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Logarithmic contribution to the density of states of rectangular Andreev billiards
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We demonstrate that the exact quantum mechanical calculations are in good agreement with the semiclas-
sical predictions for rectangular Andreev billiards, and therefore for a large number of open channels it is
sufficient to investigate the Bohr-Sommerfeld approximation of the density of states. We present exact calcu-
lations of the classical path length distributi®{s), which is a nondifferentiable function &f but whose
integral is a smooth function with logarithmically dependent asymptotic behavior. Consequently, the density of
states of rectangular Andreev billiards has two contributions on the scale of the Thouless energy: one which is
well-known and is proportional to the energy, and the other which shows a logarithmic energy dependence. It
is shown that the prefactors of both contributions depend on the geometry of the billiards but have universal
limiting values when the width of the superconductor tends to zero.
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When a normal quantum dot is placed in contact with amean level spacing for the isolated normal systeéin
superconductor, the low-energy density of stat¢s) of the  =2xA%/mA at the Fermi energyEr. Then, a supercon-
resulting Andreev billiard is strongly modified compared ductor of widthW and bulk order paramete is placed in
with the normal staté.The energy dependence ofE) is  contact with such a billiard. The number of open channels in
highly nontrivial and provides a testing ground for currentthe Sregion is the integer part dl =kgW/a, and the en-
understanding of proximity effects of hybrid superconduct-ergy levels of AB are the positive eigenvaluegmeasured
ing nanostructures and for theoretical tools such as semiclagcom the Fermi energy of the Bogoliubov—de Gennes
sical theory. Recently a number of conflicting results haveequation” A secular equation of thexactenergy levels of
been obtained for the density of statd30S) of ballistic ~ AB, in terms of the scattering matri®,(E) of the normal
Andreev billiards(AB). One example is shown in Fig. 1, region, is derived by matching the wave functions at the
which in the separable limiv=a was studied long ago i, interface of the normal-superconducting-8) systems. The
where it was found that for sméelll, n(E) is proportional to  energy levels are exact in the sense that no Andreev approxi-
E. In contrast folW< a, the problem has only recently been mation[A/Ex<1 and quasiparticles whose incident or re-
studied>3*®°In Ref. 3 it was found than(E)=vE, where flected directions are approximately perpendicular toNH8
v is a universal constant, independenttbnd W. In con-  interfac& (BS)] is assumed.
trast, Ref. 4 predicted different values for We also give the semiclassical Bohr-Sommerfeld approxi-

In this paper we resolve this discrepancy by showing thatmation of the DOSn(E) expressed by the classical return
neither of these results is strictly correct in the lirgit->0 probability P(s) of the electron. Our exact and semiclassical
and instead predict that(E) diverges logarithmically. This calculations are applied to thetegrableAB shown in Fig.
generic logarithmic contribution is significant for energies1. We demonstrate that the integrated DOS agrees very well
less than or of the order the Thouless energy. with the exact calculations. We find that the integral of the

To address this problem, we use both exact and semiclaseturn probabilityP(s) has a contribution depending an
sical techniques to analyze the AB of Fig. 1. The exact callogarithmically in the asymptotic limits—c, which has to
culation starts with a ballistic two dimensional normal dot of date been overlooked. As a consequence, the small energy
areaA, described by a scattering matr8(E) and with a  dependence of the DO E) has also dogarithmic factorin
addition to a contribution which depends linearly on the en-
ergy E as predicted in Refs. 3 and®4.

In our earlier worR we found that the exact energy levels
of AB with arbitrary shape of normal region are the solutions

w 7 N a of the following secular equation:
0
defIm{yD,(E)DL(E)}]=0, (1a
where
d

FIG. 1. A normal quantum dot of rectangular shape in contact De(E)=Q(E)+K(E)G(E), (1b)

with a superconductor placed at the middle of the edge of the nor-
mal region. D(E)=[Q(—E)—K(—E)G*(—-E)] 1, (1o
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G(E)=[1-Sy(E)J[1+Sp(E)] ™. (1d)

Here y=e"1accost/A) ' andK are diagonal matrices with
elements Qnm(E) = dnmdn(E) and Kum(E) = dnmKn(E),

whereq,(E) = kg \/1+ i VAZ—E?/Eg—n?/M? are the trans-
verse wave numbers of the electron in t8eegion, and
ko(E)=kgV1+E/Ef—n?/M? are the transverse wavenum-
bers of the electron in the S region wh&r 0. It is assumed
that the Fermi wavenumbey = 2mE; /42, is the same in
theSandN regions. All the matrices afé X M dimensional.
All the information on the normal region are incorporated in
the matrixG via the scattering matrisy(E). Note that the
secular equatiofla) is an extension of that derived for box
and disk geometries in Ref. 6.

The density of states in the semiclassical
Sommerfeld approximation is written “as

Bohr-

i S 1
e R
X 20 6(% —|nmw+ arcco%) ) (2
n= F

This expression reduces to that of by Melsgral.® Schom-
erus and Beenakkén_odder and Nazarovand lhraet al.*

in the limit E<A and when the coherence length in the
superconductoré,=Aveg/A<2d. In that case, the energy
dependent phase shiftarccosg/A), due to Andreev reflec-
tions, was approximated by/2. However, our expression is
valid without such an approximation, and essentially im-

proves the agreement between the exact and the Boh

Sommerfeld approximation of the DQSee also Ref. )5
From Eq.(2) one can find a simple expression for the
integrated DOSN(E) = [5n(E’)dE":

[}

N(E)=M 2, {1-F[s,(E)]}, (3a
where
(n+arccoE/A)
siE)=——gx o (30)
F(s)szP(s’)ds’, (3¢
0

whereF(s) is the integrated distribution function of the re-
turn probability of the electron. Note thR{(s) is normalized
to one, i.e.F(x)=1.

To obtain the exact energy levels of the AB shown in Fig.
1, we need to calculate the scattering ma8iXE) of theN
region. Following the same approach as Mortensen an
co-workerst® we obtain

So(E)=eR(X,Q)e"-1, (4)

where

R(X,Q)=2(1+Q) Y1-2X 1+ X2+ Q(1-X?) ] 1.

PHYSICAL REVIEW B57, 172506 (2003

150

100

N(E)
50

300

200 o .
0 Il 1
N(E) 0 0.03 006 _
exact
100 - - ——_BS i
0 1 1 Il 1
0 0.2 0.4 0.6 0.8 1
E/A

FIG. 2. The integrated density of statd$¢E) from exact quan-
tum mechanical calculationgsolid lines and from the Bohr-
Sommerfeld approximation given by E@) (dashed linesas func-
tions of E (in units of A) for W=0.8a (a) andW=0.5a (b). Insets
show the enlarged portions &f(E) from exact calculationgsolid
line), its BS approximation from Eq(3) (dotted ling, and its
asymptotic form from Eq(8a (dashed ling In both casesl=a
and the parameters a=55.5, A/E=0.015.

Here X is a diagonal matrix with elementsX,,,

=8 nexplik.d), Q=0To, and ¢ is a[keW/m]X[kga/ 7]
dimensional matrix with elements given by the overlap inte-
6’rals defined in Ref. 10[¢] stands for the integer part
Notice that if W=a, then =1 and the scattering matrix
So(E) = — X2 is a diagonal matrix. In this case, we obtain the
same secular equation for AB as that in Ref. 6 for box ge-
ometries.

In Fig. 2 the exactly(numerically computed integrated
density of states obtained from E.) and its evaluation in
Bohr-Sommerfeld(BS) approximation using Eq(3) are
shown for different widthdV of the lead[for the calculation
of P(s) see belovl This shows that the exact calculations
and the semiclassical predictions are in very good agreement.

Calculations forP(s) and F(s) start with unfolding the
trajectory of the electron, i.e., using the fact that the free
motion of the particle in the billiard is equivalent to its flight
in a lattice of vertical intervals with lengtW and with lattice
constant @ (a) in the horizontakvertical) direction. In gen-
eral, one can calculat®(s) by using a large number of
trajectories and determining the distribution of their path
lengths. An analytic form oP(s) andF(s) can be derived
for W=a/2. As an example, these functions are plotted for

=a and W=a/2 in Fig. 3. Clearly, for arbitraryw, P(s)
=0 for s<2d and for largersit is a nondifferentiable func-
tion possessing a singularity s 2d and peaks at multiples
of 2d. Using Eq.(2) one can calculate the DOS and pro-
nounced peaké&ndeed singularitiesarise due to the singu-
larity of P(s) at s=2d. The positions of these singularities
in the DOS are in perfect agreement with that obtained from
the general expression derived in Ref. 6.
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FIG. 3. Top panel: the return probabiliB(s) (solid line) and its
integral F(s) (dashed ling as functions ofs/d for W=a/2 andd
=a. In the insetF(s) (solid line) and its asymptotic forn¥ ,(s)
given by Eq.(5) (dashed ling are plotted as functions af/d for
larges. Bottom panel:P(s) (solid line and lefty axis) for largers

along with the asymptotic expression of the return probability

P.(s)=dF,(s)/ds (dashed line and right axis).

The integrated path length distributidt(s) is a smooth
function of s allowing one to obtain its asymptotic form
Fa(s) for s—o (see the inset of the top panel of Fig. 3
From Eq.(2) one can see that the largdehavior ofP(s) is

related to the low energy dependence of the DOS. Due to the

rapid variation ofP(s), it is difficult to define its asymptote.

To avoid this problem we first calculate the asymptotic be-

havior of F(s) and the asymptotic form d?(s) is then cal-
culated fromP,(s)=dF,(s)/ds (see also the bottom panel
of Fig. 3). Fors— the analytical form of the asymptote of

F(s) is found by considering how particles can travel a large

distances without hitting the vertical intervals of lengiv in

the unfolded space. Such trajectories lie only in certain di-

rections forming corridors with slopesthat are multiples of
a/(2kd), wherek=[W’/a]. The probability that a particle
runs in such a corridor is proportional to @) for largeu

but |u] <Umax= S/Xmin,» Wherex, is a minimal displacement
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Cl:a 8_6§ +C2 C—Eln(d/a) , (Ga)
c _ad W2 6b
=il 5] (6b)
1 & d
c=y+ 5422 Kg 477]_)- (60
2 = a

Herey is the Euler-Mascheroni constant ag is the modi-
fied Bessel function of the second kind. Therefareis a
weakly dependent function af for d=a.

In the case ofW<a/2 additional passages with slopes
corresponding to noninteger multiples af(2d) open and
C,,C, are modifiedC; is numerically determined, while for
C, we have the formula

2

: )

W

a

W 2

m=

- d[a/W]N
1m

where N,,, is the number of those integers in the interval
[Om—1] which are relative prime tom. (Note that
N:L:l)

Using the smooth asymptote B{s) given by Eq.(5) and
Egs. (3), an analytic expression can be found for the low
energy behavior of the DOS:

E\? E
N.(E) F(E_T) a+f E—InE—T>, (8a)
E E
na(E) =—E—T(a—,BInE—T>, (8b)
W2 272
a=—- C,+C, ;<+InW/\/K , (80
W2
B:TCZI (Sd)
K=—§—§In2——§ (2)~—0.854235, (8¢

in the horizontal direction. Summation of the probabllltles andE;=M 6/(47) is the Thouless energyBesides the term

for these corridors yields a term proportionalSoIn Upy.y.
Directions with slopes larger than,,,, should be treated
separately and the result contains a tesnfinX,,. The
above terms from the two regions sum upso?ins, and
finally we find

s \|A

JA/s

for larges. HereC, andC, are functions ofd/a andW/a.
For the casaN=a/2 the detailed calculation gives analytic
expressions also fa€; andC,:

F(s)~Fa(s)=1-

proportional to the energiwhich was also predicted in Refs.

3 and 4, there is an additional logarithmic factor. Moreover,
in contrast to the above mentioned references the coefficient
a depends onW, a, and d. However, 8 depends only on
W/a. Note thatW=a is a special case corresponding to the
system studied by de Gennes and Saint-J&misen, C,

=0 and no logarithmic factor appears in the DOS and the
result is the same as in Ref. 6.

It is interesting to see thé&/<a limit for which one would
expect thatP(s) has auniversallimiting form, namely it is
only a function of W?/A. In this case, the electron has
enough time to explore the whole available phase space be-
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G A + gt stant. Similarly we find that whei— 0, 8 also tends to a
35 - =g o dlac? universalconstant3— 8/7%. These results are demonstrated
3 ) x d/a=1/2 in Fig. 4. In the inset of the top panel of Fig. 4 the asymptotic
p . Oda=1/4 DOS n,(E) obtained from Eq(8b) is plotted for different
3re2f gyt g, AdE=IE values ofW along with the result from Ref. 3 for the sake of
o @M | A ] N comparison. Our results are in the same order of magnitude
25| % | T - as that found in Melseet al? and Ihraet al* However, from
[ — N our analysis it turns out that the functional form of the
0 05 1 16 2 . . . . . .
EIEy : asymptotic DOS ishot just a linear function but involves a
2 ' ‘ ‘ ‘ ' logarithmic factor.
08 ] In conclusion, we have shown that exact quantum me-
chanical calculations for the integrated DOS of rectangular
06 - 1 Andreev billiards agrees welffor the whole energy range
B below the gapwith that obtained from the Bohr-Sommerfeld
0.4 1 approximation provided the energy dependent phase shift is
taken into account. From the exact analytic form of the as-
0.2 - 1 ymptote of the integrated return probability, we predict a
new, logarithmic contribution to the DOS on the scale of the
0 5 0.2 oA 08 08 ] Thouless energy. In contrast to earlier results, we show that

the DOS at this energy range explicitly depends/dra, and

d but it has a universal limiting form for small enougth We

also investigated the case when the superconductor is placed
anywhere at the side of the rectangle and found that the
logarithmic contribution in the DOS is generic for rectangu-
lar Andreev billiards.

Wia

FIG. 4. Top panel:« as a function of W/a for d/a
=1,2,1/2,1/4,1/8. Bottom paneB as a function oiW/a obtained
from Eq. (8d) using Eqgs.(6b) and(7) for C,. The inset of the top
panel shows the asymptotic DOg(E) (in units of 1/65) for d
=a, W/a=1,0.5,0.1,0.01(dot-dashed, dotted, long-dashed, and

dashed lines, respectivelgnd the result from Ref. 8solid line). One of us(J.Cs) gratefully acknowledges very helpful
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aspect ratio ¢/a) should have the same path length distri- Culture, and Science and Technology, and the Hungarian
bution for small enougW. From numerical calculations we Science Foundation OTKA TO34832. One of (&.K.)
found that forW—0, a converges to a value~3.62 inde-  thanks the Hungarian Academy of Sciences for its financial
pendent of the aspect ratio, i.e., it becomasniversalcon-  support as a Jms Bolyai Research Fellowship.
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