
Investigating the use of metaheuristics for
solving single vehicle routing problems with
time-varying traversal costs
K Harwood

1�, C Mumford
1
and R Eglese

2

1
Cardiff University, Wales, UK; and

2
Lancaster University Management School, Lancaster, UK

Metaheuristic algorithms, such as simulated annealing and tabu search, are popular solution techniques
for vehicle routing problems (VRPs). These approaches rely on iterative improvements to a starting
solution, involving slight alterations to the routes (ie, neighbourhood moves), moving a node to a
different part of a solution, swapping nodes or inverting sections of a tour, for example. When working
with standard VRPs, where the costs of the arcs do not vary with advancing time, evaluating changes to
the total cost following a neighbourhood move is a simple process: simply subtract the cost of the
links removed from the solution and add the costs for the new links. When a time-varying aspect
(eg, congestion) is included in the costs, these calculations become estimations rather than exact values.
This paper focuses on a single vehicle routing problem, similar to the Travelling Salesman Problem, and
investigates the potential for using estimation methods on simple models with time-variant costs,
mimicking the effects of road congestion.

Journal of the Operational Research Society (2013) 64, 34–47. doi:10.1057/jors.2012.17

Published online 4 April 2012

Keywords: vehicle routing; time varying; congestion; Road Timetable; 2-Opt

1. Introduction

The vehicle routing problem (VRP) is a combinatorial

optimisation problem where a set of customers are visited

by a fleet of vehicles (in some cases, the ‘fleet’ may consist

of only one vehicle). Each vehicle starts at a depot,

traversing arcs from customer to customer forming a

tour, returning to the depot at the end of the tour. The

customers and depots are represented by nodes with arcs

connecting them forming a connected graph. Each of the

arcs connecting the nodes has an associated cost, and

the goal is to visit all the customers in such a way that the

overall cost is minimised. The cost can be measured in

various ways and may refer to distance, time, or the

number of vehicles, for example, or weighted combinations

of these. There are a number of different variants on the

VRP. For example, customers may have to be visited at

certain times (ie, within specified time windows), and this

may involve deliveries, pickups or both. This paper

considers a fairly new variant, in which the costs (in this

case, travel times) between customers vary according to the

time of day or the day of the week, whereas in standard

VRPs they are fixed.

Given the predominance of heuristic and metaheuristic

methods for solving large real-world VRPs, we concentrate

on the important research issues surrounding the concept

of the ‘neighbourhood move’, which is a central feature of

all solution methods that rely on local search. Assessing

whether or not a neighbourhood move produces an

improvement is not so straightforward in a time-varying

environment in which travel times between locations are

likely to vary depending on the level of congestion.

To keep things simple, we will focus on the single vehicle

routing problem (SVRP). This is functionally a slight

modification of the standard Travelling Salesman Problem

(TSP). TSPs feature a single vehicle that takes a tour of a

number of customers, visiting each customer exactly once

and returning to its starting location at the end of the tour.

With the TSP, the tour can begin with ANY city. With the

SVRP, the single tour must start and end with a single

depot. The goal is to try to minimise the total cost (in this

case, time taken) by finding ‘cheaper’ routes for the vehicle

while still visiting all the customers within any constraints

of the problem. Although the SVRP is essentially identical

to the TSP under normal circumstances, when travel times

along arcs are subject to variation, selecting alternative

starting/finishing nodes for a particular tour can signifi-

cantly affect the total travel times (ie, tour lengths). For

this reason, we will refer to our problem as the SVRP

rather than the TSP throughout this paper.

Journal of the Operational Research Society (2013) 64, 34–47 © 2013 Operational Research Society Ltd. All rights reserved. 0160-5682/13

www.palgrave-journals.com/jors/

�Correspondence: K Harwood, Computer Science & Informatics, Cardiff

University, Queen’s Buildings, 5 The Parade, Roath, Cardiff, Wales CF24

3AA, UK.

E-mail: K.G.Harwood@cs.cardiff.ac.uk



In the next section, we introduce time-varying travel

networks and discuss the difficulties that arise when

implementing heuristic or metaheuristic search. A basic

problem formulation is also included. Section 3 covers the

background to the problem in more detail, examining

related literature, and considering various approaches to

modelling the problem and some of the difficulties that

have been encountered. In Section 4, we scope our

experiments, explaining in detail the neighbourhood move

we will be using, and describing our test instances and

how we construct starting solutions. Our experimental

plan is presented in Section 5 along with an explanation of

how the results will be evaluated. The results them-

selves are also presented in this section, and a discussion

of our main findings follows. Finally, in the last section, we

draw conclusions and talk about future work that is

planned.

2. Time-varying travel networks

In standard VRPs and TSPs, the costs of traversing the

arcs are the same throughout the lifetime of the problem.

However, in the real world, this is not usually the case

when we are considering travel times, as many roads are

quicker to traverse at some times of day than at others.

There are a number of factors that contribute to this, but

congestion is a major cause. By congestion we mean

‘crowding’ on the road, leading to queuing and speed

reduction. However, congestion itself is impossible to

predict exactly, even when reliable data on traffic volume

are available. Weather conditions and ‘random’ effects

caused by accidents, broken-down vehicles and so on also

have an impact. Nevertheless, route planners can benefit

from historical data for traffic volume and road speed, to

help them avoid using certain roads at regularly congested

times (Eglese et al, 2006).

Normally, when using a heuristic or metaheuristic

improvement method to solve a VRP, small changes or

neighbourhood moves are made to a starting solution in an

attempt to improve the solution in a step-by-step fashion.

At each iteration, a neighbourhood move is applied and

the quality of the new solution is assessed. Over a period of

time, the search will focus on the most promising solutions

and the poorest will be discarded. The exact procedure

chosen will depend on the precise search algorithm

adopted.

Solution quality can be evaluated in a number of ways,

but we will simply take the total time required to visit all

the customers. For time invariant SVRPs the value of the

objective function for a new solution generated by a

neighbourhood move is easily calculated from the previous

solution. This is done by simply subtracting the costs of the

arcs that have been removed from the solution and adding

the costs of the arcs that are new to the solution. However,

with the time variant model this is not so straightforward.

Simply subtracting the costs of the deleted arcs and adding

the costs of the newly created arcs will not produce an

accurate result, because changes that are made early on in a

tour will have a knock-on effect, with arcs traversed later in

the tour being reached at a different time of day than they

were in the previous solution. If some roads are more

congested than others, for example during the rush hour, a

detour later on in a tour may save time, even if a longer

travel distance is involved.

In order to calculate the precise effect of a neighbour-

hood move on a tour with time-varying traversal costs,

every arc from the first change in the tour until the end of

that tour will need to be examined and the cumulative cost

of the path containing all these arcs from the latter part of

the tour must be re-computed. Once the total tour length

for the new solution has been calculated, it can be

compared with the tour length of its predecessor. The

computational effort required to re-evaluate large parts of

a route every time a neighbourhood move is tried is

obviously considerably higher when compared with the

simple procedure of adding and deleting a small number of

edges. Clearly, applying the simple calculations for

adding and deleting edges in the time-varying case will

give an ‘estimate’ of the actual change, which may be

acceptable in certain situations, especially if congestion is

very light or if it uniformly affects most roads in a similar

way.

The main focus of this paper is to consider ways in which

it is possible to determine, with reasonable accuracy,

whether a neighbourhood move is likely to lead to an

improvement of the current objective value, while keeping

the computing time to a minimum.

We will examine the accuracy and potential usefulness of

applying some simple estimates of tour length changes in

order to guide heuristic and metaheuristic search proce-

dures applied to time-dependent SVRPs. For this pre-

liminary work, we will base our SVRP instances on

benchmark TSP instances from TSPLIB (http://comopt

.ifi.uni-heidelberg.de/software/TSPLIB95/, accessed 10

January 2011), for which we will identify one of the nodes

as the depot. To the distance matrix for the arcs of the

TSP, we will apply speed matrices that will vary according

to the time of day and in this way we will obtain our travel

times. We will study the trade-off between computation

speed (estimates are faster) versus computation accuracy

(re-evaluations of all affected arcs will give more reliable

results). We expect that in some situations an estimate will

be good enough to guide a heuristic or metaheuristic

algorithm towards better solutions, and in other cases that

it will not be, requiring a fuller evaluation of the new tour.

We eventually aim to establish some useful rules of thumb,

which could be used to guide a heuristic or metaheuristic

algorithm and inform it at each stage whether or not an

estimate is appropriate.

K Harwood et al—Investigating the use of metaheuristics 35



2.1. Problem formulation

Although congestion levels are a constantly changing

value, and a perfect model would reflect this, it is much

easier to simplify our model by discretising the data. The

method we have used is to divide the day up into ‘time

bins’, periods of time during which the speed on each arc is

assumed to be the same throughout. Obviously, the more

time bins that are used, the closer the model is to the real

world, but also the more calculations and lookups are

needed. Time bins are explained further in the next section.

A network for the single vehicle, time variant VRP that

we will investigate consists of:

K a connected graph, G (which may or may not be a

complete graph);

K a set of n vertices, V ¼ fv1:::vng 2 G with v1 the depot

and {v2 . . . vn} the customers;

K a set of directed edges, E ¼ fevivj 2 Gjvi; vj 2 V; viavj};

K a set of r time bins, P ¼ fp1:::prg, we will assume each

has equal width w;

K a set of traversal times for every edge evivj 2 E for each

time bin pk 2 P, T ðevivj ; pkÞ.

A solution is an ordered set S ¼ {s1 . . . snþ 1} beginning

and ending with the depot, s1¼ snþ 1¼ v1, with {s2 . . . sn} a

permutation of the customer vertices, {v2, . . . , vn}.

The objective is to minimise the total traversal time of

the tour, that is, the sum of the traversal times of each link.

A simplified pseudocode version of the method we used for

calculating the total traversal time is shown in Algorithm 1.

TT¼ total traversal time and t¼ current time.

Algorithm 1 Total Traversal Time Computation

t’0 {The start time is 0 in all our experiments, but this

need not be the case}

TT’0 {Initialise total travel time}

for i’1 to n do

j’(It/wmmod r)þ 1 {Possibly roll over to next day}

TT’TTþT ðesisiþ1 ; pjÞ {Lookup from table}

t’tþT ðesisiþ1 ; pjÞ {Any loading times would also be

added here}

end for

Print TT {The total time spent to traverse the graph}

Assigning TT involves looking up the traversal times

for each link in a table, using the edges’s source and

destination nodes and the current time bin. This pseudo-

code ignores the first in first out (FIFO) problem, which we

will cover later.

3. Background

As far as we are aware, previous research in the field of

time-varying traversal costs is rather limited, and most of

this effort has concentrated on shortest path computations.

Efficient methods for evaluating shortest paths in a time-

varying environment can be incorporated into more

complex VRPs, and thus form essential components of

algorithms designed to solve real-world problems. We will

start by highlighting key publications covering shortest

path algorithms for time-variant travel. Next, we will

extend our discussion to time-variant costs for VRPs.

The underlying approach is based on Dijkstra’s label

setting algorithm (LSA) (Dijkstra, 1959), which finds

the shortest path between any two nodes in a network.

The original paper noted that the algorithm also works

when the arcs are directed, that is, the traversal times are

based on the direction of travel between the nodes. Over

the years, various researchers have adapted this algorithm:

applying it to time-variant networks (Dreyfus, 1969) and

examining the limitations of finding the shortest path

within a time-varying environment and proving that it is

valid for a network that maintains the FIFO property

(Kaufman and Smith, 1993), also referred to as the non-

passing property (Sung et al, 2000). There are a number of

ways that this can be achieved, which we will explain later.

There are many approaches to solve standard versions of

TSPs and VRPs. However, it is invariably the case that

these methods need some modification before they can be

applied to VRPs with time-varying traversal costs. We will

now look at some approaches that are possible.

We begin with a brief mention of a very simple

construction heuristic: a greedy nearest neighbour (NN)

algorithm. In its simplest form, NN will begin with a

starting node (in the case of our SVRP, this will be the

depot) and build a path in an iterative fashion by adding

the closest unvisited node to one or the other end of the

partial path, eventually producing a path that passes

through all the nodes. Finally, the two ends of the path are

joined to form a tour. The only modification that needs to

be made to NN when used in a time-varying system is that

it becomes a directed path, and new nodes can only be

added to one end of the path. Although we are not aware

of any publications that use NN for solving the time-

variant TSP, it clearly has potential for creating an initial

solution for a heuristic algorithm.

An exact method for solving VRPs is Dynamic

Programming (DP). Its run time complexity of O(n22n) is

a considerable improvement over other exact techniques.

Some authors (Kok et al, 2009; Malandraki and Dial,

1996) have used a restricted form of DP for problems with

time-varying traversal costs that, while no longer exact,

gives good results.

By far the most popular solution methods for VRPs

involve heuristic and metaheuristic techniques, although

very little previous work has been done using these

approaches in a time-varying environment. Our aim in

the next two subsections is to identify the difficulties that

stem from time-varying aspects, and adapt our solution

36 Journal of the Operational Research Society Vol. 64, No. 1



methodology to accommodate them. One major issue with

a time-varying system is how to model the time variance.

Another problem, which stems from the modelling issue, is

the FIFO problem.

3.1. Modelling time-varying travel

Time-varying travel costs are difficult to model. Although

discrete models are desirable, real roads are not uniform

and vehicle speeds tend to vary continuously. Most authors

(Eglese et al, 2006; Ichoua et al, 2003; Sung et al, 2000)

nevertheless resolve the issue by simply assuming that the

speed is the same across the entirety of a specified road

section. Fortunately, providing the road sections are not

too long, this does not seem to cause too much error. Most

researchers also discretise the time, such that the speed of a

vehicle will remain constant until a new section of road is

reached or a new period of time entered.

There are many methods that can be used for modelling

congestion. The simplest method used by some authors

(Fisher et al, 1982; Hill et al, 1988) is that of incorpo-

rating congestion in a time-dependent way, which we will

refer to as uniform multiplicative congestion. This is based

on two simplifying assumptions: (1) that vehicles travel at

the same speed on all roads and (2) that congestion

uniformly affects all roads in exactly the same way (eg,

between 8 a.m. and 10 a.m. all roads take twice as long to

traverse).

In their paper, Ichoua et al (2003) introduced and

explained the concept of a Travel Speed Matrix (TSM).

The idea is similar to the uniform multiplicative approach

mentioned above, but with a heterogeneous set of roads,

rather than homogeneous (eg, some roads are faster to

traverse than others, representing the difference between a

motorway and a minor road). In the simplified TSM that

Ichoua et al used, the roads are still affected to the same

degree by congestion (so the second assumption of uniform

multiplicative congestion is retained). An in-depth review

can be found in the next subsection (the FIFO problem).

Lastly, Eglese et al (2006) detailed the construction of a

Road Timetable using Dijkstra’s LSA to create a complete

graph of shortest times between the customers. They

illustrated this process using a real-world example, which

had a base (incomplete) graph with 3326 arcs and 1666

nodes. Of these nodes, 18 were designated as customers

and one as the depot. Dijkstra’s LSA was used to construct

the Road Timetable between these 19 primary entities

(a table with the traversal time between every pair of

primary nodes during every time bin) and then that was

used to form an illustrative instance of the time-varying

VRP. Because the times come from samples of actual

road speeds, the congestion does not follow a simplistic

multiplicative pattern. The instance featured capacitated

vehicles, time windows and demand on each customer

(randomly generated).

3.2. The FIFO problem

Essentially, the FIFO property states that if a vehicle is

traversing a link, then the later it leaves the start node the

later it will arrive at the end node. Without the FIFO

property, a situation may arise, for example, where the

fastest way to get from A to B is to wait at A for 5min

before heading to B. There are some scenarios, such as air

travel (Malandraki and Dial, 1996), where this can be

appropriate.

In the present paper, however, we are considering only a

single vehicle type visiting a predefined set of customers. It

has been shown (Horn, 2000) that if the speed of a vehicle

is correctly updated whenever it enters a new time bin, then

the FIFO property is maintained. Note also that, in reality,

it is possible for a vehicle leaving the depot at a later time

to completely catch-up with an earlier vehicle. However, in

discretised models this can never happen because the model

has only one speed for an entire arc’s length, whereas in

reality there can be traffic queued at one end of a road and

not the other.

Some authors (Ichoua et al, 2003; Sung et al, 2000;

Horn, 2000) resolve the problem of FIFO by using a step

function. This method involves modelling the congestion

levels by splitting the day into discrete time bins, referred to

as intervals or periods in Ichoua’s work. If a vehicle enters

a new time bin while traversing an arc, the amount of time

that is spent in each time bin is calculated separately and

averaged. The result is that the FIFO property is

maintained.

Eglese et al (2006) used a method equivalent to the one

used by Ichoua et al, but coded to reduce computation time

when the network is made up of many short arcs. For this

paper, we will update vehicle speeds whenever travel across

an arc spans more than one time bin in order to model the

effects of the time-variant congestion.

4. Scoping our experiments

Recall that the main purpose of this paper is to

explore efficient ways to assess neighbourhood moves for

heuristic and metaheuristic algorithms operating in a time-

varying traversal cost environment. We will tackle this in

two stages: first by speeding up the assessment of single

neighbourhood moves (ie, the microscopic level), and

second by speeding up a complete heuristic/metaheuristic

framework (ie, the macroscopic level).

4.1. Overview of experiments

The main idea for our first set of experiments is to test how

well estimates can be used to predict whether a given

neighbourhood move will produce an improvement to the

solution or not, avoiding the need for full evaluations of a

neighbourhood tour wherever possible. In the experiments,

K Harwood et al—Investigating the use of metaheuristics 37



we plan to compare estimates with full computations and

measure the accuracy of our estimates simply by counting

how many times they are correct in their predictions versus

how many times they are wrong. It is likely that estimates

may work well in some situations and not in others, and

establishing some simple ‘rules of thumb’ to provide

adaptive guidance to an iterative improvement scheme is

our long-term goal. In the second set of experiments, we

propose to assess the run time versus solution quality trade-

off obtained by using estimates during the execution of a

simple hillclimbing algorithm.

For the present work, we aim to keep our scope fairly

narrow, so that the number of experiments is manageable.

Our plan is to use the results of the preliminary experi-

ments we carry out here to guide our future work. Thus for

simplicity, we will focus on just one type of neighbourhood

move, limit our congestion models to two types and our

problem instances to two small ones for the first set of

experiments, with two extra instances added for the second

set of experiments.

4.2. Assessing individual neighbourhood moves
(microscopic level)

Given a particular problem instance, we will begin each

experimental run by generating starting tours that are

either random or greedy (further details can be found under

Starting Solution Construction). The random starting

solution is included to see whether estimates will work as

effectively when used on a poor solution as they do when

used on a rather better solution. A neighbourhood move

will then be performed on this starting solution and an

‘estimate’ of the comparative quality of the new candidate

solution will be produced. This estimate will be derived

from the time invariant model, that is, we simply take the

cost of the arcs that are added and subtract those that

are deleted. A ‘cumulative tour cost (CTC)’ is kept that

represents the cost of traversing the arcs up to each

node, so the difference in the CTC before and after

the arc’s traversal is the cost of traversing that arc. The

new arcs that are being added are simply looked up in

the cost matrix, matching the time slot in which they are

traversed. As a brief example, given a complete tour

ABCDA, if the time taken to reach node B in the tour is

104min and the time taken to reach node C is 152min then

the time taken to traverse the arc between B and C is

152�104¼ 48min.

Once the ‘estimate’ has been made, the programme then

calculates the actual change that the time-varying cost

matrix determines. In order to perform this evaluation, the

travel time for every arc that occurs in the tour following

the first change is measured (clearly, the first part of the

tour is unchanged, so the CTC up until then can be used).

The difference between the original solution and the new

solution’s value is then compared with the ‘estimate’

calculated earlier and the results are plotted on a graph.

4.3. Assessment in a heuristic/metaheursitic framework
(macroscopic level)

When it comes to solving a VRP, there will always be a

trade-off between solution quality and resource utilisation,

particularly run time. In the first set of experiments, we

examine how often our estimation tool makes correct

predictions versus how often it is wrong. The second set of

experiments will focus on trading off solution quality

versus run time by testing our estimation tool within a

simple heuristic framework.

We will use a simple hill climber and test it with and

without our estimation tool. At each cycle of the hill

climber, a neighbourhood move will be performed and its

quality estimated and/or calculated. If the tour is judged to

be shorter following the change, then the new tour will

replace the current tour as the focus of the search.

4.4. 2-opt and other neighbourhood moves

For all of our experiments, we will be using only one type

of neighbourhood move: 2-opt. With this method, two

arbitrary nodes are selected, and the path between

these two points (inclusive) is inverted and re-attached

(see Figure 1). In the time invariant scenario, such a

rearrangement will not cause much disruption on a sym-

metric problem, simply the removal of the preceding arcs

to both nodes and the addition of the new connecting arcs.

In the time-varying scenario. However, the fact that the

intervening nodes are traversed in reverse order can have a

much greater effect on the solution quality.

With a 2-opt operation, the resulting tour can be

considered in three parts: pre-change, changed and post-

change. Illustrative examples are included below (please

refer to Figure 1).

Pre-change: The part of the tour from the depot (A) until

just before the first change (C). The traversal times will be

the same for this section of tour, as the change only takes

effect after C.

Changed: This part of the tour is from C to G. This is the

section of the tour that has been inverted and will thus be

traversed in the opposite direction.

Post-change: Assuming that the FIFO property is held, if

the tour is an improvement at node G then it will be an

improvement overall and vice versa (the first to enter into

the final part of the tour will be the first one to complete it).

Taking into account this division of the problem, it

can be seen that only the changed section needs to be

38 Journal of the Operational Research Society Vol. 64, No. 1



re-calculated in order to find out whether the neighbour-

hood move will lead to an improvement, although the post-

change section must be calculated in order to evaluate the

magnitude of any improvements.

4.5. Problem instances

The problem instances that we will be using for the first

experiment set are based on two instances from TSPLIB

(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95,

accessed 10 January 2011), bier127 (127 beer gardens

in Augsburg (Bavaria) by Juenger/Reinelt) and a280

(drilling problem by Ludwig). These instances are con-

verted into SVRP instances by assigning one city as a

depot. Five different variants of each instance are pro-

duced by selecting a different node as the depot in each

case.

These are symmetric SVRP instances, with the distances

between the nodes represented as the Cartesian distances

between the points. For the two methods of congestion

modelling used in this paper, we will assign travel times to

each link and minimise those, rather than travel distance,

in our objective function. Furthermore, these travel times

will be affected by the speed that the congestion model

enforces on the arc, so that there are different speeds on

different roads at different times of day. The two TSPLIB

instances were chosen because they are quite different in

appearance. a280 has an even distribution of nodes in neat

lines, whereas bier127 has a tight cluster of points in

the centre and then outliers spread out around the centre

(see Figure 2).

For the second set of experiments (using the hill climbing

framework), we retain the two problem instances used in

the first experiments (a280 and bier127) for continuity, and

add two more from TSPLIB: a much smaller problem

(bayg29) featuring 29 nodes that are irregularly but fairly

evenly distributed, and a much larger problem (gr666),

which is irregular and clustered, based loosely on the

distribution of airports around the globe (but converted

into a two-dimensional Cartesian problem).

4.6. Producing congestion values

In their paper, Ichoua et al used a simple set-up with three

different road classifications (these represent types of road,

such as ‘motorway’ or ‘A roads’) and three time bins. The

congestion in the first and third time bin was the same,

representing morning and evening congestion, while the

second time bin represented the uncongested travel in the

middle of the day. Three different scenarios using this set-

up were performed by Ichoua et al, with the ratio between

the two congestion levels different for each scenario,

leading to the situations having different degrees of ‘time

dependency’. Table 1 illustrates different speeds on different

road types at different times of day. A high number repre-

sents a faster (and preferable) route.

Figure 1 Four step process of 2-opt.

K Harwood et al—Investigating the use of metaheuristics 39



Table 1 is created by assigning speeds to each classifica-

tion of road and then applying multiplicative congestion. A

simple way to show how this works is by using a column

matrix to represent the speeds and a row matrix to

represent the multiplicative congestion values:

0:81
1:22
1:82

�
�
�
�
�
�

�
�
�
�
�
�

� 2=3 1 2=3j j ¼
0:54 0:81 0:54
0:81 1:22 0:81
1:22 1:82 1:22

�
�
�
�
�
�

�
�
�
�
�
�

It is worth noting that, similar to the uniform multi-

plicative method described earlier, in the TSM implemen-

tation used by Ichoua et al, all the roads are affected by

congestion in exactly the same way. It is only when

time windows are involved that the congestion becomes

disruptive. For our experiments, the TSM will be using

road classification factors of 0.8, 1 and 1.5 to represent

hypothetical B roads, A roads and motorways, respec-

tively. The multiplicative factor will then be applied to the

roads in the same way as it is in the basic, multiplicative

problem.

The uniform multiplicative method uses a homogenous

set of roads, on which the speeds are all the same, whereas

the TSM introduces heterogeneous roads, upon which

there are three different speeds. Therefore, from now on

these methods will be referred to as speed1 and speed3 to

indicate that the roads have all one speed, or three different

speeds, respectively. Modelling like this means that the

roads are symmetrical, that is, it takes as long to traverse

them one direction as it does the other direction. Although

this is not reflective of real-life situations, it does simplify

the experiments.

Through our experiments, we propose to investigate the

effects of congestion in order to help model real-life

situations. We will focus on just two congestion models for

the first experiment set (see Figure 3). The first model,

which we will call stepped, is a simple stepped decrease,

from 5 (high congestion) down to 1 (no congestion) over

the course of the ‘day’, then an equally steady increase

from 1 back to 5 over the ‘night’. The other one we

will refer to as twin peak congestion, starting at 1 at

the beginning of the ‘day’ and changing quite rapidly

throughout the day, with a medium level of congestion in

the middle of the day and two ‘peaks’ of high congestion

(to simulate the morning and evening rush hours). Both of

these congestion models will be repeated from one day into

consecutive days, although the runs should not go very far

into the second day, if at all. For the second set of

experiments, we only plan to use one model, twin peak,

with speed3 roads, to represent morning and afternoon

‘rush hour’ congestion.

Figure 2 The four problem instances used in our study.

Table 1 Ichoua’s TSM 1: Example showing speeds on three
road types at different times of day

Time bins (t)

Three road type (c) A 0.54 0.81 0.54
B 0.81 1.22 0.81
C 1.22 1.82 1.22

40 Journal of the Operational Research Society Vol. 64, No. 1



4.7. Starting solution construction

For the first set of experiments, we will produce greedy and

random starting solutions as follows:

1. A greedy NN algorithm was run on each instance,

starting from the depot. The algorithm has no

random element to it, so only one tour will result in

each case. This produces a (comparatively) good

solution.

2. A randomised tour was produced for each instance,

starting with the corresponding greedy solution, by

randomly shuffling the non-depot nodes and then

completing the tour by adding the depot to the end.

This produces a random solution.

Of particular note is that the two types of starting

solution will have substantially different tour lengths.

Greedy tours are generally three times faster to traverse

than the random tours. Sometimes random solutions

are so slow to traverse that travel will overflow into a

second day.

For the second set of experiments, random tours will be

produced using the same method as above. We will be

creating 20 starting solutions, five for each of the

four problem instances that we use. For each problem

instance, five different nodes will be designated as the

depot, and these will be chosen in a methodical way; for

example, with bier127 the starting nodes will be 1, 26, 51,

76 and 101.

Clearly the effectiveness of our estimation method on

greedy starting tours is likely to be of more interest than its

performance on random starting tours, given that a

heuristic or metaheuristic search spends most of its time

enhancing good solutions to make them even better, and

little (or no) time at the start of the search dealing with very

poor solutions. Indeed, a greedy construction algorithm,

such as NN, is frequently applied to produce a starting

solution for real-world problems, and the heuristic or

metaheuristic search applied to that rather than to a

random starting solution. However, we believe that it is

important to assess the validity of our estimates in a variety

of situations.

4.8. Tour evaluation methods

We will now expand on the alternative methods for

evaluating tour quality, referring back to Figure 1. We will

consider three approaches, described below:

Naı̈ve: This method is the simplest of the methods we will

be using. The pre-change tour does not need to be re-

calculated, so this approach starts at C and then calculates

the traversal time of each arc from C until it reaches A (ie,

all the arcs in both the changed and the post-change

sections). If the final result is an improvement on the

original then this new tour is used, otherwise it is discarded.

Standard: This method is similar to the naı̈ve method, but

with an added calculation that should speed it up, relying

on the FIFO property. It calculates every arc of the changed

section (from C to G inclusive) and then, upon reaching G,

it compares the current CTC with the CTC of the original

tour at G. If it is an improvement then it calculates the post-

change section in order to find out the overall tour length

(and thus determine how much of an improvement it is). If

it is not an improvement, it discards it.

Estimate: This method is based on the standard method,

but uses the estimation tool first and only calculates the

changed section if the estimation tool suggests that it will

lead to an improvement, for example, the method first

looks at the traversal times of CD and FG in the old tour,

then calculates CF and guesses at DG (using the

assumption that DG will be traversed at the same time in

the new tour as FG was in the old tour). It then compares

CD þ FG with CF þ DG, if the former is quicker then it

calculates the changed section exactly as the standard

method does, and then the post-change section if it turns

out to be an improvement, if it is slower then it discards the

new tour without any further calculation.

The tests will involve randomised starting solutions and

random choices of nodes upon which to perform the 2-opt

operation. The Final Solution Quality (FSQ) should be

about the same for the naı̈ve and standard solutions, as

they will differ in FSQ only due to experimental error. We

would expect the estimation method to produce a poorer

FSQ on average.

Figure 3 Left: Stepped congestion; Right: Twin peak congestion.

K Harwood et al—Investigating the use of metaheuristics 41



5. Experimental work

First, we will examine the potential of using estimates, by

looking in detail at how effective they are when assessing

2-opt moves. Next, we will look at overall performance

when estimates are incorporated into a simple hill-climbing

framework.

All coding was implemented in MATLAB Version

7.8.0.347 using a PC running Linux Red Hat on an Intel

Quad 2.83GHz processor with 12MB Advanced Level 2

cache, and 4GB of 800MHz RAM.

5.1. Assessing the use of estimates in individual
neighbourhood moves

We use a 2D graph (Figure 4) to help us assess the

usefulness of our estimation method, with each of the

points on the diagram representing the estimation of the

effect of a neighbourhood move compared with the actual

change that is calculated using the time-varying traversal

model. We have divided the diagram into four quadrants,

which correspond to true positive (TP), false positive (FP),

true negative (TN) and false negative (FN). To simplify our

analysis, we will focus only on membership of the four

quadrants, and principally on whether or not the predic-

tions are correct. Using the axes as dividers, the results are

easy to interpret (see Table 2).

5.2. Results for individual neighbourhood moves

In total we are using two customer distributions, two speed

models, two congestion models and two starting solutions

(16 experiments) each with five variants based on different

choices for the depots, giving 16 � 5 runs in total. Table 3

gives the average results for runs on each of the 5 runs

variants for the 16 different experiments. The left half of

the table represents the experiments run on a280 and the

right shows those run on bier127. The numbers represent

the percentage of total solutions that lie in each of the four

quadrants on our ‘estimate’ versus ‘reality’ graph.

The main purpose of these experiments is to investigate

to what extent an estimation method can be relied upon. In

order to help understand this, a comparison of ‘true’ results

(those in the TP or TN quadrants, which represent the

points for which the estimate correctly predicted whether

the change would be an improvement) against ‘false’ results

(those in the FN or FP quadrants) needs to be made.

A simplified view is that FP costs calculation time, FN

costs solution quality, TN saves calculation time and TP

contributes to solution quality. Other observations will

also be made. Each of the parameters will be looked at

in turn.

5.2.1. Congestion instance: stepped versus twin peak. Pair-

ing up each of the stepped results with its equivalent twin

peak result we find that, in the experimental pairs

involving random starting solutions, stepped congestion

produced more FP and more FN results than twin peak.

With greedy starting solutions, however, all the pairs had

more false results with twin peak (stepped had less FN

than twin peak but more FP in every instance).

As may be noticed, the ‘greedy stepped’ combination

produces few FP results. In total, four of the five runs of

a280 speed1 had two FP results (out of a total of 38 781

different node pairs) and bier127 had three runs producing

a single FP result (out of 8001). For speed3 neither

problem instance had any FP results.

One possible reason why the estimate has more FP on

stepped congestion for random but virtually none for

greedymay be because of the initial construction algorithm

used. The low number of FP results from the greedy runs

may be an artifact of the NN construction, which tends to

use short edges at the start of the tour, and long edges

increasingly as the greedy choice is reduced towards the

end of the tour.

From the above observations, we can tentatively

conclude that the estimation method, if given a greedy

starting tour, is able to cope with gradually changing

congestion much better than with congestion that alters
Figure 4 The four quadrants of the ‘estimate’ versus ‘reality’
graph.

Table 2 Properties of the four quadrants

Name Estimate
and reality

Description

FN Worse and
better

Of the most interest, as they are the
beneficial solutions that would be
ignored if the ‘estimate’ was used as a
guide for the heuristic without any
modification

TP Better and
better

Using the estimate as a guide would
find these improvements

FP Better and
worse

These would be investigated fruitlessly
if the estimate was used as a guide

TN Worse and
worse

Those tours whose needless
investigating is being avoided by using
the estimate as a guide, and thus
saving calculation time

42 Journal of the Operational Research Society Vol. 64, No. 1



more rapidly. This seems sensible: with rapidly changing

congestion the quality of the estimate is likely to be poor,

but it is reassuring to see this effect in our results. On the

results obtained on the 2-opt moves for the greedy starting

solutions, there were few or no FP results for stepped

congestion.

5.2.2. Congestion type: homogeneous (speed1) versus

heterogeneous (speed3). In all the experiments with

random starting solutions, the congestion model used

has little noticeable effect on the ratio of FP, FN and TP

obtained in our experiments, certainly less than any of the

other parameters (such as problem instance). The results

from the greedy starting solutions have more of a

noticeable difference in the ratios. However, this could

be explained (at least in part) by the small sample size, as

it is much more difficult to improve a good solution

than a poorer one. Thus, most of the results for the

neighbourhood moves applied to the greedy starting

solution are in the TN quadrant. For the rest of this

section, we will be referring only to the greedy results,

as there is no statistically significant difference between

the two congestion modelling methods for the random

starting solutions.

In every case, the estimates made for neighbourhood

moves for heterogeneous road networks produce less FP

results than estimates made on homogenous networks. The

heterogeneous routes also have less TP, FP and FN results

but more TN results. For the a280 results, the hetero-

genous routes have a decrease in both FP and FN results

and an increase in both TP and TN results. So the estimate

method is, in fact, more useful when the roads are

heterogeneous. For bier127 it is not quite as good, with

less FP for the heterogenous routes and more FN for one

of the two congestion models (the other leads to slightly

less). In both cases, the ratio of FN to TP is worse for

heterogenous (meaning that fewer of the moves that would

be improvements are identified by the estimate as being

such).

In conclusion, the congestion type of the road networks

had little effect in these scenarios. It may still be the case

that using a more realistic congestion model based on

actual speed measurements will result in the congestion

type having more effect. Within the structured SVRP

instance, it seemed that the more complex congestion

modelling system (with heterogeneous roads) actually

worked in favour of the estimation method.

5.2.3. Distribution of nodes: a280 versus bier127. In all

the scenarios, there are more FP and FN for bier127 than

a280, except for the occasions where neither have any FP

results. For the random starts, these extra incorrect

predictions seem to be at the cost of TP. For greedy

starting solutions, bier127 has more TP results for twin

peak congestion, but about the same for stepped

congestion.

The ratio of FP to FN between the two problem

instances for twin peak congestion is approximately the

same (bier127 has roughly three times as many results

of each compared with a280), independent of the conges-

tion type.

From these observations, it seems clear that the problem

instance has a fairly important effect on the estimation

quality. It seems plausible that the clustered nature of

bier127 is leading to the increased inaccuracy in the

estimates compared with the more ordered and evenly

spread a280. A more extensive study is needed to verify this

effect, involving many more problem instances.

5.3. Assessment in a heuristic framework

For these experiments, there are two issues we will investi-

gate: calculation method and problem instance. These will

be measured within a simple heuristic framework, using a

Table 3 Results for individual neighbourhood moves (%)

Congestion a280 bier127

FN TP FP TN FN TP FP TN

Random start
Speed1 and step 6.49 42.27 6.57 44.67 6.68 41.55 6.65 45.13
Speed1 and twin 4.02 45.67 4.13 46.18 5.09 44.65 5.15 45.11
Speed3 and step 5.55 46.13 5.56 42.76 6.68 41.55 6.65 45.13
Speed3 and twin 3.79 46.34 3.21 46.65 4.73 44.65 4.83 45.79

Greedy start
Speed1 and step 0.29 0.14 0.00 99.57 0.64 0.42 0.01 98.94
Speed1 and twin 0.09 0.30 0.35 99.26 0.25 0.97 1.02 97.77
Speed3 and step 0.18 0.19 0.00 99.63 0.79 0.19 0.00 99.02
Speed3 and twin 0.07 0.36 0.25 99.32 0.24 0.65 0.74 98.38

K Harwood et al—Investigating the use of metaheuristics 43



basic hill climbing algorithm. Starting with a random

starting solution, we will perform 1 000000 2-opt neigh-

bourhood moves on random pairs of nodes/arcs, incorpor-

ating any moves that lead to an improvement, timing the

whole process and recording the FSQ. For each pair of

calculation methods (three methods) and problem instance

(four instances), we will run the experiment 25 times in

order to get a representative spread of results.

In this section, we present a comparison between the

naı̈ve, standard and estimation methods for evaluating

neighbourhood moves incorporated within a simple hill

climbing heuristic method. We examine the trade-offs

between FSQ and run time.

Figure 5 illustrates the results for the hill climber on the

four problem instances. In all cases, the estimation method

is the fastest, with the standard method second and naı̈ve

evaluation slowest.

Tables 4 and 5 give the minimum, average (mean) and

maximum for both ‘FSQ’ and ‘time taken to calculate’ for

each of the problems, along with the average number of

improvements (out of a possible 1 000 000). All times are

measured in seconds, all FSQs and tours have arbitrary

units. Table 6 shows the average percentage change

between standard and estimate for each problem (note

that both FSQ and time are minimisations, so a negative

number represents an improvement for the Estimate over

the Standard method).

5.3.1. Interpreting the results. As mentioned before, there

are two aspects to a successful heuristic: Run time and

FSQ. We can examine this trade-off in Figure 5. The

estimation method is much faster in all instances, and

gives very good solutions, except for bier127. It is not

surprising that the standard method matches the solution

quality produced by the naı̈ve method, given that

potential improvements are not missed by either of these

methods.

Tables 4 and 5 present the results in more detail. The

benefits of using the estimation method clearly grow as the

instance size becomes larger. For bayg29, the estimate

takes 19% less time than the standard method, for bier127

Figure 5 Run time versus final solution quality: Comparing naı̈ve, standard and estimation methods for replicated runs of a hill
climber. (a) bayg29; (b) bier127; (c) a280; (d) gr666.

44 Journal of the Operational Research Society Vol. 64, No. 1



it is 46% faster, a280 sees a saving of 65% and, in the case

of gr666, using the estimation method results in a saving

of 80% compared with the standard method. These are

considerable savings.

One other notable aspect of these results, however, is

that the run times (over naı̈ve, standard and estimate) grow

rather more slowly than one may expect, in relation to the

size of the instance. This can be largely explained because

we currently have quite a large computational overhead in

our implementation. Nevertheless, we can observe a steady

growth in computation time with an increasing number of

nodes for the naı̈ve and standard methods. On the other

hand, the run times for the estimation method actually

reduce as the number of nodes increases. This is indeed

somewhat counter-intuitive, and is in part due to a more

complex (and time consuming) computation required to

implement 2-opt when nodes adjacent to the depot are

involved. The smaller the instance, the more likely one of

these nodes is selected. In any case, given the small number

of improvements found out of 1 000 000 neighbourhood

trials in each test run, we would not expect the run time to

grow very fast with instance size (see the final row in Tables

4 and 5). Recall that the estimate simply evaluates the

difference between the cost of the two arcs added and the

two arcs taken away, and also that this operation is

performed in constant time, regardless of the number of

nodes, with very few complete tour evaluations needed.

Comparing the average FSQ for the estimate method

with the FSQs for the standard and naı̈ve method: for

bayg29 it was 1.13 and 1.29% worse than standard and

naı̈ve, respectively, which is statistically significant. FSQ

for bier127 was 4.53 and 4.48% worse than standard and

naı̈ve with over a third of the results for both standard and

naı̈ve giving better results than the best of the estimates for

this instance. This instance is clearly the worst for the

estimation method in terms of FSQ, although why this may

be is not yet known. FSQ for a280 was 0.23% better and

1.24% worse—by random chance the estimate method

actually gives better results than the standard method. The

results for bier127 and a280 demonstrate once more that

the estimation tool is more accurate when applied to a

structured problem like a280 than it is with the clustered

bier127. Lastly, the estimate’s FSQ for gr666 was 0.79 and

1.06% worse than standard and naı̈ve.

To sum up, it is indeed possible to considerably reduce

computation times (from 35% with small problems up to

over 80% with large instances) without compromising

solution quality in the scenarios explored. Clearly, the

Table 6 Average percentage change

bayg29
(%)

bier127
(%)

a280
(%)

gr666
(%)

Average
FSQ

1.13 4.53 �0.23 0.79

Average
time

�18.73 �46.00 �65.46 �80.13

Table 4 bayg29 and bier127 results

bayg29 bier127

Naı̈ve Standard Estimate Naı̈ve Standard Estimate

Minimum FSQ 15056.86 14 971.98 15 000.88 220 993.97 219912.75 232 306.76
Average FSQ 15338.01 15 363.13 15 536.61 233 850.43 233742.77 244 338.49
Maximum FSQ 15695.06 15 858.51 16 325.76 251 247.15 250233.42 256 479.54
Minimum time 74.08 68.46 44.08 101.38 74.62 39.21
Average time 74.66 68.75 44.63 101.86 75.61 40.83
Maximum time 75.47 69.01 45.50 102.35 76.75 43.06
Average improvements 45 43 39 401 398 357

Table 5 a280 and gr666 results

a280 gr666

Naı̈ve Standard Estimate Naı̈ve Standard Estimate

Minimum FSQ 3655.24 3703.11 3703.39 4588.35 4592.18 4611.18
Average FSQ 4117.28 4177.71 4168.19 4682.86 4695.77 4732.70
Maximum FSQ 4548.36 4768.78 5070.44 4798.69 4776.03 4933.34
Minimum time 127.87 87.22 30.08 271.96 159.00 31.56
Average time 128.65 87.91 30.37 278.49 162.80 32.35
Maximum time 129.31 88.51 30.68 283.39 171.09 32.90
Average improvements 1052 1065 990 3384 3357 3184

K Harwood et al—Investigating the use of metaheuristics 45



standard method can be used, in circumstances where the

estimation method is not sufficiently accurate. A number of

questions currently remain unanswered:

K How repeatable are all the results?

K In the second experiment, why was a280’s estimate

better compared with standard and the worst (apart

from bier127) compared with naı̈ve?

K How quickly (in terms of both moves performed and

time) do the methods converge on their ‘final’ results?

K Why was bier127 so much worse for the estimate than

the other instances?—Over twice as many non-TP

results for all the greedy results in the first experiment

and more than 4.5% worse results in the second

experiment, compared with just over 1% worse for the

next worst.

6. Conclusions and future work

The long-term goal of this work is to find rules of thumb

that can be applied when working with heuristic and

metaheuristic methods on VRPs in a time-varying envir-

onment, so that quick estimates can be used to focus on

potentially good solutions without the need to make full

computations. Ideally, this should involve self-adaptation,

so that the degree of reliance on estimates is automatically

adjusted to dynamically maintain an equitable balance

between computation time and solution quality. The

experiments carried out for the present study are aimed

at investigating how plausible this may be.

The results of this initial study are very encouraging,

suggesting that considerable savings in run time can be

made using the estimation method, with little loss of

solution quality (savings of 30–80% calculation time

with only 1% loss of quality for the majority of problem

instances, even at its worst we saw 4.5% loss of quality and

a 45% saving in time). Nevertheless, we have to be cautious

regarding these findings, given this study has been quite

narrow in its scope: looking at a simplified version of

congestion modelling and a single vehicle problem. Future

work will include expanding this investigation into the field

of multiple vehicles, and looking at real-world data.

Clearly, multiple vehicle instances on the same problem

size will contain fewer nodes in the individual tours,

meaning less calculations for the standard method, so the

focus will be more on the smaller problems that we have

investigated here.

From this preliminary work, it would appear that the

nature of the problem instance is perhaps the most relevant

aspect that influences how useful estimates can be. Both

sets of experiments showed that the clustered bier127

led to worse performance for the estimation tool than the

structured a280. Thus, it would seem prudent to carry out

our further investigations based on different benchmark

TSPs, looking at how various features of the instance

(such as clustering of customers) affect the accuracy of

the estimation tool. Further experiments will perhaps be

limited to investigating only greedy solutions, as these are

of most relevance to real-world optimisation.

Another aspect that requires further work is the

investigation of different neighbourhood moves, other

than 2-opt (eg, delete and insert). With our preliminary

results on the effects of 2-opt, the other neighbourhood

moves can now be compared to see how effective our

estimates can be. With the expansion into multiple vehicle

VRPs, other heuristic methods will need to be investigated,

such as the merging of routes, and these are quite different

to the neighbourhood moves typical of TSPs.

Future plans also include the assessment of our

estimation methods within more sophisticated metaheur-

istic frameworks, such as simulated annealing. We also

plan to investigate changing the ‘acceptance criteria’ for

assessing results. Instead of simply investigating results that

appear better than the current tour, we can change the

parameters so that the estimation tool investigates tours

that are apparently slightly poorer. It is likely that fewer

improvements will be erroneously discarded, although this

will be at the expense of longer run times.

The results of our second set of experiments clearly

indicate that our estimate method is faster than the

standard method that we have used here. The loss of

solution quality in most cases seems to be acceptably small.

Further experiments will need to be performed to establish

whether similar savings can be made if more complex

metaheuristics are used.

References

Dijkstra EW (1959). A note on two problems in connexion with
graphs. Numerische Mathematik 1(1): 269–271.

Dreyfus SE (1969). An appraisal of some shortest-path algorithms.
Operations Research 17(3): 395–412.

Eglese R, Maden W and Slater A (2006). A road timetablet to aid
vehicle routing and scheduling. Computers & Operations
Research 33(12): 3508–3519.

Fisher ML, Greenfield AJ, Jaikuman R and Lester JT (1982).
A computerized vehicle routing application. Interfaces 12(4):
42–52.

Hill A, Mabert V and Montgomory D (1988). A decision support
system for the courier vehicle scheduling problem. Omega
International Journal of Management Science 16(4): 333–345.

Horn MET (2000). Efficient modeling of travel in networks with
time-varying link speeds. Networks 36(2): 80–90.

Ichoua S, Gendreau M and Potvin JY (2003). Vehicle dispatching
with time-dependent travel times. European Journal of Opera-
tions Research 144(2): 379–396.

Kaufman DE and Smith RL (1993). Fastest paths in time-
dependent networks for intelligent vehicle-highway systems
application. Journal of Intelligent Transportation Systems
1(1): 1–11.

46 Journal of the Operational Research Society Vol. 64, No. 1



Kok AL, Hans EW and Schutten JMJ (2009). Vehicle routing under
time dependent travel times: The impact of congestion avoidance.
Internal Report, University of Twente.

Malandraki C and Dial RB (1996). A restricted dynamic
programming heuristic algorithm for the time dependent
traveling salesman problem. European Journal of Operations
Research 90(1): 45–55.

Sung K, Bell MGH, Seong M and Park S (2000). Shortest paths in
a network with time-dependent flow speeds. European Journal of
Operations Research 121(1): 32–39.

Received February 2011;
accepted January 2012 after one revision

K Harwood et al—Investigating the use of metaheuristics 47




