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Response to Guerino Mazzola 

This response to Guerino Mazzola defends the use of imprecise concepts in some 

circumstances, particularly in the light of the impossibility of a precise definition 

of the domain of music. A possible contribution of mathematics to music through 

the demonstration of relationships between formulations of different theories is 

envisaged, specifically those of species counterpoint and functional harmony. 
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Guerino Mazzola is rightly admired for the richness of his mathematical formulations of 

musical concepts, in particular for the way they allow the basis of one concept in 

another to be demonstrated, and for extensions of musical concepts to be envisaged. 

Here is one of the powers of the mathematical approach to music: because mathematics 

looks towards universals, it allows us to talk meaningfully about possible musics 

different from those we know. I would like to take a different tack, though, and ask two 

questions about such mathematical formulations: how do we know if a formulation is 

adequate, and are precise mathematical formulations necessarily better than the 

imprecisely formulated—and probably imprecise—concepts customarily used by 

musicologists and music analysts?  

Precise and imprecise concepts 

I am fond of emphasising to students the distinction between precision and accuracy. A 

watch with a second hand can give us a more precise measurement of time than a clock 

with no second hand, but it is less accurate if the watch is five minutes slow. A 

mathematical formulation can similarly be very precise (e.g., we can know for all 

chords which Riemannian function—tonic, dominant or subdominant—they belong to) 

but its accuracy depends on how well it describes the phenomenon in question. The 

problem here is that music, as pointed out by Geraint Wiggins also, is not a fixed 



phenomenon: we do not know where exactly to draw its boundaries, and more music is 

always being created. 

We could try to avoid this by formulating descriptions of a circumscribed subset 

of music, such as Bach chorales. In such cases, however, the scores (or whatever 

sources are used to define the subset) are themselves a kind of theory because they too 

constitute a description of the music. A system to harmonise melodies in the style of 

Bach chorales could, given a melody, simply find that melody in a database of Bach’s 

entire output, and reproduce one of the harmonisations found there. What we generally 

seek, instead, is a theory which is distinctly ‘smaller’ than the phenomenon it aims to 

describe. Obviously, when the phenomenon is infinite we can only seek to understand it 

through a theory which is smaller. So, for example, we understand the relations between 

the sides of right-angle triangles—an infinite set—through Pythagoras’ theorem rather 

than a list of proportions such as 3:4:5, 5:12:13, etc. Even when the phenomenon is 

finite, we do not regard it as being explained by a list of its cases; we seek to generalise. 

What, though, is the use of a theory which is larger, which takes longer to state or to 

learn, than the set of instances it seeks to explain? This is why we generally seek 

smaller theories. 

Ebcioğlu’s CHORAL system for harmonising Bach chorale melodies [1] 

contained more than 300 rules, a number strikingly close to the 371 chorales in the 

collection by Albert Riemenschneider which is the most commonly used source. The 

rules are probably each ‘smaller’ than an entire chorale harmonisation, so Ebcioğlu’s 

theory is smaller than the phenomenon it describes, but the difference in size is far less 

than that between, say, Newtonian mechanics and the universe of physical bodies in 

motion. The CHORAL system does something which a mere database of Bach’s 

chorales cannot, of course: it is capable of harmonising melodies which Bach did not 



harmonise himself. How are we to judge whether the harmonisations it produces are in 

the style of Bach? There is no way to do this without reference either to human 

judgement, which is imprecise, or to something which is itself effectively a theory of 

Bach-style chorale harmonisation, which is circular. 

To illustrate further the role of imprecise concepts in musicology, let me return 

once again to the topic of motivic analysis, and in particular to its manifestation in the 

kind of paradigmatic analysis exemplified by Nattiez’s analysis of Varèse Density 21.5 

[2]. This is an avowedly systematic approach to analysis, but also one which is 

explicitly not mathematical. Nattiez sometimes gives a detailed discussion of the basis 

for aligning notes in ‘paradigms’ (roughly equivalent to motives), as for example in his 

discussion of whether his second paradigm depends on the rhythmic pattern long-short-

long (in fact ‘long-short-not shorter’ would have been a better formulation) or is based 

on the pitch sequence C sharp to G. In general, though, the discussion is less detailed, 

and the reader is left either to simply ‘read’ the similarity from the paradigmatic 

diagrams or to infer the basis for the paradigms. Nattiez is clear that no single set of 

criteria (rhythmic pattern, intervallic pattern, etc.) defines a paradigm, and it also 

appears from the diagrams that the kind of criteria used in one paradigm would not 

succeed in defining another. The paradigms are constructed in the course of analysis on 

the basis of the analyst’s judgement. This is a creative, and hence inherently 

unpredictable, enterprise. It might well be that Nattiez’s imprecise concept of 

‘paradigm’ is more accurate as a description of analysts’ thinking, and even perhaps of 

listeners’ listening, than a precise mathematical formulation. It allows the concept to 

adapt to the circumstances in analysing or hearing a piece rather than breaking down at 

some unpredictable point as, I suspect, a precise mathematical formulation is bound to 



do. Imprecise concepts, in my view, will always have an important role in our 

understanding of music. 

Mathematics and explanation 

The precision of mathematical formulations, on the other hand, has some distinct 

benefits. A mathematical formulation of species counterpoint, for example, can make 

the rules clear. (This is not the same as making them easier to understand. Musicians, 

unfortunately, are rarely equipped to understand a mathematical formulation. Sets of 

examples, which was essentially Fux’s method, are generally much easier.) It also 

allows for computational implementation, and so for educational tools to correct student 

counterpoint exercises. (Note that this does not, however, lead necessarily to a system 

for composing species counterpoint. It is clear that there is more to composition than 

random selection from solutions to rules. Mazzola himself refers to a required ‘semiotic 

culture’.) More importantly, it can demonstrate the derivation of the rules of species 

counterpoint from other principles. (Other scholars have attempted a derivation on 

psychological principles [3, 4].) We understand something better if we can see how it 

relates to other things we know. 

In this regard, I look forward to a valuable contribution to music theory from 

mathematics through an explanation of how functional harmony evolved from species 

counterpoint (a possibility Mazzola himself envisages [5, pp. 636–37]). In the course of 

music history when this process took place (roughly in the seventeenth and eighteenth 

centuries), many human factors were involved, of course, but because mathematical 

music theory deals in possible musics, it is much better placed to explain the formal 

musical factors than other music theories. Schenker’s claim that the free composition of 

composers up to Brahms derives from the principles of species counterpoint is shrouded 

in vaguely formed but rather polemical principles, and fails to convince. Brown [6] is 



more convincing, especially since he sketches how a modification of the rules of species 

counterpoint can lead to the rules of functional harmony and Schenkerian structure, 

following in part from the introduction of the concept of abstract triadic harmony 

distinct from consonance between concrete pitches, and from the introduction of virtual 

voices distinct from sequences of notes in a single part. Nevertheless, there remain 

many gaps in Brown’s formulation.  

A valuable contribution from mathematical music theory would be a 

demonstration that a mathematical formulation of the rules of species counterpoint 

becomes equivalent to the rules of functional harmony through specific modifications 

such as the addition of new principles and/or the modification of existing ones. That 

triads emerge from species counterpoint in three or more parts is clear: among all the 

possible three-note chords in the standard pitch universe, only major and minor triads 

contain no intervals classed as dissonances in species counterpoint. If a triad is defined 

as a collection of pitch classes, there are many fewer triads than three-note chords 

allowed by the rules of species counterpoint, and so to define possible 

contrapuntal/harmonic configurations in terms of triads rather than in terms of intervals 

allows a more parsimonious theory (making things simpler for composers and music 

teachers). Once triads have become the governing concept rather than intervals, we can 

envisage relaxations of the rules to allow skipping from one note of a triad to another 

without constraint, and so to the phenomenon of virtual voices. Furthermore, since 

triads can be formulated by a rule based on taking alternate notes from scales as well as 

by combinations of consonant intervals, we can envisage the emergence of freer 

treatment of diminished fifths and augmented fourths, since diminished triads 

containing these intervals follow from this scale-based principle. 



The contribution of mathematics here would be to demonstrate that an 

adaptation of the rules of species counterpoint is equivalent to the rules of functional 

harmony in the sense that the sets of allowed pieces of music in each case are equal. 

(The adaptation of the rules of species counterpoint would ideally be distinct from the 

simple product of the rules of species counterpoint and those of functional harmony; 

otherwise the equivalence result might follow trivially.) This would allow the clear 

demonstration of the relation between species counterpoint and functional harmony in 

terms of musical concepts rather than musical practices. 
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