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Image of local density of states fluctuations in disordered metals in the differential conductance
of tunneling via a resonant impurity level
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Differential conductance of the resonant-tunneling structure with a single impurity level studied in the
current plateau regime undergoes fluctuations around a zero average manifesting the energy dependence of the
local density of states in a disordered electrode. Although the rms valdé/@d¥ depends on disorder and
barrier transparencies, it is almost independent of temperature and, as a function of bias voltage, has a
correlation function scaled by the intrinsic width of the resonance, which can be regarded as a tool to measure
this quantity beyond the main differential-conductance peak. The analysis is extended to the regime of clas-
sically high magnetic fields where both the amplitude and correlation magnetic field are expected to increase.
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In the recent vertical transport experiments on small-areadominate in the differential conductand&/ dV giving rise to
double-barrier semiconductor structufesthe resonant tun- its irregular oscillations around a zero average. Under the
neling through a single impurity level created below thedescribed conditions, the differential conductance follows
quantum well subband by a fluctuation in the density ofthe form of the derivative of the LDOS fluctuation with re-
charged donors has been observed and identified. BesidessBect to the energy. That enhances the contribution to the
possibility to study a number of interesting phenomena suckatter quantity coming from the finest energetic scale which
as the Fermi-edge singularity in the two-dimensional elec£an be resolved in such a system, that is the “spectrometer”
tron gad or the anticrossing of many-body levels of the im- Width I'. As a result, the correlation parameters of the differ-
purity itself2 a discrete impurity level can be also used forentlal_ conductance fluctuatlons are strictly bound to the_ en-
investigating the electron states in the electrdtfes par- ergetic width of the resonant impurity level: The correlation

ticular, the mesoscopic fluctuations of the local density 01‘\’0“.""9(.3 can be estimated Es{e, and the cor_relation mag-
states(LDOS) in them? netic field is that which provides a magnetic flux quantum

2 _ . . . .
Theoretically, the LDOS fluctuations in disordered metalsPer the area -, whereLp = yDh/I" is the diffusion length in
were studied by Lernérand shown to have a broad @ disordered metal corresponding to the lifetimé" of an
distribution’® even in the metallic regimepgl>1). They  €lectron in the resonant impurity state.

are mainly governed by the fluctuations in the local structure 1he amplitude of irregular oscillations afi/dV found in-
of electronic wave functions in a disordered m&tHirather  the calculations below is also related to the resonance width.

than by the fluctuations of the number of staldéin a  The variance(i.e., the mean squaref the differential con-
finite-size system. The manifestation of the density of state§uctance atv>V,+1I'/e normalized by the height of the
fluctuations in the transport experiments were discussedN@n resonance peak &=V, is inverse proportional to
first, in the context of the nonresonant tunneling between tw&onductancey(Ly) of a piece of an electrode with dimen-
disordered metal® Then, this idea has been extentfewh sionsLI‘i measured in units a#?/h which can be interpreted
the studies of the resonant tunneling processes involving @n the basis of statistics of single-particle wave functions of
resonance level in the barrier, and a contribution of LDOSA disordered metal. The value of the current in the plateau
fluctuations to the conductance of such a device was dig€gime is determined by the sum of local densitias the
cussed, but only in the linear response regime. Under thepectrometer positiorof the wave functiongi(r ) |* which
experimental conditions of Refs. 1-5, the linear regime wadiave energies the within an energy interval' aroundg, in
hardly relevant, since, at a zero bias, the energy of a discret piece of a metal with characteristic dimensidns. These
impurity level, E, does not initially coincide with the bulk are the states which can contribute resonantly to the tunnel-
chemical potentiaj; coming to the resonance only after a ing current. The average value of this sum is proportional to
bias voltage reaches the threshold valygE,). Being es- their total numbeN(I") and to a typical density of a single
sentially nonlinear, the current-voltagV)) characteristics state,(lz,bé(ro)|2>~1/L?. Having been achieved over a step
of such a device can be divided into three typicalwith the widthV=(I'/ae), such a value of a current plateau
intervals?—® below the threshold, where~0; the threshold results in the height of the main differential
regimeV=V,(Ey) = (I'/ae), wherel (V) undergoes a jump conductance peak Gy which is proportional to
after the resonant level crosses the Fermi lexgelin the  N(I'){|#(ro)|?)/Vr. On the other handy(r,) taken from
emitter; and the interval of a plateauyg(Ey) <V<V;(E;), an individual state is a random variable with dominantly
where the current remains nearly constant until the next inGaussian statistics in the metallic regifie,so that
purity level E; is lowered enough to contribute to the trans- var | .(ro) |21~ (| (ro)|?)?. The variance of a sum of a
port. large numberN(I")>1, of random additive$y(ro)|? is of
The present paper is devoted to the quantitative analysihe order ofN(I'){|#.(ro)|?)2, and being individual for each
of features of the resonant-tunneling current in the plateamext energy interval’, this fluctuation is responsible for the
regime, where the interference effects in the bulk reservoirfluctuation in the differential conductance with the variance
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proportional toN(T'){|.(r 0)|2)%/VZ . Following Thoules$®  of a current on the top of the plateau should be characterized
we estimateN(T') ~g(L), which gives that estimation men- by the disorder-averaged correlation function, of currents
tioned on the top of this paragraphiG2)/G2~g~Y(Ly). It ~ Measured at different voltagesl (V) 51 (V")), or at slightly
is worth mentioning that both the correlation parameters andifferent magnetic fields, sl (B) 6 (B+AB)). In an infinite

the amplitude of the pattern afl/dV are insensitive to the Metallic systems gel>1) with a continuous energy spec-
g/éjm, the application of the standard diagrammatic perturba-

temperature of electrons, since all the events we discuss he T 2
b on theory methods is eligiblén contrast to closed systems

happen deep below the Fermi level, but they can be easil here more vigorous techniques are requiddrherefore
destroyed by the voltage noise with the amplitude larger tha 8.7.14 9 q q '

I.
To make the following quantitative analysis closer to the

following, the current-current correlation function, e.g.,
(81(V) 681 (V")) can be represented in the form

experimental conditions of Refs. 2-5, we assume that the , e?

emitter barrier is much stronger than the collector Bhi. (sl (V)al(V"))= _ﬁf dode[]
; : ; (2m)°vr g

so, the width of the resonancE, is dominated by the elec-

tron escape to the collectof,=T",+T'|~TI",, whereas the y r

value of the current step is mainly determined by the tunnel-
ing rate I'; through the thick barrier on the emitter side.
Under this approximatiof’ the current can be represented in
the form®4

|(v)”§f Fr(e)Ti(e)lfi(e)—Tr(e)]de

h 1\
EiEw_EO"'EA +ZF

dq d(c) d(c)
Xfw['% () +PZ ()]

1 ' d
[~ Eo(V) T2+ 7 T%(e) o 11 [yt oot 21 0= 3)
Wheref|(,)(e)={1+exr[(e—,u|(r))/T]}‘1. Having been aver- q q
aged over disorder, thiV) characteristics at the threshold ><< Gﬁ\ Pn+ E) > < G? Pn— 5) > (4)
can be described by the height of the resonance conductance
peak at the voltag¥ providing u;=Eq(V), where w=(€e"—¢€)lh, A=E(—Eg~ae(V'-V),
) T is the electron transport time in the emitter,
(d1/dV) max=Gr=(4ae’/h)(I', /T) , @) (GRA(p))=[e— e(p) = (i%/2r)]" L is the average retarded

and its width at the half maximum/~I'/ea. The factor (R), and advancedA) single-electron Green functions, and
a<1 in Eq. (1) stands for taking into account an actual dis- P%® is the diffusion propagator in the diffuson and coop-
tribution of the potential drop across the structure. In theeron channels. In the above equation and wherever it is pos-
plateau regiméat T< u,— E) the average currenf|) satu-  sible in the following analysis, we also use the inequality

rates at I'<T, for a substitution’,~T" .
The analytic structure of the correlator in Bg) and its
(I(u—Eo>T))—2mel’| /h=(m/2) GyVr, (20 meaning are very close to that of correlators of the integral

density of states studied in Ref. 12 and of the level-level
correlation functions studied in detail in quantum chaology.
&he expression in Eq@4) contains, in principle, complete
information about the electron dynamics in a disordered
conductance of the device is dominated by an irregula?ample at any range of distances. Information about the elec-

sample-specific energy dependence of the tunneling couplin?_On l_)ehawor at the '0”9"9”_9th scale_ |sd(|g1pI|C|t into the
between an impurity and the continuum of the electrondiffusion poles of the correlation functioR™ in the do-

states, e.g., in a disordered emitter “deep below” the Ferm{hain ofq<I~". The integral multiplier behind it provides an
level w, ultraviolet cutoff of the integration, so that the result is sen-

sitive to the electron dynamics at short distances near the
pdp A resonant impurity. This creates an uncertainty in the estima-
F|(€)=2J WW[GE(D,D')]:UDN*(P'), (3)  tion of the rms value of the current fluctuations observed
using different techniques, and impedes a quantitative de-
wheret(p) is the tunneling matrix element between the im- scription of the observed features of thH&/) characteristics
purity and bulk electrod® and InfGA]=3GA—GR] are  from Refs. 2-5, since a rigorous calculation of the current-
the exact retardethdvancefiGreen functions of the electron current correlator becomes model-dependgitis is in con-
in a bulk taken for a fixed configuration of disorder. Here, wetrast to the properties of spectral correlators studied in rela-
focus only on the emitter dominated fluctuations, not onlytion with the isolated disordered quantum d&t8?*which
for quantitative reasons resulting from the assumed asymmaere universal in the zero-dimensional case.
try of a structure]’,<T",, but also because at high enough  On the contrary, the finest structure of the energy depen-
voltage$** the electron-electron collisions and emission ofdence of the LDOS fluctuations andV) characteristics
plasmons and optical phonons in the collector are fastormed due to the diffusive electron motion at the long-
enough to wash out quantum interference effects. length scale can be enhanced by differentiation when the
To be described quantitatively, a random energy depemonlinear conductancdl/dV in the plateau region and its
dencel’|(€) and, therefore, the sample-specific fine structurecorrelation functions,

so that the disorder average @fl/dV) tends to take a zero
value.

The latter statement is made to stress that in the regime
bias voltages providindgs;> u;>Ey>u,, the differential
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piece of an electrode with sidg- in all directions scaled by
> =((8G)*)Kq4(V'—V) (5)  e?h [see the second multiplier in E¢)].
A similar estimation is applicable to the case of a planar
are studied. The correlation function in E) can be ob- €mitter. The analytical result for that case can be written as
tained from Eq.(4) by taking the second derivative with

<d| di
dv|, dv|,,

-1 2
respect taA =ae(V—V') and calculated only in the domain ((8G)?) = i iz;
of g<I~! ande— €' <771, where the diffusion propagator 2 8vhD 14 hy
PYO(r,r') is singular, r
d dgy [=dg, 2cogq,z)cogq,z")e "I~ AV)?
P (C): zf - - 2 ’ 1_ =
(2m))o 7 —iw+Dqg°+vy Vr
. . . . . . K2: 2 2 ' (7)
so that the integration ovegy,p’ splits into two factorizing 14 A_V
multipliers, each equal tol'|)7/# and independent of and T/F

g. Note that the diffusion propagatd®(r,r’) we need

describes diffusion in a half space restricted by the tunnellné
barrier, so thas,P%®)|,_,=0. One also should take its val- ions of the device:f=2 for a “horizontal” tunneling
ues close to the barrier itself which has to be taken intdnfough a lithographically processed barrier ind@éectron

account when deriving the next formula. After integrating SYStem, and=1 for a “vertical” tunneling from a 21 layer
out the irrelevant variable, two Lorentzian factors in Eq. accumulated in front of the double-barrier structure in a de-

(4) convolve into a singlev-dependent kernel, and the cor- vice grown with a wide spacér.At larger voltages
relation function in Eq/(5) takes the form AV>_VF ) the result of Eqs(6),(7) predicts a weak anticor-
relation in the voltage-dependent patteitidV.

dil di a®(T)\2[ 9 \2 Besides random variations_ as a function of a bias voltage,

<d_\/ v > = —,81( = (&—A) the total current and differential conductance should demon-

% v strate random variations under the variation of a magnetic
'y lde dq field—gs any of mesos_:copic _effe@f’sz.3 The correla_ltior_l

. P properties of random differential conductance oscillations

(ho—A)"+1%) (2m) under the variation of a magnetic field oriented along the

n Eq. (7), the factord dlstlngwshes between two configura-

=dq, 2[Dg?+y] current direction can be calculated after the diffuson in Eq.
f e (4) is replaced by the solution of a generalized diffusion
o ™ w+(Dg°+vy) equationz,z

In the case when the electrodes atkrBetals(they extend in
all directions over distances longer thdn.=AD/T),
which is the case in the vertical tunneling devices grown
without any undoped spacer in front of the tunneling barrier,
the result of the integration takes the form of E8). with the where roA=AB, complemented with the boundary condi-

fic

e |2
—iw—D(V——A) —D&i}Pf}(r,r')zé(r—r’),

variance tion 9,P9],_o=0. This has the form of
5G12) — Bt \TiD  Gf o PUr)= Z dqyf dg,
<( ) >3 T vhD h,y}3/21 ( )
r 2040,2)C09q,2") n(X,0y) (X' ,0y) NV Y
and correlation properties described by the function —iw+Dg2+2D\ 2 >
AV 2 2712
2— \/1+ _— \/1+ 1+ ~—) } where A “?=eAB/c#, and ¢n(X,qy) are the Landau wave
Kae Vr r functions of an electron in a magnetic field. As a result, we
3 V2[ 1+ (AVIV)2]32 ' arrive at the correlation function of differential conductances,
K4(AB) in the form
In Eqg. (6), B=1 for the limit of a zero magnetic field, " -,
B=2 whenBL2>®,, and V=V +7%yl/(ae) is slightly _ 2X RV
modified, as compared to the width of the main resonance Kz nzo 1 13 Xy X * 2)
Vr by the decoherence rateof a floating-up “hole” below n §+ X
the Fermi level created in the emitter after the tunneling
event. The value of the variance of fluctuations in E).is 3
normalized by the valu& from Eq. (1) in order to show oc EX_Slz 2eDAB
how is it parametrically suppressed, as compared to the Ka= X = (8)
i i i 3 1 1P c(T+hy)'
height of the main peak indl/dV, by the factor of n=0 nt 4= ( Y
5GIGr~g~Y4(Ly), whereg(Ly) is the conductance of a 2 X
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where ?)(z) is the second order derivative from thie
function. At smallX<1, the correlation functioi 4(AB) in

Eq. (8) can be approximated bigz~1— 3X2 andK,~1—

%XZ. The characteristic correlation fieR}. (half width of the
correlation function at half maximums

1.8, d=3

W [T+ X
By '~ c[I'+Avy]/leD 13 d=2.

(9)
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solely by the spectrometer width independently of a diffu-
sion coefficient.

To summarize, the differential conductance of a system
with the resonant tunneling from a disordered metal via a
single impurity level was analyzed in the regime of a current
plateau. In the systems of all dimensions we studied here, it
fluctuates around zero average with the mean square value
which scales with the height of the main resonance peak,
Gr and is inverse proportional to the conductarmyié )

The results of Eqs(6), (7), (9) can be extended onto the (measured in quantum unitsf a piece of a disordered elec-
differential conductance fluctuations in a classically strongrode with typical dimensions df -~ A D/I" determined by
magnetic fieldw.7>1. To achieve such a generalization, it the width of the resonance itsel¢(d|/d\02>~G%/g(Lr).

is enougP® to replace the isotropic diffusion coefficieBtin

The value of the correlation magnetic field of fluctuations is

expressions for the diffusorP? by a diagonal tensor also related to the length, B.~ qu/L% and correlation
diag(D,D, ,D, ) taking into account that the diffusion across properties of the pattern afl/dV with respect to the voltage
the magnetic field direction is suppressed by the cyclotrowvariations are found in the analytical form both in two and
motion, D, =D/[1+ (w.7)?]. When a magnetic field is ori- three dimensions as a function of a voltage scaled by the
ented perpendicular to the tunneling barrier, the effect ofvidth of the main resonance peak. Both the amplitude of
skipping orbits®* does not affect the boundary condition to fluctuations and the correlation parameigrare expected to
the equations on the diffusofin contrast to conductance increase with a magnetic field. As well as these fluctuations
fluctuations in metallic wire®), so that we find that the vari- are the image of LDOS fluctuations deep below the Fermi

ance ofdl/dV and the correlation paramet®; increase
with a magnetic field as
B.(B)

((56)%)s
(667750 Bo(0) ~LLT(wen)]

(10

level, their pattern is temperature independent, and they can
be regarded as a tool to study the width of the impurity-
related level far beyond the main resonance tunneling con-
ductance peak.
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