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Image of local density of states fluctuations in disordered metals in the differential conductance
of tunneling via a resonant impurity level

Vladimir I. Fal’ko
School of Physics and Chemistry, Lancaster University, LA1 4YB Lancaster, United Kingdom

~Received 2 December 1996!

Differential conductance of the resonant-tunneling structure with a single impurity level studied in the
current plateau regime undergoes fluctuations around a zero average manifesting the energy dependence of the
local density of states in a disordered electrode. Although the rms value ofdI/dV depends on disorder and
barrier transparencies, it is almost independent of temperature and, as a function of bias voltage, has a
correlation function scaled by the intrinsic width of the resonance, which can be regarded as a tool to measure
this quantity beyond the main differential-conductance peak. The analysis is extended to the regime of clas-
sically high magnetic fields where both the amplitude and correlation magnetic field are expected to increase.
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In the recent vertical transport experiments on small-a
double-barrier semiconductor structures,1–5 the resonant tun-
neling through a single impurity level created below t
quantum well subband by a fluctuation in the density
charged donors has been observed and identified. Besid
possibility to study a number of interesting phenomena s
as the Fermi-edge singularity in the two-dimensional el
tron gas2 or the anticrossing of many-body levels of the im
purity itself,3 a discrete impurity level can be also used f
investigating the electron states in the electrodes,6,5 in par-
ticular, the mesoscopic fluctuations of the local density
states~LDOS! in them.7,8

Theoretically, the LDOS fluctuations in disordered met
were studied by Lerner7 and shown to have a broa
distribution7,8 even in the metallic regime (pFl@1). They
are mainly governed by the fluctuations in the local struct
of electronic wave functions in a disordered metal,9,10 rather
than by the fluctuations of the number of states11,12 in a
finite-size system. The manifestation of the density of sta
fluctuations in the transport experiments were discuss
first, in the context of the nonresonant tunneling between
disordered metals.13 Then, this idea has been extended14 to
the studies of the resonant tunneling processes involvin
resonance level in the barrier, and a contribution of LDO
fluctuations to the conductance of such a device was
cussed, but only in the linear response regime. Under
experimental conditions of Refs. 1–5, the linear regime w
hardly relevant, since, at a zero bias, the energy of a disc
impurity level,E0 does not initially coincide with the bulk
chemical potentialm l coming to the resonance only after
bias voltage reaches the threshold valueV0(E0). Being es-
sentially nonlinear, the current-voltage„I (V)… characteristics
of such a device can be divided into three typic
intervals:2–6 below the threshold, whereI'0; the threshold
regimeV5V0(E0)6(G/ae), whereI (V) undergoes a jump
after the resonant level crosses the Fermi levelm l in the
emitter; and the interval of a plateau,V0(E0),V,V1(E1),
where the current remains nearly constant until the next
purity levelE1 is lowered enough to contribute to the tran
port.

The present paper is devoted to the quantitative anal
of features of the resonant-tunneling current in the plat
regime, where the interference effects in the bulk reserv
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dominate in the differential conductancedI/dV giving rise to
its irregular oscillations around a zero average. Under
described conditions, the differential conductance follo
the form of the derivative of the LDOS fluctuation with re
spect to the energy. That enhances the contribution to
latter quantity coming from the finest energetic scale wh
can be resolved in such a system, that is the ‘‘spectrome
width G. As a result, the correlation parameters of the diff
ential conductance fluctuations are strictly bound to the
ergetic width of the resonant impurity level: The correlati
voltage can be estimated asG/e, and the correlation mag
netic field is that which provides a magnetic flux quantu
per the areaLG

2 , whereLG5ADh/G is the diffusion length in
a disordered metal corresponding to the lifetimeh/G of an
electron in the resonant impurity state.

The amplitude of irregular oscillations ofdI/dV found in
the calculations below is also related to the resonance wi
The variance~i.e., the mean square! of the differential con-
ductance atV.V01G/e normalized by the height of the
main resonance peak atV5V0 is inverse proportional to
conductanceg(LG) of a piece of an electrode with dimen
sionsLG

d measured in units ofe2/h which can be interpreted
on the basis of statistics of single-particle wave functions
a disordered metal. The value of the current in the plat
regime is determined by the sum of local densities~at the
spectrometer position! of the wave functionsuce(r 0)u2 which
have energies thee within an energy intervalG aroundE0 in
a piece of a metal with characteristic dimensionsLG . These
are the states which can contribute resonantly to the tun
ing current. The average value of this sum is proportiona
their total numberN(G) and to a typical density of a singl
state,^uce(r 0)u2&;1/LG

d . Having been achieved over a ste
with the widthVG5(G/ae), such a value of a current platea
results in the height of the main differentia
conductance peak GG which is proportional to
N(G)^uce(r 0)u2&/VG . On the other hand,ce(r 0) taken from
an individual state is a random variable with dominan
Gaussian statistics in the metallic regime,10 so that
var@ uce(r 0)u2#;^uce(r 0)u2&2. The variance of a sum of a
large number,N(G)@1, of random additivesuce(r 0)u2 is of
the order ofN(G)^uce(r 0)u2&2, and being individual for each
next energy intervalG, this fluctuation is responsible for th
fluctuation in the differential conductance with the varian
1049 © 1997 The American Physical Society
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1050 56BRIEF REPORTS
proportional toN(G)^uce(r 0)u2&2/VG
2 . Following Thouless,15

we estimateN(G);g(LG), which gives that estimation men
tioned on the top of this paragraph,^dG2&/GG

2'g21(LG). It
is worth mentioning that both the correlation parameters
the amplitude of the pattern ofdI/dV are insensitive to the
temperature of electrons, since all the events we discuss
happen deep below the Fermi level, but they can be ea
destroyed by the voltage noise with the amplitude larger t
G.

To make the following quantitative analysis closer to t
experimental conditions of Refs. 2–5, we assume that
emitter barrier is much stronger than the collector one.16 If
so, the width of the resonance,G is dominated by the elec
tron escape to the collector,G5G r1G l'G r , whereas the
value of the current step is mainly determined by the tunn
ing rate G l through the thick barrier on the emitter sid
Under this approximation,17 the current can be represented
the form18,14

I ~V!'
e

hE2`

` G r~e!G l~e!@ f l~e!2 f r~e!#de

@e2E0~V!#21
1

4
G2~e!

,

where f l (r )(e)5$11exp@(e2ml(r))/T#%21. Having been aver-
aged over disorder, theI (V) characteristics at the thresho
can be described by the height of the resonance conduct
peak at the voltageV0 providingm l5E0(V),

^dI/dV&max'GG5~4ae2/h!~G l /G! , ~1!

and its width at the half maximum,VG'G/ea. The factor
a,1 in Eq. ~1! stands for taking into account an actual d
tribution of the potential drop across the structure. In
plateau regime~atT,m l2E0) the average current,^I & satu-
rates at

^I ~m l2E0.G!&→2peG l /h5~p/2!GGVG , ~2!

so that the disorder average of^dI/dV& tends to take a zero
value.

The latter statement is made to stress that in the regim
bias voltages providingE1.m l.E0.m r , the differential
conductance of the device is dominated by an irregu
sample-specific energy dependence of the tunneling coup
between an impurity and the continuum of the electr
states, e.g., in a disordered emitter ‘‘deep below’’ the Fe
level m l ,

G l~e!52E dpdp8

~2p!2d
Im@Ge

A~p,p8!#5t~p!t* ~p8!, ~3!

wheret(p) is the tunneling matrix element between the im
purity and bulk electrode,19 and Im@GA#5 1

2@G
A2GR# are

the exact retarded~advanced! Green functions of the electro
in a bulk taken for a fixed configuration of disorder. Here,
focus only on the emitter dominated fluctuations, not o
for quantitative reasons resulting from the assumed asym
try of a structure,G l!G r , but also because at high enoug
voltages2,4,5 the electron-electron collisions and emission
plasmons and optical phonons in the collector are
enough to wash out quantum interference effects.

To be described quantitatively, a random energy dep
denceG l(e) and, therefore, the sample-specific fine struct
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of a current on the top of the plateau should be character
by the disorder-averaged correlation function, of curre
measured at different voltages,^dI (V)dI (V8)&, or at slightly
different magnetic fields,̂dI (B)dI (B1DB)&. In an infinite
metallic systems (pFl@1) with a continuous energy spec
trum, the application of the standard diagrammatic pertur
tion theory methods is eligible~in contrast to closed system
where more vigorous techniques are required.11! Therefore,
following,8,7,14 the current-current correlation function, e.g
^dI (V)dI (V8)& can be represented in the form

^dI ~V!dI ~V8!&5
e2

~2p!3nt2E dv de)
6

3
G

S e6
\

2
v2E07

1

2
D D 21 1

4
G2

3E dq

~2p!d
@Pv

d~c!~q!1P2v
d~c!~q!#

^ )
n51,2

E dpn
~2p!d

tS pn1 q

2D t* S pn2 q

2D
3KGe

AS pn1 q

2D L KGe
RS pn2 q

2D L , ~4!

where v5(e82e)/\, D5E082E0'ae(V82V),
t is the electron transport time in the emitte
^Ge

R(A)(p)&5@e2e(p)6( i\/2t)#21 is the average retarde
(R), and advanced (A) single-electron Green functions, an
Pd(c) is the diffusion propagator in the diffuson and coo
eron channels. In the above equation and wherever it is p
sible in the following analysis, we also use the inequal
G l!G r for a substitutionG r'G .

The analytic structure of the correlator in Eq.~4! and its
meaning are very close to that of correlators of the integ
density of states studied in Ref. 12 and of the level-le
correlation functions studied in detail in quantum chaolog
The expression in Eq.~4! contains, in principle, complete
information about the electron dynamics in a disorde
sample at any range of distances. Information about the e
tron behavior at the long-length scale is implicit into th
diffusion poles of the correlation functionPd(c) in the do-
main ofq, l21. The integral multiplier behind it provides a
ultraviolet cutoff of the integration, so that the result is se
sitive to the electron dynamics at short distances near
resonant impurity. This creates an uncertainty in the estim
tion of the rms value of the current fluctuations observ
using different techniques, and impedes a quantitative
scription of the observed features of theI (V) characteristics
from Refs. 2–5, since a rigorous calculation of the curre
current correlator becomes model-dependent.~This is in con-
trast to the properties of spectral correlators studied in r
tion with the isolated disordered quantum dots11,20,21which
are universal in the zero-dimensional case.!

On the contrary, the finest structure of the energy dep
dence of the LDOS fluctuations andI (V) characteristics
formed due to the diffusive electron motion at the lon
length scale can be enhanced by differentiation when
nonlinear conductancedI/dV in the plateau region and it
correlation functions,



h
n
r

lin
l-
nt
ng
.
r-

w
ie

,

nc

in

th

ar
as

-

de-

-

ge,
on-
etic

ns
the
q.
on

i-

we
es,

56 1051BRIEF REPORTS
K dIdVU
V

dI

dVU
V8
L 5^~dG!2&Kd~V82V! ~5!

are studied. The correlation function in Eq.~5! can be ob-
tained from Eq.~4! by taking the second derivative wit
respect toD5ae(V2V8) and calculated only in the domai
of q, l21 ande2e8!\t21, where the diffusion propagato
Pv
d(c)(r,r 8) is singular,

Pd~c!5E dqi

~2p!2
E
0

`dqz
p

2cos~qzz!cos~qzz8!ei ~r i2r8i !qi

2 iv1Dq21g
,

so that the integration overp,p8 splits into two factorizing
multipliers, each equal tôG l&t/\ and independent ofe and
q. Note that the diffusion propagatorPv

d(c)(r,r 8) we need
describes diffusion in a half space restricted by the tunne
barrier, so that]zP

d(c)uz5050. One also should take its va
ues close to the barrier itself which has to be taken i
account when deriving the next formula. After integrati
out the irrelevant variablee, two Lorentzian factors in Eq
~4! convolve into a singlev-dependent kernel, and the co
relation function in Eq.~5! takes the form

K dIdVU
V

dI

dVU
V8
L 52b21S ae2^G l&

p\ D 2S ]

]D D 2

3E Gn21dv

~\v2D!21G2E dqi

~2p!2

3E
0

`dqz
p

2@Dq21g#

v21~Dq21g!2
.

In the case when the electrodes are 3d metals~they extend in
all directions over distances longer thanLG5A\D/G),
which is the case in the vertical tunneling devices gro
without any undoped spacer in front of the tunneling barr
the result of the integration takes the form of Eq.~5! with the
variance

^~dG!2&
3
5

b21

8

AG/\D

n\D

GG
2

F11
\g

G G3/2, ~6!

and correlation properties described by the function

K35

F22A11S DV

ṼG
D 2GA11F11S DV

ṼG
D 2G 1/2

A2@11~DV/ṼG!2#3/2
.

In Eq. ~6!, b51 for the limit of a zero magnetic field
b52 when BLG

2.F0, and ṼG5VG1\g/(ae) is slightly
modified, as compared to the width of the main resona
VG by the decoherence rateg of a floating-up ‘‘hole’’ below
the Fermi level created in the emitter after the tunnel
event. The value of the variance of fluctuations in Eq.~6! is
normalized by the valueGG from Eq. ~1! in order to show
how is it parametrically suppressed, as compared to
height of the main peak indI/dV, by the factor of
dG/GG;g21/2(LG), whereg(LG) is the conductance of a
g

o

n
r,

e

g

e

piece of an electrode with sizeLG in all directions scaled by
e2/h @see the second multiplier in Eq.~6!#.

A similar estimation is applicable to the case of a plan
emitter. The analytical result for that case can be written

^~dG!2&
2
5

ub21

8n\D

GG
2

F11
\g

G G2 ;

K25

12S DV

ṼG
D 2

F11S DV

ṼG
D 2G 2 . ~7!

In Eq. ~7!, the factoru distinguishes between two configura
tions of the device:u52 for a ‘‘horizontal’’ tunneling
through a lithographically processed barrier in a 2d electron
system, andu51 for a ‘‘vertical’’ tunneling from a 2d layer
accumulated in front of the double-barrier structure in a
vice grown with a wide spacer.2 At larger voltages
DV.VG , the result of Eqs.~6!,~7! predicts a weak anticor
relation in the voltage-dependent patterndI/dV.

Besides random variations as a function of a bias volta
the total current and differential conductance should dem
strate random variations under the variation of a magn
field—as any of mesoscopic effects.22,23 The correlation
properties of random differential conductance oscillatio
under the variation of a magnetic field oriented along
current direction can be calculated after the diffuson in E
~4! is replaced by the solution of a generalized diffusi
equation,22

F2 iv2DS ¹ i2
e

\c
AD 22D]z

2GPv
d ~r ,r 8!5d~r2r 8!,

where rotA5DB, complemented with the boundary cond
tion ]zP

duz5050. This has the form of

Pv
d~c!~r,r 8!5(

n50

` E
2`

` dqy
2p E0

`dqz
p

3
2cos~qzz!cos~qzz8!wn~x,qy!wn~x8,qy!e

iqy~y2y8!

2 iv1Dqz
212Dl22S n1

1

2D
,

wherel225eDB/c\, and wn(x,qy) are the Landau wave
functions of an electron in a magnetic field. As a result,
arrive at the correlation function of differential conductanc
Kd(DB) in the form

K25 (
n50

`
2X22

Fn1
1

2
1
1

XG3 52X22c~2!S 1X1
1

2D ,

K35 (
n50

`
3

2
X23/2

Fn1
1

2
1
1

XG5/2, X5
2eDDB

c~G1\g!
, ~8!
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where c (2)(z) is the second order derivative from thec
function. At smallX!1, the correlation functionKd(DB) in
Eq. ~8! can be approximated byK3'12 5

32X
2 andK2'12

1
4X

2. The characteristic correlation fieldBc ~half width of the
correlation function at half maximum! is

Bc
~d!' c@G1\g#/eD3H 1.8, d53

1.3, d52.
~9!

The results of Eqs.~6!, ~7!, ~9! can be extended onto th
differential conductance fluctuations in a classically stro
magnetic field,vct.1. To achieve such a generalization,
is enough25 to replace the isotropic diffusion coefficientD in
expressions for the diffusonPd by a diagonal tenso
diag(D,D' ,D') taking into account that the diffusion acro
the magnetic field direction is suppressed by the cyclot
motion,D'5D/@11(vct)

2#. When a magnetic field is ori
ented perpendicular to the tunneling barrier, the effect
skipping orbits24 does not affect the boundary condition
the equations on the diffuson~in contrast to conductanc
fluctuations in metallic wires26!, so that we find that the vari
ance ofdI/dV and the correlation parameterBc increase
with a magnetic field as

^~dG!2&B
^~dG!2&B50

'
Bc~B!

Bc~0!
'@11~vct!2#. ~10!

The correlation voltage and the form of the correlation fun
tion Kd(DV) remain unchanged, since they are determin
-
b

g

n

f

-
d

solely by the spectrometer width independently of a dif
sion coefficient.

To summarize, the differential conductance of a syst
with the resonant tunneling from a disordered metal via
single impurity level was analyzed in the regime of a curre
plateau. In the systems of all dimensions we studied her
fluctuates around zero average with the mean square v
which scales with the height of the main resonance pe
GG and is inverse proportional to the conductanceg(LG)
~measured in quantum units! of a piece of a disordered elec
trode with typical dimensions ofLG;A\D/G determined by
the width of the resonance itself:^(dI/dV)2&;GG

2/g(LG).
The value of the correlation magnetic field of fluctuations
also related to the lengthLG , Bc;f0 /LG

2 and correlation
properties of the pattern ofdI/dV with respect to the voltage
variations are found in the analytical form both in two a
three dimensions as a function of a voltage scaled by
width of the main resonance peak. Both the amplitude
fluctuations and the correlation parameterBc are expected to
increase with a magnetic field. As well as these fluctuatio
are the image of LDOS fluctuations deep below the Fe
level, their pattern is temperature independent, and they
be regarded as a tool to study the width of the impuri
related level far beyond the main resonance tunneling c
ductance peak.

The author thanks A. Geim, L. Eaves, P. Main, and
Lerner for discussions, and T. Schmidt and R. Haug for
operation. This work was supported by EPSRC.
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