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Logarithmic contribution to the density of states of rectangular Andreev billiards
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We demonstrate that the exact quantum mechanical calculations are in good agreement with the semiclas-
sical predictions for rectangular Andreev billiards, and therefore for a large number of open channels it is
sufficient to investigate the Bohr-Sommerfeld approximation of the density of states. We present exact calcu-
lations of the classical path length distributionP(s), which is a nondifferentiable function ofs, but whose
integral is a smooth function with logarithmically dependent asymptotic behavior. Consequently, the density of
states of rectangular Andreev billiards has two contributions on the scale of the Thouless energy: one which is
well-known and is proportional to the energy, and the other which shows a logarithmic energy dependence. It
is shown that the prefactors of both contributions depend on the geometry of the billiards but have universal
limiting values when the width of the superconductor tends to zero.
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When a normal quantum dot is placed in contact with
superconductor, the low-energy density of statesn(E) of the
resulting Andreev billiard is strongly modified compare
with the normal state.1 The energy dependence ofn(E) is
highly nontrivial and provides a testing ground for curre
understanding of proximity effects of hybrid supercondu
ing nanostructures and for theoretical tools such as semic
sical theory. Recently a number of conflicting results ha
been obtained for the density of states~DOS! of ballistic
Andreev billiards~AB!. One example is shown in Fig. 1
which in the separable limitW5a was studied long ago in,2

where it was found that for smallE, n(E) is proportional to
E. In contrast forW,a, the problem has only recently bee
studied.1,3,4,6,5In Ref. 3 it was found thatn(E)5nE, where
n is a universal constant, independent ofE and W. In con-
trast, Ref. 4 predicted different values forn.

In this paper we resolve this discrepancy by showing t
neither of these results is strictly correct in the limitE→0
and instead predict thatn(E) diverges logarithmically. This
generic logarithmic contribution is significant for energi
less than or of the order the Thouless energy.

To address this problem, we use both exact and semic
sical techniques to analyze the AB of Fig. 1. The exact c
culation starts with a ballistic two dimensional normal dot
areaA, described by a scattering matrixS0(E) and with a

FIG. 1. A normal quantum dot of rectangular shape in cont
with a superconductor placed at the middle of the edge of the
mal region.
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mean level spacing for the isolated normal systemd
52p\2/mA at the Fermi energyEF . Then, a supercon
ductor of widthW and bulk order parameterD is placed in
contact with such a billiard. The number of open channels
the S region is the integer part ofM5kFW/p, and the en-
ergy levels of AB are the positive eigenvaluesE ~measured
from the Fermi energy! of the Bogoliubov–de Genne
equation.7 A secular equation of theexactenergy levels of
AB, in terms of the scattering matrixS0(E) of the normal
region, is derived by matching the wave functions at t
interface of the normal-superconducting (N-S) systems. The
energy levels are exact in the sense that no Andreev app
mation @D/EF!1 and quasiparticles whose incident or r
flected directions are approximately perpendicular to theN-S
interface8 ~BS!# is assumed.

We also give the semiclassical Bohr-Sommerfeld appro
mation of the DOSn(E) expressed by the classical retu
probability P(s) of the electron. Our exact and semiclassic
calculations are applied to theintegrableAB shown in Fig.
1. We demonstrate that the integrated DOS agrees very
with the exact calculations. We find that the integral of t
return probabilityP(s) has a contribution depending ons
logarithmically in the asymptotic limit,s→`, which has to
date been overlooked. As a consequence, the small en
dependence of the DOSn(E) has also alogarithmic factorin
addition to a contribution which depends linearly on the e
ergy E as predicted in Refs. 3 and 4.9

In our earlier work5 we found that the exact energy leve
of AB with arbitrary shape of normal region are the solutio
of the following secular equation:

det@ Im$gDe~E!Dh~E!%#50, ~1a!

where

De~E!5Q~E!1K~E!G~E!, ~1b!

Dh~E!5@Q~2E!2K~2E!G* ~2E!#21, ~1c!
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G~E!5@12S0~E!#@11S0~E!#21. ~1d!

Here g5e1 iarccos(E/D), Q and K are diagonal matrices with
elements Qnm(E)5dnmqn(E) and Knm(E)5dnmkn(E),

whereqn(E)5kF
A11 iAD22E2/EF2n2/M2 are the trans-

verse wave numbers of the electron in theS region, and
kn(E)5kFA11E/EF2n2/M2 are the transverse wavenum
bers of the electron in the S region whenD50. It is assumed
that the Fermi wavenumber,kF5A2mEF /\2, is the same in
theSandN regions. All the matrices areM3M dimensional.
All the information on the normal region are incorporated
the matrixG via the scattering matrixS0(E). Note that the
secular equation~1a! is an extension of that derived for bo
and disk geometries in Ref. 6.

The density of states in the semiclassical Bo
Sommerfeld approximation is written as5

n~E!5ME
0

`

ds P~s!F s

\vF
1

1

AD22E2G
3 (

n50

`

dX sE

\vF
2S np1arccos

E

D D C. ~2!

This expression reduces to that of by Melsenet al.,3 Schom-
erus and Beenakker,1 Lodder and Nazarov,1 and Ihraet al.,4

in the limit E!D and when the coherence length in t
superconductor,j05\vF /D!2d. In that case, the energ
dependent phase shift2arccos(E/D), due to Andreev reflec-
tions, was approximated byp/2. However, our expression i
valid without such an approximation, and essentially i
proves the agreement between the exact and the B
Sommerfeld approximation of the DOS~see also Ref. 5!.

From Eq. ~2! one can find a simple expression for th
integrated DOSN(E)5*0

En(E8)dE8:

N~E!5M (
n50

`

$12F@sn~E!#%, ~3a!

where

sn~E!5
~np1arccosE/D!

E/D
j0 , ~3b!

F~s!5E
0

s

P~s8!ds8, ~3c!

whereF(s) is the integrated distribution function of the re
turn probability of the electron. Note thatP(s) is normalized
to one, i.e.,F(`)51.

To obtain the exact energy levels of the AB shown in F
1, we need to calculate the scattering matrixS0(E) of the N
region. Following the same approach as Mortensen
co-workers,10 we obtain

S0~E!5%R~X,Q!%T21, ~4!

where

R~X,Q!52~11Q!21$122X2@11X21Q~12X2!#21%.
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Here X is a diagonal matrix with elementsXmn
5dmn exp(iknd), Q5%T%, and % is a @kFW/p#3@kFa/p#
dimensional matrix with elements given by the overlap in
grals defined in Ref. 10 (@•# stands for the integer part!.
Notice that if W5a, then %51 and the scattering matrix
S0(E)52X2 is a diagonal matrix. In this case, we obtain t
same secular equation for AB as that in Ref. 6 for box g
ometries.

In Fig. 2 the exactly~numerically! computed integrated
density of states obtained from Eq.~1! and its evaluation in
Bohr-Sommerfeld~BS! approximation using Eq.~3! are
shown for different widthsW of the lead@for the calculation
of P(s) see below#. This shows that the exact calculation
and the semiclassical predictions are in very good agreem

Calculations forP(s) and F(s) start with unfolding the
trajectory of the electron, i.e., using the fact that the fr
motion of the particle in the billiard is equivalent to its fligh
in a lattice of vertical intervals with lengthW and with lattice
constant 2d ~a! in the horizontal~vertical! direction. In gen-
eral, one can calculateP(s) by using a large number o
trajectories and determining the distribution of their pa
lengths. An analytic form ofP(s) andF(s) can be derived
for W>a/2. As an example, these functions are plotted
d5a and W5a/2 in Fig. 3. Clearly, for arbitraryW, P(s)
50 for s,2d and for largers it is a nondifferentiable func-
tion possessing a singularity ats52d and peaks at multiples
of 2d. Using Eq.~2! one can calculate the DOS and pr
nounced peaks~indeed singularities! arise due to the singu
larity of P(s) at s52d. The positions of these singularitie
in the DOS are in perfect agreement with that obtained fr
the general expression derived in Ref. 6.

FIG. 2. The integrated density of statesN(E) from exact quan-
tum mechanical calculations~solid lines! and from the Bohr-
Sommerfeld approximation given by Eq.~3! ~dashed lines! as func-
tions of E ~in units of D) for W50.8a ~a! andW50.5a ~b!. Insets
show the enlarged portions ofN(E) from exact calculations~solid
line!, its BS approximation from Eq.~3! ~dotted line!, and its
asymptotic form from Eq.~8a! ~dashed line!. In both casesd5a
and the parameters areM555.5, D/EF50.015.
6-2
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The integrated path length distributionF(s) is a smooth
function of s allowing one to obtain its asymptotic form
Fa(s) for s→` ~see the inset of the top panel of Fig. 3!.
From Eq.~2! one can see that the larges behavior ofP(s) is
related to the low energy dependence of the DOS. Due to
rapid variation ofP(s), it is difficult to define its asymptote
To avoid this problem we first calculate the asymptotic b
havior of F(s) and the asymptotic form ofP(s) is then cal-
culated fromPa(s)5dFa(s)/ds ~see also the bottom pane
of Fig. 3!. For s→` the analytical form of the asymptote o
F(s) is found by considering how particles can travel a lar
distances without hitting the vertical intervals of lengthW in
the unfolded space. Such trajectories lie only in certain
rections forming corridors with slopesu that are multiples of
a/(2kd), wherek5@W/a#. The probability that a particle
runs in such a corridor is proportional to 1/(us2) for largeu
but uuu,umax5s/xmin , wherexmin is a minimal displacemen
in the horizontal direction. Summation of the probabiliti
for these corridors yields a term proportional tos22ln umax.
Directions with slopes larger thanumax should be treated
separately and the result contains a terms22ln xmin . The
above terms from the two regions sum up tos22ln s, and
finally we find

F~s!'Fa~s![12S C11C2ln
s

AA
D A

s2
~5!

for larges. HereC1 andC2 are functions ofd/a andW/a.
For the caseW>a/2 the detailed calculation gives analyt
expressions also forC1 andC2:

FIG. 3. Top panel: the return probabilityP(s) ~solid line! and its
integral F(s) ~dashed line! as functions ofs/d for W5a/2 andd
5a. In the insetF(s) ~solid line! and its asymptotic formFa(s)
given by Eq.~5! ~dashed line! are plotted as functions ofs/d for
larges. Bottom panel:P(s) ~solid line and lefty axis! for largers
along with the asymptotic expression of the return probabi
Pa(s)5dFa(s)/ds ~dashed line and righty axis!.
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a S 826
W

a D1C2Fc2
1

2
ln~d/a!G , ~6a!

C25
4d

W S 12
W

a D 2

, ~6b!

c5g1
1

2
12(

j 51

`

K0S 4p j
d

aD . ~6c!

Hereg is the Euler-Mascheroni constant andK0 is the modi-
fied Bessel function of the second kind. Therefore,c is a
weakly dependent function ofd for d>a.

In the case ofW,a/2 additional passages with slope
corresponding to noninteger multiples ofa/(2d) open and
C1 ,C2 are modified.C1 is numerically determined, while fo
C2 we have the formula

C25
4d

W (
m51

[a/W]
Nm

m S 12m
W

a D 2

, ~7!

where Nm is the number of those integers in the interv
@0,m21# which are relative prime tom. ~Note that
N151).

Using the smooth asymptote ofF(s) given by Eq.~5! and
Eqs. ~3!, an analytic expression can be found for the lo
energy behavior of the DOS:

Na~E!5
M

8p2 S E

ET
D 2Fa1bS 1

2
2 ln

E

ET
D G , ~8a!

na~E!d5
1

p

E

ET
S a2b ln

E

ET
D , ~8b!

a5
W2

A FC11C2S k1 ln
2p2

W/AA
D G , ~8c!

b5
W2

A
C2 , ~8d!

k52
1

2
2

4

3
ln 22

6

p2
z8~2!'20.854 235, ~8e!

andET5Md/(4p) is the Thouless energy.3 Besides the term
proportional to the energy~which was also predicted in Refs
3 and 4!, there is an additional logarithmic factor. Moreove
in contrast to the above mentioned references the coeffic
a depends onW, a, and d. However,b depends only on
W/a. Note thatW5a is a special case corresponding to t
system studied by de Gennes and Saint-James.2 Then, C2
50 and no logarithmic factor appears in the DOS and
result is the same as in Ref. 6.

It is interesting to see theW!a limit for which one would
expect thatP(s) has auniversallimiting form, namely it is
only a function of W2/A. In this case, the electron ha
enough time to explore the whole available phase space
6-3
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fore escaping~even in an integrable billiard! andP(s) looses
any detailed dependence on the geometry of the billia
Therefore, two billiards with the sameW2/A but different
aspect ratio (d/a) should have the same path length dist
bution for small enoughW. From numerical calculations w
found that forW→0, a converges to a valuea'3.62 inde-
pendent of the aspect ratio, i.e., it becomes auniversalcon-
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stant. Similarly we find that whenW→0, b also tends to a
universalconstantb→8/p2. These results are demonstrat
in Fig. 4. In the inset of the top panel of Fig. 4 the asympto
DOS na(E) obtained from Eq.~8b! is plotted for different
values ofW along with the result from Ref. 3 for the sake o
comparison. Our results are in the same order of magnit
as that found in Melsenet al.3 and Ihraet al.4 However, from
our analysis it turns out that the functional form of th
asymptotic DOS isnot just a linear function but involves a
logarithmic factor.

In conclusion, we have shown that exact quantum m
chanical calculations for the integrated DOS of rectangu
Andreev billiards agrees well~for the whole energy range
below the gap! with that obtained from the Bohr-Sommerfe
approximation provided the energy dependent phase sh
taken into account. From the exact analytic form of the
ymptote of the integrated return probability, we predict
new, logarithmic contribution to the DOS on the scale of t
Thouless energy. In contrast to earlier results, we show
the DOS at this energy range explicitly depends onW, a, and
d but it has a universal limiting form for small enoughW. We
also investigated the case when the superconductor is pl
anywhere at the side of the rectangle and found that
logarithmic contribution in the DOS is generic for rectang
lar Andreev billiards.
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