∑

j=1

fj(x)gj (y)

x − y
(x, y ∈ I;x 6= y) (1.3)

where fj , gj are bounded and measurable functions such that
∑n

j=1 fj (x)gj (x) = 0 almost

everywhere on I.

Lemma 1.1. Suppose further that the fj and gj are real-valued. Then W is self-adjoint

if and only if

W (x, y) =

〈

Jv(x), v(y)〉
x− y

(x, y ∈ I;x 6= y) (1.4)

where v(x) = col[f1(x), . . . , fn(x); g1(x), . . . , gn(x)] and

J =

[

0 −In
In 0

]

(1.5)

with identity matrix In ∈Mn(R) and the usual inner product on R2n.

Proof. Clearly the kernel of W is symmetric if and only if the numerator of W (x, y) is

skew-symmetric, in which case we can write

2
n

∑

j=1

fj (x)gj (y) =
n

∑

j=1

fj (x)gj (y) −
n

∑

j=1

fj(y)gj (x), (1.6)

and the matrix expression follows directly.

Definition (Hankel operator) Let φ ∈ L2((0,∞);K). The Hankel operator with symbol

φ is the integral operator

Γφf(s) =

∫

∞

0

φ(s + t)f(t) dt. (1.7)
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Nehari’s theorem [13] gives a sufficient condition for Γφ : L2(0,∞) → L2((0,∞);K) to be

continuous and gives an expression for the operator norm ‖Γ‖; while the Hilbert–Schmidt

norm of Γφ satisfies

‖Γφ‖2
HS =

∫

∞

0

s‖φ(s)‖2
K ds (1.8)

when
√
sφ(s) ∈ L2((0,∞);K). Clearly Γφ is self-adjoint when K = R.

Given an integrable operator, it is often valuable to identify a Hankel operator Γφ

such that Γ∗

φΓφ = W and to determine whether W is of trace class. In particular, when

K = R and W = Γ2
φ, the spectral resolution of the self-adjoint operator Γφ determines

the spectral resolution of W . This is the basis of the successful calculations in [17, 18,

19], which also exploited the fact the eigenvectors of Γφ can be relatively easy to analyze.

In [12], Megretskĭı, Peller and Treil characterized the spectral multiplicity function of a

self-adjoint Hankel operator. Further, in applications to determinantal point fields as in

[15], one often wishes to show that W is of trace class and satisfies 0 ≤W ≤ I.

We consider first the case associated with the differential equation

dv

dx
= J(Ω1x+ Ω0 + Ω−1x

−1)v. (1.9)

Theorem 1.2. Suppose that Ω1,Ω0 and Ω−1 are real symmetric (2n) × (2n) constant

matrices such that Ω1 ≥ 0 and −Ω−1 ≥ 0. Suppose further that v satisfies (1.9), and that

v(x) and v(x)/x are bounded functions in L2((0,∞); dx;R4n). Then there exists a real

linear subspaceK of R4n with dim(K) ≤ rank(Ω1)+rank(Ω−1) and φ ∈ L2((0,∞); dx;K)

such that Γφ : L2(0,∞) → L2((0,∞); dx;K) is continuous and the kernel

W (x, y) =
〈Jv(x), v(y)〉

x − y
(1.10)

factors as

W = Γ∗

φΓφ. (1.11)

In particular, if rank(Ω1) + rank(Ω−1) = 1, then W = Γ2
ψ for some ψ ∈ L2(0,∞).

Proof. By Lemma 2.1 of [2], which essentially depends upon the continuity of the Hilbert

transform on L2(R), we know that W is also a continuous linear operator on L2(0,∞).

We have

( ∂

∂x
+

∂

∂y

)

W (x, y) =
1

x− y

(〈

J
dv

dx
, v(y)

〉

+
〈

Jv(x),
dv

dy

〉)

(x 6= y), (1.12)
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where dv/dx and dv/dy satisfy (1.9). Now J 2 = −I and J∗ = −J , so the matrices involved

in the differential equation satisfy

J2(Ω1x + Ω0 + Ω−1x
−1) + (Ω1y + Ω0 + Ω−1y

−1)J∗J

= −Ω1x+ Ω1y − Ω−1x
−1 + Ω−1y

−1; (1.13)

so by dividing by x− y, we obtain

( ∂

∂x
+

∂

∂y

)

W (x, y) = −
〈

Ω1v(x), v(y)
〉

+
〈

Ω−1
v(x)

x
,
v(y)

y

〉

. (1.14)

We introduce the positive roots of the positive semidefinite matrices Ω1 and Ω−1, and the

column vector φ(x) = col[
√

Ω1v(x),
√
−Ω

−1v(x)/x]; so that, φ ∈ L2((0,∞); dx;R4n) and

( ∂

∂x
+

∂

∂y

)

W (x, y) = −〈φ(x), φ(y)〉 (x, y > 0). (1.15)

Integrating this equation, we obtain

W (x, y) =

∫

∞

0

〈φ(x + t), φ(y + t)〉 dt + g(x− y) (1.16)

for some differentiable function g; but W (x, y) and the integral converge to 0 as x → ∞
or y → ∞; so g = 0. Hence W = Γ∗

φΓφ, and we deduce that Γφ is a continuous Hankel

operator from L2(0,∞) → L2((0,∞); dx;R4n).

Finally, we observe that φ takes values in a linear subspace K of

range(Ω1)⊕ range(Ω−1) which has dimension less than or equal to rank(Ω1) + rank(Ω−1).

If the sum of the ranks of Ω1 and Ω−1 equals one, then φ takes values in a one-

dimensional real linear subspace of R4n, so φ(x) = eψ(x) for some unit vector e ∈ R4n

and some ψ ∈ L2(0,∞); hence Γψ is self-adjoint and W = Γ2
ψ.

Remarks 1.3. (i) In their applications to random matrix theory, Tracy and Widom con-

sidered integrable operators on unions of intervals such as ∪mj=1[a2j−1, a2j ].Many analytical

problems reduce to considering one interval at a time, and so are addressed by the current

paper. In a subsequent article [20], they generalized their results to kernels of the form

〈Cϕ(x), ϕ(y)〉
x − y

where C is an antisymmetric n× n matrix.

(ii) Theorem 1.2 has an analogue for discrete kernels on Z+, as in [11].
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2. Factorization for some differential equations with simple poles

In this section we consider how Theorem 1.2 applies to some differential equations that

are satisfied by familiar special functions.

2.1. The Airy equation

The Airy function Ai gives rise to a solution u(x) = Ai(x + s) of the differential

equation

u′′(x) = (s + x)u(x) (x > 0). (2.1)

Since the standard asymptotic formula for the Airy function [16, p. 18] gives

Ai(x) =
1

2x1/4
√
π

(

1 +O(x−3/2
)

exp
(

−2

3
x3/2

)

(x → ∞) (2.2)

the hypotheses of Theorem 1.2 are satisfied by v(x) = col[φ(x), φ′(x)] where φ(s)

= Ai(x + s); so W = Γ2
φ where Γφ is a Hankel operator in the Hilbert–Schmidt class. See

[2, 17] for more details.

2.2. The Laguerre equation

The Laguerre equation [14] may be expressed as

u′′(x) +
(

−1

4
+
n+ 1

x

)

u(x) = 0, (2.3)

with solution u(x) = xe−x/2L
(1)
n (x) where

L(1)
n (x) =

x−1ex

n!

dn

dxn
(

xn+1e−x
)

(x > 0) (2.4)

is the Laguerre polynomial of degree n and parameter α = 1. The Laplace transform of u

is the rational function

L(u;λ) = (n+ 1)
(λ − 1

2 )n

(λ + 1
2)n+2

(<λ > −1/2).

Theorem 1.2 applies directly to the system

d

dx

[

u(x)
u′(x)

]

=

[

0 1
1/4 − (n+ 1)/x 0

] [

u(x)
u′(x)

]

(2.5)

and gives the formula

u(x)u′(y) − u′(x)u(y)

x− y
= (n+ 1)

∫

∞

0

u(x+ t)u(y + t)

(x + t)(y + t)
dt (2.6)
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where φ(x) = u(x)/x gives a Hankel operator Γφ of Hilbert–Schmidt type.

2.3. The Bessel equation

The differential equation

u′′(x) +
1

x
u(x) = 0 (2.7)

has solution u(x) =
√
xJ1(2

√
x), where J1 is the Bessel function of the first kind of order

one. The Laplace transform of u satisfies L(u, λ) = λ−2 exp(−1/λ). Now the standard

asymptotic formula for the Bessel function [10, p. 171] shows that

φ(x) =
u(x)

x
� 21/4

√
π
x−3/4 cos

(

2
√
x − 3π

4

)

(x → ∞); (2.8)

so φ belongs to L2(0,∞); hence one can follow the proof of Theorem 1.2 and derive the

formula
u(x)u′(y) − u′(x)u(y)

x − y
=

∫

∞

0

u(x + t)u(y + t)

(x + t)(y + t)
dt (x, y > 0). (2.9)

Here the Hankel operator Γφ is not Hilbert–Schmidt.

2.4. The Carleman operator with multiple spectrum

The system
d

dx

[

f
g

]

=

[

0 1/x
0 0

] [

f
g

]

(2.10)

has the form considered in Theorem 1.2 and evidently has solution f(x) = logx and

g(x) = 1; further

W (x, y) =
log x− log y

x− y
=

∫

∞

0

dt

(x+ t)(y + t)
(x, y > 0) (2.11)

has a similar form to an integrable kernel, except that log x is unbounded. Power showed

that Carleman’s operator Γ, where

Γh(x) =

∫

∞

0

h(y)dy

x + y
(h ∈ L2(0,∞)), (2.12)

is continuous on L2(0,∞) and has spectrum [0, π] with spectral multiplicity two; see [13].

HenceW is a continuous linear operator on L2(0,∞) with spectrum [0, π2] with multiplicity

two. This example illustrates that simple differential equations can give positive definite

Hankel operators with multiple spectra.
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2.5. Parabolic cylinder functions: non factorization

For <p > −1, let Dp be the parabolic cylinder function, which satisfies

D′′

p (x) +
(

p+
1

2
− x2

4

)

Dp = 0,

and let

H(x, y) =
Dp(x)D

′

p(y) −D′

p(x)Dp(y)

x − y
. (2.13)

Then ±H is not the square of a self-adjoint Hankel operator Γφ. By following the proof

of Theorem 1.2, we obtain

( ∂

∂x
+

∂

∂y

)

H(x, y) = −1

2
(x + y)Dp(x)Dp(y), (2.14)

where (x + y)Dp(x)Dp(y)/2 cannot equal ±φ(x)φ(y); indeed, for suitable x1, x2 > 0, the

2 × 2 matrix [xj + xk]j,k=1,2 has both positive and negative eigenvalues. When n is a

nonnegative integer, Dn is known as a Hermite function, and may be written

φn(x) = (n!)−1/2(2π)−1/4(−1)nex
2/4 d

n

dxn
e−x

2/2. (2.15)

Aubrun [1] considers self-adjoint Hankel operators Γφn
and Γφn+1

such that

H = (1/2)(Γφn
Γφn+1

+ Γφn+1
Γφn

); this gives information about the singular numbers of

H. For Hankel squares one has more precise information about the eigenvalues. Borodin

and Okounkov [4] have considered the discrete Hermite kernel, and derived the formula

φm+1(s)φn(s) − φm(s)φn+1(s)

m− n
=

∫

∞

s

φm(t)φn(t) dt (m,n = 0, 1, . . . ,m 6= n). (2.16)

Here the variable n is the degree of the Hermite polynomial factor in φn, and (2.16) is

essentially different from (1.11).

3. Reducing to standard form

Definition (Operator monotone) Let I be an interval in R. A continuous function ω : I →
R is operator monotone increasing if, whenever S and T are continuous and self-adjoint

linear operators on Hilbert space that have spectra in I,

S ≤ T ⇒ ω(S) ≤ ω(T ). (3.1)

Further, ω is operator monotone if and only if the matrices

[ω(xj ) − ω(xk)

xj − xk

]

j,k=1,...,m
, (3.2)
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with diagonal entries ω′(xj ), are positive semidefinite for all m = 2, 3, . . . and xj ∈ I with

j = 1, . . . ,m. In [2] we used Loewner’s characterization of operator monotone functions,

which shows in particular that an operator monotone function on (0,∞) extends to an

analytic function on a domain U containing (0,∞) as in [9, p. 541].

Theorem 1.2 shows that, under mild technical conditions, W admits of a factorization

W = Γ∗

φΓφ whenever ω(x) = 〈Ω(x)ξ, ξ〉 is operator monotone on (0,∞), for all ξ ∈ R4n

where Ω(x) = Ω1x + Ω0 + Ω−1x
−1.

Suppose that I has 0 as an endpoint, and let U be a domain that contains I. Suppose

that A(z) is a matrix function into M2n(C) that is analytic on U , except for an isolated

singularity at z = 0, and that

dv

dz
= A(z)v (z ∈ U). (3.3)

By a standard change of variable, we mean w(z) = T (z)v(z), where the analytic function

T : U → Mn(C) has T (z) invertible as a matrix for each z ∈ U . The following result is

commonly known as Birkhoff’s normal form, although the first correct statement and proof

is due to Turrittin [21]. Gantmacher considered some related examples which resemble

(2.10) in [6, p. 146].

Proposition 3.1. Suppose that A(z) =
∑

−1
k=−∞

Akz
k is a Laurent expansion that con-

verges for all z 6= 0. Then there exists a standard change of variable that reduces (3.3)

to
dw

dz
=

(A−1

z
+
A−2

z2

)

w. (3.4)

Further, if the eigenvalues λj of A−1 have differences λj − λk that are never equal to

a natural integer, then one can remove the term in A−2.

The appearance of the term A−2 in (3.4) is important, since −1/x2 is not operator

monotone on (0,∞) by [9, p. 554]. So we cannot simply adapt the proofs in section 1 to

deal with the case in which A−2 appears. However, if ω is operator monotone on (0,∞),

then ω(
√
t) is likewise. This suggests the change of independent variable x =

√
t, which

we exploit in the examples in section 5. Further, we adjust the definition of the kernel and

the Hankel operators so that we can obtain a factorization theorem in the next section.

Definition (Hankel operator) For I = (1,∞), we use the Hankel operator

Γψg(x) =

∫

∞

1

ψ(xy)g(y)
dy

y
(3.5)
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where ψ ∈ L2((1,∞); dy/y;K); whereas for I = (0, 1) we use

Γρh(x) =

∫ 1

0

ρ(xy)h(y)
dy

y
(3.6)

where ρ ∈ L2((0, 1); dy/y;K). These definitions reduce to the case I = (0,∞) in section 1

by the changes of variables y = et and y = e−t respectively.

4. Factorization theorem for differential equations with double poles

In this section we consider the differential equation

x
dv

dx
= J(Ω1x + Ω0 + αJ + Ω−1x

−1)v. (4.1)

To accommodate forthcoming examples, we have introduced the skew-symmetric matrix

αJ into the constant term for some α ∈ R.

Theorem 4.1. Suppose that Ω1,Ω0 and Ω−1 are real symmetric (2n) × (2n) constant

matrices such that Ω1 ≥ 0 and −Ω−1 ≥ 0. Suppose further that v satisfies (4.1), and

that xαv(x) and xα−1v(x) are bounded functions in L2((1,∞); dx;R4n). Then there ex-

ists a real linear subspace K of R4n with dim(K) ≤ rank(Ω1) + rank(Ω−1) and φ ∈
L2((1,∞); dx/x;K) such that Γφ : L2((1,∞); dx/x) → L2((1,∞); dx/x;K) is continuous

and the kernel

W (x, y) =
(xy)(2α+1)/2

x − y

〈

Jv(x), v(y)
〉

(4.2)

factors as

W = Γ∗

φΓφ. (4.3)

In particular, if rank(Ω1) + rank(Ω−1) = 1, then W = Γ2
ψ for some ψ ∈ L2((1,∞); dx/x).

Proof. We observe that by homogeneity

(

x
∂

∂x
+ y

∂

∂y

) (xy)(2α+1)/2

x − y
= 2α

(xy)(2α+1)/2

x− y
(x, y > 0;x 6= y), (4.4)

and hence

(

x
∂

∂x
+ y

∂

∂y

)

W (x, y) = 2α
(xy)(2α+1)/2

x− y

〈

Jv(x), v(y)
〉

+
(xy)(2α+1)/2

x − y

(〈

Jx
dv

dx
, v(y)

〉

+
〈

Jv(x), y
dv

dy

〉)

, (4.5)

where the matrices involved in the final terms in (4.5) are

J2(Ω1x+ Ω0 + αJ + Ω−1x
−1) + (Ω1y + Ω0 − αJ + Ω−1y

−1)J∗J
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= −Ω1(x − y) + Ω−1(x− y)/(xy) − 2αJ.

By cancelling the terms that involve J , we obtain

(

x
∂

∂x
+ y

∂

∂y

)

W (x, y) = −(xy)2α+1)/2〈Ω1v(x), v(y)〉+(xy)(2α+1)/2〈Ω−1v(x), v(y)〉. (4.6)

We introduce the column vector

ψ(x) =

[ √
Ω1x

(2α+1)/2v(x)√
−Ω

−1x
(2α−1)/2v(x)

]

(4.7)

which belongs to L2((1,∞); dx/x;R4n) and satisfies

(

x
∂

∂x
+ y

∂

∂y

)

∫

∞

1

〈ψ(tx), ψ(ty)〉 dt
t

= −〈ψ(x), ψ(y)〉.

Hence

W (x, y) =

∫

∞

1

〈ψ(tx), ψ(ty)〉 dt
t

+ h(x/y) (4.8)

where h(x/y) → 0 as x → ∞ or y → ∞; so h = 0. One can conclude the proof by arguing

as in Theorem 1.2.

We consider later some examples in which Ω−1 = 0. In this case, we can invoke the

following existence theorem for solutions.

Proposition 4.2. Suppose that the residue matrix A−1 has eigenvalues λj such that the

differences λj − λk are never equal to a natural integer. Then the differential equation

z
d

dz
X = (A0z +A−1)X (4.9)

with X(z) ∈M2n(C) has a non-trivial solution of the form X(z) = Y (z)zA−1 , where Y is

an entire matrix function of order one.

For a proof see [8], where Hille also discusses the asymptotic form of the solutions in

terms of the Laplace transform. Note that the Laplace transform of (4.9) has a similar

form to (4.9) itself and in particular has the residue matrix A−1 + I.

5. Examples of factorization for differential equations with double poles

5.1. Modified Bessel functions

For 0 ≤ ν < 1, MacDonald’s function is defined by

Kν(z) =

∫

∞

0

e−z cosh t cosh(νt) dt (<z > 0) (5.1)
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and satisfies the modified Bessel equation z2K ′′

ν + zK ′

ν − (ν2 + z2)Kν = 0; hence u(x) =
√
xKν(2

√
x) satisfies

u′′(x) =
(1

x
+
ν2 − 1

4x2

)

u(x). (5.2)

By [7, 8.451], Kν(x) decays exponentially as x → ∞. We can apply Theorem 4.1 to the

system

x
d

dx

[

u
w

]

=

[

−1 1
x − 2 + 1

4(ν2 − 1) 2

] [

u
w

]

, (5.3)

so that, in terms of Theorem 4.1,

Ω1 =

[

1 0
0 0

]

, Ω0 =

[

−2 + 1
4 (ν2 − 1) 3

2
3
2 −1

]

, α = −1/2, Ω−1 = 0, (5.4)

where the residue matrix A−1 = JΩ0 − αI has eigenvalues (1/2) ± (ν/2).

Thus one obtains

u(x)v(y) − u(y)v(x)

x − y
=

∫

∞

1

u(tx)u(ty)
dt

t

and after some reduction, one deduces that

Kν (2
√
x)
√
yK ′

ν(2
√
y) −√

xK ′

ν(2
√
x)Kν(2

√
y)

x − y
=

∫

∞

1

Kν(2
√
tx)Kν (2

√
ty)dt (5.5)

where the right-hand side is the square of a Hankel operator of Hilbert–Schmidt class.

5.2. Bessel functions

The Bessel function Jν satisfies x2J ′′

ν + xJ ′

ν + (x2 − ν2)Jν = 0, and hence u =
√
xJν(2

√
x) satisfies

u′′(x) +
( 1

x
+

1 − ν2

4x2

)

u(x) = 0. (5.6)

One can apply Theorem 4.1 with some obvious sign changes to the system

x
d

dx

[

u
w

]

=

[

−1 1
−x− 2 − 1

4
(1 − ν2) 2

] [

u
w

]

, (5.7)

and after some reduction one obtains an identity from [18]

√
xJ ′

ν(2
√
x)Jν(2

√
y) − Jν(2

√
x)
√
yJ ′

ν(2
√
y)

x− y
=

∫ 1

0

Jν(2
√
tx)Jν(2

√
ty)dt. (5.8)
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5.3. Whittaker’s functions

The homogeneous confluent hypergeometric equation may be reduced to Whittaker’s equa-

tion

w′′ +
(

−1

4
+
κ

x
+

1
4
− ν2

x2

)

w = 0, (5.9)

and the solutions of this are known as Whittaker’s functions. In [7, 9.227], the authors

give a solution w(z) = Wκ,ν(z) such that w(z) � e−z/2zκ as z → ∞ along (0,∞). Kernels

involving Whittaker’s function appear in [3].

Proposition 5.3. Suppose that u(x) = Wκ,ν(2
√
x) for some κ ≤ 0. Then there exists a

function Φ ∈ L2((1,∞); dx/x;K) for a separable Hilbert space K such that

W (x, y) = (xy)1/4
u(x)u′(y) − u′(x)u(y)

x − y
(5.10)

factors as W = Γ∗

ΦΓΦ.

Proof. We can write, after a little reduction

x
d

dx

[

u
v

]

=
1

4

[

−4 4
x − 2κ

√
x− ( 1

4 − ν2) − 6 6

] [

u
v

]

, (5.11)

which gives

Ω(x) =
1

4

[

x − 2κ
√
x− ( 1

4 − ν2) − 6 5
5 −4

]

− 1

4

[

0 −1
1 0

]

, (5.12)

hence α = −1/4. The function
√
x is operator monotone increasing on (0,∞); indeed,

φt(x) = t1/4/(t + x) belongs to L2((0,∞); dt) with ‖φt‖2
L2 = π/(2

√
x) and satisfies

√
x−√

y

x− y
=

1

π

∫

∞

0

√
tdt

(x + t)(y + t)

=
1

π

∫

∞

0

φt(x)φt(y) dt. (5.13)

We observe that x1/4u(x)φt(x) belongs to L2((1,∞); dx/x) and since

(

x
∂

∂x
+ y

∂

∂y

)

W (x, y) = −1

4
(xy)1/4u(x)u(y)

+
κ

2π
(xy)1/4u(x)u(y)

∫

∞

0

φt(x)φt(y) dt (5.14)
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we have

W (x, y) =
1

4

∫

∞

1

u(xs)u(ys)(xy)1/4
ds

s1/2

− κ

2π

∫

∞

1

∫

∞

0

φt(sx)φt(sy)u(sx)u(sy)(xy)1/4
dtds

s1/2
. (5.15)

Hence W = Γ∗

ΦΓΦ, where K = R ⊕ L2((0,∞); dt) and Φ : (0,∞) → K is

Φ(x) = 2−1x1/4u(x) ⊕ (−κ/2π)1/2x1/4u(x)φt(x). (5.16)

Remarks 5.4. (i) The condition κ ≤ 0 in Proposition 5.3 excludes the case of the asso-

ciated Laguerre functions w(x) = x(1+α)/2e−x/2L
(α)
n (x), where L

(α)
n with (n = 0, 1, 2, . . .)

are the associated Laguerre polynomials as in [14] and [7, 9.237].

(ii) The Laplace transforms of
√
xKν (2

√
x) and

√
xJν(2

√
x) may be expressed in terms of

Whittaker’s functions.

(iii) Bessel’s equation may be transformed into the typical confluent hypergeometric equa-

tion as in [8, p. 228].

Acknowledgement. I am grateful to the referee for pointing out reference [20].
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