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Abstract: Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these
abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later
skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we
think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept
from these beginnings. Proposals for arriving at natural number by (empirical) induction presuppose the mathematical concepts they
seek to explain. Moreover, standard experimental tests for children’s understanding of number terms do not necessarily tap these
concepts. (2) True concepts of number do appear, however, when children are able to understand generalizations over all numbers;
for example, the principle of additive commutativity (aþ b ¼ bþ a). Theories of how children learn such principles usually rely on
a process of mapping from physical object groupings. But both experimental results and theoretical considerations imply that direct
mapping is insufficient for acquiring these principles. We suggest instead that children may arrive at natural numbers and
arithmetic in a more top-down way, by constructing mathematical schemas.
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1. Introduction

Natural numbers are the familiar positive whole numbers:
1, 2, 3, . . . (or, on some treatments, the non-negative whole
numbers: 0, 1, 2, 3, . . .); and they clearly play an essential
part in many mathematical activities, for example, count-
ing and arithmetic. In addition to their practical role,
natural numbers also have a central place in mathematical
theory. Texts on set theory use the natural numbers to con-
struct more complicated number systems: the integers,
rationals, reals, and complex numbers (e.g., Enderton
1977; Hamilton 1982), and even the surreal numbers
(Knuth 1974). For example, we can represent the integers
(positive, negative, and zero) as the difference between
pairs of natural numbers (e.g., 27 ¼ 2 2 9). Similarly,
we can represent the rationals as the ratio of two integers
(–7/9) and, thus, as the ratio of the differences between
two natural numbers (e.g., [2 2 9]/[10 2 1]). Children
may not necessarily learn the integers, rationals, or
(especially) reals in terms of natural numbers, but the
availability of these constructions is an important unifying
idea in mathematical theory, testifying to natural numbers’
central foundational role.

Given the central position of the natural numbers in
practice and theory, how do children learn them? We
argue here that although research on number learning is
an extremely active and exciting area within cognitive

developmental psychology, there is a gap between the
numerical concepts studied in children and the natural-
number concepts they use in later life. There is a lack of
conceptual fit between the properties of the natural
numbers and the properties of what psychologists have
identified as precursor representations of quantity. These
representations may be useful to nonhuman animals,
infants, children, and even adults for certain purposes,
such as estimating amounts or keeping track of objects,
but they are not extendible by ordinary inductive learning
to concepts of natural numbers. Moreover, the tasks psy-
chologists have used to determine whether children have
natural-number concepts do not necessarily tap these con-
cepts. We argue that psychologists should look elsewhere
for a basis for number concepts, and we suggest a possible
starting point.

After some preliminaries in the first section, we start
building a case for this point of view in section 2 by sketch-
ing what we think is the most complete current model of
infants’ early quantitative abilities. We then try to show
in the third section what the obstacles are for using this
model to capture the concept of natural number.
Deficiencies in this respect have become increasingly
evident in recent work, and the proposals for bridging
between these early representations and more mature
ones have grown correspondingly more complex. We
argue that the difficulty of constructing such a bridge is a
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principled one and that the “precursor” representations
are not precursors. In the fourth section, we consider
another popular way of thinking about how children
acquire number concepts, by mapping them from group-
ings of physical objects. We argue that this mapping
view is also up against difficult problems. The fifth
section speculates about the route to a more adequate
theory.

Although we think there is no way to get from cur-
rent proposals about early quantitative representations
to mature number concepts, this claim should not be
confused with more sweeping or dismissive ones. In
particular, we will not be claiming that early quantitative
representations are unimportant or irrelevant to adult
performance. There is evidence, for example, that magni-
tude representations, which many psychologists believe
underlie infants’ quantitative abilities, also play a role in
adults’ mathematics. Our concern here is solely with
whether psychological research is on the right track in its
search for the cognitive origins of natural number, as we
think there’s a good chance that it is not.

1.1. Words and numbers

In exploring this terrain, we stick to a few terminological
restrictions, since the uses of key terms such as
“number” and “counting” are far from uniform in everyday
language. First, we refer to the number of elements in a set
as the set’s cardinality, which can be finite or infinite.
(Other authors use the terms “numerosity” or “set size”

for what we take to be the same concept.) Second, we
follow the trend in psychology of using natural numbers
for the positive integers (1, 2, 3, . . .). In most formal treat-
ments, the natural numbers start with 0, rather than 1, but
for psychological purposes it is useful to think of 1 as the
first natural number, since it is unclear whether children
initially view 0 as part of this sequence (see sect. 5.3.1
for further discussion). In any case, we eliminate from con-
sideration as the natural numbers any sequence that fails
to have: (a) a unique first element (e.g., 1); (b) a unique
immediate successor for each element in the sequence
(e.g., 905 is the one and only immediate successor of
904), (c) a unique immediate predecessor for each
element except the first (e.g., 904 is the one and only
immediate predecessor of 905), and (d) the property of
(second-order) mathematical induction. The latter prop-
erty essentially prohibits any element from being a
natural number unless it is the initial number or the suc-
cessor (. . . of the successor) of the initial number. We
discuss these requirements in section 5. It might be
reasonable to place further restrictions on the natural
numbers, but systems that fail to observe the four (a) to
(d) requirements just mentioned are simply too remote
from standard usage in mathematics to be on topic.

Finally, counting. The term “counting” has an intransi-
tive use (“Calvin counted to ten”) and a transitive one
(“Martha counted the cats”). In this article, we reserve
the term for the intransitive meaning, and we distinguish
two forms of counting in this sense. One form, which we
call simple counting, consists of just reciting the number
sequence to some fixed numeral, for example, “ten” or
“one hundred.” The second form, which we call advanced
counting, is the ability to get from any numeral “n” to its
successor “nþ 1” in some system of numerals for the
natural numbers. Thus, an advanced counter who is
given the English term “nine hundred four” could
supply the successor “nine hundred five,” and an advanced
counter with Arabic numerals who is given “904” could
supply “905.” Advanced counting, but not simple counting,
implies knowledge of the full system of numerals for the
natural numbers. (For studies of numerical notation,
such as the Arabic or Roman numerals, see Chrisomalis
[2004] and Zhang & Norman [1995]; for studies of
number terms in natural language, see Hurford [1975]
and the contributions to Gvozdanović [1992].)

For clarity, we use the term “enumerating” for the tran-
sitive meaning of counting – determining the cardinality
of a collection – and it is enumerating which is the focus
of much developmental research on the origins of math-
ematics, notably Gelman and Gallistel’s (1978) landmark
book. Enumerating typically involves pairing verbal
numerals with objects to reach a determinable total, but
research has also considered various forms of nonverbal
enumeration. In some theories, for example, some internal
continuous quantity (e.g., activation strength) is adjusted,
either serially or in parallel, to achieve a measure of a
set’s cardinality. We use the term “mental magnitude”
(or magnitude for short) in this article to denote such a
continuous mental representation, and we contrast this
with countable representations, such as the numerals in
standard systems (e.g., Arabic numerals or natural-
language terms for natural numbers). Mental magnitudes
could, of course, represent many different properties,
such as duration, length, or volume, but unless we indicate
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otherwise, the mental magnitudes at issue will be rep-
resentations of cardinality.

2. Possible precursors of natural numbers

Nearly all cognitive research on the development of
number concepts rests on the idea that such concepts
depend on enumerating objects. To be sure, there is
plenty of debate about how infants assess the cardinality
of object collections and about how these early abilities
give place to more sophisticated ones. However, there
seems to be no serious disagreement that enumerating is
the conceptual basis for number concepts.

There may be theoretical reasons, however, to question
a necessary link between enumerating and number.
Recent structuralist theories in the philosophy of math-
ematics take numbers to be, not cardinalities, but positions
in an overall structure – a structure that obeys the axioms
of the system in question (Parsons 2008; Resnik 1997;
Shapiro 1997). The number five, for example, is what
occupies the fifth position in a system that obeys the
characteristics (a) to (d) that we listed in section 1.1. Psy-
chologists seem to have been influenced instead by the
conception of natural numbers as sets of all equinumerous
sets of objects (see Frege 1884/1974; Russell 1920).
According to one version of this conception, for example,
five is the set of all five-membered sets of objects. As a
theoretical account of natural numbers, however, this
one runs into difficulty because it presupposes an infinite
number of objects (since there are an infinite number of
natural numbers). To circumvent the problem that there
might not be enough objects to go around, Frege had to
posit the idea that numbers were themselves objects (see
Dummett 1991, pp. 131–33), and Russell had to posit
an Axiom of Infinity, guaranteeing that there are infinite
sets of a certain sort. In either case, numbers are not
simply sets of sets of physical objects, such as tables or
trees. It virtually goes without saying that not all philoso-
phers of mathematics agree on the merits of the structur-
alist approach over earlier ones.1 Nevertheless, the
structuralist view suggests that the concept of natural
number is not necessarily defined by cardinality or enu-
meration, and we develop this suggestion in section 5.

But, although we think that the structuralist approach is
the most plausible current theory about the meaning of
number terms, we do not presuppose it in examining
psychological accounts. Instead, we argue that even if
natural numbers are cardinalities (and cardinalities sets
of sets of physical objects), most current accounts fail to
provide a satisfactory explanation of how children move
from their initial quantitative abilities to a mature
concept of natural number. For these purposes, then, let
us temporarily assume (in sects. 2–4) that “one,” “two,”
“three,” and so on denote the appropriate cardinalities,
and consider proposals for learning the natural number
concept in these terms. Of course, one psychological
theory that would be theoretically adequate has
NATURAL NUMBER as an innate concept. We briefly
consider this possibility in section 2.1, but most psycholo-
gists believe that NATURAL NUMBER is constructed
from other innate starting points. Section 2.2 sketches
the view of infants’ quantitative abilities that seems to us
in best accord with current theory and research in this

area. Sections 3 and 4 then consider the prospects that
children could use these abilities to construct the natural
number concept.

2.1. Innate natural number concepts

Infants might start off with pre-specified number concepts
that represent cardinalities, one concept representing all
sets with one element, a second representing all sets
with two elements, and so on. A simple mental system of
this sort might be diagrammatic, with a symbol such as
“B” standing for all one-item sets, “BB” standing for all
two-item sets, and continuing with a new item added to
the previous one to form the next number symbol.2 Of
course, such a system could never represent each of the
infinitely many cardinalities by storing separate concepts
for each. Nevertheless, a simple generative rule might be
available for deriving new symbols from old ones (by
adding a “B” to form the successor) that would allow the
infant to represent in a potential way all cardinalities
(see the grammar in sect. 3.2 for an explicit formulation).
A system of this kind is consistent with Chomsky’s
(1988, p. 169) suggestion that “we might think of the
human number faculty as essentially an ‘abstraction’
from human language, preserving the mechanism of dis-
crete infinity and eliminating the other special features
of language.” It is easy to see how an infant could use
such a system for enumerating things and for simple arith-
metic operations (e.g., concatenating two such symbols
to obtain the symbol for their sum); and it is possible
that older children’s reflections on the system could lead
them to an understanding of other mathematical
domains (e.g., the positive and negative integers or the
rational numbers). A less artificial example comes from a
recent proposal by Leslie et al. (2007) that there is an
innately given internal symbol for the integer value 1
and an innate successor function that generates the
remaining positive integers (subject to some further
psychological constraints).

However, although there is evidence that infants have
an early appreciation of cardinality (as we will see in the
next subsection), several investigators have argued
against innate number concepts based on “discrete” (i.e.,
countable) representations. For example, Wynn (1992a)
concludes on the basis of a longitudinal study of 2- and
3-year-olds that there is a phase in which children inter-
pret “two,” “three,” and higher terms in their own counting
sequence to stand for some cardinality or other without
knowing which specific cardinality is correct. They may
know, for instance, that “three” represents the cardinality
of a set containing either two elements or a set containing
three elements, and so on; however, they may not be able
to carry out the command to point to the picture with two
dogs when confronted by a pair of pictures, one with two
dogs and the other with three. These children can, of
course, perceptually discriminate the pictures; their diffi-
culty lies in understanding the meaning of “two” in this
context.

Wynn’s (1992a) evidence is that children in this
dilemma can already perform simple counting (e.g., can
recite the number terms “one” through “nine”), and they
already understand that “one” can refer to sets containing
just one object. They also know that “one” contrasts in
meaning with “two” and other elements in their list of

Rips et al.: From numerical concepts to concepts of number

BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6 625



count terms. The argument is that if children already had a
countable internal representation of the natural numbers,
there should not be a delay between the time they under-
stand “one” and the time they understand “two” (and
between the time they understand “two” and “three”) in
such tasks. But since there is, in fact, such a lag, younger
children’s understanding of cardinality must occur by
means of a system that differs from that of the natural
numbers. Wynn opts for a representation in which
mental magnitudes (degrees of a continuous or analog
medium) represent cardinality.

One point worth noting is that Wynn’s argument was
not directed against innate numbers in general, but,
rather, against a more specific proposal attributed to
Gelman and Gallistel (1978). This proposal included not
only a countable representation but also a set of principles
for using the representation to enumerate sets of objects.
If children have (a) an innate representation for natural
numbers, (b) an algorithm for applying them to enu-
merate sets, (c) knowledge of the initial portion of the
integer sequence in their native language (e.g., “one,”
“two,”. . . ,“nine”), and (d) knowledge that the first term of
the natural-language sequence (“one”) maps onto the first
term of their innate representation, then it is difficult to see
why they do not immediately know which cardinality “two”
(“three,”. . ., “nine”) denotes. The evidence tells against (a)
to (d), considered jointly, but leaves it open whether chil-
dren’s delay between understanding “one dog” and “two
dogs” is due to incomplete knowledge of the principles for
enumerating sets (Le Corre et al. 2006) or due to processing
difficulties in applying the principles to larger sets (Cordes &
Gelman 2005), rather than the result of a lack of a countable
representation of natural numbers.

We think the possibility of an innate system for the
natural numbers should not be dismissed too quickly.
Such a theory, however, is clearly out of favor among psy-
chologists (though see Leslie et al. [2007] for a reapprai-
sal). According to many current views, children build the
natural-number concept from preliminary representations
with very different properties, and it is accounting for the
transition between these preliminary representations and
the mature ones that creates the theoretical gap with
which we are concerned.

2.2. Magnitudes and object individuation

Many current theories in cognitive development see
children’s understanding of number as proceeding from
concepts that do not conform to the structure of the
natural numbers. On the one hand, there is the claim
that numerical ability in infants rests on internal
magnitudes – perhaps some type of continuous strength
or activation – that nonhuman vertebrates also use for
similar purposes (Dehaene 1997; Gallistel & Gelman
1992; Gallistel et al. 2006; Wynn 1992b). On the other
hand, infants’ math-like skills may also draw on discrete
representations for integer values less than four (Carey
2001; Spelke 2000). Either approach requires some
account of how children arrive at natural numbers from
these beginnings.

There seems little doubt that infants are sensitive to
quantitative information in their surroundings. For
example, 10- to 12-month-old infants demonstrate their
awareness of quantities in an addition-subtraction task: If

the infants see an experimenter hide two toys in a box
and then remove one, they will search longer in the box
(presumably to find the remaining hidden toy) than if
the experimenter hides only one toy in the box and then
removes it (Van de Walle et al. 2000). Similarly, in habitu-
ation experiments, infants see a sequence of displays, with
each display containing a fixed number of dots (e.g., 8
dots) in varying configurations. After the infants habituate,
they see new arrays containing either the same number of
dots (8) or a new number (e.g., 16). Under these con-
ditions (and with overall surface area controlled), infants
as young as 6 months look longer at the novel number of
items, as long as the ratio of dots in the two kinds of
display exceeds some critical value (e.g., Xu 2003; Xu &
Spelke 2000; Xu et al. 2005).

Controversy surrounds the reason for the infants’
success. Wynn (1992b) argued that infants keep track of
the number of objects in the addition-subtraction task by
means of internal continuous magnitudes, using the mag-
nitudes to predict what they will find. A magnitude
representation of this sort has also the advantage of
accounting for the results from animal studies of cardinal-
ity detection (see Gallistel et al. 2006, for a review) and for
experiments on number comparison by adults (e.g., Banks
et al. 1976; Buckley & Gillman 1974; Moyer & Landauer
1967; Parkman 1971). In the latter studies, participants
see a pair of single-digit numerals (e.g., 8 and 2) on each
trial and must choose under reaction-time conditions
which numeral represents the larger number. Mean
response times in these experiments are faster, the
larger the absolute difference between the digits; for
example, participants take less time to compare 8 and 2
than 4 and 2. This symbolic distance effect is what we
should expect if participants make their judgment by com-
paring two internal magnitudes, one for each digit. If
the magnitudes include some amount of noise, then the
larger the absolute difference between the digits, the
more clear-cut the comparison and the faster the response
times. The mental-magnitude idea also accords with
people’s ability to provide rough estimates of cardinality
in situations in which an exact count is difficult or imposs-
ible (e.g., Conrad et al. 1998). People may produce
these magnitude representations in an iterative way by
successively incrementing the magnitude for each item
to be enumerated (an accumulator mechanism), but
they could also produce a magnitude representation in
parallel as a global impression of a total (for details of
this issue, see Barth et al. 2003; Cordes et al. 2001;
Whalen et al. 1999; Wood & Spelke 2005). We use the
term single-mechanism theories for all such models in
which magnitudes are infants’ sole means of keeping
track of quantity.

Carey (2001; 2004), Spelke (2000; 2003), and their
colleagues, however, have argued that infants’ ability to
predict the total number of objects in small sets (less
than 4) depends, not on internal magnitudes, but on atten-
tional or short-term memory mechanisms that represent
individual objects as distinct entities (see, also, Scholl &
Leslie 1999). One such representation is maintained for
each object within the four-object capacity limit. Infants
seem unable to anticipate the correct number of objects
in addition-subtraction tasks for cardinalities of four or
more (Feigenson & Carey 2003; Feigenson et al. 2002a),
even though they can discriminate much larger arrays of
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items (e.g., 8 vs. 16 dots) in habituation tasks (Xu 2003; Xu
& Spelke 2000; Xu et al. 2005). Carey and Spelke therefore
argue that infants’ failure in the former tasks is due to the
infants’ tendency to engage object representations (rather
than magnitudes) for small numbers of objects. In the
original formulation, these were pre-conceptual object-
tracking devices – called object files or visual indexes –
that record objects’ spatial position and perhaps other
properties (Kahneman et al. 1992; Pylyshyn 2001). In
more recent formulations (Le Corre & Carey 2007),
these are working memory representations of sets of indi-
vidual objects. Success with larger arrays depends instead
on a magnitude mechanism that correctly distinguishes
sets only if the sets’ ratio is large enough (e.g., greater
than 3 : 2 for older infants; Lipton & Spelke 2003; Xu &
Arriaga 2007). We call this account the dual mechanism
view (see Feigenson et al. 2004).

Should we conclude, then, that infants’ knowledge of
number is built on magnitude information alone, on mag-
nitude information in combination with discrete object-
based representations, or on some other basis? One
issue concerns small numbers of objects. Recent
addition-subtraction and habituation experiments with
two or three visually presented objects have also con-
trolled for surface area, contour length (i.e., sum of
object perimeters), and other continuous variables. Some
of these studies, however, have found that infants
respond to the continuous variables rather than to cardin-
ality (Clearfield & Mix 1999; Feigenson et al. 2002b; Xu
et al. 2005). According to the dual-mechanism explanation,
small numbers of objects selectively engage infants’ dis-
crete object-representing process, and this process oper-
ates correctly in this range. So why don’t the infants
attend to cardinality? Feigenson et al. (2002b; 2004)
suggest that infants do employ discrete object represen-
tations in this situation but attend to the continuous prop-
erties of the tracked objects when these objects are not
distinctive. When the objects do have distinctive proper-
ties (Feigenson 2005) or when the infants have to reach
for particular toys (Feigenson & Carey 2003), the indivi-
duality of the items becomes important, and the infants
respond to cardinality. This suggests a three-way distinc-
tion among infants’ quantitative abilities: (a) With small
sets of distinctive objects, infants use discrete represen-
tations to discriminate the objects and to maintain a
trace of each. (b) With small sets of nondistinctive items,
however, infants feed some continuous property from
the representation (e.g., surface area) into a mental magni-
tude and remember the total magnitude. (c) With large
sets of objects, infants form a magnitude for the total
number. According to (b), infants should fail in discrimi-
nating small numbers of nondistinctive objects (e.g., 1
vs. 2 dots) under conditions that control for continuous
variables, as they are relying on an irrelevant magnitude,
such as total area. But by (c), they should succeed with
larger numbers (e.g., 4 vs. 8 dots) under controlled con-
ditions, as they are using a relevant magnitude (total
number of items). In fact, there is evidence that this pre-
diction is correct (Xu 2003).

A second issue has to do with large numbers of objects.
People’s ability to respond to the cardinality of large sets,
as well as small sets, depends on individuating the items in
the set, barring the kinds of confounds just discussed. This
follows from the very concept of cardinality (as Schwartz

[1995] has argued). Even a magnitude representation for
the total number of objects in a collection must be sensitive
to individual objects; else it is not measuring cardinality but
some other variable. Individuating objects, in the sense we
use here, means determining, for the elements of an array,
which elements belong to the same object. Thus, individua-
tion is the basis for deciding when we are dealing with a
single object and when we are dealing with more.

Investigators in this area have concluded that object
files or working-memory representations cannot be the
only means infants have to individuate objects. If they
were, then the limitations of these mechanisms would
appear in experiments with sets of larger cardinalities con-
taining nondistinctive objects (Barth et al. 2003; 2006;
Wood & Spelke 2005; Xu 2003; Xu & Arriaga 2007; Xu
& Spelke 2000; Xu et al. 2005). If these object represen-
tations simply output information about some continuous
variable such as surface area (as they do for small
numbers of nondistinctive items), then infants should
also fail to distinguish the number of items in large sets
in studies that implement appropriate controls (see Mix
et al. [2002a] and Xu et al. [2005] for debate about the con-
trols’ appropriateness). Moreover, current experiments
with both infants (Wood & Spelke 2005) and adults
(Barth et al. 2003) find that increasing the cardinality of
large arrays does not necessarily increase the time
required for discriminating the arrays, provided that the
sets to be compared maintain the same ratio (e.g., 2 : 1).

In order to handle the problem of dealing with large sets,
we apparently need a mechanism for individuating items,
but one that is not subject to the capacity limits of working
memory or object files. One possibility is that some per-
ceptual mechanism is able to individuate relatively large
numbers of items in parallel, with the output of this analysis
fed to a magnitude indicator. Dehaene and Changeux
(1993) propose a parallel analysis of this sort, and parallel
individuation is also consistent with estimates that adults
can attentionally discriminate at least 60 nondistinctive
items in the visual field (Intriligator & Cavanagh 2001).3

The model in Figure 1 provides a summary of infants’
quantitative abilities based on this account. According to
this model, infants first segregate items in the visual field
by means of a parallel attentive mechanism, similar to
that discussed by Intriligator and Cavanagh (2001) or
Dehaene and Changeux (1993). Infants will quickly
forget the results of this analysis once the physical
display is no longer in view. But while the display is
visible, infants assign a more permanent object represen-
tation if the total number of items is less than four. The
Figure 1 model therefore predicts the results for small
numbers of objects in the same way as the simpler
theory considered earlier (though the use of both parallel
segregation and object representations suggests that indi-
viduating objects may be a more complex process than
might first appear). If the number of items is four or
more, however, infants cannot employ object represen-
tations but may, instead, use the output from the initial
parallel analysis to produce a single measure of approxi-
mate cardinality. Thus, the lower track accords with
Barth et al.’s (2003) and Wood and Spelke’s (2005) find-
ings of constant time to discriminate large displays when
the ratios between them are equal. The model assumes
ad hoc that object representations take precedence over
the global cardinality measure for small arrays. However,
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perhaps an explanation for this co-opting behavior could
be framed in terms of the functional importance of
keeping track of individual objects compared to treating
them as a lump sum.4

We do not mean to suggest that the tracks in Figure 1 are
the only quantitative processes that people (especially
adults) can apply to an array of items. While the display is
visible, adults can obviously enumerate the elements verb-
ally. Similarly, children and adults may also use a nonverbal
enumeration mechanism similar to that described by
Cordes et al. (2001), Gallistel et al. (2006), and Whalen
et al. (1999) in some conditions. Which strategies people
employ may depend on properties of the display, task
demands, and other factors, and we have not tried to
capture this interaction in the figure. (We should add that
the model in Fig. 1 is our attempt to understand current
empirical results within the dual-mechanism framework,
and it may not be an accurate depiction of the views of
specific dual-mechanism theorists. Our aim is to clarify
the implications of such theories rather than to provide an
exact account of a particular version of the model.)

We have tried in this section to understand what mechan-
isms underlie infants’ performance in tasks that aim to
assess their numerical concepts. Although there are
many uncertainties about the Figure 1 model, it appears
to account for much of the available data. Our goal,
however, is not to defend the model but to examine its
implications for later learning. The model is useful
because it presents a provisional survey of the components
that, according to developmental research, children bring
to learning more sophisticated mathematical notions. The
issue for us is this: Many psychologists believe that
people’s mathematical thinking originates from the com-
ponents in Figure 1. But, if the picture in Figure 1 is even
approximately correct, it presents some extremely difficult
problems for how children acquire the concept of natural
number. These problems are next on our agenda.

3. The route to concepts of number

Let us suppose the Figure 1 model or some close relative
correctly captures infants’ sensitivity to cardinality. Should

we then say that they have the concept of natural number?
Dual-mechanism theorists tend to answer “no” (Carey
[2004] and Carey & Sarnecka [2006] are explicit on this
point). Neither magnitudes nor short-term represen-
tations of individual objects have the properties of the
natural numbers; hence, according to these theories, chil-
dren’s quantitative concepts have to undergo conceptual
change in order to qualify as true number representations.
The task for these theorists is then to specify the nature of
this change. Some single-mechanism accounts claim that
although magnitudes do not represent natural numbers,
they do represent continuous quantity, perhaps even real
numbers (Gallistel et al. 2006). The route to natural
numbers in this case involves transforming a continuous
representation into a countable one. In this section, we
extend dual theorists’ skepticism about the relation
between the natural number concept, on the one hand,
and object files, magnitudes, and similar representations,
on the other. Not only do the latter fail to qualify as rep-
resentations of numbers in their own right, but also
there is no straightforward way to get from them to
natural numbers.

In examining proposals about the acquisition of natural
number (and related arithmetic principles in sect. 4), we
repeatedly make use of a simple methodological rule
that it might be worth describing in advance. In explaining
how a person acquires some idea Q, cognitive scientists
often claim that people make an inductive inference to
Q from some body of information P, which these people
already possess. If people already know P and if the infer-
ence from P to Q is plausible to them, then the inference
is a potential explanation of how they acquire Q. How-
ever, rival inferences can undercut such an explanation.
Suppose there is also a body of information P0 (possibly
equal to P) and an inference from P0 to a contrary idea
non-Q. Then if P0 is as believable and as salient as P and if
the inference from P0 to non-Q is as plausible as the one
from P to Q, then the inference from P to Q fails to
explain Q adequately. We call this rule the no-competing-
inference test for psychological explanations. To take a
nonmathematical example, suppose we want to explain
people’s belief that their deity is omnipotent. We might
hypothesize that this idea comes from previous knowledge

Figure 1. A model for infants’ quantitative abilities. Response rules in ovals indicate conditions under which infants look longer in
addition-subtraction or habituation tasks. They are not meant to exhaust possible uses of these representations.
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of a powerful parent, plus a conscious or unconscious infer-
ence from the parent to the deity. But, although this may
be the right account, we should also consider possible com-
peting inferences. In everyday experience, we encounter
only individuals (even parents) with limited power. So
why don’t people draw the inference from a person with
limited power to a deity who is non-omnipotent? There
could, of course, be considerations that favor the first infer-
ence over the second (e.g., Freud [1927/1961] believed
that people’s fear and need for protection motivates the
inference to an omnipotent deity). However, unless we
can supply such a reason – a reason why the selected infer-
ence is more convincing than potential competing
ones – the initial explanation is incomplete.

It is understandable why theories sometimes violate the
no-competing-inference test. Because we ordinarily know
the final knowledge state Q that we want to explain, it is
natural to look for antecedents P that would lead people
to Q. Because we are not trying to explain non-Q, we do
not seek out antecedents for these rivals. It is also clear
that cognitive scientists who work on mathematical
thinking are no more prone than others to violate the
no-competing-inference principle. Still, we find this prin-
ciple helpful in evaluating the strengths and weaknesses of
existing theories in this domain.

3.1. Numerical concepts versus concepts of numbers

As dual-mechanism theorists have pointed out, analog
magnitudes are too coarse to provide the precision associ-
ated with specific natural numbers (Carey 2004; Carey &
Sarnecka 2006; Spelke 2000; 2003). The magnitude rep-
resentation of 157 would barely differ from that of 158
(if a magnitude device could represent them at all), so
they would not have the specificity of a unique natural
number and its successor. Short-term object represen-
tations do have the discreteness of natural numbers, but
they are not unitary representations. Without further
apparatus, having one, two, or three such active represen-
tations does not amount to a representation of oneness,
twoness, or threeness. If a child is tracking three objects,
he or she has one object representation per object but
nothing that represents the (cardinality of the) set of
three. Unless such representations build in the concept
of a unified set of individuated elements, there is
nothing to represent number. According to the dual-
mechanism story, then, it is only after children learn to
count and to combine the precursor representations that
they have true concepts of natural numbers.

Some single-mechanism theorists credit infants (and
nonhuman animals) with more mathematical sophisti-
cation. For example, Gallistel et al. (2006, p. 247) assert
that “when we refer to ‘mental magnitudes’ we are refer-
ring to a real number system in the brain.” Although we
tend to think of real numbers as more advanced concepts
than natural numbers, this may reverse the true develop-
mental progression. The reals may be the innate system,
with natural numbers emerging later as the result of
counting or through other means.

However, some of the criticisms that dual-mechanism
theorists level against magnitudes as representations of
natural numbers also apply to magnitudes as represen-
tations of the reals. Because the mental magnitudes
become increasingly noisy and imprecise as the size of

the number increases, larger numbers are less discrimin-
able than smaller ones. For example, if we consider 157
and 158 as real numbers (i.e., as 157.000. . . and
158.000. . .), they will be much less discriminable than
two smaller but equally spaced numbers, such as 3 and 4
(3.000. . . and 4.000. . .). In Gallistel et al.’s view, this
imprecision is the result of the way a mental magnitude
is retrieved rather than a property of the magnitude
itself. This is of no comfort, however, to the idea that
infants can represent real numbers. If cognitive access to
this representation is always noisy or approximate, it is
unclear how the system could attribute the correct real-
number properties to the representation without some
independent concept of the reals. People cannot skirt
the retrieval step because, as Gallistel et al. consistently
emphasize, the representation of a number cannot be
inert but has to play a role in arithmetic reasoning. An
analogy may be helpful on this point. Suppose you have
access to some continuously varying quantity, such as the
level of water in a tub, and suppose, too, that the
viewing conditions are such that the higher the level of
water, the greater the perceived level randomly deviates
from the true level. Could you use such a device to rep-
resent the real numbers – in order to perform arithmetic?
Although you could combine two quantities of water to get
a larger quantity, the representation of the sum would be
even fuzzier than that of the original quantities (Barth
et al. 2006) and has few of the properties of real-number
arithmetic. For example, real-number addition is a func-
tion that takes two reals as inputs and yields a unique
real as output. But addition with noisy magnitudes is not
a function at all; for any two real input values, it can
yield any value within a distribution as a possible
output.5 Of course, if you already knew some statistics,
you might be able to use this tool to compensate for the
deviations, but this depends on a pre-existing grasp of
real-number properties.

These considerations suggest that if prelinguistic infants
start from the components in Figure 1, then there is no
reason to think that they have concepts of either the
natural or the real numbers. Many theorists believe,
however, that once children have learned language or, at
least, language-based counting, they are in a position to
attain true concepts of natural numbers and that they
have acquired these concepts when they are able to
perform tasks such as enumerating the items in an array
or carrying out simple commands (e.g., “Give me six bal-
loons”). In what follows, we suggest that neither of these
ideas stands up to scrutiny. Language is unable to trans-
form magnitudes or object representations to true
number concepts, and tests involving small numbers of
objects do not necessarily tap concepts of natural number.

3.2. The role of language and verbal counting

We have mentioned Chomsky’s (1988) hypothesis that
mathematics piggybacks on language, making use of the
ability of syntax to generate countably infinite sequences.
In more recent work, Chomsky and colleagues (see
Hauser et al. 2002) take what seems a different view of
the relation between language and mathematics – one in
which both systems spring from an underlying ability to
perform recursive computations; we consider this idea in
section 5. However, many theorists continue to see
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language as necessary in shaping a true understanding of
the natural numbers. Considering this issue draws us
back into an arena of active controversy.

3.2.1. Language as sufficient for number concepts. There
are several reasons why the language-to-math hypothesis is
attractive. First, natural languages possess properties that
are also crucial in mathematics and that are difficult to
obtain from experience with everyday objects and
actions. The grammatical resources of language can
easily generate the type of countably infinite sequence
that can represent the natural numbers. For example,
the nearly trivial grammar in (1) produces the “square
language” we introduced earlier:

S! Bþ F(1)

F! Bþ F

F!�

We originally used this language in section 2.1 to rep-
resent cardinality, but it could also serve more generally
as a system of numerals. As an example, these phrase-
structure rules generate the tree structure in Figure 2 as
the representation of three.

The role of the F symbol in this grammar illustrates the
way recursion is useful in generating the natural numbers.
The symbol F can be embedded as many times as necess-
ary in order to produce the correct number of squares.
What makes Figure 2 represent three is in part that it
occupies the third position in the sequence of such
strings that the grammar of (1) generates. (Of course, we
are not proposing the square language as a cognitively
plausible representation but only as a simple illustration
of the generative capacity that such representations
would require; we consider other ways to formulate the
natural numbers in sect. 5.) This tie to language would
clearly be helpful in accounting for math properties that
depend essentially on the infinite size of the natural
numbers (see sect. 4). Along similar lines, Pollmann
(2003) and Wiese (2003) have pointed out that the
natural numbers, like certain parts of language, are an
inherently relational system in which the meaning of any
numeral depends on its position in the system as a
whole. Language furnishes a type of relationally deter-
mined meaning in which a sentence, for example,
depends on the grammatical relations among its constitu-
ents (e.g., “The financier dazzled the actress” differs in

meaning from “The actress dazzled the financier”). Thus,
language can set the stage for understanding mathematics.

It is possible to imagine a strong version of the language-
to-mathematics hypothesis in which possessing a natural
language is not only necessary but also sufficient for the
development of concepts of natural numbers. According
to this type of theory, language is the sole source of
number concepts. Psychologists who see a role for
language in acquiring number concepts have more often
taken the “catalyst” view that we describe shortly (in the
next subsection), but the stronger position may be implicit
in the idea that “the human number faculty [is] essentially
an ‘abstraction’ from human language”(Chomsky 1988,
p. 169). Evidence against this possibility comes from
recent studies of native Brazilian peoples who appear to
lack concepts for exact numbers greater than four
(Gordon 2004; Pica et al. 2004). These people have no
number terms that distinguish between, for example, six
and seven; instead, they use words such as “many” for
larger numbers of items. In tasks that require knowledge
of approximate quantity, members of these cultures
perform in a way that is comparable to Americans or Eur-
opeans. For example, Pica et al. (2004) report that the
Mundurukú are able to point to the larger of two sets of
20 to 80 dots with accuracy that is nearly the same as
French controls. However, in tasks that require exact enu-
meration, accuracy is relatively low. If participants see a
number of objects placed in a container and then see a
subset of the objects withdrawn, they have difficulty pre-
dicting how many (Pica et al. 2004) – or whether any
(Gordon 2004) – objects remain. These experiments
suggest that the Mundurukú and Pirahã peoples use a
system for dealing with cardinality roughly similar to that
of Figure 1. They treat large cardinalities (and, perhaps,
small cardinalities as well) as approximate quantities. As
in the case of findings with Western infants, it is possible
to question whether difficulties in assessing the cardinality
of a set imply lack of a concept of natural numbers (see
sects. 2 and 3.3). But in this case, it is difficult to argue
for knowledge of natural numbers in the absence of evi-
dence for more than four discrete representations for
numerical properties. Gelman and Butterworth (2005)
suggest that such counterevidence might be obtainable.
However, taking the Brazilian results at face value, we
need to explain why natural language shows up in such
cultures but natural numbers do not, if there is an innate
linguistic basis for a countable number system.6,7

3.2.2. Language as a catalyst for number concepts. A
weaker, and more plausible, hypothesis is that children
need, not language in general, but some type of
language-based enumeration technique in order to form
number concepts. Initially, children verbally enumerate
items by means of simple counting (see sect. 1.1 for our
distinction between simple and advanced counting).
They match a small fixed list of numerals to the elements
of a collection.

Adults, of course, can enumerate by advanced counting,
and there is no doubt that advanced counting could be
helpful in conveying the concept of natural numbers.
Once children have mastered advanced counting, they
have a model of the natural numbers that is much closer
than anything in the world of (finite) physical experience.
This is because the elements of advanced counting (the

Figure 2. A representation of the number three, according to
the grammar rules in (1).
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numerals of the counting system) are in a one-to-one cor-
respondence with the natural numbers – a correspon-
dence that preserves the successor relation (i.e., the
successor relation on the numerals corresponds to that
on the natural numbers). We are not claiming that chil-
dren attain the concept of natural number by learning
advanced counting: We think it more likely that children
learn an underlying set of principles that facilitates both
advanced counting and the concept of natural number
(see sect. 5). However, advanced counting, not simple
counting, provides the numerals that are the obvious
counterpart of the natural numbers.

Most psychologists believe, however, that children
acquire the natural number concepts long before they
master advanced counting either in natural language or
in explicit mathematical notation. Thus, if language-based
counting plays a role in forming these concepts, it must
be simple counting and associated enumerating that are
responsible. How are they able to produce this effect?
Some recent dual theories of a counting-to-number link
suggest that enumerating items with natural-language
count terms provides a conceptual bridge between magni-
tudes and object representations, giving rise to a new sort
of mental representation (Spelke 2000; 2003; Spelke &
Tsivkin 2001). Magnitudes bring to this marriage the
concept of a set, object representations bring the concept
of an individual, and the result is the concept of cardinality
as a measure of a set of distinct individuals:

To learn the full meaning of two, however, children must
combine their representations of individuals and sets: they
must learn that two applies just in case the array contains a
set composed of an individual, of another, numerically distinct
individual, and of no further individuals. . .. The lexical item
two is learned slowly, on this view, because it must be
mapped simultaneously to representations from two distinct
core domains. (Spelke 2003, p. 301)

But it is difficult to understand how conjoining these
systems could transform number representations in the
desired way (see Gelman & Butterworth [2005] and Laur-
ence & Margolis [2005] for related comments). Suppose
the meaning of a number word like “two” connects to
both a fuzzy magnitude and two object files. According
to this theory, magnitude information must transform
the representation of two separate objects into an adult-
like representation of a single set of two. But why
doesn’t the fuzziness of the magnitudes lead the children
to believe that “two” means approximately two individuals
(or a few)? Why do magnitudes lead to sets rather than to
some other form of composite, such as a part-whole group-
ing? Why is language necessary if even infants can treat
individual items as parts of chunks (Feigenson & Halberda
2004; Wynn et al. 2002)? Unless we can somehow answer
these questions, the explanation trips over what we called
the no-competing-inference rule, since there are many
competing conclusions about the meaning of number
words that children could draw from the same data. We
might do better to discard magnitudes and to think of
the resulting representations as drawing on some more
direct form of set-like grouping. Along these lines, Carey
(2004; Carey & Sarnecka 2006; Le Corre & Carey 2007)
has proposed that children use the resources of natural-
language quantifiers to combine object representations
into sets, so that children come to represent one as {a},

two as fa, bg, and so on – representations which we will
refer to as “internal sets.”

It is language that spurs the creation of an internal symbol
whose meaning is that which is common to all situations
where a pair of individuals are being tracked at the same
time. Associating linguistic markers with unique states of the
parallel individuation system is only possible for up to three
objects, because the parallel individuation system can only
keep track of up to three individuals at once. (Carey & Sar-
necka 2006, p. 490, emphasis in original)

Some single-mechanism theories describe infants as
already having true natural number concepts for smaller
numbers; so the role of language is more plausibly con-
fined to extending these concepts to the rest of the integers
(Bloom 2000; see also Hurford 1987 for a related account).
According to Bloom (2000, p. 215), for example, “Long
before language learning, . . . [babies] have the main pre-
requisite for learning the smaller number words: they
have the concepts of oneness, twoness, and threeness.
Their problem is simply figuring out the names that go
with these concepts.”

The crucial question for both single-mechanism and
dual-mechanism theories is then whether simple counting
and enumerating allow children to extend their knowledge
of number beyond these first three to a full concept of
natural number. Suppose, in other words, that at a critical
stage, children have worked out facts like those in (2):

‘‘one’’ represents one(2)

‘‘two’’ represents two

‘‘three’’ represents three

According to the assumptions we have temporarily
adopted, words occupy the left-hand side of these relations,
and cardinalities occupy the right-hand sides (e.g., one is
the size of singleton sets, two is the size of two-member
sets, etc.). The concepts that mediate the relations in (2)
depend on the theory in question. For single-mechanism
theories, internal magnitudes underlie these associations;
for example, “two” denotes two because children learn
that “two” represents what the corresponding internal mag-
nitude does. For dual-mechanism theories, the associations
depend on preliminary combinations of object represen-
tations and magnitudes (Spelke 2003) or object represen-
tations and set-like groupings (Carey 2004; Carey &
Sarnecka 2006; Le Corre & Carey 2007).

In all cases, though, the outcome of these linkages is that
children acquire the denotations in (2). Then, by correlat-
ing the sequence of words in the count series with the
regular increase in cardinality, the children arrive at some-
thing like the generalization in Principle (3):

(3) For any count word “n,” the next count word “s(n)”
in the count sequence refers to the cardinality
(nþ 1) obtained by adding one element to
collections whose cardinality is denoted by “n.”

Carey (2004) and Hurford (1987) have detailed formu-
lations along these lines. Similar suggestions appear in
Bloom (1994) and Schaeffer et al. (1974). According to
Carey and Sarnecka (2006, p. 490), “This idea (one word
forward [in the count list] equals one more individual) cap-
tures the successor principle.” Notice, though, that Prin-
ciple (3) depends on the concept of the next count word,
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which we have referred to as “s(n),” for any count term “n”
(if “n” is “five,” “s(n)” is “six”; if “n” is “ninety,” “s(n)” is
“ninety-one”; etc.). For these purposes, simple counting
won’t do as a guide to “s(n),” as simple counting uses a
finite list of elements. For example, if a child’s count list
stops at “nine,” then Principle (3) can extend the
numeral-cardinality connection through nine. In order to
capture all the natural numbers, however, Principle (3)
requires advanced counting: an appreciation of the full
numeral system. But at this point the trouble with the
counting hypothesis comes clearly into view, for at the
point at which children are supposed to infer Principle
(3) – at a little over 4 years of age – they have not yet mas-
tered advanced counting. There is nothing that determines
for such a number learner which function or sequence
specifies the natural number words (i.e., the function
that appears as “s(n)” in Principle [3]).

In learning ordinary correlations or functions, children
induce a relation between two pre-existing concepts, for
example, degree of hunger and time since lunch. By con-
trast, what lies behind the proposal that children induce
Principle (3) from (2) is the bootstrapping hypothesis
that they are simultaneously learning advanced counting
along with (and because of) the correlation with cardinal-
ity. But it is unclear how this is possible in the case of
natural numbers (see Rips et al. 2006; 2008). Suppose,
for example, that the count system that the child is learn-
ing is not one for the natural numbers but, instead, for
arithmetic modulo 10, so that adding 1 to 0 produces
1, . . . , and adding 1 to 8 produces 9, but adding 1 to 9 pro-
duces 0, and so on in a cyclical pattern. In this case, Prin-
ciple (3) is still a valid generalization of (2) if we interpret
“s(n)” as the next numeral in the modular cycle, but then
what has been learned is not the natural numbers.

The generalization in (3) can seduce you if you think of
the child as interpreting it (after a year of struggle) as “Aha,
I finally get it! The next number in the count sequence
denotes the size of sets that have one more thing.” But
“next number in the count sequence” isn’t an innocent
expression since the issue is, in part, how children figure
out from (2) that the next number is given by the successor
function for the numerals corresponding to the natural
numbers and not to a different sequence (e.g., the
numbers mod 10 or mod 38 or mod 983). You might be
tempted to reply that this problem is no different from
any other case of (empirical) induction, where there is nor-
mally an infinite choice of extrapolations. There have to be
some constraints on induction to make learning humanly
possible. But although this is true, it is unclear what
general constraints could steer Principle (3) toward
the natural numbers, especially because the function
successor-mod-10 and many others seem less complicated
than the successor function for natural numbers, with its
infinite domain. (See Rips et al. [2006] for a discussion
of the relation between the bootstrapping problem and
more general problems of induction and meaning.)8

We have been concentrating on the relation between
numerals and cardinalities, as the issues are clearest in
this context, but the same difficulties appear if we look at
acquisition of number meanings from the perspective of
the mental representations that support them. The the-
ories we are examining suppose that the mental represen-
tations are latched to external cardinalities, so that larger
internal magnitudes or larger internal sets always correlate

with larger external set sizes. On this assumption, if we are
learning the standard system for natural numbers, “nine”
will come to be associated with a single magnitude or
internal set, whereas if we are learning the mod10

system, “nine” will be associated with a collection of
internal magnitudes or sets. Principle (3) does not tell us
which of these connections is correct.

Some theorists may understand Principle (3) as a way of
transcending, rather than extending, the initial represen-
tations. On this understanding, mental magnitudes or
internal sets are no longer needed once children arrive
at this principle. To the extent that properties of the
initial representations carry over to later ones, however,
they bring additional difficulties to number concepts. If
we start with a magnitude representation for (2) and
extend it by (3), we get increasingly noisy representations
as we go to higher numbers. There is nothing about the
representation that gives us the ingredients we need to for-
mulate the correct hypothesis of a countable sequence (as
Leslie et al. [2007] point out). If we start with a set-like
representation for (2) and try to extend it by (3), we run
into the problem that we can’t possibly represent in this
way more than a small initial segment of the natural
numbers. Our ability to represent individual sets (e.g.,
{a}, {a, b}) must come to an end because of memory
limits, but the natural numbers keep on going. To take
up the slack, the concepts have to go generative, as in
(1). But since the right generative principle is not sup-
posed to be available beforehand, it is unclear what
guarantees a structure that will continue infinitely. To rep-
resent the natural numbers, though, we need a represen-
tation for a sequence that is both countable and infinite.

This is not to say that the generalization in (3) is false or
that it is unhelpful to number learners. The generalization
is true, but it does not serve to fix the meaning of the
numerals for children, because at this point they do not
know what function “s(n)” is. For this reason, Principle
(3) cannot tell them what the natural numbers are; Prin-
ciple (3) is indeterminate for them. For practical purposes
of enumerating objects, of course, it is important for
children to realize that there is some systematic rela-
tion or other that holds between the numeral sequence
and the cardinalities, and (3) could mark this recognition.
However, realizing that there is such a link does not fully
specify it. Theories of number acquisition rely on Principle
(3) both because they take the meaning of a numeral to be
a cardinality and because they suppose (3) specifies this
meaning for the natural numbers. But (3) is incapable of
performing this function, since it presupposes knowledge
of the very structure that it is supposed to create. This
suggests that enumerating might be less crucial to the
development of natural number than might first appear.
Enumerating – pairing numerals to cardinalities – cannot
create the natural numbers, as many forms of enumerating
that are consistent with Principle (3) lead to nonstandard
systems (see sect. 5.3.4).

3.3 Do tests of “how many objects?” require concepts of
natural number?

Suppose, though, that the child finally succeeds in the
standard tests of number comprehension, performing cor-
rectly when asked to “Point to the picture with six dogs” or
to “Give me six balloons.” Should we now say that he or she
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has the concept of natural number? The answer seems to
be “no” when we are dealing with the small collections that
these experiments employ. A textbook exercise in first-
order logic asks students to paraphrase sentences such as
“There are (exactly) two dogs” or “There are (exactly) three
hats.”9 An answer to the first of these exercises appears in
Proposition (4):

(4) (9 x) (9 y) (x is a dog) & (y is a dog) & (x = y) & (8z)
(z is a dog . [(z ¼ x) _ (z ¼ y)]).

Sentences like this one do not contain references to
numbers or any other mathematical objects but get along
with concrete objects, such as dogs. The quantifiers and
variables in (4) make clear its commitments about the
existence of objects – (4) is committed to dogs but not to
numbers (see Hodes 1984; Parsons 2008; Quine 1973) –
but the representation for two dogs as an internal set
(e.g., {a, b}) or as a magnitude presumably carry the
same commitments.

We should be careful to acknowledge that children’s
quantitative abilities extend beyond concrete physical
objects like dogs. Even infants are sensitive to the
number of tones in a sequence (e.g., Lipton & Spelke
2003) and to the number of jumps of a puppet (Wynn
1996). They also keep track of sums of entities appearing
in different modalities – for example, visual objects plus
tones, at least if they have previously witnessed the tones
paired with the objects (Kobayashi et al. 2004). In this
sense, the infants’ numerical skills are more abstract than
what is required to enumerate visually presented items.
However, this type of abstractness does not affect the
present argument, since the infants can accomplish all
these tasks by representing objects, tones, or jumps, rather
than number.

Our goal in this article is to find out how people attain
the concept of natural number. To summarize our interim
conclusions about this, let us consider hypothetical chil-
dren who have made the inference to Principle (3) and
can correctly understand requests, such as “Give me n
balloons,” for “n” up to “nine” (or the last of the children’s
current set of count terms).

Do such children have the concept NATURAL NUMBER?

No, since many definitional properties of the natural numbers
are unknown to them (e.g., that the numbers don’t loop
around).

Could the children have partial knowledge of NATURAL
NUMBER?

Yes, in the sense that they could know some properties of
this concept. There is no reason to think that knowledge of
natural numbers is all or none. Although children must have
a certain body of information to be said to have the natural
number concept (see sect. 1.1), they may assemble the
components of this information over an extended period
of time.

Do such children have the concept of ONE (or TWO or. . . or
NINE)?

Not that we can discern from the results of tests such as “Give
me n.” Although children may have such concepts, the range of
tasks that we have reviewed does not reveal their presence. To
put this in a slightly different way, the developmental studies
may have revealed numerical concepts but not concepts of
numbers. It may be only when children make mathematical
judgments about numbers (rather than about objects) that
we can study the nature of these concepts. For example,

whereas it is easy to express the idea that there are two dogs
by means of proposition (4) without using concepts of
numbers, it is more difficult to express the ideas that one is
the first number, that one is less than two, that for any
number there is a larger one, and so on.10

Our distinction between numerical concepts and con-
cepts of number partially resembles others that have
appeared in the literature on number development.
Gelman (1972; Gelman & Gallistel 1978, Ch. 10), for
example, separates children’s ability to determine the
number of elements in a collection from their ability to
reason about the resulting cardinality. For instance, decid-
ing that there are three books in one pile and five in
another requires enumerating the books, but deciding
that the two piles have different numbers of books is a
matter of numerical reasoning, in Gelman’s terminology.
The distinction we are driving at here, however, differs
in that even numerical reasoning (in Gelman’s sense)
does not necessarily involve concepts of number. It
would be possible to determine that two piles have differ-
ent numbers of books by employing concrete represen-
tations of books rather than representations of number.
Compare this judgment with the idea that five is greater
than three, which does seem to require concepts of
numbers. Closer to our own distinction is Gelman and
Gallistel’s account of numerical versus algebraic reason-
ing: “Numerical reasoning deals with representations of
specific numerosities. Algebraic reasoning deals with
relations between unspecified numerosities” (Gelman &
Gallistel 1978, p. 230). However, even algebraic reasoning
on this account is about the cardinalities of physical objects
rather than about numbers themselves. Gelman and Gal-
listel (1978, p. 236) do note, however, “the conceivable
existence of another stage of development. . . In this
stage arithmetic is no longer limited to dealing with rep-
resentations of numerosity. It now deals with that ethereal
abstraction called number.”

To forestall a possible misunderstanding, we are not
asking whether children have conscious access to the prin-
ciples governing the natural number system or other math-
ematical domains, and we are not asking when (or if)
children are able to behave like “little mathematicians”
in explicitly wielding such principles in reasoning or com-
putation. Of course, a child’s explicit formulation of such
principles would be excellent evidence that he or she
had concepts of natural numbers, and it would place an
upper bound on when he or she had acquired these con-
cepts. But there is no reason why the child couldn’t
display evidence of such concepts indirectly – for
example, evidence of a correct understanding of the sen-
tence, “Three is less than four.” Gelman and Greeno
(1989) have clarified this point concerning mathematical
principles, and the analogous case with respect to knowl-
edge of linguistic rules is too well known to need replaying
here. What we are interested in probing is whether chil-
dren have any concept whatsoever of numbers, implicit
or explicit, and our review of research on infants and pre-
school children has turned up no evidence that allows us to
decide this issue. This is due to limitations in the nature of
the experimental tasks. To find such evidence, then, we
need to look at how children make mathematical judg-
ments that have a more complex structure, as we do in
the following section.
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One objection to this line of reasoning can be summar-
ized thus:

It is impossible that early quantitative abilities are discon-
nected from true concepts of number, since evidence for
these precursors appears even in adults’ mathematics. For
example, adults’ judgments of which of two digits is larger
yield distance effects on reaction times (see the studies cited
in sect. 2.2). Assuming that some magnitude-like represen-
tation is responsible for this effect, magnitude must be part
of adults’ natural-number concept. For this reason, some pro-
posals about number representation in adults have included
these magnitudes, along with other ingredients (e.g., Anderson
1998; McCloskey & Lindemann 1992).

Adults might well find magnitude representations
useful, for example, in carrying out tasks that call for esti-
mation of quantity or amounts; but we do not find it con-
vincing that because number terms are associated with
magnitudes, magnitudes are responsible for number con-
cepts. There may be a sense of “concept” in psychology in
which anything can be part of a concept, as long as a cor-
responding expression reminds us of it. But what propo-
nents of magnitudes-as-precursors-of-natural-numbers
have to claim is not just that magnitude is associated
with natural number (in the way, e.g., that BREAD is
associated with JAM), but also that it plays a causal role in
children’s acquisition of this concept – that NATURAL
NUMBER is built on a foundation of magnitude – and
we see no reason for believing this is true. For example,
natural number includes the notion that each such
number has a unique successor, but there is nothing
about magnitudes that enforces this idea (since magni-
tudes don’t have successors), and there is no easy way
for magnitudes to be conjoined with this idea to produce
the adult concept of natural number.

Here is a related objection:

Some of the components of Figure 1 seem likely to be part of
adults’ ability to enumerate objects using advanced counting.
For example, they must use object individuation to discrimi-
nate the to-be-enumerated items, and they may need object
representations or magnitudes as well. Granted: these
resources are not sufficient for adults’ (or even children’s)
object enumeration, since this requires further knowledge,
such as Gelman and Gallistel’s cardinal principle (the last
element of the count sequence represents the cardinality of
a collection). Nevertheless, some of the Figure 1 processes
are surely part of the story of adult enumeration and, hence,
must be part of adults’ concept of natural number.

This objection is initially tempting because of the assump-
tions that we have temporarily adopted: that numbers are
cardinalities and that cardinalities are sets of sets of physical
objects. The components of Figure 1 that determine object
representations no doubt carry over to adult performance in
enumerating objects (i.e., determining the cardinality of
groups of objects). But this only makes the difficulties we
have just seen more acute. The lack of a plausible story
about how children graduate from the representations and
processes of Figure 1 to an adult concept of natural
number suggests that the assumptions themselves are incor-
rect. As in the case of the previous objection, this one works
only if you assume that adults’ enumerating figures into the
concept NATURAL NUMBER. What we suggest in section
5 is that the natural number concept, and even concepts of
particular numbers such as TEN, may not necessarily
depend on enumeration, either definitionally or empirically.

Before exploring this idea, however, we first examine a
different route from objects to number.

4. Knowledge of mathematical principles

The ability to perform simple counting and enumerating
probably will not suffice as evidence of concepts of
numbers for the reasons we have just seen. Even early
arithmetic may be too restricted a skill to demand
number concepts: A child’s first taste of arithmetic may
involve object tracking, mental manipulation of images
of objects, counting strategies, or mental look up of sums
that do not require the numerals to refer to numbers.
This may seem to raise the issue of whether even adults
have or use the concept of natural number outside very
special contexts, such as mathematics classes. Certainly,
older children and adults continue to use number words
in phrases such as “three stooges” for which no concepts
of number may be in play. However, older children and
adults also appear to have a range of knowledge about
numbers, which they can use in nontrivial arithmetic,
numerical problem solving, and other tasks, and a look at
this knowledge may give us some ideas about how the
natural number concept first appears.

One place to search for evidence of concepts of
numbers is knowledge of general statements that hold
for infinitely many numbers. Understanding generaliz-
ations of the form “for any number x, F(x)” forces people
to deal with concepts that carry a commitment to
numbers rather than to physical objects, as these general-
izations are overtly about numbers. Statements of this sort
include those that define the numbers (e.g., every natural
number has just one immediate successor) and those that
state arithmetic principles that adults can express with
algebraic variables (e.g., additive commutativity: aþ b ¼
bþ a; additive inverse principle: aþ b 2 b ¼ a). State-
ments of the first sort have an especially important role
here, as they bear on the issue of when people can be
said to have the concept NATURAL NUMBER, and we
return to them in section 5. General arithmetic principles,
though, are also of interest because the infinite scope of
such principles makes it difficult to paraphrase them
purely in terms of statement about physical objects (at
least not without additional mathematical apparatus).
Children’s knowledge of these principles can provide evi-
dence that they have a concept of number, whether or not
this exactly coincides with the natural numbers. In this
section, we consider as an example the additive commuta-
tivity principle because there is a substantial body of
research devoted to how children acquire it. (We also con-
sider briefly the additive inverse principle in Note 11.)
Bear in mind, however, that many other principles could
serve the same purpose.

We are not requiring that children be able to compute
the answers to specific arithmetic problems in order to
demonstrate understanding of math principles: It is
enough that they recognize the necessity of the rule itself.
Although children would, of course, have to possess the
notion of addition in order for them to recognize that
aþ b ¼ bþ a, there is no need for them to be able to
compute correctly that, say, 946þ 285 ¼ 1,231 and
285þ 946 ¼ 1,231. What’s crucial is that they understand
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that, for all natural numbers, reversing the order of the
addends does not change their sum.

4.1. Acquisition of the commutativity principle

Commutativity appears to be one of the few general
relations to attract researchers’ attention, probably
because of its close ties to children’s early addition strat-
egies. It may also be one of the first general properties
of addition that children acquire (Canobi et al. 2002; see
Baroody et al. [2003] for an extensive review of children’s
concept of commutativity.)

Evidence on commutativity suggests that most 5-year-
olds know that the left-to-right order of two groups of
objects is irrelevant to their total. Three ducks on the
right and two ducks on the left have the same sum as
two on the right and three on the left. Children recognize
the truth of this relation even when they can’t count the
number of items in one or both groups – for example,
because the experimenter has concealed them (Canobi
et al. 2002; Cowan & Renton 1996; Ioakimidou 1998, as
cited in Cowan 2003; Sophian et al. 1995). Of course, chil-
dren do not read any mathematical notation in these
studies; they simply make same/different judgments
about the total number of objects. Hence, any potential
difficulties in coping with explicit mathematical variables
do not come into play in the way they might for beginning
algebra students (MacGregor & Stacey 1997; Matz 1982).
However, the lack of explicit mathematical connections
raises the issue of whether children’s judgments about
the spatial or temporal order of the combination reflect
the same notion of commutativity as their later under-
standing that aþ b ¼ bþ a. Children who succeed in
these grouping tasks have apparently understood the
idea that for two disjoint collections of concrete objects,
A and B, certain spatial or temporal rearrangements do
not change the cardinality of their union. But the commu-
tativity of addition is the statement that for any two
numbers, a and b, the number produced by adding a to
b is the same as that produced by adding b to a.

This difference between generalizing over objects and
over numbers does not imply that knowledge of the
spatial or temporal commutativity of objects is irrelevant
in learning the commutativity of addition. In working out
the relation between them, however, it is good to keep
in mind that not all binary mathematical operations are
commutative. For example, subtraction, division, and
matrix multiplication are not; even addition of ordinal
numbers is not commutative (Hamilton 1982, p. 216).
Similarly, not all physical grouping operations are commu-
tative in the sense of preserving cardinalities. The total
number of objects in a pile may depend on whether
fragile objects are put on before or after heavy ones.
This suggests that any transfer of commutativity from
physical to mathematical operations must be selective
rather than automatic. There seems to be little possibility
that children could first discover that physical grouping of
objects is commutative with respect to totals and then
immediately generalize commutativity to addition of
numbers. Children would have to hedge the initial “dis-
covery” in ways that might be difficult to anticipate
before they had some knowledge of addition itself, and
they would have to transfer the properties to some math-
ematical operations but not to others.

This difference between commutativity in the physical
and mathematical domains helps account for some of the
empirical findings. Many children are able to pass a com-
mutativity test involving sums of hidden objects, as in the
experiments cited earlier, before they are able to solve
simple addition problems (Ioakimidou 1998, as cited in
Cowan 2003). Once they have learned addition, however,
they do not automatically recognize the commutativity of
specific totals (e.g., that 2þ 5 ¼ 5þ 2). This is true even
when the addition strategies they use presuppose commu-
tativity. For example, some children solve addition pro-
blems by finding the larger of the two addends and then
counting upwards by the smaller addend; that is, these
children solve both 2þ5 and 5þ2 by starting with 5 and
counting up two more units to 7. However, children who
use this strategy of counting on from the larger addend
do not always see that addition is commutative when
directly faced with this problem. For example, although
they may use counting from the larger addend to solve
both 2þ5 and 5þ 2, they may not be able to affirm that
2þ 5 ¼ 5þ2 without performing the two addition oper-
ations separately and then comparing them (Baroody &
Gannon 1984). In fact, some children seem to discover
the commutativity of addition only after noticing that
these paired sums turn out to be the same over a range
of problems (Baroody et al. 2003).

We argued in section 3 that there is no evidence from
studies of infants that they possess concepts of numbers.
Even tasks with older children that require them to deter-
mine the cardinality associated with specific number
words do not necessarily reveal their presence. Of
course, it is still quite possible that preschool children
have such concepts. The available experimental tech-
niques may simply not be the right ones to detect them.
The studies on commutativity are of interest in this
respect because tasks involving this principle do seem to
require concepts of numbers in order for children to
appreciate the principle’s generality. The results of these
studies suggest, however, that children do not automati-
cally recognize the validity of the principle when they
first confront it.11

We are about to explore the issue of where such prin-
ciples come from. But the findings about additive commu-
tativity already suggest that people’s understanding of
mathematical properties cannot be completely explained
by their nonmathematical experience. This partial inde-
pendence is in line with the relative certainty we attach
to mathematical versus nonmathematical versions of
these properties. We conceive of the commutativity of
addition for natural numbers as true in all possible
worlds but not the commutativity of physical grouping
operations.

4.2. Mapping of mathematical principles from physical
experience

Most psychological theories of math principles (e.g., com-
mutativity) portray them as based on knowledge of phys-
ical objects or actions. In this respect, these theories
follow Mill’s assertion that:

the fundamental truths of [the science of Number] all rest on
the evidence of sense; they are proved by showing to our eyes
and fingers that any given number of objects – ten balls, for
example – may by separation and re-arrangement exhibit to
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the senses all the different sets of numbers the sum of which is
equal to ten. (Mill 1874, p. 190)

Of course, nearly all contemporary theories in this area
credit children with some innate knowledge of numerical
concepts (e.g., via magnitudes), as we have seen in
section 2. Unlike Mill’s proposal, these theories do not
try to reduce all mathematical knowledge to perceptual
knowledge. Nevertheless, all theories of how children
acquire arithmetic principles, such as the commutativity
or the additive inverse principle, view these principles as
based, at least in part, on physical object grouping. In
the case of the commutativity of addition, these theories
typically see spatial-temporal commutativity for sums of
objects as a precursor, though they may also acknowledge
the role of other psychological components, such as
experience with computation (e.g., Gelman & Gallistel
1978, p. 191; Lakoff & Núñez 2000, p. 58; Piaget 1970,
pp. 16–17; Resnick 1992, pp. 407–408). Theories of this
sort must then explain the transition from knowledge of
the object domain to the mathematical domain. An
account of the empirical-to-mathematical transition is
pressing in view of the evidence that this transition is not
automatic. How does this transformation take place?

According to Lakoff and Núñez (2000), general proper-
ties of arithmetic depend on mappings from everyday
experience. These mappings begin with simple corre-
lations between a child’s perceptual-motor activities and
a set of innate, but limited, arithmetic operations
(roughly the ones covered by the Fig. 1 model). The
child experiences the grouping of physical objects simul-
taneously with the addition or subtraction of small
numbers. This correlation is supposed to produce neural
connections between cortical sensory-motor areas and
areas specialized for arithmetic, and these connections
then support mapping of properties from object grouping
to arithmetic. Lakoff and Núñez call such a mapping a
“conceptual metaphor” – in this case, the “Arithmetic is
Object Collection” metaphor. This metaphor transfers
inferences from the domain of object collections to that
of arithmetic, including some inferences that do not hold
for the innate part of arithmetic. For example, closure of
addition – the principle that adding any two natural
numbers produces a natural number – does not hold
in innate arithmetic, according to Lakoff and Núñez,
because innate arithmetic is limited to numbers less
than four. The metaphor Arithmetic is Object Collection,
however, allows closure to be transferred from the
object to the number domain, expanding the nature of
arithmetic:

[T]he metaphor [Arithmetic is Object Collection] will also
extend innate arithmetic, adding properties that the innate
arithmetic of numbers 1 through 4 does not have, because of
its limited range – namely, closure (e.g., under addition) and
what follows from closure. . .The metaphor will map these
properties from the domain of object collections to the
expanded domain of number. The result is the elementary
arithmetic of addition and subtraction for natural numbers,
which goes beyond innate arithmetic. (Lakoff & Núñez 2000,
p. 60, emphasis in original.)

A key issue for the theory, though, is that everyday
experience with physical objects, which provides the
source domain for the metaphors, does not always
exhibit the properties that these metaphors are supposed
to supply. Closure under addition, for example, does not

always hold for physical objects, as there are obvious
restrictions on our ability to collect objects together. The
mappings in question are unconscious ones: They do not
require deliberative reasoning about object collections or
mathematics; and they are not posited specifically for
arithmetic. Still, given everyday limits on the disposition
of objects, why don’t people acquire the opposite “nonclo-
sure” property – that collections of objects cannot always
be collected together – and project it to numbers? Acquir-
ing the closure property cannot rest on a child’s experience
that it is always possible “in principle” to add another
object, since it is exactly this principle that the theory
must explain. The theory seems to run up against the
no-competing-inference test that we outlined at the begin-
ning of section 3.

The Lakoff-Núñez theory also contains a metaphor that
produces the concept of infinity from experience with
physical processes: “The Basic Metaphor of Infinity.”
This metaphor projects the notion of an infinite entity
(e.g., an infinite set) from experience with repeated phys-
ical processes, such as jumping. The repeated process is
conceived in the metaphor as unending and yet as
having, not only intermediate states, but also a final resul-
tant state. Mapping this conception to a mathematical
operation yields the idea of an infinitely repeated
process (e.g., adding items to a set) and an infinite result-
ing entity (e.g., an infinite set). Lakoff and Núñez do not
invoke the Basic Metaphor of Infinity in their initial expla-
nation of closure under addition (Lakoff & Núñez 2000,
pp. 56–60), perhaps because closure does not necessarily
require an infinite set (e.g., modular arithmetic is closed
under addition, even though only a finite set of elements
is involved). But they do use this metaphor later in
dealing with what they call “generative closure,” which
would include additive closure as a special case (pp.
176–78). Closure of addition over the natural numbers
does involve an infinite set; so perhaps the Basic Metaphor
of Infinity is needed in this context. However, this
additional apparatus encounters the same difficulty from
the no-competing-inference test as does their earlier
explanation. Although there may be a potential metapho-
rical mapping from iterated physical processes to infinite
sets of numbers, it is at least as easy to imagine other map-
pings from iterated processes to finite sets. Why would
people follow the first type of inference rather than the
second? The Lakoff-Núñez theory is part of a more
encompassing framework of cognitive semantics and
embodied cognition (see Lakoff & Núñez 2000 for refer-
ences to this literature), and it includes many more con-
ceptual metaphors. As far as we can see, however, there
is nothing about this background that would allow us to
resolve this question. This does not mean that such map-
pings are worthless. Math teachers can exploit them to
motivate complex ideas by emphasizing certain metaphors
over their rivals (“Don’t think about limits that way, think
about them this way. . .”). But without some method for
making rival inferences less plausible than the chosen
one, the mappings do not explain acquisition.

The principles that make trouble for mapping theories
are precisely the ones that are of central interest for our
purposes: They are generalizations over all numbers
within some math domain. To see that these principles
are true, people cannot simply enumerate instances but
must grasp, at least implicitly, general properties of the
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number system. Because the domain of ordinary physical
objects and actions contains no counterpart to these prin-
ciples, people cannot automatically transfer them from
that domain. It is possible, of course, that cognitive the-
ories could get around these difficulties by envisioning a
different kind of relation between the physical and math-
ematical realms. In particular, ideas about mathematical
objects may be the result of idealizing or theorizing
about concrete experience – a view that goes along with
certain strains in the philosophy of mathematics (e.g.,
Putnam 1971; Quine 1960). But it is not easy to get a
clear picture of how the psychological theory-building
process works. It is unclear, for example, how a mental
math theory compensates for the messiness of object
grouping to obtain the crisp properties of addition, such
as commutativity, additive closure, and so on, that allow
mathematical reasoning to proceed. Some versions of
the theory idea in psychology depend on postulating a
metacognitive process that allows people to reflect on
lower-level mental representations and to create a new
higher-level representation that generalizes their proper-
ties (e.g., Beth & Piaget 1966; Resnick 1992). However,
once the abstracting begins, how does this system know
which features to preserve, which to regularize or idealize,
and which to discard?

In this section, we have been exploring possible ways for
children to arrive at math generalizations. This is because
these generalizations provide evidence that children have
concepts of number. If our present considerations are
correct, however, children cannot reach such generaliz-
ations by induction over physical objects, and we should
therefore consider more direct ways of reaching them. It
is also worth noting that many of these same concerns
apply to theories in which abstracting over physical
objects yields, not mathematical principles like commuta-
tivity, but the numbers themselves. Suppose that children
initially notice that two similar sets of objects – for
example, two sets of three toy cars – can be matched
one-to-one. At a later stage, they may extend this matching
to successively less similar objects – three toy cars
matched to three toy drivers – and eventually to one-to-
one matching for any two sets of three items. This could
yield the general concept of sets that can be matched
one-to-one to a target set of three objects – a possible rep-
resentation for three itself. In this way, learning the
number three could be seen as a concept forming pro-
cess similar to, but more abstract than, the formation of
other natural language concepts (see Mix et al. 2002b).
But, as we have already mentioned in section 2, the the-
oretical view that a number is a set of equinumerous sets
of physical objects is on shaky grounds, and even if it is
possible to learn the concepts of small natural numbers
(e.g., THREE) in this way, there is no possibility that the
abstraction process is sufficient psychologically for learning
all natural numbers one by one.

5. Math schemas

We suggested that early quantitative skills may reveal
more about object concepts than about math concepts,
and we also suggested that children cannot bootstrap
their way from these beginnings to true math concepts
by means of empirical induction. For this reason, we

looked at beliefs that are more directly about numbers
and other mathematical entities. Principles such as the
commutativity of addition are cases in point, as are
others that generalize over all numbers. Most psychologi-
cal theories of math suppose that people acquire such
generalizations from their experience with physical
objects (with the aid of innate numerical concepts, such
as magnitudes), but an inspection of these theories
revealed gaps in their explanations. These theoretical pro-
blems go hand in hand with psychological evidence that
questions the possibility of abstracting math from everyday
experience. What’s left as an account of concepts of
number?

5.1. An alternative view of number knowledge

We believe a better explanation of how people understand
math takes a top-down approach. Instead of attempting to
project the natural numbers from knowledge of physical
objects or from partial knowledge of the numerals and car-
dinality, children form a schema for the numbers that spe-
cifies their structure as a countably infinite sequence.
Once the schema is in place, they can use it to reorganize
and to extend their fragmentary knowledge. The schema
furnishes them with a representation for the natural
numbers, because the elements of the structure play just
such a role.

This view contrasts with the bottom-up approaches that
we have canvassed in sections 3 and 4. These approaches
suggest that children achieve knowledge of the natural
number concept by extrapolating from their early skills
in enumerating objects (or manipulating them in other
ways). Some form of inductive inference transforms these
skills into a full-fledged grasp of the natural numbers. Our
review turned up no plausible proposals about the crucial
inference, and our suspicion is that this gap is a principled
one. Children’s simple counting and enumerating does not
provide rich enough constraints to formulate the right
hypothesis about the natural numbers (Rips et al. 2006;
2008). Investigators could, of course, agree that a pure
bottom-up approach cannot be the whole story and that
early numerical concepts have to be supplemented with
further constraints in order for children to converge on
the right hypothesis. But, although this hybrid idea might
be correct, the constraints that are needed (which we
discuss in the following section) are themselves sufficient
to determine the correct structure. Why not suppose,
then, that children build a schema for the natural numbers
on the basis of these constraints and then instantiate the
schema to their preliminary number knowledge?

What is distinctive to the approach we are exploring is
that the natural number schema is understood directly
as generalizations about numbers rather than in terms of
operations on physical objects, such as enumerating or
grouping. According to our view, it is no use trying to
reduce number talk to object talk, or number thought to
object thought. Of course, early numerical concepts
could help motivate children to search for math schemas
as a way of dealing with their experience. On the
present view, however, although these concepts may
play a motivational role, they do not provide direct input
to schema construction; they do not play a role in framing
hypotheses about the concept NATURAL NUMBER.
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A kind of caricaturized version of our hypothesis is that
children learn axioms for math domains, having come
equipped with enough logical concepts to be able to
express these axioms and with enough deductive machin-
ery to draw out some of their consequences. It is imposs-
ible to give a full theory at this point, as not enough
evidence is available about the key principles, but in
what follows, we consider in a tentative and speculative
way what some of the components of such a theory
might be, attempting to fill in enough gaps to make it
seem less like a caricature. In section 4, we looked at prin-
ciples that refer to numbers in general, exploring propo-
sals about where these concepts come from. In this
section, we narrow our focus to principles that define
the concept NATURAL NUMBER.

5.2. Starting points

A first approximation is to think of a knowledge schema for
a mathematical domain as knowledge of the definitions or
axioms for that field, plus inference rules for applying
them. But, of course, in the case of knowledge of the
natural numbers, we obviously don’t introduce children
to the topic by giving them axioms, definitions, and infer-
ence rules. They therefore do not start out with a schema
for natural numbers in the sense in which an undergradu-
ate who has just learned the axioms of set theory has
a schema for set theory. Instead, children gradually
acquire the information they need to understand the
meanings of numbers. What are the starting points for
learning this information if, as we believe, they are not
the quantitative abilities discussed in sections 2 to 4? We
will assume that children have an innate grasp of concepts
that allow them to express the notions of uniqueness (there
is one and only one P such that. . .) and mapping (for every
P there is a Q such that. . .). These resources would allow
children to formulate the idea of a function (for every P,
there is one and only one Q such that. . .) and a function
that is one-to-one. It is important for our purposes that
these representations contain variables for individuals
and predicates, since it is in this sense that the represen-
tations are schematic.

We also assume that children have innate processing
abilities for combining and applying these representations.
The crucial built-in operation for math is recursion. A par-
ticular token operation may need to carry out other tokens
of the same operation in the course of its execution. The
system must maintain procedures that keep track of poten-
tial levels of embedding, so that execution of the highest-
level operation can resume when the second-level finishes
after the third level finishes. . . after the lowest-level
finishes. The same operations can also be used to
perform simple iterative tasks. The importance of recur-
sion for understanding natural numbers comes from its
close relation to the successor function, as we noticed in
connection with the grammar for the square language
for natural numbers in (1) (see sect. 3.2.1). Our reading
of the proposal by Hauser et al. (2002) is that natural
language, mathematics, and navigation all draw on a
more basic recursive capacity, and if so, this proposal
seems consistent with the present suggestions. Of
course, recursion alone is not sufficient for producing

the natural numbers, but it may well be a necessary part
of people’s ability to use these structures.

Like many theories that include an innate component,
this one has to deal with the fact that children tend to
develop mathematics relatively late and in a relatively vari-
able way, compared to skills like comprehending their
native language. In addition to the built-in aspects,
however, children must still assemble the schematic or
structural information that is specific to a domain of math-
ematics (see the following subsection). We typically expect
children to acquire abilities such as these in a measured
way that depends in part on their exposure to the key
information. Moreover, by taking the ultimate source of
countable infinity to be a math schema rather than
language, we gain some flexibility in accounting for the
psychological facts. For one thing, we needn’t worry why
mathematics is not distributed in the same universal way
as natural language. We take no position on the exact
relationship between language learning and mathematics
learning; but from the point of view of Hauser et al.
(2002), in which language and mathematics both draw
on the same recursive resources, the issue is not why math-
ematics is slow and effortful but why language is fast and
easy.

5.3. Math principles

What information must children include in their math
schema in order to possess the concept of natural
number? As we mentioned earlier, it is hard to escape
the conclusion that they need to understand that there is
a unique initial number (0 or 1); that each number has a
unique successor; that each number (but the first) has a
unique predecessor; and that nothing else (nothing other
than the initial number and its successors) can be a
natural number. These are the ideas that the Dedekind-
Peano axioms for the natural numbers codify (Dedekind
1888/1963), and our top-down approach suggests that
these principles (or logically equivalent ones) are acquired
as such – that is, as generalizations – rather than being
induced from facts about physical objects. However, to
repeat our earlier warning, there is no reason to think
that children have to be consciously aware of these ideas,
to have them in a formalized language, to cite them expli-
citly in reasoning, or to come upon them all at once.
People also supplement these basic ideas with many elab-
orations rather than deriving all their number knowledge
from basic principles. Without something like a tacit
grasp of these central ideas, however, it is simply unclear
what it would mean to claim that children had a concept
of natural number. For this reason, it is striking how
little research has been devoted to these principles. Here
we summarize the state of knowledge of such principles,
partly to identify where gaps exist in research.

5.3.1. The first number. Children may appreciate quite
early in their mathematical career that the unique starting
number is one. By the time they are 3 years old, they can
recite short counting sequences beginning with “one,” and
they are able to understand phrases such as “one dog”
(Fuson 1988; Wynn 1992a). As we have emphasized,
however, these abilities do not necessarily indicate that
children think of “one” as a number. The functions
“one” performs in sentences such as “Give me one
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balloon” are similar to those of determiners such as “a”
(“Give me a balloon”), which are not numbers (e.g.,
Carey 2004; Carey & Sarnecka 2006). Evidence seems to
be lacking about when children use number terms in
expressions such as “One is the first number” or “One is
less than two,” that are prima facie about numbers
rather than about (physical) objects. Even when children
are able to affirm that one is a number, it is unclear at
what point they have distinguished numbers from the
numerals they see in picture books, puzzles, and games.
In ordinary talk, number terms are ambiguous in this
respect (“The number one is to the left of the number
two” refers to numerals, but “The number one is less
than the number two” refers to numbers).

Although most psychological theories consider “one” to
be the first number term because of its position in the stan-
dard sequence of count terms and because of its role in
enumerating, it is not completely clear that this should
rule out zero as a possible initial number for children.
On the one hand, there is evidence that zero presents
some conceptual difficulties (Wellman & Miller 1986).
On the other, children seem to have an early understand-
ing of quantifiers such as “none” or “no” (as in “There are
no cookies”) that express a cardinality of zero items
(Hanlon 1988). On the assumptions that numbers are
cardinalities and that numbers derive from natural
language quantifiers, it is mysterious why zero should be
so difficult.

5.3.2. The successor function is one-to-one. It is the
one-to-one nature of the successor function that makes
the natural numbers unending. Children must learn that
each natural number has just one successor (so the succes-
sor relation is a function) and that each natural number
except one has just a single predecessor (so the successor
function is one-to-one). Because of these constraints, the
sequence of natural numbers cannot stop or double
back. Evidence concerning children’s appreciation of
these facts suggests that they appear rather late (Hartnett
1991). Although children in kindergarten are often able to
affirm that you can keep on counting or adding 1 to
numbers, it takes them a while – perhaps as long as
another year or two – to work out the fact that this
implies that there cannot be a largest number. Counting
skill is not a good predictor of the ability to understand
the successor function, although knowledge of numbers
larger than 100 does seem predictive. It may be, as Hart-
nett suggests, that children who can grapple with larger
numbers have learned enough about the generative rules
of the numeral sequence (i.e., advanced counting) to
understand their implications about the infinity of the
numbers. As we would expect, there is a relation
between knowledge of advanced counting and knowledge
of constraints on the successor function, but the exact form
of this interaction cannot be determined from present
evidence.

5.3.3. Math induction. In its usual formal presentations,
this closure principle takes the form: “For all properties
P: if P(0) and if P(k) implies P(kþ 1) for an arbitrary
natural number k, then for all natural numbers n, P(n).”
In view of the importance of mathematical induction for
an understanding of natural numbers, it is odd that

psychologists have given this principle so little attention.
We know of only one recent study that purports to inves-
tigate children’s understanding of mathematical induction
(Smith 2002), but unfortunately, it actually examines a
quite different logical principle – universal generalization –
as we have argued elsewhere (Rips & Asmuth 2007).
It may seem strange even to suppose that children just
learning the natural numbers could cope with a principle
as complex as math induction, which they typically
encounter only much later as a proof rule in high school.
But math induction is equivalent to the following idea
(the Least Number Principle), given other facts about
the natural numbers (Kaye 1991): For all properties P: If
P(n), then there is a smallest number m such that P(m).
The Least Number Principle does not seem out of reach
of children.

5.3.4. Other principles? Mention of the Least Number
Principle should make it clear that we are not claiming
that the Dedekind-Peano axioms are the only ones that
are sufficient for producing the natural numbers or that
they are the most cognitively plausible for the job.
However, we do not know of systematic attempts to find
substitutes in the psychological literature. One might
suggest that Gelman and Gallistel’s (1978) counting prin-
ciples (the one-one, stable-order, and cardinal principles)
define a successor relation and that research in this area
has concentrated on these principles for just this reason.
The counting principles, of course, are crucial in under-
standing children’s ability to enumerate objects and are
a worthy subject of investigation in their own right, but,
as a definition of the successor relation for natural
numbers, their status is similar to Principle (3) and is
subject to the same argument that appears in section
3.2.2. The principles map the terms in a count list onto
the numerosities they denote, so the next term in the
count list comes to be connected with a cardinality that
has one more element than the last. This induces a func-
tion on the cardinalities. Moreover, Gelman and Gallistel’s
one-one principle (one and only one numeral is used for
each element in an array) would prohibit sequences that
violate the successor function by looping around. For
example, the one-one principle would prevent counting
sequences such as “one, two, three, one, two, three, . . .”
instead of “one, two, three, four, five, six, . . .” (though
Gelman & Gallistel [1978, p. 132] do report children’s
occasional use of such sequences). Does this yield the
structure of the natural numbers? Not necessarily, as
there is no guarantee that the sequence will continue inde-
finitely. Gelman and Gallistel’s (1978) original treatment
may have assumed an innate sequence of mental count
terms (“numerons”) that do have the structure of the
natural numbers and will therefore produce the correct
successor function. But, in that case, it is the structure of
the numerons (along with the counting principles) that
are responsible, not the count principles alone.12 This
goes along with our hunch that advanced counting, but
not enumerating, is closely linked with knowledge of the
natural numbers.

5.4. Competition among schemas

The natural numbers are, of course, not the only struc-
tures that children are learning at this age. They must also
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cope with linear but finite sequences (e.g., the letters
of the alphabet), circular structures (e.g., the days of
the week or the hours of the day), partial orders
(e.g., object taxonomies or part-whole relations), and
many others. In top-down learning of the structure of the
natural numbers, children must decide which of these
schemas is the right one. Their preliminary numerical
concepts cannot decide this, as simple counting and
enumerating small, finite sets are compatible with
several distinct structures. Finite linear lists and circular
structures are both compatible with their experience,
provided the number of elements in these structures is
greater than the number they have so far encount-
ered. For this reason, we suspect that external clues
are probably necessary to determine the right alter-
native. We can expect children to be undecided about
whether there is a last number or whether numbers
circle back and to experiment with different schemas,
as they sometimes do (Harnett 1991). What decides
them in favor of a countably infinite sequence may be
hints from parents or teachers (e.g., that there is no
end to the numbers) or more implicit clues about the
numerals or arithmetic. Children are able to absorb this
information because they already have access to schemas
that are potentially relevant.

Once children know the right schema, they are in a pos-
ition to make inferences about the natural numbers that
would have seemed unwarranted earlier. These include
the kinds of generalizations that we encountered in
section 4: closure under addition, the property that any
two numbers can be ordered under �, and many others.
Likewise, they can infer new facts about the numerals,
such as the existence of numerals beyond those in their
current count list. There should be a burst of such infer-
ences following children’s discovery of the natural
number schema, but current data about such properties
are too thin to trace this time course.

6. Concluding comments

Thanks to analytic work by Dedekind (1888/1963), Frege
(1884/1974), and others, we have a firm idea about the
constituents of the natural number concept. Psychological
research on number, however, has not always taken advan-
tage of these leads. We hope to refocus effort in this area
by outlining a framework that can accommodate research
on such issues. The math schema idea obviously does not
amount to a full-fledged theory of people’s knowledge of
natural numbers, much less a theory for all mathematics,
but we hope it points to the kind of information that we
need to fill in.

If our picture is approximately correct, though, it may
have some fairly radical consequences for current cogni-
tive theory.13 How does the natural number concept
depend on object files, internal magnitudes, experience
with concrete objects, and mental models or internal sets
of such objects? A potential answer that we believe is con-
sistent with the evidence is that there is no dependency
whatsoever. The early representations may simply not be
conceptually responsible for, or part of the meaning of,
the concept of natural number.

You might view as a paradoxical consequence of this
position that it cuts off some everyday numerical

activities – both in adults and children – from the
concept of number. Activities such as estimating the
number of objects in a collection or even exactly enumer-
ating these objects may proceed without drawing on
natural number concepts. Number concepts may come
into play only at a more abstract level – for example, in
arithmetic – where the focus is on the numbers them-
selves rather than on physical objects. However, people
can bring to bear different analyses in numerical
contexts. Moreover, we need not view such a consequence
as belittling investigations of either sort of activity or the
research that targets them. Estimating and enumerating
objects are well worth studying, even if they do not
directly support number concepts. Number concepts are
worth studying because of their role in mathematical
reasoning, even if mathematical reasoning is not the
whole of numerical cognition. Separating these forms
of thinking is meant to clarify their origins and inter-
relations. In particular, understanding the natural
number concept may allow us to avoid trying to derive it
from unwieldy raw material from which no such derivation
is possible.
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NOTES
1. See Dummett (1991, pp. 52–53) for a defense of the idea

that natural numbers denote cardinalities. There are also nomin-
alist proposals (e.g., Field 1980) that avoid positing abstract
structures.

2. Hilbert (1922/1996; 1926/1983) introduced strings of
symbols such as these as a basis for all mathematics. The
strings were supposed to be “extralogical concrete objects
which are intuited as directly experienced prior to all thinking”
(1926/1983, p. 192). Because these strings are concrete and
easily surveyable, Hilbert believed they provided a better
foundation for numbers than more abstract items, such as
sets. See, also, Resnik (1997, Ch. 11) for a “quasi-historical”
account of the development of Greek mathematics using
strings of this kind, and Parsons (2008) for an examination of
Hilbert’s notion.

3. Wood and Spelke (2005) point out, however, that such a
device has difficulty explaining on its own why infants are
unable to discriminate small numbers of nondistinctive items in
addition-and-subtraction and habituation tasks. A parallel indi-
viduating process should presumably work as well or better in
dealing with 1 versus 2 objects than in dealing with 8 versus
16. Barth et al. (2003) and Wood and Spelke (2005) suggest
instead that the number of objects (e.g., dots) in a large array is
computed from the array’s global properties, such as its area
and density. Although some studies control both density (e.g.,
dots per square inch) and area (e.g., total number of square
inches in the array), observers might compute the product
of these quantities, which is a measure of the total number
of dots.

But the issue here re-arises in the way in which observers cal-
culate density. Observers could unconsciously count the number
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of dots and divide by the area to determine density and then use
density in further computations, but this would beg the question
of how they determine their initial count. However, if observers
determine density by a truly global property – a sense of visual
crowding in the display – then there is no reason to think that
the proposed calculation could yield anything like a veridical
measure of cardinality. The same sense of perceptual crowding
that arises from a set of 40 dots in an area of 150 cm2 could
also come from one irregularly shaped strand, weaving back
and forth within the same area. Although the magnitude
system may deliver approximate measures of cardinality, it
cannot deliver arbitrary measures. The problem here is not
that the output of multiplying density and area is still a
measure of density (area) rather than cardinality. The problem
is that the output would be an utterly unreliable measure of car-
dinality. If the density that is input to the computation is based on
visual crowding and is the same for a one-item strand as for a 40-
dot array, then output of the computation will be unable to dis-
tinguish one item from 40.

A third alternative for computing density is sampling. If the
items to be enumerated were evenly spaced (e.g., dots on a
line at equal intervals), then density could be calculated from a
single interval between an item and its neighbor. (Church &
Broadbent [1990] suggest such an algorithm for evenly spaced
tones.) In experiments with large numbers of visual elements,
however, the displays randomly distribute the elements. Using
a fixed number of elements to calculate density would, in
general, lead to widely varying estimates of the same cardinality.
(See also Bemis et al. [submitted] for empirical evidence against
sampling.)

Barth et al. (2003) and Wood and Spelke (2005) may be
right that people use global properties of large displays to
determine approximate cardinality. But further research would
be necessary to determine whether such an algorithm is both a
reasonable guide to cardinality and consistent with the discrimi-
nation data.

4. Modifications to the Figure 1 model would also be needed
to capture effects of chunking or grouping on enumeration. First,
data from Halberda et al. (2006) suggest that adults can simul-
taneously group up to three subsets of dots based on color and
can enumerate each subset separately using the magnitude
system. Thus, the attentional mechanisms in the first part of
Figure 1 must be able to partition on the basis of color (and pre-
sumably other low-level visual properties), in addition to individ-
uating items within the groups. This could be handled in
Dehaene and Changeux’s (1993) system by coding for (a
limited number of) colors in addition to item location and size.
Second, the upper tracks of the system can assign representations
to groups or chunks, as well as to objects. Wynn et al. (2002)
found that 5-month-olds are sensitive to the number of groups
(2 vs. 4) of dots in a habituation task, where each group was a
small set of dots moving in a swarm. Likewise, Feigenson and
Halberda (2004) found that infants can succeed in an addition-
subtraction task with four objects if these objects initially
appeared in two spatially separated groups of two. This suggests
that Figure 1 should frame the division between the upper and
lower tracks in terms of number of chunks, rather than in
terms of number of objects.

5. A magnitude system of this sort would yield only a single
output at a time, so one could think of magnitude addition as a
three-place function of two addends and a time. This would pre-
serve magnitude addition as a function. But in such a system, the
sum of two numbers would differ from one instant to the next
(i.e., þ(5, 7, t) = þ (5, 7, tþ D)), whereas real number addition
is constant over time. Any way you look at it, arithmetic with
mental magnitudes lacks some of the familiar properties of arith-
metic with reals. In particular, real-number addition does not
have time as a parameter. (Similar considerations affect the sug-
gestion that the output of magnitude addition is a unique distri-
bution of values.)

6. Perhaps we could draw the same moral from the fact that,
although natural-language semantics seems to depend heavily on
Boolean operations, such as union and intersection (e.g.,
Chierchia & McConnell-Ginet 1990), it seems to depend less
heavily on specifically arithmetic operations, such as addition
and multiplication (except, of course, for sentences that are expli-
citly about numbers).

7. Current neuropsychological evidence is also potentially rel-
evant to the relation between language and number, but these
results are partially conflicting and difficult to interpret. On the
one hand, a close connection between calculation and language
goes along with functional magnetic resonance imaging and
evoked potential data showing activation of the left inferior
frontal region (implicated in verbal association tasks) during
exact calculation. Tasks involving numerical approximation
recruit instead the bilateral intraparietal lobes (Dehaene et al.
1999). On the other hand, there appear to be empirical dis-
sociations between linguistic and calculation abilities and
between linguistic abilities and the appreciation of mathematical
principles (Donlan et al. 2007). For example, Rossor et al. (1995)
and Varley et al. (2005) describe global aphasic patients who are
nevertheless able to perform correctly on written addition, sub-
traction, and multiplication problems, including those that
depend on structural grouping (e.g., 50 2 [f4þ 7g � 4] ¼ ?).
There are also clinical cases of relatively normal language devel-
opment with little numerical ability (Grinstead et al., submitted).
It may be too early to draw any strong conclusions from the
results of such studies.

8. One complaint about this argument (Margolis & Laurence
2008) is that it incorrectly assumes that children treat the small
number terms (e.g., “one”) in (2) as ambiguous or as not truly
denoting the corresponding number. This is because children
would have to revise the denotations later when they find that
“one” can also denote eleven, twenty-one, and so on, in case
they find themselves learning the mod10 system. However, it
is easy to formulate the argument without such an assumption.
Imagine that what the child is learning is not the natural
numbers, but a system in which the numerals loop back after
the numerals that the child has already learned (e.g., suppose
the child is able to recite the count sequence to “nine”; then
“one” denotes one, “two” two, [. . . and so on till] “nine” nine,
but “ten” denotes ten, twenty, thirty, etc., “eleven” denotes
eleven, twenty-one, thirty-one, etc., . . . and “nineteen”
denotes nineteen, twenty-nine, thirty-nine, . . .). Of course, you
could also hold that children are unable to learn a cyclical
system of this sort or that there is a general prohibition, such
as mutual exclusivity, against using the same term to apply to
two different individuals. However, this claim flies in the face
of children’s success in learning the days of the week, the
months of the year, the tones in a major or minor scale, and
other such circular lists (see Rips et al. 2008). Finally, you
could assert that, prior to making the inference in (3), children
not only know that the first three numerals have fixed designa-
tions, but they also know that no looping in the numeral
sequence is possible (the sequence continues without end)
and that nothing other than the “s(n)” sequence can be a
numeral. Such knowledge, however, implies that the child’s
numerals already satisfy the axioms for the natural numbers
(see sect. 5.3). The inference in (3) maps these numerals onto
cardinalities, but the child already has a representation of the
natural numbers before performing the inference. This latter
idea, however, is something that most psychologists deny, as
we have mentioned in section 2.1.

9. There is current debate in linguistic semantics and prag-
matics as to whether noun phrases like “two dogs” denote
exactly two dogs, at least two dogs, or an indeterminate
meaning that is decided by context. The lower-bounded (at
least two) sense can be obtained from (4) by omitting the last con-
junct. We take no stand on the correct interpretation here,
though such issues may become important if the child’s
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understanding of number depends on knowledge of the natural-
language count terms. See Carston (1998) and Musolino (2004)
for accounts of this debate.

10. For recent debate about what the “How many?” task
reveals about children’s numerical competence, see Cordes and
Gelman (2005) and Le Corre et al. (2006); however, our
present point is independent of these more empirical issues.
See also Carey and Sarnecka (2006) for cautions about inferring
a type of number concept from experimental evidence.

11. The results on commutativity also seem to hold of other
mathematical principles, though the data are much more incom-
plete than in the case of commutativity. A second example might
be the additive inverse principle (in the form aþ b 2 b ¼ a), first
studied by Starkey and Gelman (1982). Until they are about 4
years old, children are not able to appreciate the inverse relation
between addition and subtraction in an addition-and-subtraction
task (Vilette 2002, Experiment 1). Although practice observing
the counteracting effects of adding and subtracting the same
number of concrete objects helps 3-year-olds perform more
accurately, the benefit is no greater than that of observing the
separate effects of addition and of subtraction (Vilette 2002,
Experiment 2). This suggests that successful children initially
deal with the inverse relation aþ b 2 b by literally adding and
then subtracting b objects. By contrast, 4- to 5-year-olds recog-
nize the answers to such problems more easily than comparable
ones of the form aþ b 2 c that do not allow them to use the
inverse relation as a shortcut (Bryant et al. 1999; Rasmussen
et al. 2003). In the latter studies, the terms of the problems are
given in numeric form (with or without objects present), and chil-
dren provide numeric answers (e.g., “How many invisible men do
we have if we start with 14, add 7 more, and then take away 7?”).
The gap between the performance of younger and older children
makes it reasonable to conjecture that awareness of the inverse
principle depends on some prior (but not necessarily school-
taught) arithmetic.

12. We thank Susan Carey for pointing out the relevance of
the How to Count principles in this context.

13. Another consequence of our position concerns the
relation between logical reasoning and mathematics. We have
argued that math concepts may depend on an underlying cogni-
tive framework that includes recursion. Typical production
systems for handling problem spaces (e.g., Anderson 1983;
Klahr & Wallace 1976; Newell 1990) also include limited
logical abilities for dealing with conditionals and conjunctions
and for instantiating or binding variables. The usual form of a
production rule is: “If Condition1 and Condition2 and. . . and
Conditionk, then take action A,” in which mental action A
occurs (e.g., a symbol is stored in working memory) if
Conditions12k are met by the current contents of memory.
Although there are competing cognitive architectures (e.g., con-
nectionist ones), production systems and other classical systems
have an advantage of providing basic resources like these that
mathematical reasoning can build on. Much the same can be
said about the resources that people need for explicit deductive
reasoning in tasks that depend on logical connectives and quan-
tifiers. One of us has suggested (Rips 1994; 1995) that certain
aspects of explicit deductive reasoning (e.g., rules like modus
ponens) are especially natural because they are inherited directly
from this background architecture. Work in the foundations of
mathematics appears to show that attempts to reduce mathemat-
ics to logic are problematic at best (see Giaquinto 2002, for a
review), and there is no reason to suppose that mathematical
reasoning can be reduced to logical reasoning in any simpler
way. But our current perspective suggests, nonetheless, that
there may be important indirect connections between them,
because of their very tight dependence on a common pool of cog-
nitive resources. We know few systematic attempts in psychology
to trace the relations between logical and mathematical thought
(see Houdé & Tzourio-Mazoyer 2003, for a start), but there is
every reason to try to do so.
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Abstract: Rips et al. claim that the principles underlying the structure of
natural numbers cannot be inferred from interactions with the physical
world. However, in their target article they failed to consider an
important source of interaction: finger counting. Here, we show that
finger counting satisfies all the conditions required for allowing the
concept of numbers to emerge from sensorimotor experience through a
bottom-up process.

Can the principles underlying the structure of natural numbers
be inferred from interactions with the physical world? According
to Rips et al., the transition from sensorimotor experience to
mathematical concepts is largely undetermined and cannot
account for the acquisition of natural numbers. We argue that
fingers may provide the missing tool to apprehend numbers in
the physical world, and we put forward striking similarities
between finger-counting strategies and the principles underlying
the structure of natural numbers.

Children spontaneously use a stable sequence of finger move-
ments while counting, presumably due to the joint influence of
motor constraints and cultural habits. The stable-order principle
emerging from the use of consistent finger-counting strategies
involves the understanding that natural numbers include a
unique first element (e.g., thumb or little finger, depending on
cultural habits), a unique immediate successor for each
element in the sequence (e.g., from thumb to little finger,
there is only one successor for each finger), and a unique
immediate predecessor for each element except the first (e.g.,
from index to little finger, there is only one preceding finger).
Finger-based representations therefore preserve cardinality
and maintain a one-to-one correspondence between the physical
world and symbolic systems.

Moreover, once the sequence of numbers from 1 to 10 is
instantiated in finger counting, fingers can be used to keep
track of the successors of any other number, providing an empiri-
cal ground for mathematical induction. Finger counting goes
even farther, as it allows the children to infer the base-10 math-
ematical system. Historically, the base 10 has been the most
widely used, as evidenced by the traces left by Amorites, Incas,
and Tibetans (Ifrah 1981). There is no reason to explain this
choice relative to others, such as the more convenient base 12,
which has more divisors, except that the base-10 system has a
physical counterpart in finger use.

The influence of finger-counting strategies on number rep-
resentations is supported by several empirical facts. A first evi-
dence comes from the origin of number words in many
languages (e.g., in English, five comes from a common root of
finger and fist, digit means at the same time number and
finger; Menninger 1969). This embodied vocabulary suggests
that counting originates from the use of fingers rather than
using arbitrary quantitative words. Developmental studies
showed that the score obtained in finger discrimination tasks is
the best predictor of arithmetical performance in children
(Fayol et al. 1998; Noël 2005). Moreover, the errors made by
children in mental calculation often reveal a 5-unit difference
relative to the correct response (e.g., 18 – 7 ¼ 6), which is
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reminiscent of the representation of intermediary results on a
full-opened hand (Dohmas et al. 2008). Furthermore, training
children with poor mathematical achievement to discriminate
their fingers was found to improve both their finger and
number knowledge (Gracia-Bafalluy & Noël 2008).

The question arises as to whether finger-counting strategies
still influence numerical cognition in adults. To address this
issue, we conducted an experiment in which participants had to
identify Arabic digits by pressing the keyboard with a different
finger for each number. Results showed that responses were
faster and more accurate when the finger assigned to each
number matched the finger-counting strategy of the participants
(Di Luca et al. 2006). In another experiment, we showed that
number naming was faster when participants were presented
with canonical finger configurations, that is, configurations con-
forming to their personal finger-counting habits, rather than
non-canonical ones. Moreover, we observed that comparing
Arabic digits was faster when the digit display was preceded by
the unconscious presentation of either canonical or non-canonical
finger configurations. However, only the priming effect induced
by canonical configurations generalized to new, never con-
sciously seen, numerosities, which provides clear evidence for
an automatic access to semantic numerical knowledge from
finger-counting configurations (Di Luca & Pesenti 2008). Finally,
we showed that canonical configurations are processed as sym-
bolic systems and activate a place-coding semantic representa-
tion of numbers, whereas non-canonical configurations activate
a summation-coding semantic representation (Di Luca 2008;
Di Luca & Pesenti, under revision; Roggeman et al. 2007).

The hypothesis that knowledge of natural numbers is
grounded in finger representations is also supported by neuro-
imaging data showing that, in numerical tasks, activation was
observed in the parieto-precentral circuits classically associated
with finger movements (Pesenti et al. 2000). Electrophysiological
results converge to the same conclusion (Andres et al. 2007; in
press). For example, Sato et al. (2007) found that the amplitude
of muscle twitches induced by transcranial magnetic stimulation
(TMS) in the right hand increased when participants performed a
verbal parity judgment on numbers 1–4 relative to numbers 6–9.
Because all participants reported starting counting with their
right hand, this result could reflect a specific contribution of
hand motor circuits to number processing.

Although these findings favor a unique relationship between
numbers and fingers, Rips et al. may still argue that finger count-
ing is mediated by innate and abstract representations of natural
numbers. However, the assumption that natural numbers are
preconfigured is contradicted by the finding that some Amazo-
nian populations do not develop the complete number sequence
(Pica et al. 2004). Interestingly, this limited numerical knowledge
was found to co-occur with a rudimentary finger-counting strat-
egy, which supports the idea that finger counting may critically
contribute to understanding natural numbers. Accordingly,
neuropsychological studies have shown a joint deficit in calcu-
lation and finger discrimination following a vascular damage
(Gerstmann 1940) or a virtual TMS lesion of the parietal cortex
(Rusconi et al. 2005).

In conclusion, we showed that finger-counting strategies are
sufficient to allow the development of numerical representations
that integrate the basic properties of natural numbers as well as
higher-order properties such as the base-10 concept. We therefore
argue that it is not necessary to presuppose an abstract schema
specifying the structure of natural numbers to explain the develop-
ment of the concept of numbers. The finding that finger-counting
strategies still influence number processing in adults rather
suggests that knowledge of natural numbers may build up on
finger-based representations through a bottom-up process.
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Abstract: Though there are holes in the theory of how children move
through stages of numerical competence, the current approach offers
the most promising avenue for characterizing changes in competence
as children confront new mathematical concepts. Like the science of
mathematics, children’s discovery of number is rooted in intuitions
about sets, and not purely in analytic truths.

Rips et al. present a thought-provoking assessment of the current
debate on the origin of numerical concepts in language develop-
ment. The article’s main challenge is to the hypothesis that
number word meanings are bootstrapped from systems of non-
linguistic number representation. On many fronts the authors’
arguments are compelling, and the points they raise offer import-
ant challenges to current models. I disagree, however, that pro-
blems with current developmental theories are the result of an
inherently flawed approach, or that they are misled in their
general trajectory. Instead, I argue that there is no better way
to understand human knowledge of natural number than to
witness its development in young children.

The problem is to determine the explananda to the theory of
number knowledge. Rips et al.’s general thesis is that knowledge
of natural number is defined in terms of an inferential system,
and that therefore developmentalists should focus their efforts
on evaluating how children come to manipulate numbers as syn-
tactic objects, independent of their particular denotations. Stipu-
lating that this particular knowledge should act as a metric of
competence, however, is entirely arbitrary, and unprecedented
in developmental psychology. In the study of human intuitive
theories of biology, physics, and psychology, an implicit distinc-
tion is made between common sense understanding and scienti-
fic understanding. To untangle the two, developmentalists
interested in human knowledge of biology, for example, have
investigated children’s initial intuitive theories, and how these
theories react and change as children are exposed to new vocabu-
lary and concepts (e.g., Carey 1985; Piaget 1929/2007).

Developmentalists have also looked back in scientific history to
the earliest biological theories, and have examined parallels
between conceptual change in ontogeny and scientific history.
This approach allows us to differentiate theories that come spon-
taneously to each child from those that are discovered scientifi-
cally and transmitted from generation to generation, whether
explicitly in school or implicitly in how we talk and reason
about biology in the presence of children. It is doubtful that we
would benefit from stipulating what should count as “knowledge
of biology,” since there is no such static object. However, we can
make progress by asking how children initially reason about bio-
logical phenomena, how biological reasoning has changed over
human history, and how children’s theories evolve as they are
exposed to culturally transmitted scientific knowledge.

The same arguments can be made for mathematics. To stipu-
late what should count as “knowledge of number” would risk
blurring the line between common sense understanding and
scientific understanding (see Husserl’s discussion of psycho-
logism in the study of logic; Husserl 1970). We can, however,
ask about children’s intuitive knowledge, about the scientific
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history of mathematics, and about how children’s mathematical
theories evolve as they are exposed to new vocabulary (e.g., the
count list) or concepts (e.g., addition, subtraction, etc.). This
approach does not differ from that of linguistics, which seeks to
characterize core properties of language by separating properties
that are exhibited by all human languages from those that vary
from language to language. Using this approach, the best way
to understand human knowledge (of number, biology, or
language) is to distinguish the components that come naturally
to each child from those that have evolved idiosyncratically
over human history, and to study their interaction in child devel-
opment. Developmental theories are perhaps short on details
regarding how this happens, but ultimately are, I believe, on
the right track.

What is this track, in the case of number? As Rips et al. note,
there has been an explosion of progress in understanding
pre-linguistic systems of number. Also, we have made steady
progress in our characterization of how children initially interpret
number words. These studies have perhaps not convinced us of
how core systems are implicated in number word learning, but
they should convince us that children’s first hypotheses about
number make contact with representations of cardinalities, and
that this connection only grows with age. It therefore remains
possible that mental representations of number are always
rooted in cardinalities, and that higher-order principles (such
as commutativity) amount to beliefs about number, rather than
being constitutive of number knowledge. Although cardinalities
may indeed be irrelevant to defining natural number scientifically
(i.e., in mathematics), we cannot assume a priori that concepts in
the psychology of number take the same form as concepts in
mathematics. To determine whether they do, we must examine
human knowledge empirically, as it unfolds in development.

Progress in mathematics is owed mainly to the unbounded
inferential power of its formal syntactic representations (many
of which are beyond our intuitive grasp). Still, the science
would arguably not exist if its basic truths did not satisfy human
intuition, and were not relatable to our experience. Kant, hardly
an empiricist, argued that our mathematical concepts are respon-
sible to intuitions about objects and sets in the world: “The
concept of twelve is by no means obtained by merely thinking
the union of seven and five. . . We must go beyond these concepts,
and have recourse to an intuition which corresponds to one of the
two – our five fingers, for example. . .” (Kant 1781/1934, p. B15).
This is not to say that our mathematical intuitions (e.g., pertaining
to cardinalities) are derived from experience (à la Mill). Instead,
the logic that governs experience may constrain the scientific the-
ories that we formulate to explain it. To the extent that this is true,
it should hardly be surprising if human knowledge of number
remains bound to intuitions about sets and cardinalities through-
out development. Connecting “object talk” to formal symbols may
be the intuitive basis not only for mathematics, but also for mental
representations of number, as humans move from reasoning
about physical objects as infants to reasoning about mathematical
objects as adults.

Do mental magnitudes form part of the
foundation for natural number concepts?
Don’t count them out yet
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Abstract: The current consensus among most researchers is that natural
number is not built solely upon a foundation of mental magnitudes. On

their way to the conclusion that magnitudes do not form any part of
that foundation, Rips et al. pass rather quickly by theories suggesting
that mental magnitudes might play some role. These theories deserve a
closer look.

Rips et al. have written a valuable critique of current theory and
research, but in concluding that mental magnitudes form no part
of the foundation of natural number concepts, the authors con-
sider only briefly theories positing a partial role for mental mag-
nitudes. These theories deal with children’s early counting:
Because mastery of verbal counting implies knowledge of critical
aspects of natural number, studies of counting acquisition should
be useful to researchers interested in hunting down the origins of
natural number.

Gelman, Gallistel, and colleagues have argued that “very early
in the prolonged process of learning verbal counting children
recognize that the structure and function of verbal counting
are the same as the structure and function of their pre-verbal
counting system. Both processes honor the one-one, stable
order, and cardinal principles, and both processes deliver
symbols that are subject to arithmetic processing” (Gallistel
2007, p. 439). They hold that this recognition of common struc-
ture and function allows children to link count words to their cor-
responding mental magnitudes, but that the count words are
numerically meaningful prior to the mapping (Gallistel &
Gelman 1992).

Other researchers have criticized this account on various
grounds. First, a serial enumeration process is often assumed
to be critical to the idea that young children (like nonhuman
animals) have access to a nonverbal counting process (e.g., Le
Corre & Carey 2008). There is evidence that representations of
the numerosity of spatial arrays are not constructed serially, in
adults and in infants (Barth et al. 2003; Wood & Spelke 2005),
but as Cordes and Gelman (2005) point out, a serial counting
process is not required at all. A parallel enumeration mechanism
(e.g., Dehaene & Changeux 1993) that adheres to the formal
structure of a counting process would do the trick. Of course, a
parallel process also makes the relation between verbal and
nonverbal counting less apparent – but for Gelman and her
colleagues, a parallel process does count.

A potentially more serious problem may arise if analog mag-
nitude representations of numerosity are generated by a
process that could not reasonably be called counting. Barth
et al. (2003) and Wood and Spelke (2005) suggest that the
best explanation of experimental results to date may rest in a
mechanism that computes numerosity through global non-
numerical properties, rather than by enumerating individuals,
but their data do not speak directly to this point. This is an
important empirical question which remains open; despite the
arguments of Rips et al., there is no a priori reason to reject
density-based models. The visual system’s mechanism for
extracting density need bear no resemblance to the common
definition of density as number per unit area, or to the
authors’ description of “visual crowding.”

Would direct evidence against the existence of any nonverbal
counting mechanism (serial or parallel) defeat the analog magni-
tude structure-mapping hypothesis (e.g., Gelman & Lucariello
2004)? Clearly the version of the hypothesis that depends specifi-
cally upon nonverbal counting would not survive such evidence.
Important components of the hypothesis could nevertheless
remain: we need not choose between a nonverbal counting
system and an unstructured conglomeration of disconnected
magnitudes. An analog magnitude system with representations
generated by computations over global display properties
would possess an implicit ordinal structure, with larger magni-
tudes systematically corresponding to larger sets in the world.
Structure mapping would be a more difficult problem with
such a system, but it would still be possible – and children’s pro-
longed learning of these mappings does imply that they are
solving a difficult problem (Wynn 1992b).
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The nature of the process that generates mental magnitudes
may not necessarily decide the fate of the analog mapping
hypothesis, broadly conceived. What evidence would argue for-
cefully against it? What is certainly critical is that children must
recognize the structures of the mental magnitude and verbal
counting systems and the relation between these structures.
Researchers have criticized the hypothesis in part because chil-
dren do not appear to exhibit an early understanding of the
rule that positions later in the verbal count list should correspond
to larger magnitudes (Condry & Spelke 2008; LeCorre & Carey
2007; 2008; an understanding of this “later/greater” rule is also
important for related proposals, e.g., Spelke 2003; Wynn
1992b). These findings would seem to spell trouble for struc-
ture-mapping accounts (LeCorre & Carey 2008).

However, it is possible that children’s failure to demonstrate
any later/greater knowledge in the tasks used to date reflects
something other than incompetence. These studies have shown
that beginning counters do not have an early understanding of
the fact that numbers around 10 should map to larger sets than
numbers around 5. Does this finding necessarily mean that
such children have no understanding of the parallel structures
of the counting words and the magnitude system? Possibly not,
for a number of reasons – one of which is the relatively com-
pressed numerical range tested. Consider that children might
initially map “the next number in the verbal count list” to “the
noisy mental magnitude associated with the next easily discrimin-
able numerosity.” If so, the corresponding change in magnitude
that initially maps to the next number in the count list may be too
great for the 5–10 range to reveal children’s later/greater knowl-
edge. Children might possess knowledge of the later/greater rule
even while failing utterly to demonstrate that knowledge in the
5–10 range: their extreme underestimation, in combination
with noise in their estimates, could conceal all evidence of a
later/greater understanding. Somewhat paradoxically, larger
sets might be needed to reveal this knowledge. Therefore,
additional converging evidence from similar tasks using larger
sets would be desirable in order to rule out the analog
mapping hypothesis (but see Gallistel 2007, for discussion as to
why such evidence would not be sufficient). Of course, the
account lacks the critical notion of a unique next number, but
it may be premature to reject the possibility of any role for the
analog magnitude system, especially if the idea of a mental unit
magnitude is included in such a model (e.g., Leslie et al. 2007).

Math schemata and the origins of number
representations
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Abstract: The contrast Rips et al. draw between “bottom-up” and “top-
down” approaches to understanding the origin of the capacity for
representing natural number is a false dichotomy. Its plausibility depends
upon the sketchiness of the authors’ own proposal. At least some of the
proposals they characterize as bottom-up are worked-out versions of
the very top-down position they advocate. Finally, they deny that the
structures that these putative bottom-up proposals consider to be sources
of natural number are even precursors of concepts of natural number.
This denial depends upon an idiosyncratic, and mistaken, idea of what a
precursor is.

Rips et al. criticize a “bottom-up” approach to the origin of the
capacity for representing natural number. According to the
bottom-up view that they believe characterizes most current
work on the development of numerical cognition (including
mine), representations of natural number are supposedly
derived, by empirical induction, from representations of sets,

objects, and the quantitative resources of Figure 1 of the target
article (parallel individuation of small sets, analog magnitude rep-
resentations of number). While agreeing that the represen-
tational systems sketched in Figure 1 exist, and underlie a
variety of behaviors of infants and young children, Rips et al.
deny that these (or even the explicit representational scheme
they call “simple counting”) are precursors to representations
of natural number. Rips et al. propose an alternative “top-
down” account, in which math schemas that are the equivalent
of Peano’s axioms are somehow directly acquired without invol-
ving the representations of Figure 1 or of simple counting.

Rips et al. wildly misconstrue my proposal. Although I hold
that the schemata of Figure 1 and of simple counting are precur-
sors to representations of natural number, these do not exhaust
the innate machinery brought to bear in this achievement; my
proposal does not bottom out in these structures. My position
is more of a worked-out version of Rips et al.’s top-down
approach than a bottom-up approach (and thus I agree with
much they have to say in their target article).

My proposal depends upon a particular form of bootstrapping
process (Quinian bootstrapping) that has been well studied in the
literature on the history and philosophy of science (Carey, in
press; Nersessian 1992; Quine 1960). Carey (2004; in press) illus-
trates the role of Quinian bootstrapping in the acquisition of
simple counting, which results in a representational schema that
goes beyond the resources of Figure 1. Simple counting is the
first schema that represents even a finite subset of the natural
numbers, and the bootstrapping episode that creates this schema
is only one of several that eventually result in the capacity for repre-
senting natural number. A second bootstrapping episode described
in Carey (in press) underlies the integration of simple counting with
the analog magnitude representations of Figure 1. These do not
complete the story; however, they illustrate how it works.

All episodes of Quinian bootstrapping require top-down creation
of explicit placeholder structures, the symbols of which get their
meaning entirely from conceptual roles within those structures.
Besides the resources needed for the construction of the placeholder
structures, Quinian bootstrapping involves modeling processes
through which these structures are infused with mathematical
meaning. For example, nothing in Figure 1 captures the child’s
capacity to create ordered lists of symbols. The meaningless list,
“one, two, three, four. . .” is a placeholder structure, the meaning of
which is exhausted by its conceptual role as an ordered list. Other
computational resources are drawn upon in the process of creating
meaning for this placeholder structure – various logical capacities,
recursion, a variety of processes that model the representations of
Figure 1 in terms of the placeholder structure, as well as induction.

As Rips et al. point out, their own proposal for the innate build-
ing blocks for number representation includes knowledge that is
“tacit.” Their proposal suffers, however, from the lack of any hint
of what they might mean by this. How are the innate math
schemas they presuppose represented? What are the symbols
like (format, content), and what computations do they enter
into? What is tacit knowledge? The schemata instantiated in
Figure 1 provide answers to those questions. The actual
symbols in parallel individuation represent individuals, but the
system as a whole tacitly embodies arithmetical knowledge in
the processes that pick out and manipulate sets, compute a
one-to-one correspondence, and compute numerical equality
and inequality. The actual in analog magnitude representations
represent approximate cardinal values of sets of individuals,
but, again, the system as a whole tacitly embodies arithmetical
knowledge in the processes that compute arithmetic functions
over these values, including sums and ratios. Ditto for simple
counting; much of the knowledge that ensures that simple count-
ing constitutes a representation of a finite subset of the natural
numbers is tacit, captured in the counting principles character-
ized in Gelman and Gallistel’s (1978) classic work.

Rips et al. claim that neither simple counting, nor the rep-
resentational systems depicted in Figure 1, are precursors to
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natural number, arguing that the concept of natural number
cannot be defined in terms of structures of Figure 1, nor be
derived from them by empirical induction. However, the
mastery of simple counting is a necessary prerequisite for the
mastery of complex counting, which Rips et al. agree is likely
to be a necessary part of acquiring the math schema of natural
number. The mastery of simple counting draws on the resources
of Figure 1 (plus others), and, in this sense, these structures are
all part of the precursors to natural number. The authors point
out that on the mathematical ontology they favor, the content
of a mathematical symbol is given entirely by computational
role (its place in the system), and on this view, simple counting
and the structures in Figure 1 play no role in the mathematical
concept of natural number (which is exhausted by the concept
of a unique first number, the concepts of successor and predeces-
sor, and mathematical induction). However, aspects of these
latter component concepts are implicit in the computations
carried out over the schemata captured in Figure 1 and in
simple counting, and provide constraints in the modeling pro-
cesses through which the placeholder structures created by
top-down processes come to have meaning.

My proposal, like theirs, assumes that conceptual role is the
main source of content for mathematical concepts. My proposal
concerns how new primitive symbols are coined and how they
come to have the appropriate conceptual role. Contrary to Rips
et al., I believe that the content of each symbol for a positive
integer is determined both by conceptual role and by the capacity
to represent cardinalities of sets of actual individuals. This
hypothesis makes sense of one of the most striking facts about
mathematical development: Mathematical development, both
historically and in ontogenesis, often occurs in the course of mod-
eling the world. It is no accident that Newton invented the calcu-
lus and Newtonian mechanics, or that Maxwell invented the
mathematics needed to field theories in the course of modeling
Faraday’s electromagnetic phenomena. In the end, the big
mistake that Rips et al. make is methodological: they miss the
fact that modeling activities can give placeholder structures
meaning, even if in the end the structures involved in these mod-
eling processes, such as the schemata of Figure 1, are part of an
acquisition ladder that is not essential to the conceptual role con-
structed. This is what developmental precursors really are –
representations that play a role in the bootstrapping process.

Before Rips et al. have offered an viable alternative to the
picture they criticize, they owe us some idea of what the math
schemas they advocate are like, at Marr’s algorithmic level of
description, and how they are acquired.

What is still needed? On nativist proposals for
acquiring concepts of natural numbers
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Abstract: Rips et al.’s analyses have boosted the plausibility of proposals
that the human mind embodies some critical properties of natural
numbers. I suggest that such proposals can be further evaluated
by infant studies, neuropsychological data, and evolution-based
considerations, and additionally, that Rips et al.’s model may need to
be modified in order to more completely reflect infants’ quantitative
abilities.

Rips et al.’s extensive analyses adopting a “top-down approach”
not only question the bootstrapping hypotheses, but also

strengthen the possibilities that some defining properties of
natural numbers are innate to human cognitive structure. In
the authors’ proposal, innate resources – including the ability
of recursion – enable the construction of a math schema that
embodies the one-to-one successor function, a critical property
of natural numbers (sect. 5.2). In an alternative proposal
(Leslie et al. 2007), the innate basis of natural-number concepts
is a mental magnitude system (“the speedometer”), which incor-
porates a discrete digital representation that is aligned and cali-
brated to, but distinct in nature from, the continuous analog
representation. Current data, however, are too limited to evalu-
ate these proposals. Here I suggest some directions for
investigation.

Infant studies still play a critical role. Although mathematics is
typically learned late, Rips et al. have argued that to children,
math principles are not necessarily consciously available, expres-
sible in language, or acquired all at once (sect. 5.3, para. 1),
leaving it open whether some knowledge of such principles is
present in infancy. Accordingly, predictions can be developed
and tested. However, there are great practical difficulties in
testing infants, because the tests must be directly about
number concepts, as Rips et al. have emphasized.

Neuropsychological data are also relevant. According to Rips
et al., mental magnitudes are too imprecise to be associated
with specific natural numbers (sect. 3.1), suggesting that con-
struction of the natural-number schema is relatively independent
from the magnitude-representation system. In contrast, the
model proposed by Leslie et al. (2007), which incorporates a
digital representation as part of the magnitude-representation
system, suggests a strong tie between operation of the system
and acquisition of natural-number concepts. As such, neural
imaging data and specific clinical cases may differentiate the
two proposals.

Evolutionary perspectives may offer a plausibility check.
Several domains of knowledge are considered to be both essen-
tial to survival and ones for which innate mental modules have
evolved. For knowledge of natural numbers, Rips et al. have pro-
posed that recursion is a critical underlying capacity, which may
have undergone a domain-specific-to-domain-general shift in
human evolutionary history (Hauser et al. 2002), whereas
Leslie et al. (2007) have proposed that a digital-integer represen-
tation is a built-in aspect of the evolved magnitude-representation
system. These proposals for innate structures that embody
properties of natural numbers can be examined with respect to
which one could plausibly argue that such structures would
have adaptive values.

Lastly, it should be pointed out that some findings seem to be
inconsistent with the processes depicted in Rips et al.’s model
(Fig. 1 of the target article). These findings deserve consideration
in building a more complete model and for examining its impli-
cations. The model in Figure 1 is primarily based on infants’ proces-
sing of visual arrays, such that the attentional mechanisms for
parallel individuation function is the starting point, and the
outcome, depending on the number of objects (.4 or not),
follows separate routes of processing. However, numerous
studies have shown that infants can quantify sequences of items
such as sounds and actions. For example, 6-month-olds discrimi-
nate between sequences at a 1 : 2 ratio when the numbers of
items were � 4 (e.g., 4 vs. 8, 8 vs. 16), and the discrimination pre-
cision increases to a 2 : 3 ratio (e.g., 4 vs. 6, 8 vs. 12) by age 9 months.
In sharp contrast, when the number of items was �4, infants
did not discriminate at the ratio that they did when the number
was �4: 6-month-olds failed discrimination at the 1 : 2 ratio (e.g.,
2 vs. 4), and 9-month-olds succeeded at that but failed at
the 2 : 3 ratio (2 vs. 3) (e.g., Lipton & Spelke 2003; 2004; Wood
& Spelke 2005). Note that earlier studies have shown that
6-month-olds can discriminate between 2- and 3-action sequences
(Sharon & Wynn 1998; Wynn 1996), although some have argued
that non-numerical factors may account for these results (e.g.,
Wood & Spelke 2005). In sum, none of these results can be
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accounted for by parallel individuation processes of attention; such
processes cannot be the starting point for the quantitative proces-
sing of sequences of items.

In addition, the failure to discriminate between small-number
sequences does not provide direct evidence that magnitude rep-
resentation is not formed of small numerosities. This is because
how many items a sequence consists of is not determined until
the sequence ends and becomes defined – magnitude represen-
tation of a sequence, if formed, must be a result of constant
updating from the input of the very first item on. Thus, other
factors may be responsible for this finding.

The same possibility applies to infants’ processing of visual
arrays. The model in Figure 1 implies that for sets containing
fewer than 4 objects, magnitude representations of set size are
not formed, and thus object representations (object-files) must
be responsible for infants’ discrimination, as suggested by the
findings that 10- and 12-month-old infants succeeded in discrimi-
nating among 1 to 3 objects, but failed with comparisons
involving 4 objects (e.g., 1 vs. 4) (Feigenson & Carey 2005;
Feigenson et al. 2002a). However, a recent study has shown
that 5-month-olds can discriminate between arrays of 2 versus
8 and 3 versus 12 objects (Cordes & Brannon 2007). This
suggests that infants do form magnitude representations of
small-number sets, but require a greater ratio of 1 : 4 (as com-
pared with that of 1 : 2 for large-number sets) for successful
discrimination. It also casts some doubt on the claim that numeri-
cal discrimination between small-number arrays is based only on
representations of individuals that are subject to a 3-item limit.

The model also implies that for arrays containing 4 or fewer
objects, discrete object representations are maintained only if
they have distinctive properties, allowing number-based respon-
ses; otherwise, infants’ responses are driven by magnitude rep-
resentation of continuous quantities of the array (Feigenson
2005). However, such a deficit in numerical discrimination of hom-
ogenous arrays has not been found in most studies with infants or
preschool children, and many studies actually reported a relative
advantage for homogeneous sets (for discussion, see Gelman &
Gallistel 1978 and Cantlon et al. 2007). For instance, Starkey
(1992) found that pre-counting 24- and 30-month-olds performed
better on a nonverbal addition-and-subtraction task with homo-
geneous sets than with heterogeneous sets. Thus, Rips et al.’s
model is in need of revision to address these findings.
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Abstract: In their target article, Rips et al. have presented the view that
there is no necessary dependency between natural numbers and internal
magnitude. However, they do not give enough weight to neuroimaging and
neuropsychological studies. We provide evidence demonstrating that the
acquisition of natural numbers depends on magnitude representation
and that natural numbers develop from a general magnitude mechanism
in the parietal lobes.

Rips et al. have provided a considered review, and a theoretical fra-
mework for the way in which humans acquire (or do not acquire)
natural numbers. However, although they refer to cognitive and

developmental studies, they ignore an important component,
which can constrain developmental and cognitive theories: the
human brain. Given a decade of advances in understanding the
neural basis of number processing, any accounts of numerical
development and abilities that do not address the neural instantia-
tion of number processing are necessarily incomplete. Here, to
show the limitations of Rips et al.’s view, we consider the parietal
lobes, a key area in number processing, with regard to their role
in numerical magnitude and their contribution to general magni-
tude processing. On the basis of evidence from neuroimaging, neu-
ropsychological, and behavioral studies, we challenge Rips et al.’s
position that there is no dependency at all between natural
number and internal magnitude (target article, sect. 6).

It is indisputable that adults in Western culture have natural
number concepts based on symbolic representation of numbers.
A great deal of evidence indicates that the parietal lobes, and
especially the intraparietal sulcus (IPS), play a key role in numerical
cognition (Brannon 2006; Cohen Kadosh et al. 2008; Dehaene et al.
2003; Nieder 2005). In imaging studies, activity in IPS is modulated
bilaterally as a function of the distance effect, the numerical
priming effect, and the size congruity effect (see Cohen Kadosh
et al. [2008] for a review). All these effects stem from numerical
representation. The IPS is also active during the processing of
other magnitudes, such as physical size, time, space, and luminance
(for reviews, see Cohen Kadosh et al. 2008; Walsh 2003). This led
Walsh (2003) to suggest that the parietal lobe, especially at the right
hemisphere, embodies the basis of a common metric for space,
time, and numbers, and many neuroimaging studies have shown
that symbolic numbers, non-symbolic numbers, and other magni-
tudes activate the IPS (see Cohen Kadosh et al. [2008] for a
meta-analysis). Notably, the similarity between numbers and
other magnitudes is not confined only to the neuronal level but is
also observed during behavioural tasks, as indicated by similar
effects and response functions (Cohen Kadosh et al. 2008).

These similarities between numbers and other magnitudes,
both at the behavioural and neuronal levels, are not mere coinci-
dence; they are indicative of the basic knowledge of magnitude
upon which more specific and conceptual representations are
built. As Rips et al. (sect. 2.2) have noted, during infancy,
numbers do not represent a unique feature. Other dimensions,
separately or jointly, can serve as cues in order to detect
changes in quantity/magnitude. In our view, this is because of
a shared magnitude mechanism that precedes numerical rep-
resentation. In this scenario, different magnitudes are jointly
represented from infancy (Feigenson 2007). Later, the child
develops neuronal circuits dedicated to numerical information,
and acquires the understanding of natural numbers. This special-
ized representation, which emerges as we understand natural
number concepts, is possible due to interactions between non-
tuned neuronal substrates originally dedicated to general magni-
tude representation, with areas in the left hemisphere involved in
language, and ventral occipito-temporal areas involved in sym-
bolic processing (Cohen Kadosh et al. 2007a). This conceptualiz-
ation of human functional brain development is in line with other
fields that have examined neuronal specialization, such as face
perception (Cohen Kadosh & Johnson 2007), and is termed the
Interactive Specialization Approach (Johnson 2001). The general
framework of this theory suggests that some cortical regions that
are initially functionally poorly defined are partially activated in a
wide range of different contexts and tasks as cortical development
proceeds.

The possibility of acquiring the concept of natural numbers via
interaction between general magnitude and language is dis-
missed by Rips et al. Although they suggest why either magnitude
or language might not play a role in the formulation of natural
numbers, they do not explain why general magnitude and
language cannot play an integrative role in shaping the under-
standing of natural numbers.

As with previous cases of the interactive specialization approach
(Thomas & Johnson 2008), the interactive specialization approach
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for numerical cognition is supported by investigations of develop-
mental disorders. People with developmental dyscalculia – the
inability to process numerical information adequately – have pro-
blems not only with automatic processing of numerical quantity
(Cohen Kadosh et al. 2007b; Rubinsten & Henik 2005; 2006),
but also with other magnitudes (Cohen Kadosh et al. 2007b).
Non-dyscalculic adults show similar impairments as developmental
dyscalculics when their right IPS (rIPS) is stimulated by transcra-
nial magnetic stimulation (Cohen Kadosh et al. 2007b), thus
demonstrating a causal relationship between rIPS abnormalities
and developmental dyscalculia. The rIPS plays an active role
during infancy and childhood: It is involved in numerical proces-
sing as early as 3 months postnatal (Izard et al. 2008), and it is
still dominant in numerical tasks at 4 years (Cantlon et al. 2006).
After children acquire natural number concepts, via interaction
with language, which is mainly left lateralized, the left IPS is also
activated (Ansari & Dhital 2006).

The lack of early brain specialization is not the only develop-
mental factor to affect the representation of numerical infor-
mation. For example, synaesthesia, another developmental
atypicality, leads one to similar conclusions. Adults with digit-
colour synaesthesia, who experience colour whenever they see
numbers (e.g., 2 in red), have a lack of neuronal specialization
in the magnitude system (Cohen Kadosh et al., in press). Their
symbolic representation of digits is affected by luminance – simi-
lar to the tendency shown by children up to two years of age
(Cohen Kadosh et al. 2007c).

Rips et al.’s idea, while interesting, does not reflect the current
state of neuroscientific knowledge either about numbers or
development in general (Johnson 2001), and nor does it accu-
rately represent the link between the cognitive abilities of
infants and the development of number concepts. Abnormality
in the magnitude processing system or in the language system
can lead to developmental dyscalculia – a view that is supported
by some of the evidence we present here, as well as by the co-
morbidity between dyscalculia and dyslexia (Geary 1993).
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Abstract: The philosophy of mathematics may not be helpful to the
psychology of number development because they differ in their purposes.

These are interesting times for psychologists who research
number development. Ingenious studies are revealing capabili-
ties in infants and nonhuman species that are challenging to
describe and explain. Whether and how these studies relate to
later development is an important issue.

Rips et al. are not the first to think that the philosophy of math-
ematics will prove helpful in guiding the psychology of number
development. It is true that explaining the nature of mathematical
knowledge and how it can be acquired has concerned some philo-
sophers since the beginnings of Western philosophy. Mathematical
concepts and relations have been variously portrayed in perspec-
tives such as Platonism, nominalism, intuitionism, constructivism,
logicism, set theory, and structuralism. My understanding is that
no position has successfully dealt with the issues philosophers

feel a philosophy of mathematics should manage. Some problems
with using philosophy as a guide are that there are several possibi-
lities, and they point in different directions; and it is unclear
whether any have reached the destination of interest. The existence
of such continuing disputes suggests that there can be no simple
connection between mathematical proficiency and philosophical
conceptions of natural number.

Another problem is that philosophical discourse is particularly
ill-suited for operationalisation into empirical tests. Any conversa-
tion with children about the natural numbers may be fraught
with ambiguity: they may be talking about numbers as abstract enti-
ties defined only in relation to each other, or they may be tacitly
referring to quantities of objects. One can be more confident
when discussing the multiplication of negative numbers that refer-
ence to the real world has been abandoned, but there are ingenious
real-world analogies for this, which would need ruling out.

Whereas philosophers are concerned with explicitly conscious
and communicable constructions of number systems, the authors
are proposing to use their ideas to characterise the unconscious
intuitions of children. This risks treating a conception of
natural number as equivalent to a set of components. A set of
intuitions is no more an implicit concept of number than a set
of components is an implicit computer.

The most serious disadvantages of trying to base the psychol-
ogy of number development on the philosophy of mathematics
derive from their fundamentally different purposes. The philos-
ophy of mathematics is not interested with the development of
the individual or even in explaining the history of mathematics.

In contrast, any psychology of number development is bound
to be deficient unless it recognizes that children do not develop
their ideas about number in a vacuum: They grow up in environ-
ments replete with uses of number and numerals. The natural
number sequence, also known as the counting numbers, is a cul-
tural product that has developed over a long period and embo-
dies considerable knowledge of number. Some time after
acquiring it, children learn the knowledge implicit in it, for
example, the relative magnitude of numbers (Siegler & Robinson
1982) and the number-after rule (Baroody 1995).

It is not just exposure to cultural tools such as the natural
number sequence that is responsible for children’s development.
If it were, then they would be in the same predicament as archae-
ologists who are still unsure about the mathematical significance
of the Ishango bone. Instead of reconstructing number on their
own, children benefit from conversations with number system
users and activities which may be deliberately or incidentally
instructive (Harris & Koenig 2006). Not enough is known about
how others support children in appreciating the properties of cul-
tural tools, but the success of interventions such as Rightstart
(Griffin et al. 1994) demonstrates how effective such support
can be. When children progress from conceiving of number as
an adjective to thinking of number as a noun (Resnick 1992), it
is likely to be through their participation in classroom commu-
nities that create mathematics such as those described by Ball
and Bass (2003).

Neo-Fregeanism naturalized: The role of one-
to-one correspondence in numerical cognition
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Abstract: Rips et al. argue that the construction of math schemas roughly
similar to the Dedekind/Peano axioms may be necessary for arriving at
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arithmetical skills. However, they neglect the neo-Fregean alternative
axiomatization of arithmetic, based on Hume’s principle. Frege
arithmetic is arguably a more plausible start for a top-down approach
in the psychological study of mathematical cognition than Peano
arithmetic.

In the early days of developmental psychology, psychologists
were in close contact with logicians and mathematicians
working on the foundations of mathematics. Karl and Charlotte
Bühler participated in the discussions of the Vienna Circle,
which included among its members, Rudolf Carnap, Kurt
Gödel, and Karl Menger. Piaget’s work was heavily influenced
by Bourbaki, the French structuralist school, and Piaget had
many discussions with Jean Dieudonné, one of its leading
members (see Piaget 1968; cf. Aczel 2007). In recent decades,
developmental psychology and foundational work in mathemat-
ics have grown apart, sometimes resulting in outright antagonism
(Dehaene 1997). Rips et al. restore the connection between two
research fields. In their top-down approach, the cognitive math
principles are based on the Dedekind-Peano axioms. They
argue that these axioms or mathematically equivalent minor vari-
ations (e.g., the Least Number Principle) should be studied more
seriously by psychologists. My major worry is that they have
missed an important new development in foundational studies
in mathematics.

Rips et al. briefly consider Frege’s conception of numbers as
sets of all equinumerous sets of objects, and rightly conclude
that this view is untenable (Frege 1884/1974; 1893/1967).
Frege’s system was flawed, because of the inconsistency of the
notorious Law V. However, Crispin Wright (1983) pointed out
that Frege’s arithmetic can be derived from Hume’s principle
(HP). Frege (1893/1967) contains all the essential inferences
for a valid deduction of the laws of arithmetic, and Frege’s incon-
sistent Law V can thus be sidestepped. The second-order Peano
postulates can be derived in a consistent second-order system
with only one extra-logical predicate N (“is the number of”)
and one non-logical axiom HP, stating that the number of Fs is
equal to the number of Gs, in case there is a one-to-one corre-
spondence between the Fs and the Gs. This result is known as
Frege’s theorem, and it implies that HP can serve as the basis
of arithmetic (Heck 1993; Zalta 2008).

From a mathematical point of view, second-order Peano arith-
metic (PA) and Frege arithmetic (FA) (second-order logicþHP)
are almost equivalent (for their relative strength, see, e.g., Heck
2000). From an epistemological or cognitive point of view, PA
and FA are very different. The basic concept in PA is the succes-
sor relation. PA is thus strongly related to the ordinal conception
of number or to the cognitive abilities of enumeration and count-
ing. FA, on the other hand, is based on equinumerosity, or one-
to-one correspondence. The basic cognitive ability underlying
HP is the ability to judge whether the objects of two sets can
be put into a one-to-one relation, or, the ability to relate every
object of a set to a single object of another set. For example, a
set of knives is equinumerous to a set of forks if one can form
pairs of forks and knives, without remaining forks or knives.
Equinumerosity judgments are thus possible without enumerat-
ing the two collections. In the philosophy of mathematics, this
discovery has triggered a lively epistemological debate on the
question whether HP is an a priori or conceptual truth (Boolos
1997; Demopoulos 1998; Heck 2000). Neo-Fregeans claim that
HP is central in mathematical knowledge.

The problem with the neo-Fregean program is that its claims
about mathematical knowledge are not based on psychological
evidence. Nevertheless, HP and Frege’s theorem may be quite
important in the empirical study of mathematical cognition.
Since the 1970s, psychologists have regarded counting as the
basis of numerical skills. Gelman and colleagues have argued
that three principles underlie the ability to count: the one-to-
one correspondence principle, the stable-order principle, and
the cardinality principle (Gelman & Gallistel 1978; Gelman &
Greeno 1989; Gelman & Meck 1983; Gelman et al. 1986).

These principles constitute an enumeration procedure and
suffice to explain various numerical skills. However, the fact
that these studies are largely based on the numerical skills of
infants that have been taught to count at a very early age may
have biased this research. It is perfectly possible that the ability
to make one-to-one correspondence judgments (HP) is more
basic and relevant than has generally been assumed. Two (arbi-
trarily chosen) examples should suffice to illustrate that HP is
often overlooked as an explanation for certain numerical abilities.

Gordon (2004) carried out several matching tasks during his
stay with the Pirahã. Gordon would put a certain number of
objects (1–10) below a line, and the participant had to put an
equal amount of objects on the other side of the line. In
general, there is a considerable decrease in performance for
larger numbers, with one striking exception, namely, the line
match. This would fit well with the participants having mastered
a one-to-one correspondence procedure. As Gordon tampered
with the matching condition, performance decreased. Gordon’s
results clearly indicate that non-numerates can employ a one-
to-one correspondence procedure, without using enumeration
(despite his claim to the contrary; Gordon 2004, p. 497). The
uneven line match is especially noteworthy. If rectangles below
the line were put in a line with unequal distances, performance
was very good until four, and then dropped below 50% for five
and six, and later went up again to almost correct performance
for higher numbers. An explanation might be that for small
numbers, the Pirahã use the more or less precise subitizing,
with the effect that performance decreases rapidly above three.
For larger sets, a one-to-one correspondence procedure takes
over, leading to almost perfect performance. This is a hypothesis
that can rather easily be tested, because one would assume that
participants can be taught to use this strategy also for smaller
numbers, with a resulting overall excellent performance.

Second, Jordan and Brannon (2006) have demonstrated that 7-
month-old infants can already recognize cross-modal one-to-one
correspondences for low numerosities. Although Brannon and
Jordan explain this result as evidence for a number represen-
tational system, it can more easily be interpreted as the
mastery of HP.

In conclusion, the claim made by Rips et al. that math
schemas, roughly based on the Dedekind-Peano axioms, may
be important in the study of (mature) mathematical cognition
deserves further empirical scrutiny. However, there is a non-
trivial, almost equivalent axiomatic approach that is arguably
very different from a cognitive point of view. In a top-down
approach towards mathematical cognition focusing on knowledge
of mathematical principles, it seems more promising to start with
a psychological study of one-to-one correspondence (FA or
Heck’s roughly equivalent system; Heck 2000), than with
Peano’s mathematical induction or commutativity.

Bridging the gap between intuitive and formal
number concepts: An epidemiological
perspective
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Abstract: The failure of current bootstrapping accounts to explain the
emergence of the concept of natural numbers does not entail that no link
exists between intuitive and formal number concepts. The epidemiology
of representations allows us to explain similarities between intuitive and
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formal number concepts without requiring that the latter are directly
constructed from the former.

Rips et al. have rightly pointed out a lack of fit between the prop-
erties of the natural numbers as defined by axiomatic systems in
number theory and the unlearned representations of magnitude
in infants. However, to conclude from this that there is “no
dependency whatsoever” (sect. 6, para. 2) between them seems
premature. Typically, the domains of intuitive knowledge that
developmental psychologists have uncovered (such as intuitive
psychology or number) are underdetermined. For example,
although children are born with cognitive biases that lead them
to attend to the actions and goals of others, it remains as yet
unclear how they reliably develop a fully-fledged belief-desire
psychology that differentiates an agent’s mental states from the
actual state of the world.

As an alternative to Rips et al.’s and to traditional bootstrap-
ping approaches, it may be fruitful to examine number from
the perspective of the epidemiology of representations. Its
basic idea is that there is a strong causal link between the
mental representations of the individual members of a culture
and the public representations they share – in this case natural
number concepts and their symbolic denotations (number
words, numerical notation systems). To acquire a novel concept,
learners partly draw on pre-existing knowledge. Thus, each time
a cultural representation is transmitted, it has to pass the bottle-
neck of the pool of mental representations within the minds of
individual learners. Representations with a poor fit to the pool
of knowledge are less likely to be understood, and hence trans-
mitted, than those with a good fit. Cognitive biases that are uni-
versal in humans likely play an important role in this process. As
Nichols (2002) has demonstrated for etiquette norms, our uni-
versal feel of disgust for bodily excretions makes rules that
limit contact with them (e.g., prohibitions to spit in public)
more attractive than norms that do not stir our evolved emotional
responses (e.g., placement of the napkin to the left or right of the
plate). Importantly, Nichols (2002) does not claim that etiquette
norms are directly based on or constructed from universal
human predispositions. Rather, their good fit with our evolved
drive to avoid disgusting situations has promoted their cultural
success.

In the case of number, unlearned quantificational skills might
similarly constrain and guide the cultural transmission of numeri-
cal concepts. If number concepts were based on axiom-like
schemas, as Rips et al. suggest, we would expect some cultures
to develop nonstandard numbers – which satisfy Peano’s
axioms in all respects but which we would yet not call
numbers; however, apart from Western mathematics, there is
no evidence that nonstandard models of arithmetic were ever
developed. Unlearned intuitions of number may promote the
cultural fitness of some numerical representations in favor of
others. Evidence from educational psychology (Vlassis 2004)
suggests that adolescents have difficulties grasping the concept
of negative integers: they make more mistakes when solving
equations that involve negative terms, and especially those that
yield negative solutions. Although adults can compare the magni-
tudes of pairs of natural numbers quasi-automatically, their per-
formance drops markedly when one or both digits are negative
(Fischer 2003). These difficulties are hard to explain from a
purely formal point of view, as the negative integers’ properties
are in many respects similar to the natural numbers’, such as
closure (i.e., aþ b is a natural number/integer for any natural
number/integer a and b), commutativity, and associativity.
From an ecological point of view, however, conceptualizing nega-
tive integers is less relevant for organisms than conceptualizing
positive quantities. If our evolved intuitions of number continue
to play a role in learning processes, it becomes easier to under-
stand why negative integers were historically less widespread
than positive integers. Indeed, negative numbers were actively
resisted despite their usefulness in calculations in cultures as

disparate as 16th-century Europe, Han-dynasty China, and the
medieval Islamic world.

What, then, is the relationship between our innate magnitude
representations and natural numbers? One possibility which
seems consistent with anthropological data is that although
natural numbers are supported by unlearned inductive infer-
ences (De Cruz 2006), there is considerable cultural variation
in the degree to which public representations of number actually
support them. For example, humans are equipped with the
ability to discriminate between continuous and discrete quan-
tities (Castelli et al. 2006). In some cultures (e.g., Western
culture), children are confronted with a variety of symbolical rep-
resentations for number, such as number words, Arabic digits, or
even finger counting. These public representations provide exter-
nal instantiations of the discreteness of natural numbers, leading
children to understand that large numbers that are close together
are yet distinct. Indeed, Western 5-year-olds who typically only
count to 20 infer that numbers above their counting range
apply to specific, unique cardinal values: if a set has 61
members, it cannot contain 65 elements (Lipton & Spelke
2006). In contrast, in some Amazonian or Australian aboriginal
cultures this distinction is not made, leading people growing up
in these communities to rely on approximate numerical skills
only. Consequently, they cannot discriminate between quantities
if the ratio between them is small. While our intuitive quantifi-
cation skills are not sufficient for natural number concept for-
mation, they do support inductive inferences that promote an
understanding of natural numbers in cultures that use symbolic
representations that denote exact cardinalities.

Not all basic number representations are
analog: Place coding as a precursor of the
natural number system
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Abstract: Rips et al.’s arguments for rejecting basic number representations
as a precursor of the natural number system are exclusively based on analog
number coding. We argue that these arguments do not apply to place coding,
a type of basic number representation that is not considered by Rips et al.

We commend Rips et al.’s initiative to put to the fore how a con-
ceptual understanding of the natural numbers is achieved by our
cognitive system. This is a necessary step towards the integration
of scientific progress in the now largely separate domains of basic
number representations and more complex forms of numerical
cognition. In this respect, it is a crucial question whether basic
number representations constitute the basis for the development
of a complete knowledge of the natural number system.

We do not agree, however, with the authors’ conclusion that
magnitude representations cannot be the precursor of under-
standing the properties of the natural number system. Our
main point is that the authors are selective in regarding the mag-
nitude representations they envisage. The authors’ argument is
exclusively built on analog magnitude representations. Although
the biological reality of analog coding has been demonstrated
(Roitman et al. 2007), there are reasons to believe that its
functional importance in numerical cognition is limited. In a
behavioral priming experiment, we have shown that in a
naming task, dot displays evoke a priming pattern that is consist-
ent with an analog magnitude code, but that Arabic digit primes
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do not (Roggeman et al. 2007). Moreover, analog magnitude
coding falls short in explaining some behavioral effects observed
in number processing tasks (Verguts et al. 2005). In a compu-
tational modeling study, we have proposed that analog magni-
tude coding is primarily an intermediate processing step that is
necessary to transform visual input into another type of magni-
tude representation: namely, place coding (Verguts & Fias 2004).

Place coding is another type of basic magnitude representation
that is neglected by Rips et al., although it contains characteristics
that make it well-suited as a precursor for full knowledge of the
concept of natural numbers. In place coding, a number is rep-
resented not in an analog way, but rather, by demarcating a pos-
ition on a numerical continuum. This is accomplished by neurons
that are tuned to a particular numerosity (Nieder et al. 2002). For
instance, a neuron tuned to numerosity 3 responds maximally to
three objects, less strongly to two or four objects, and even more
weakly to one or five objects. Neural place coding has been
demonstrated in monkeys (Nieder et al. 2002), children (Cantlon
et al. 2006), and adults (Piazza et al. 2004), and applies to the
coding of symbolic and non-symbolic numbers (Piazza et al.
2007).

A first important property is that, because place-coding
neurons code number independently from continuous variables
that are correlated with numerosity (Nieder et al. 2002), continu-
ous magnitude is kept isolated from place coding, thereby allow-
ing the identification of a unique first element. Second, number
tuning is not perfect, such that when a given number is pre-
sented, not only this number but also neighboring numbers
become activated; it naturally follows that predecessor and suc-
cessor elements are determined.

More required properties are obtained when symbolic
numbers are introduced. First, as pointed out by Rips et al.,
for a magnitude representation system to serve as a precursor
for the concept of number, it is necessary that the magnitude rep-
resentation system can code number in a precise way. Although
the place coding system is only approximate for nonsymbolic
stimuli (Nieder et al. 2002; Piazza et al. 2004), Verguts and
Fias (2004) have pointed out that the use of language, or
symbols more generally, leads to a strong enhancement of the
representational accuracy of place coding. We simulated the
learning of the numerical meaning of symbols by simply associat-
ing number symbols with nonsymbolic number inputs (collec-
tions of dots) that were already trained to be processed by
place-coding neurons. After training, the behavior of the place-
coding neurons was investigated when presented with symbolic
input alone. It was found that the place-coding neurons
encoded symbolic numbers much more precisely than nonsym-
bolic numbers, although, importantly, precision was not perfect
such that the predecessor/successor properties were present as
well (e.g., a neuron coding for symbolic number 3 was also
slightly active for its predecessor 2 and successor 4). Recent neu-
rophysiological studies in humans (Piazza et al. 2007) and also in
macaque monkeys (Diester et al. 2007) confirm the predictions of
the model. In a subsequent modeling study, we showed that the
resulting system explains adult human behavior in a variety of
number processing tasks (Verguts et al. 2005). Hence, a key con-
tribution of language to a mature conceptual understanding of
natural numbers is that it makes the basic number represen-
tations more precise.

Second, Rips et al. note that some form of mathematical induc-
tion must be assumed, which essentially entails that properties
learned in the context of some numbers can be generalized to
others. If larger numbers are represented as combinations
based on the building blocks 1 to 9, such generalization is in prin-
ciple possible: Verguts and Fias (2006) showed how a neural
network can discover and apply such generalizations in the
context of number naming. Empirically, it has been found that
even two-digit numbers appear to be represented by such build-
ing block combinations, rather than holistically (Nuerk et al.
2001; Ratinckx et al. 2005, Verguts & De Moor 2005).

Finally, we believe that language also facilitates linking the
place-coding system to other types of information that may
further constrain it towards the principles of the natural
number system. For instance, numbers are frequently displayed
from left to right (as on rulers, keyboards, etc.). There is now
good evidence that the coding system becomes systematically
associated with this spatial information through development.
For instance, small numbers are preferentially responded to
with the left hand, and large numbers with the right hand (for
review, see Fias & Fischer 2005). Such number-space associ-
ations make the deduction that natural numbers represent
alternative systems such as modular arithmetic, unlikely.

Although much work remains to be done to capture the
empirical and theoretical details of the developmental trajectory
from the place-coding system to a complete conceptual under-
standing of natural numbers, we argue that the place-coding
system needs to be considered as a serious candidate to serve
as a precursor for the natural numbers.
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Abstract: The reliable covariation between numerosity and spatial extent
is considered as a strong constraint for inferring the successor principle in
numerical cognition. We suggest that children can derive a general
number concept from the (experientially) infinite succession of spatial
positions during object manipulation.

We agree with Rips et al. that we can best understand the nature
of number concepts by studying judgments about numbers (sect.
3.3). Studies of the distance and size effects have long established
that our number concepts are not of an abstract logical nature, as
is envisioned by the authors; instead, they remain analogue
psychological representations of the quantities they reflect.
More recently, it has been shown that numbers are habitually
spatially coded, and this could help to explain how number con-
cepts are generalized. We briefly review the evidence for spatial
coding of numbers before explaining its relevance to the issue at
hand.

The notion of a link between our mental representations of
number and space dates back to Galton (1880) and has been high-
lighted by the recent surge of interest in the Spatial-Numerical
Association of Response Codes (SNARC) effect. The SNARC
effect entails faster left-side responses to small numbers and
faster right-side responses to larger numbers, for example,
when classifying them by parity or magnitude. Since its discovery
by Dehaene et al. (1993), this pervasive association between
numbers and space has been shown to affect cognitive processes
from attention allocation to movement execution, in a wide range
of tasks (Fischer & Mills, submitted). Importantly, the SNARC
effect is automatic in nature, as it occurs even when number
magnitude is task-irrelevant. Examples of such automaticity
include spatial biases when searching for phonemes in a
number’s name (Fias et al. 1996) or when bisecting long strings
made of either large or small digits (Fischer 2001). However,
a number’s spatial association is probably not part of its concep-
tual representation because its spatial mapping is rather
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context-dependent and changes flexibly (for a recent review, see
Wood et al., in press).

The lesson from SNARC is that, while the direction of the
spatial mapping of numbers onto space is flexible, the mapping
itself appears to be obligatory. This fundamental constraint of
our number comprehension reflects our experience that every
increment in numerosity is also an increment in spatial extent,
and vice versa for decrements. Such spatial coding of numerosity
is more consistent than other inferential transfers from physical
to mathematical operations considered by Rips et al. (sect. 4).
This reliable correlation between numerosity and spatial
extent in addition and subtraction might provide the missing
constraint to rule out competing inferences: It suggests that
children can derive the successor principle for numbers from
the unlimited succession of spatial positions during object
manipulation.

Much more than merely a conceptual metaphor, spatial cogni-
tion is engrained in our number comprehension, and this is also
reflected in the way we first learn to understand numbers by
using our fingers, an experience that still shapes the SNARC
effect in adulthood (Fischer 2008). Spatial–numerical associ-
ations seem to emerge at around 3 years of age, well before
formal schooling and reading acquisition; in Western cultures,
they consist of counting from left to right, adding from left to
right, and subtracting from right to left. Importantly, this
spatial preference predicts performance in integer-matching and
object-matching tasks with numerosities exceeding 4 (Opfer &
Thompson 2006).

Rips et al. suggest that “number concepts may come into play
only at a more abstract level – for example, in arithmetic –
where the focus is on the numbers themselves rather than on
physical objects” (sect. 6, para. 3). It is thus important that the
spatial biases observed with single numbers do indeed predict
performance at the level of arithmetic. For example, adults
point to a number’s location farther to the right on a visually pre-
sented number line when it is the result of an addition, and
farther to the left when it is the result of a subtraction (Pinhas
& Fischer, in press). We predict that this spatial bias is also
present in children once they have acquired a general number
concept.

In conclusion, we think that a closer look at situated and embo-
died cognition in number acquisition can dispense of innate con-
cepts to account for the development of number comprehension.

Music training, engagement with sequence,
and the development of the natural number
concept in young learners

doi:10.1017/S0140525X08005682

Martin F. Gardiner
Center for the Study of Human Development, Brown University, Providence, RI

02912.

Martin_Gardiner@brown.edu

Abstract: Studies by Gardiner and colleagues connecting musical pitch
and arithmetic learning support Rips et al.’s proposal that natural
number concepts are constructed on a base of innate abilities. Our
evidence suggests that innate ability concerning sequence (“Basic
Sequencing Capability” or BSC) is fundamental. Mathematical
engagement relating number to BSC does not develop automatically,
but, rather, should be encouraged through teaching.

Evidence addressing development of natural number conceptu-
alization comes from improvements in math found related to
musical pitch skill learning in first and second graders (Gardiner
2000; 2008a; Gardiner et al. 1996). The specificity of connection
could not be explained fully by improved general learning. But

since both these areas of skill profit at this stage from mental
engagement (Gardiner 2008a) involving sequential represen-
tation, even if in different ways, this similarity may well
account for the pitch–math connection (Gardiner 2000; 2003;
2008a). This and further evidence to be discussed supports
Rips et al.’s proposal in the target article, that innate processing
capability has an essential role in the development of natural
number concept; but it implies that innate capability concerning
sequence is still more foundational than the capability at math-
related abstraction that Rips et al. propose.

To briefly review the learning evidence: First-grade students
receiving arts skill “test arts” training (1 hr 40 min/week) acceler-
ated significantly at math, but not similarly at reading, passing
controls who received arts teaching that emphasized appreciation
rather than skill (50 min/week) (Gardiner 2000; Gardiner et al.
1996); this occurred whether the skill training students were at
the bottom, middle, or top of the class leaving kindergarten. At
the end of second grade, those with two years of test arts did
best, those with one year next best, and those with no test arts
most poorly at math, but again not at reading. The test arts com-
ponent that developed arts skill most substantially was the Kodaly
method music training (Chosky 1981).

Studies with Kodaly alone again found math improvements
related to the extent of the Kodaly training (Gardiner 2000). Stu-
dents receiving Kodaly and Kodaly-related training since at least
the first grade have now been found to perform significantly
better on math at the end of the third grade, compared to all other
students in their district as a group (79% vs. 48% at grade
level, p , .001), and 17 – 34% better, regardless of whether or
not they had diagnosed learning disability, or familial poverty
(Gardiner 2008b).

First- and second-grade math progress correlated significantly
with Kodaly-trained capability involving musical pitch but not
rhythm (Gardiner 2000). This may seem surprising, as musical
rhythm is often taught as involving counting. But Kodaly
method avoids rhythm counting, instead emphasizing discrimi-
nation between rhythm pattern types.

I have proposed (Gardiner 1998; 2000; 2008a) that the positive
effects of pitch and math learning on one another reflect an inter-
action that moves mental engagements advantageously toward
incorporating sequence, away from less favorable options. In
math, engagement with the sequential nature of the natural
numbers provides a foundation for developing engagement,
with addition and subtraction as operations both involving move-
ment, but in opposite directions along the natural number
sequence. In pitch engagement, the sequential representation
of ordering of discrete pitches from lower to higher according
to vibration frequency within the musical scale, underlies the
developing sense of upward and downward movement in per-
ceived melody and helps the young learners remember and sing
accurately many different melodies built from the same scale.

The beginning math student has other options for engaging
with arithmetic; for example, memorizing production rules like
“1þ 2 gives 3.” The student learning melodies may develop
and memorize the sequence of vocal gestures producing each
melody separately. But such strategies are ultimately limiting.
Further development in both mathematics and music builds
advantageously upon the sequential conceptualizations of
natural numbers and musical scales, respectively.

As Rips et al. discuss, conceptualization of the natural numbers
must capture the basic Dedekind-Piano axioms (Dedekind 1888/
1963) of first element, successor, predecessor, and inductive con-
tinuation. Note to what extent the notion of sequence is at the
heart of these particular axioms. Besides the possibility of infinite
continuation, the elements of a musical scale also satisfy these
axioms – even though the choice of musical pitches for a scale
has no relationship to set cardinality, but rather, has to do with
frequency interrelationships of interest to music. Indeed, most
scales rise in pitch not only through “whole,” but also through
“half” steps.
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Our data thus suggest that innate “Basic Sequencing Capa-
bility (BSC),” adapted in so many different ways in skill learning
(Gardiner 2007), is also foundational to the development of the
natural number concept. Like advances in counting and the
arithmetic operations, development of further abstractions con-
cerning the natural numbers can then profit from mental rep-
resentation capturing the sequential nature of natural numbers.

That representation concerning sequential properties of
natural number is especially foundational, is further implied by
the variety of engagement applications involving the ordering
of natural numbers that must be developed. Natural numbers
are directly related to set cardinality when discrete objects are
counted; however, ordinal applications (first, second, third,
etc.) concern position in a counting sequence but not set cardin-
ality, and applications concerning measurement require a further
bridge, again to sequence (Gardiner 2007).

If innate capability concerning sequence is critical to natural
number development, as I suggest, then the extensive develop-
ment and practice by young children at counting (Gelman & Gal-
listel 1978; cf. Gelman & Butterworth 2005), which already
connects sequential operation to progression through natural
numbers, may prepare for further development. The next step
could then be to internalize the mechanisms involved in counting
out loud, substituting for sequential auditory verbalization purely
mental acts concerning sequential position and movement along
sequence (Gardiner 2007). Our evidence then could imply that
experience with musical-scale engagement that also involves
sequence, even if differently, can accelerate the development
of a sequence based mental internalization of natural number
engagement (Gardiner 2008a).

Rips et al. have comprehensively reviewed research showing
that young learners have means other than counting for differen-
tiating magnitudes and for establishing cardinality of small sets of
objects. Such capabilities are important in their own ways, still
exist beyond childhood, and can be disrupted along with capabili-
ties based on natural numbers by injury or by experimental
methods causing localized temporary disruption of brain proces-
sing capability (Cappelleti et al 2007). This can imply brain archi-
tecture that places processing involving natural number near
other forms of quantitative processing, perhaps to facilitate inter-
action, but not necessarily that the quantification built on natural
numbers is developed from these other engagement forms.

Further potentially valuable opportunities for mental inter-
action with the arts as learners advance in math capability is dis-
cussed elsewhere (Gardiner 2007; 2008c).

Counting and arithmetic principles first
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Abstract: The meaning and function of counting are subservient to the
arithmetic principles of ordering, addition, and subtraction for positive
cardinal values. Beginning language learners can take advantage of
their nonverbal knowledge of counting and arithmetic principles to
acquire sufficient knowledge of their initial verbal instantiations and
move onto a relevant learning path to assimilate input for more
advanced, abstract understandings.

“Can you do addition?” The White Queen asked. “What’s one and one
and one?”
“I don’t know,” said Alice, “I lost count.”
“She can’t do addition,” the Red Queen interrupted.

— Lewis Carroll

Rips et al. are correct: “Children’s simple counting and enumer-
ating does not provide rich enough constraints to formulate the
right hypothesis about the natural numbers” (sect. 5.1, para. 2).
However, their presentation of my position (e.g., Gallistel &
Gelman 2005; Gelman 1993; 2006; Gelman & Gallistel 1978;
Leslie et al. 2008) leaves out a critical feature of it – that I stead-
fastly have maintained that the meaning and function of counting
are subservient to the arithmetic principles of ordering, and
addition and subtraction.

The proposal that nonverbal counting principles facilitate
learning of verbal counting does not imply that there is an
immediate mapping from the nonverbal conceptual system to
the verbal one. The presence of any relevant mental structure
facilitates attention to, and learning about, data that share the
same structure. The exact same counting principles, and their
performance constraints, are shared by both the nonverbal
and verbal systems. Therefore, learners have a way to collect
structure-relevant data, including the fact that number words
are recognized as being in their own class (Wynn 1992b). Simi-
larly, beginning language learners can make sense of the fact
that although the partitive follows a cardinal word, as well as
quantity terms, this is but a statistical fact. The partitive occurs
with other part–whole constructions such as side of, mother of,
color of, and so on.

If losing one’s count were the same as not being able to do
addition, the Red Queen would be right. But, we know that
she is not. To develop my reply to Rips et al., I start with evidence
that young children can relate their use of natural numbers to
arithmetic. Second, I take up the ubiquity of erroneous counts
and ask: Do these reflect limits on competence alone, or are
their other sources of systematic variability? Finally, I return to
the question of from where the understanding of verbal counting
principles and arithmetic comes.

Bullock and Gelman (1977) showed that even two-and-a-half
year-old children could understand that the property of being
numerically more or numerically less, defined which of two dis-
plays was the “winner.” In the transfer condition, when children
first encountered the novel set sizes of 3 and 4, they responded
on the basis of ordering. Further, more than 60% of the children
counted and used the related cardinal values (Gelman 1993).
This is evidence that very young children, who are still very
poor counters, already can map common numerical relations to
each other. Zur and Gelman (2004) reported that 3- and 4-
year-olds counted to check predictions about the effect of
adding and subtracting items. No child ever tried to make their
count be consistent with their predictions. The 4-year-olds did
problems that contained values as large as 15; the maximum N
for the younger group was 5. Both age groups were sensitive to
the inverse relation (e.g., 521 followed by 5þ 1, or 12þ 3
followed by 15 2 3), even though these problems were not
presented one after the other. Zur (2004) has also shown that
when 4- and 5-year-olds encounter a second pair of commuted
problems – that is, one followed by another, different problem
that shares the property of commutativity – they are faster and
more accurate than they are with pairs of problems that do not
share this property. Further, this transfers to a target analogy
problem.

In short, I agree with Rips et al. that the principles of arith-
metic cannot be induced from the rote learning of counting or
from the simple knowledge of the referents of the first few
count words. It is rather the reverse: Children understand what
counting is about because they can make at least implicit use of
the principles of arithmetic reasoning. I think the authors
seriously misestimate the age at which children have some non-
trivial understanding of cardinality and the successor principle.

Sure, children take a long time to fully grasp the rules for
framing the next count word in English – a non-trivial number
of eighth graders have not fully mastered these skills (Harnett
& Gelman 1998). When anyone replies that the next number
after one quadrillion is two quadrillion, it is unlikely that they
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think that adding one to an unimaginably large number doubles
its value. Because they do not know how to generate the word for
the next number, and because, like adults, they can fail to dis-
tinguish between the word and the concept itself, they can
appear to not believe that continued addition always generates
a still-larger number. The large majority of Hartnett’s children
who were scored as “Ambiguous” regarding their understanding
of the successor principle, were either concerned about the fact
that they did not know the word which would result, or they
would run into physical limitations. They gave answers like,
“Well, the number would be make-pretend,” or “if you make
up numbers, then it’s alright,” or “I don’t really know, because
I’ve never really counted to where it stops.”

Rips et al. highlight the extent to which the road to counting
mastery is strewn with numerous mistakes. I have shown that
errors are influenced by variations in set size, density, rate of
counting, time of presentation, and “touchability” of items – all
variations that influence one’s ability to keep entities in a
display separate from each other, and/or to keep track of the
counted from the to-be-counted items. So, too, does the require-
ment that the one-one and stable ordering outputs stay lock-
stepped together. Most results bearing on these variables are
reviewed in Gelman and Gallistel (1978) and Cordes and
Gelman (2005).

No matter what, children do have to tackle the task of memor-
izing a sequence of terms wherein there is nothing about a given
entry in the list that systematically predicts what the next one
after it must be, and the next, and so on, for a very long time.
Humans, unlike computers, are not good at memorizing long
lists of arbitrary sounds that must be repeated in the exact
same order, trial after trial. Young children also have to
become fluent counters, decode task variables, and so on
(Gelman & Greeno 1989). But at least they will be on a relevant
learning path and be able to disambiguate other relevant
data – for example, the fact that count words are in a separate
class (Wynn 1992b) – and could use the distributional fact that
number words can be followed by the partitive “of,” despite its
low frequency of usage by adults (Bloom 2000; Bloom & Wynn
1998) and its legitimate usage after many quantifiers or
phrases, such as “a side of,” “the color of,” and so on. Therefore,
when principles of arithmetic organize the domain, we can say
that the counting principles serve to facilitate learning the
verbal version of these arithmetic principles. Subsequently,
more and more formal understandings of cardinality will
develop, but this does not preclude an early level of
understanding.

Look Ma, no fingers! Are children numerical
solipsists?
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Abstract: I ask whether it is necessary that principles of number be
mentally represented and point to the role of language in determining
cultural variation. Some cultures possess extensive counting systems
that are finite. I suggest that learning number principles is similar to
learning conservation and, as such, might be derived from learning
about the empirical properties of objects and other individuals in
combinations.

The target article provides an important discussion of the poten-
tial pitfalls in taking experimentally obtained behaviors and

making general inferences about numerical cognition in infants
and children. All too often, researchers assume that the practices
of counting and differentiation evidenced in experiments directly
reflect an underlying cognitive system that is a prototype of
mature adult numerical cognition. One cannot assume that the
internal systemic properties of number are bootstrapped from
experience with real objects. Could it be the case that concepts
of number are acquired by pure rationalism in the unconscious
mind as children attempt to make sense of the number system
and its properties?

The question we must ask is whether the abstract formal prop-
erties of number theory are a necessary part of the representation
of number, as opposed to being part of a meta-analysis of the
number system that is taught in schools. It is one thing for chil-
dren to behave as if they had a principle of associativity or com-
mutativity; it is another to explicitly represent such a principle in
a formal logical mental theory-structure. If the number prin-
ciples are learned in a natural way or are innate, then where
are the boundaries of complexity? Must we require induction
of the commutative principle, but not Goedel’s theorem?
Perhaps the boundaries lie just at the level of figuring out what
changes and does not change upon minor rearrangements of
configuration.

To reject the idea that number principles are arrived at
through mathematical induction, we need an account of how
number properties can be acquired without the formal machin-
ery. Notice that we are not talking about bootstrapping as a step-
ping-stone to a formal representation, but about having the right
truth-value structure in numerical reasoning without needing the
formal inductive mechanisms described in the target article.

Let us consider whether the formal machinery gets us to the
right place in accounting for human numerical cognition. We
are told that it follows from the successor function that there is
no final number, since the set of all numbers must be infinite.
But this is just not true for all cultures. We are now familiar
with cultures that have very few numbers, such as the Pirahã
(Everett 2005; Gordon 2004) and Munduruku (Pica et al.
2004), who clearly lack knowledge of numerical principles.
Some cultures count by body parts, such as the Yupno of
Papua New Guinea, who finish counting at the name of the
right testicle (Menninger 1898/1969). More intriguing are the
Polynesian cultures whose original language had a counting
system that went to a million, but stopped dead there (Beller &
Bender 2008). The correct answer to the question: “Is there a
largest number?” in these cultures is “Yes.” Surely such cultures
had something like a successor function, but if such a function
guarantees discrete infinity of the number system, then how
did these Polynesians end up with a finite counting system?
We must take into account the linguistic basis of counting and
how that directly affects the nature of mathematical principles
that apply, modulo the culture. Therefore, if a counting system
is generative, but not fully recursive, you end up with a
number set that is very large but finite. In the same way, if a
natural language has a generative grammar that lacks recursion,
as might be the case for Pirahã (Everett 2005) and possibly Hix-
karayana (Derbyshire 1979; Geoff Pullum, personal communi-
cation), then the number of sentences generated by the
language is also very large, but finite.

How, then, might the child figure out that associativity and
commutativity hold, absent any formal instruction or complex
machinery of mathematical induction? Perhaps if we step back
a bit, we can see that these principles are quite similar to the prin-
ciple of conservation of number (Piaget 1952). The principle of
conservation tells us that quantities do not change as a result of
irrelevant transformations. The commutative and associative
principles for addition tell us that adding two quantities, or
numbers, does not change their sum under irrelevant transform-
ation (switching the addends or regrouping). In Carey’s (1987)
reanalysis of conservation phenomena, she points out that con-
servation does not follow from logical necessity, as Piaget had
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proposed, and so learning conservation could not therefore
follow from logical analysis of the domain. Instead, conservation
is an empirical fact about the world and turns crucially on the
notion of “relevance” of the transformation. A favorite teaching
trick of mine after a class on conservation, is to ask students
whether the area bounded by a piece of string is changed upon
altering the shape of the string slightly. Most students will say
“no” and, of course, will be shown to be wrong as the string is flat-
tened into a shape with bounded area of zero. The point is made
more forcefully if you then invite a 3-year-old into the room and
they get the correct answer!

If conservation is learned empirically rather than logically,
then figuring out that substances or individuals do not change
quantity upon being poured into a different container or
spatially rearranged, would involve learning about the nature
of matter and objects in the physical world. It isn’t so much
experience with objects in counting situations that bootstraps
these number principles, nor that these principles are arrived
at autonomously within the unconscious theorem-generating
mental number space, but that the indirect process of trying
to figure out the nature of objects as objects and individuals
within sets might be the catalyst for arriving at these principles
in the relatively informal manner that we also acquire knowl-
edge of other domains of folk-science. The inference that
these principles apply universally to all quantities or numbers,
might be understood at the folk-math level in the same way
that we have faith that the sun will rise tomorrow, by everyday
Hume-style, deductively invalid, inductive generalization. The
formal use of successor functions and mathematical induc-
tion/deduction might only come into play when children are
taught explicitly in school.

Set representations required for the
acquisition of the “natural number” concept

doi:10.1017/S0140525X08005712

Justin Halberda and Lisa Feigenson
Department of Psychological and Brain Sciences, Johns Hopkins University,

Baltimore, MD 21218.

Halberda@jhu.edu http://www.psy.jhu.edu/~halberda/

Feigenson@jhu.edu http://www.psy.jhu.edu/~feigenson/

Abstract: Rips et al. consider whether representations of individual
objects or analog magnitudes are building blocks for the concept
NATURAL NUMBER. We argue for a third core capacity – the ability to
bind representations of individuals into sets. However, even with this
addition to the list of starting materials, we agree that a significant
acquisition story is needed to capture natural number.

Rips et al. paint a picture of math knowledge as divorced from the
object tracking and simple enumeration abilities of young chil-
dren. Something is right here, and something is wrong. What is
right is that arithmetic is a domain of relations across numbers,
numbers (at least on many stories) are abstract objects, and the
truths of mathematics are not dependent on anything in the
world, like objects or approximation abilities. But what is
wrong with this picture is that neither humans over the course
of history nor children over the course of development initially
understand mathematics as a domain concerning abstract entities
divorced from the world. The ability to describe relationships
across real-world collections of objects was presumably the his-
torical impetus for discovering arithmetic, it is how children
begin engaging in mathematics, and for most humans, it
remains the major forum for applying arithmetic knowledge. A
fortiori, a bridging mechanism between mathematical truths
about numbers (i.e., abstract objects) and collections (i.e.,

things in the world) is required if such knowledge is to be
made relevant to real-world calculation.

We suggest that the concept set and ordered relations across
sets can serve as a bridging mechanism (another possibility is
plural variables). Rips and colleagues do not list set represen-
tations among the early capacities potentially relevant for math
knowledge. We suggest that the concept set is required and
that this notion cannot come from object tracking, the approxi-
mate number system, or language.

Conceiving of a set requires representing the hierarchical
relationship between individual items and the larger structure
into which they are bound (note that this is distinct from percep-
tual grouping or recoding, both processes that destroy the indi-
viduals comprising the group). Whereas individuals exist in the
world, sets are abstractions that exist in the mind; it takes a
mind to maintain multiple hierarchically ordered construals.

The object tracking system (and working memory) will not
provide the concept set. This system will not return a represen-
tation of one-ness, two-ness, or three-ness when it is engaged
in tracking one, two, or three objects. This is because the
objects are completely separate individuals in the world; main-
taining this separateness was one of the main motivators for posit-
ing a tracking system in the first place.

Nor will the approximate number system (ANS), which pro-
duces analog magnitude representations, provide the concept
set. The representation of 1 in the ANS is a continuous distri-
bution of activation (e.g., Gallistel and Gelman [2000] describe
this system as instantiating the real numbers, not the integers).
Also, the representation for 8 in the ANS (the 8-distribution) is
in no way made up of 8 individual distributions of 1. Further,
on some models, the entities (in the world) that enter into this
representation are not even individuated (in the mind) prior to
creating this estimate (rather, they are Gaussian activations
passed through a continuous normalizing filter; Dehaene &
Changeux 1993). With no discrete representation of 1, no compo-
sitionality, and, on some models, no individuation prior to enu-
meration, the ANS cannot provide the concept set.

Nor can language do the job. “SET” is a notion with content. The
syntax provides algorithms for manipulating content. Although
the language faculty might provide relevant computational possi-
bilities, including embedding, agreement, and recursion, these
are all content-free syntactic operations. One must maintain a
distinction between the computation that binds any two individ-
uals into a set and the concept of a set of two individuals. The
former might reside in the language faculty, but not the latter,
and it is the latter that is needed to bridge math to the world.

What then is needed to connect set with number? If we begin
with object tracking, which will provide us with representations
of discrete and separate individuals, one might take these separ-
ate individuals (e.g., two separate object files) and bind them into
a set of individuals. Rather than tracking, for example, Joe and
Jenny, one could then index the set of Joe and Jenny. Our
recent work suggests that 14-month-old infants make this
distinction between tracking individuals and tracking sets of
individuals (Feigenson & Halberda 2004; in press). Importantly,
this work provides evidence that infants maintain represen-
tations of the individuals comprising the set, thereby distinguish-
ing set representations from demonstrations of perceptual
grouping and tracking (e.g., Wynn et al. 2002), in which there
is no evidence that infants retain representations of a group’s
components.

Next, the learner must abstract away from any particular
instance of tracking, for example, a set of two particular individ-
uals, to represent the more general case of tracking a set of any
two individuals. Presently, we know of no evidence that infants
construct this more general representation, but we see no com-
putational limitation that makes this abstraction impossible.
Last, the learner must order set representations with, for
example, 1, 2, and 3 individuals according to the successor
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function. With this ordering, set representations become bona
fide representations of one-ness, two-ness, and three-ness
(modulo Rips et al.’s comments concerning mod10). This order-
ing appears to occur in the course of learning to enumerate
collections.

The set-binding computation we discuss may require that
items be represented in parallel prior to binding. Limits on par-
allel individuation or on working memory would therefore limit
these set representations to smaller numbers of items. Our
guess is that precise large numbers will be known only through
a meta-language, or schemas along the lines Rips et al. suggest.
Large numbers may derive their semantic content via the func-
tional role they play in relations with other numbers, but ulti-
mately they make contact with the smaller cardinalities, for
which set representations are also available.

We suggest that the concept SET will be a requirement for any
theorist who tries to build an acquisition story from early enu-
meration abilities to NATURAL NUMBER. Furthermore, any story
that divorces natural number from these early abilities will
require the concept SET (or some other bridge), applicable to
real-world collections, in order to connect purely mathematical
knowledge to the real world.

Recursive reminding and children’s concepts
of number
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Abstract: According to the recursive reminding hypothesis, repetition
interacts with episodic memory to produce memory representations
that encode – and recursively embed – experiences of reminding.
These representations provide the rememberer with a basis for
differentiating among the first time something happens, the second
time it happens, and so on. I argue that such representations could
mediate children’s understanding of natural number.

If Rips et al.’s target article is right, children’s understanding of
natural number cannot be derived from numerical abilities that
they displayed as infants. Two crucial elements that are missing
in the article are a basis for the concept of successor and a
schema for the starting value of one. I suggest here that ideas
from the field of memory may help to fill in these gaps. Specifi-
cally, I propose that everyone with a functioning episodic
memory possesses a pre-symbolic analogue of counting, which
could mediate the acquisition of number concepts.

To start in the memory laboratory, consider an experiment in
which the items to be enumerated are not simultaneously dis-
played in front of the subject, but are dispersed over time. A stan-
dard experiment might use 50 different items (e.g., words or
pictures), presented in a list totaling 150 study trials. Different
stimuli are presented different numbers of times, haphazardly
interleaved with presentations of the other items. After the list
has ended, subjects are shown each item and asked how many
times it appeared. People are surprisingly good at making such
frequency judgments. Telling subjects to attend to presentation
frequency ahead of time has little or no effect on performance,
and 4-year-olds judge frequency about as well as adults
(Hasher & Chromiak 1977). “Memory strength” does not
appear to be the basis of this ability, because one cannot trick
subjects into saying that a once-occurring item appeared two
times merely by presenting it recently (Wells 1974) or for a
long study duration (Hintzman 2004). It is not plausible that sub-
jects are counting, in the strict sense of the term, because this
would require maintaining running totals for many different

items, and the usual study instructions give subjects no reason
to count.

How can we understand such findings? Hasher and Zacks (1979)
proposed that humans are specially prepared by evolution to
acquire frequency information. A different hypothesis (Hintzman
2004) is that the ability is not innate, as such, but derives directly
from the operation of more basic memory processes, which yield
recursive representations of repeated experience.

I assume that everyone with a functioning episodic memory
has three basic abilities: (1) to maintain a complex mental state,
(2) to encode a representation of that state into memory, and
(3) to retrieve the representation reflexively, when given a match-
ing retrieval cue. I also assume that the mental state that results
from retrieval has two parts: one that refers to the present
moment (i.e., the encounter with the cue) and one that refers
to the past (the reminding of an earlier experience). This distinc-
tion between present and past is a fundamental aspect of the
rememberer’s subjective experience. Schematically, if A rep-
resents the subject’s mental state upon first encountering a par-
ticular stimulus, then the mental state upon encountering the
stimulus for the second time is Aþ R(A).

A crucial consequence of the second encounter with the stimu-
lus is that the corresponding experience, Aþ R(A), is itself
encoded in memory. Now if the same stimulus is encountered
yet again, the person is reminded of having been reminded on
the previous trial, so the resulting mental state is
Aþ R[Aþ R(A)], which is itself encoded in memory, and so
on. In this notation, the R outside brackets is the current remind-
ing, and the R inside brackets is the reminding that is remem-
bered from the previous trial. It is important to understand
that according to the hypothesis, the memory representation
itself is recursive, not just the process that generates the rep-
resentation. Each new mental state – and therefore each new
encoding – is a compound that may include (or refer to) previous
mental states. It appears that assumptions (1) to (3) stated above
will automatically generate recursive representations. A theorist
who adopts those assumptions but does not want recursive rep-
resentations would have to include a restriction that specifically
rules them out.

I assume that on a frequency judgment test, the subject
retrieves the test item’s latest memory representation and maps
its depth of embedding or recursion onto the number scale
(Hintzman 2004). There may be no limit to the number of
levels of reminding that a memory can represent. Frequency
judgments become less and less accurate in an absolute sense
as frequency goes higher, but there is no evidence that they
ever level off. Certainly, memory mechanisms are subject to
several kinds of “noise,” so if there is a memory limit, it may be
more akin to a limit of resolution imposed on the entire represen-
tation than to a strict limit on the number of levels of recursion
that can be encoded in a memory trace.

Of course, a child seldom encounters a series of events as
uniform as a list of items that includes exact repetitions. The
child does, however, have many novel or first-time experiences,
and many experiences that are repetitive or routine. I assume
that most experiences of the latter type include remindings of
similar experiences from the past. So, if the hypothesis of recur-
sive reminding is applicable to list learning experiments, it may
also be applicable to a child’s everyday life. The only precondition
is a functioning episodic memory. With iterative application of
encoding and retrieval, recursive representations will essentially
build themselves.

How could this help the child acquire the concepts of one and
successor? Let us suppose that all remindings possess a common
element, R, which is tacitly understood to reference the past.
The mental states Aþ R(A) and Bþ R(B), are similar because
they include this common element. By way of contrast, the
mental states A and B are similar in that the element of reminding
is absent. Children know what it means to remember, and what it
means to not remember, before the age of three (Fivush &

Commentary/Rips et al.: From numerical concepts to concepts of number

656 BEHAVIORAL AND BRAIN SCIENCES (2008) 31:6



Hudson 1990). On the basis of this generalization, a child could
form two schemas: X for a novel or initial experience, and
Xþ R(X) for a repeated experience. Once formed, these
schemas could be mapped onto one (or first) and greater than
one. In a like manner, if less easily, schemas for Xþ R(X) and
Xþ R[Xþ R(X)] could be differentiated and mapped onto two
(or second) and greater than two, and so on. Limitations on rep-
resentations and the processes that act on them make precise map-
pings less and less accurate as one moves up the scale, but even
where errors are unavoidable, rough mappings can be learned.

If everyone with a normal memory knows what it means to
remember, then they should know that the process is the same,
regardless of the represented level of recursion. Consider three
memory states: (a) A, (b) Aþ R(A), and (c) Aþ R[Aþ R(A)].
The rememberer understands that the process that leads from
(b) to (c) is the same as the process that led from (a) to (b) on
the earlier occasion. An appreciation of this identity could be
generalized into a schema for the concept of successor. Thus,
the common element, R, in remindings may help the child
acquire one and successor, both concepts that Rips et al. identify
as fundamental to number.

It may be especially easy to associate the “one-two-three”
rhyme with number concepts through recursive reminding,
because counting and reminding are both discrete and sequential
(stepwise) processes. To count objects in a spatial display, one
must focus attention on the objects in a particular, often arbi-
trary, order. This demand is absent when time imposes the order.

An obvious consequence of this hypothesis is that a child will
not come to understand natural number, as described in the
target article, until the child has developed a normal episodic
memory. However, even rats may have the capacity for recursive
reminding (see Capaldi 1994). The human understanding of
number presumably requires coordination of this capacity with
the use of linguistic symbols.
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Abstract: I catalog several concepts associated with finite cardinals, and
then invoke them to interpret and evaluate several passages in Rips et al.’s
target article. Like the literature it discusses, the article seems overly
quick to ascribe the possession of certain concepts to children (and of
set-theoretic concepts to non-mathematicians).

Natural numbers serve both as finite cardinal numbers (cardi-
nals) and finite ordinal numbers, and belong to (or embed into)
other number systems. However, following Rips et al., I will con-
sider the natural numbers only as finite cardinals.

Each natural number is associated with several concepts.
There are the concepts expressed in English by the numeral
determiners (e.g., “at least three,” “at most three,” and “exactly
three”); call these finite-cardinality quantifier (hereafter FCQ)
concepts, as their semantic values are cardinality quantifiers.
There are concepts expressed by set-theoretic predicates (e.g.,
“three-membered”); their semantic values are properties of
sets. The syntax and role in reasoning of the nouns such as “3”
and “three” at least suggest that they are singular terms. If so,

they express concepts such as that of the number three “itself”;
I’ll call these numerical-individual concepts (hereafter NI). At
many places in this article, I was unsure of which of these con-
cepts the authors were considering. Finally, metalinguistic con-
cepts (e.g., of Arabic numerals like “3”) deserve mention.

Three further comments are pertinent in relation to this:

1. In various contexts, we use phrases of the form “three Ns”
to mean “exactly three Ns,” or “at least three Ns,” or even “at
most three Ns.” Such default uses might create the impression
that there is a “root” concept of three-ness from which we form
the three FCQ concepts by some sort of supplementation. Not
so! Just consider the definitions of these quantifiers in terms of
the apparatus of standard first-order logic (presented in many
places; e.g., Barwise & Etchemendy 1999, pp. 366–68).

2. A quotation from Bloom (in the target article’s sect. 3.2.2,
para. 5, referring to Bloom 2000, p. 215) seems to ascribe FCQ
concepts to pre-linguistic infants. This would be astonishing:
having FCQ concepts requires having concepts of existence, uni-
versality, identity, and some connectives, as well as being dis-
posed to find certain inferences involving these notions
compelling (see Hodes 2004; Peacocke 1992, Ch. 1).

3. Having the concept of being three-membered requires pos-
session of the concepts of being a set and of set-membership.
The latter concepts form a “local holism” (see Peacocke 1992)
that entered mathematics only in the late nineteenth century.
These concepts are vastly more sophisticated than FCQ concepts.
(They constitute a device to bring plurality within the purview of
“singularist” logic [see McKay 2006], allowing us to replace plur-
als – for example, “The Three Tenors” – with a singular expres-
sion – for example, “the set whose members are exactly
Domingo, Pavarotti, and Carreras.”) Perhaps this emergence of
set-theoretic concepts built upon some sort of “implicit con-
ception” (see Peacocke 1996; 2005) of set-hood with older roots1;
but such a conception would also be sophisticated. In places
(e.g., sect. 2.2, para. 4), the authors seem to suggest that reputable
psychologists believe children to possess these concepts (or their
precursor conceptions)! I recommend that psychologists concern
themselves with the concept of being three-membered only
when investigating the psychology of professional mathematicians.

Perhaps young children are in a psychological state that makes
the model presented in Figure 1 applicable to them. But Rips et al.
seem to presuppose that this state involves concept-possession.2

This presupposition is implausible. Having concepts requires the
ability to engage in conceptual thought. Very young children
might be able to discriminate between situations in which there
are three toys in a box and those in which there are two toys in
a box; but such ability is not by itself evidence of possession of
FCQ concepts. It might not even be evidence of possession of
the concept expressed by the binary determiner “more/than” (as
in “More sheep are in the meadow than cows are in the barn”).

In section 3.1, Rips et al. attribute to “many theorists” these
theses: (i) “[O]nce children have learned language, or, at least,
language-based counting, they are in a position to attain true con-
cepts of natural numbers”; (ii) “[W]hen they are able to perform
tasks such as enumerating the items in an array or carrying out
simple commands (e.g., ‘Give me six balloons’),” they have
acquired these concepts (sect. 3.1, para. 4). By being “in a pos-
ition to attain” a concept, the authors seem to mean being
exactly one cognitive step away from possessing that concept.
By “true concepts of natural numbers,” they might mean the
FCQ concepts, but more probably they mean the NI concepts,
associated with at least some natural numbers (maybe extending
as far as the person in question can easily count).

Possession of the NI concept associated with a number prob-
ably requires prior possession of the corresponding FCQ con-
cepts. Surely the latter requires the ability to enumerate at
least certain objects. Enumeration is already at least one cogni-
tive step beyond language-based counting itself, and beyond
that lies the ability to deliver the “upshot” of enumeration.
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(When my daughter was acquiring FCQ concepts, or at least the
ability to express them, I’d give her three toys and ask, “How
many?” She’d enumerate them: “One, two, three,” and then in
response to my question, say “Four”!) Does this “upshot”
ability indicate possession of the “exactly” FCQ concepts? The
authors, in rejecting the aforementioned thesis (ii), might be
answering “No,” and “No” seems plausible to me. Even if they
would answer “Yes,” I think that they would agree that having
lots of FCQ concepts leaves their possessors some distance
from having the corresponding NI concepts. I doubt that many
American middle-school algebra students possess NI concepts,
even for natural numbers less than 10. Any experiments demon-
strating possession of NI concepts would have to distinguish such
possession from possession of corresponding metalinguistic con-
cepts; for example, of Arabic numerals.

Whether theses (i) and (ii) refer to the FCQ or the NI con-
cepts, Rips et al. show good sense in rejecting them. They cor-
rectly point out (in sect. 3.2.2) that a child can “arrive at
something like” the generalization to which they refer as Prin-
ciple (3) only after mastering advanced counting. They then
address this thesis: (iii) Children simultaneously learn to do
advanced counting and to correlate the numerals to which they
can count with the FCQ concepts associated with those
numerals. They say that it is unclear how thesis (iii) could be
true (in sect. 3.2.2, para. 10), and go on to argue against it.
Their argument seems beside the point. As I understood thesis
(iii), the advanced counting in question is in a numeral system
for the natural numbers, not one for arithmetic mod10. If so,
how things go for a child who learns to count cyclically (“Zero,
one, . . ., nine, zero, one, . . .”) is irrelevant; it certainly is not a
way of counting on which Principle (3) would be true.
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NOTES
1. I didn’t understand the authors’ notion of a knowledge schema for

the natural numbers; but it occurred to me that it might have some con-
nection with Peacocke’s notion of an implicit conception.

2. One should beware of conflating a concept with a mental represen-
tation that underlies possession of that concept. Such conflation might
have encouraged some psychologists to classify other mental represen-
tations, whose work is pre-conceptual, as concepts, and thus to over-
ascribe concept possession.
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Abstract: Rips et al. appear to discuss, and then dismiss with
counterexamples, the brain-based theory of mathematical cognition
given in Lakoff and Núñez (2000). Instead, they present another theory
of their own that they correctly dismiss. Our theory is based on neural
learning. Rips et al. misrepresent our theory as being directly about
real-world experience and mappings directly from that experience.

In their target article, Rips et al. appear to discuss, and then
dismiss with counterexamples, the brain-based theory of math-
ematical cognition provided in Lakoff and Núñez (2000). In
fact, they do not discuss our theory at all, but instead present
another theory of their own – which they correctly dismiss.

Our account is based on neural computation and neural learn-
ing, as discussed in Feldman (2006). The neural theory of con-
ceptual metaphor and metaphor learning is discussed at length
in Lakoff and Johnson (1999). On this account, the neural learn-
ing of primary metaphors is based on repeated correlated experi-
ences that activate two different brain regions. The repetition of
experience leads, via spreading activation and repeated synaptic
strengthening along existing pathways, to the formation of neural
circuitry linking the areas in an appropriate way so that the circui-
try formed physically constitutes the conceptual metaphorical
mappings that we observe in hundreds of cases in languages
throughout the world. The mathematical cases are just special
cases predicted from the general account.

We argue that, for arithmetic, there are four such primary meta-
phors that are neurally bound via best-fit principles of neural com-
putation. The result is a metaphor system that yields the so-called
abstract properties of arithmetic. Many of the properties of arith-
metic arise from the metaphorical overlap of inferences, but some
come from different metaphors in the system. We specifically
show that not all the inferences can arise from metaphorical infer-
ences based on any one area of experience.

Núñez and I argue further that infinite entities, such as infinite
decimals, or the set of all integers, or the set of all sums, arise
from a quite general metaphor that characterizes infinite entities
in general in all branches of mathematics. This Basic Metaphor
of Infinity is simple and arises naturally from the neural theory of
metaphor – outside of mathematics per se. It is based on Srini Nar-
anayan’s neural computational theory of aspect in natural languages
(Narayanan 1997). In that theory, processes in the brain are com-
puted via circuitry for what he calls “X-schemas,” which is short
for “executing schemas.” Each process has an initial state, an iter-
ated action (with no particular bound on the iteration), and an
optional final state. Those without final states are called “imperfec-
tive” in linguistics – such as walking. Those with final states – like
walking 100 steps – are called “perfective.” Because of the overlap
in the initial state and iteration, the activation of perfectives also
activates the circuitry for imperfectives – over and over. The
result is a neural metaphorical mapping in which unbounded iter-
ation (unbounded infinite processes) is understood as having a
metaphorical final state – an infinite entity, with special cases
like the set of all integers and the set of all sums.

The central argument of Rips et al. is that the general proper-
ties of arithmetic cannot arise directly from real-world experi-
ences in themselves. We agree. It is the real-world experiences
as registered in human brains that results in learned circuitry,
which constitutes conceptual metaphors that yield the properties
of arithmetic.

Rips et al. do not argue against our theory. They act instead as
if our theory were a version of the literal experience account that
they correctly reject. Here is what they say (sect. 4.2, para. 3):

According to Lakoff and Núñez (2000), general properties of arith-
metic depend upon mappings from everyday experience.

They then continue (sect. 4.2, para. 4):

A key issue for the theory, though, is that everyday experience with
physical objects, which provides the source domain for the metaphors,
does not always exhibit the properties that these metaphors are sup-
posed to supply. Closure under addition, for example, does not
always hold for physical objects, as there are obvious restrictions on
our ability to collect objects together.

This is true of direct experience in the world, but not of the
neural circuitry learned on the basis of repeated successful
“small” cases of object collection, taking steps in a given direc-
tion, and so on. Our theory holds despite such physical limit-
ations on large collections in the world. Rips et al., however,
consistently misconstrue our theory as a version of the real-
world experience induction theory that they are arguing against.

I believe that Núñez and I got it right, not just for arithmetic,
but for all the forms of higher mathematics we discuss. The
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general theory we give applies outside of mathematics per se,
applies in languages and conceptual systems throughout the
world, and also happens to work for mathematics as a special
case. What we put forth is an explanatory theory that starts
from the apparently inborn capacities for subitizing and baby
arithmetic and adds neural learning theory, which gives rise to
an account of the learning of primary metaphors in general,
and primary conceptual metaphors for arithmetic in particular.

If Núñez and I are right, then Rips et al. are dead wrong. What
is at issue is much broader than the Rips et al. theory. The ques-
tion is, what is the nature of mathematics in general, the
advanced branches as well as the simple ones?

Why cardinalities are the “natural” natural
numbers
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Abstract: According to Rips et al., numerical cognition develops out of
two independent sets of cognitive primitives – one that supports
enumeration, and one that supports arithmetic and the concepts of
natural numbers. I argue against this proposal because it incorrectly
predicts that natural number concepts could develop without prior
knowledge of enumeration.

In their article, Rips et al. argue that inductive accounts of the
development of the natural numbers suffer from an irreparable
defect: they cannot explain how children arrive at the intuition
that there are infinitely many numbers. Moreover, the authors
argue that these accounts confuse cardinalities with natural
numbers. Indeed, according to Rips et al., the natural numbers
cannot be acquired from representations of cardinalities, because
natural numbers are not individuated by their reference to cardin-
alities but, rather, by the system of rules that govern their behavior
(e.g., the Dedekind-Peano axioms). Rips et al.’s solution to these
problems is two-fold: (1) They postulate that human minds com-
prise two autonomous systems of numerical reasoning – one dedi-
cated to the representation of cardinalities, the other dedicated to
the representation of the natural numbers; and (2) they argue that
the development of the system that represents the natural numbers
is governed by a schema of innate constraints.

In my view, Rips et al.’s theory must answer multiple chal-
lenges. First, it does not seem to satisfy the “no competing infer-
ence” criterion rightly imposed by the authors themselves on
theories of learning. As far as I can tell, the initial state they
propose (in sect. 5.2) is potentially consistent with many more
systems than just the natural numbers.

Second, because it postulates that the cognitive system for the
natural numbers is completely independent from the system
dedicated to representations of cardinalities, Rips et al.’s
account predicts that one could grasp the natural numbers
without having first developed a system for representing cardin-
alities. This seems to be wrong both historically and developmen-
tally. Each of the histories of number notations I have read
reports that, in culture after culture, the first numerical
symbols were “external sets” that were connected to sets in the
world via one-to-one correspondence (Dantzig 1967; Hurford
1987; Ifrah 1985; Kaplan 1999). None of these report cultures
in which the meaning of the first symbols was determined by
inferential rules.

As Rips et al. point out, little work has been done on chil-
dren’s grasp of infinity, and even less has been done on their
grasp of rules that apply over the entire infinite domain.
However, available research on these issues (including the
research reviewed in their article) suggests that children learn
symbols for cardinalities long before their use of symbols
shows evidence of being governed – explicitly or implicitly – by
rules such as the Dedekind-Peano axioms or the rules of arith-
metic. By now, multiple studies have shown that, by age 4,
many children have learned how to use counting to represent
cardinalities (e.g. Le Corre et al. 2006; Wynn 1990; 1992b). In
contrast, one of the rare studies on children’s understanding
of the successor principle showed that it is not until about 3
years later that the majority of children understand that there
is no largest number (Hartnett & Gelman 1998). Similarly, the
study of children’s understanding of the commutativity of
addition cited in Rips et al.’s article suggests that many kinder-
garteners do not yet understand that addition is commutative.
Finally, Hughes (1986) reports that children understand state-
ments like “four dogs plus three dogs is seven dogs” before
they understand statements about the numbers themselves
(e.g., “four plus three is seven”). In sum, it seems that
the normal sequence of acquisition of number symbols is
the same in childhood as in history; that is, in both cases, the
meaning of number symbols is determined by their relation to
cardinalities of sets long before the symbols are of the kinds
of formal systems Rips et al. have in mind.

Furthermore, I have recently shown that analog magnitudes
play a causal role in the acquisition of knowledge of a basic infer-
ential relation between large number words (beyond “four”),
namely, numerical order (e.g., knowledge that “ten fish” is
more than “six fish”). That is, I have found that children must
map these number words onto analog magnitudes (Le Corre,
under review) to be able to order them. These mappings are
formed many months after children have learned how to use
counting to determine the numerical size of a set. Therefore,
children spend a period knowing how counting works but not
knowing how to order large number words relative to each
other. For example, some children know that correctly counting
a collection of fish as “one, two, three, four, five, six” results in
collection called “six fish” and that correctly counting a collection
as “one, two, three, four, five, six, seven, eight, nine, ten” results
in a collection called “ten fish,” but they do not know that
the expression “ten fish” denotes more fish than the expression
“six fish.” It is only when they can verbally estimate the numerical
size of large sets without counting – a sign that they have
mapped large number words to large analog magnitudes – that
they can order expressions containing large number words
relative to each other. Given that (1) analog magnitudes are
representations of cardinalities, and that (2) knowledge of the
order of linguistic expressions could be the antecedent of knowl-
edge of the order of numerical symbols (e.g., 6 , 10), this
suggests that knowledge of formal relations between numbers
could be constructed out of representations of cardinalities.

In sum, it seems that Rips et al.’s solution to the challenge they
have posed is not the right one, because their natural numbers are
not the natural ones – they are not the ones that came to mind
first to inventors of numerical notations, nor are they the ones
that children acquire first. Of course, I have not answered Rips
et al.’s challenge; we still do not know how children could
induce an infinite system from a finite learning set. Yet, I
suggest that the consistent appearance of symbols for cardinalities
prior to more formal systems is not an accident, but rather,
reveals how the former is a scaffold for the construction of the
latter. I think simple learning considerations argue for the same
point. Indeed, if quantificational uses of numbers were not rel-
evant to the acquisition of the natural numbers, how would
children ever learn that symbols like the number words or
Arabic digits are symbols for the natural numbers?
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disconnect?
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Abstract: The proposal of Rips et al. is motivated by discontinuity and
input claims. The discontinuity claim is that no continuity exists between
early (nonverbal) numerical representations and natural number. The
input claim is that particular experiences (e.g., cardinality-related talk
and object-based activities) do not aid in natural number construction.
We discuss reasons to doubt both claims in their strongest forms.

Rips et al. argue that the concept of natural number, which
includes formal properties such as the successor function and
commutativity, is not grounded in non-symbolic (nonverbal)
numerical representations involving object files and internal mag-
nitudes. Rather, the natural numbers are constructed “top-down”
on the basis of innate constraints on processing (e.g., recursion)
that lead to “math schemas,” which encompass various formal
properties. Although we agree with Rips et al. (and others) that
nonverbal numerical representations alone will not allow for the
construction of the concept of natural number, we disagree with
two claims central to their proposal: (1) the discontinuity claim
that there is no continuity between early numerical represen-
tations and natural number, and (2) the input claim that particular
experiences (e.g., cardinality-related talk and object-based activi-
ties) do not support natural number construction.

The discontinuity claim. Although Rips et al. acknowledge that
adults use magnitude representations on tasks such as numerical
estimation and comparison, they argue that this does not provide
evidence for continuity between internal magnitudes and natural
number, as these tasks could engage the magnitude system alone
and not abstract mathematical knowledge. Furthermore, they
emphasize that magnitude representations do not serve as precur-
sors to natural number because they do not instantiate key prin-
ciples such as the successor function. However, evidence that
abstract mathematical reasoning might be influenced by magni-
tude-related information would lend support to greater continuity.
In fact, Landy and Goldstone (2007) have shown that adults’
success in solving algebraic problems is influenced by the distances
between symbols; people are better (and faster) at solving problems
for which the spacing is consistent with the order of operations
(see our Fig. 1). Algebraic problem-solving involves a learned
system of ordered operations, and there is nothing about magni-
tude that reinforces these operations. And, yet, this type of
abstract mathematical reasoning is clearly grounded in spatial-per-
ceptual cues.

Other research highlights the predictive value of early numeri-
cal competence for particular natural number principles. It has
been shown that children who have higher levels of mathematical
knowledge at the start of preschool (when this knowledge is
largely focused on objects) are those who show higher mathemat-
ical knowledge throughout the elementary school years (when
the focus is on the numbers themselves) (Duncan et al. 2007;
cf. Denton & West 2002). It has also been shown that children’s
ability to solve nonverbal addition and subtraction problems (for
which physical objects are used) develops earlier than their
ability to solve parallel symbolic calculations. Importantly,
however, in support of continuity between early nonverbal
numerical representations and natural number concepts, per-
formance on nonverbal, object-based calculation tasks are
highly correlated with performance on number fact problems
(r ¼ .65, p , .001) and word problems (r ¼ .63, p , .001;
Levine et al. 1992).

The input claim. Based largely on the view that there is disconti-
nuity between early numerical representations and the concept of
natural number, Rips et al. argue that input related to early rep-
resentations does not support construction of the natural
numbers. They point out that other cultures such as the Mundurukú
and Pirahã have “natural language” (although, see Everett 2005) and
yet do not have natural number. Although we would not suggest that
linguistic experience per se allows for natural number construction,
particular linguistic experiences, such as those involving the coordi-
nation of a count list with successively larger sets of objects, may
have a significant impact (Carey 2004; Le Corre & Carey 2007).

Parent and teacher talk about number is focused mostly on
counting and the cardinality of object sets (Klibanoff et al. 2006;
Levine et al., under review; Suriyakham 2007). If such talk were
irrelevant to the construction of natural number, the prediction
would be that children who experience little of this input would
still perform as well in math as children who experience a lot of
it. Such a prediction is counterintuitive, and, more importantly,
not supported by existing data (Ehrlich 2007; Klibanoff et al.
2006). Furthermore, the top-down construction of math schemas
proposed by Rips et al. is consistent with the prediction that
more abstract talk about natural number should lead to a better
understanding of the formal properties of natural number than
what they call “object talk.” Would it really be more beneficial to
talk to children about 3 being one more than 2 than about 3 dogs
being one more dog than 2 dogs? This seems unlikely, especially
since more abstract talk about number principles occurs when
concrete objects serve to instantiate these principles (Mix 2008;
Thompson 1994).

Cognition is not context-free, and even adults rely on supportive
structures in the environment to enhance thinking and problem-
solving. Moreover, in solving addition problems (e.g., 5þ 2 ¼ 7),
preschool children employ a variety of strategies, including using
their fingers to represent each addend (counting all of them),
and more sophisticated strategies such as counting on from the
larger addend (Siegler & Jenkins 1989). When addition problems
are represented using fingers and other objects, the underlying
principles can be made more concrete, allowing children to
reflect on them by reversing the addition process and repeating
it (Mix, in press). Moreover, object representations or “manipula-
tives” may lead to automatic retrieval of basic number facts, which,
in turn, may lead to increased reliance on abstract numerical prop-
erties, rather than concrete objects, to solve these problems.

Summary. Rips et al. lay out a cogent, logical argument for dis-
continuity between early nonverbal numerical representations and
the later concept of natural number, with all its formal properties.
Although their argument is appealing, existing empirical findings
are, in our opinion, not consistent with complete discontinuity.
The associations in adults and children described above suggest
magnitude- and object-based grounding of natural number knowl-
edge. Furthermore, the studies of early numerical experiences
suggest that object-based numerical input is predictive of (and
perhaps causally related to) later mathematical achievements.

Figure 1. (Lourenco & Levine). Algebraic math problems with
consistent and inconsistent spatial cues, as used in Landy and
Goldstone (2007).
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Abstract: In this commentary, we outline an epistemological continuum
between earlier and later number concepts, showing how empirical
findings support the view that specific and general underpinnings to
number develop in parallel in children; and we raise the question,
based on cross-syndrome comparisons in infancy, as to whether exact
or approximate number abilities underlie these later skills.

Post-Piagetian “top-down” approaches to number development
require the definition of an epistemological continuum that
relates, within the same framework, simpler to more complex
mathematical schemas and concepts. The word continuum is
key, as it brings together both “bottom-up” and top-down
strands of research and enables the empirical testing of domain-
specific and domain-general hypotheses about number develop-
ment in the same groups of children. Rips et al. have not
yet outlined a framework to relate their “simple” and “advanced”
counting schemes, which limits their approach, but such
an outline is possible using our epistemological continua
framework.

Finding a conceptual continuum between Gelman and Gallis-
tel’s (1978) domain-specific number tasks such as counting or
cardinality, on the one hand, and the Piagetian (1952) domain-
general logical requirements, on the other, is not an easy task
considering that their definitions of cardinality, for example,
are different and conceptually asymmetric (Bryant 1994;
Karmiloff-Smith 1992). Alternatively, however, it is possible to
find conceptual compatibility between counting and the classic
Piagetian (1952) task of class inclusion, provided that the latter
is re-interpreted within a numerical context such as children’s
understanding of the structure of the numeration system (SNS,
or the natural numbers). This is viable considering that the
idea that any group of 10 units may be regrouped as one of the
next unit (i.e., 10-ones become 1-ten, 10-tens become 1-
hundred, and so on), is quite similar to the Piagetian schema of
a hierarchical classification system of inclusive relations
(Resnick 1983), in which the class containing only one element
is included in the class containing two elements, which in turn
is included in the class containing three, and so on (Piaget &
Szeminska 1952).

The continuum between counting and knowledge of the SNS
can also be analysed in terms of their logical invariants’ simi-
larities and differences. Whereas counting implies the use of
units of the same denomination (or size, i.e., ones), mastery of
the SNS implies the ability to count and combine units of the
same and different denominations; that is, ones, tens, hundreds,
and so on (Martins-Mourao & Cowan 1998; Nunes & Bryant
1996). Second, whereas counting only allows children to relate
numbers sequentially, either as larger or smaller in terms of
their immediate position in the number-line, knowledge of the
SNS empowers them to interpret numerals as a composition of
other numbers or as a composition of units of different denomi-
nations, long before any knowledge of written numbers (Martins-
Mourao 2000; Nunes & Bryant 1996). Third, the idea that any
numeral can be composed by the addition of any smaller number
that came before it in the number system (e.g., “125” ¼
100þ 10þ 10þ 1þ 1þ 1þ 1þ 1) defines, from the child’s
point of view, a break with simpler concepts of the past, and a
re-conceptualisation of number itself (Hiebert & Behr 1988). It

is this notion, which is also equivalent to the part-whole
schema specifying that any quantity can be divided into parts
as long as the combined parts neither exceed nor fall
short of the whole (Resnick 1983), that enables children to
generate any number in the system without having to memorise
the number-line in its entirety (i.e., Rips et al.’s advanced
counting).

Hence, the definition of an epistemological continuum
between domain-specific skills such as counting and domain-
general knowledge such as the part-whole schema, is possible
provided that it is framed within children’s natural progression
from counting small sets of objects (simple counting) to being
able to generate any number in the system (advanced counting).

Our research suggests that both domain-specific and
domain-general knowledge may develop in parallel almost
simultaneously – instead of sequentially – between the ages of
3 and 5, although the latter may only be explicit to children
much later (Karmiloff-Smith 1992). Evidence to support this
argument must show that children have developed at least a
simple version of the part-whole schema at a quite young age
but not yet have learned all of the situations to which they may
apply it successfully (Resnick 1983).

Instead of looking at knowledge of Gelman and Gallistel’s
(1978) counting principles, Martins-Mourao and Cowan (1998)
examined children’s developmental stages in counting ability
and found important conceptual changes defined by the pro-
gression from the unbreakable chain level to the breakable
chain level, between the ages of 3 and 5 (Fuson 1988). When
they asked 4- to 6-year-olds, “What numbers come after 10?,”
those at the unbreakable chain level were unable to interrupt
the number-line and had to count up from one (i.e., “1, . . ., 10,
11, 12, 13!”), whereas those at the breakable chain level said
“10, 11, 12, 13, . . .” thereby showing the ability to manipulate
the number-line and judge 10 as a unit of different size, com-
posed of 10 ones. Martins-Mourao and Cowan then asked the
same group to provide an answer to an additive composition
task that required them to pay for items in a shop. In a typical
item, the child was given three 10p coins and six 1p coins to
pay for an item costing 14p. Success in this task required
decomposing the total amount to be paid into one unit of 10
and several ones, and then composing the quantity from units
of different denominations (i.e., ones, tens, and hundreds). Sup-
porting our argument, results showed that no child at any point
passed the additive composition task without also being able to
continue counting up from an arbitrary number in the list,
which suggests that continuation of counting allows the child to
establish simpler part-whole relations much earlier than pre-
viously thought.

How can researchers trace the developmental pathways
underpinning number development? Our cross-syndrome
comparison of Down syndrome (DS) and Williams syndrome
(WS) yielded interesting results about such pathways. Older
children and adults with DS outstrip those with WS in all
number tasks (Paterson et al. 2006). Although children with
WS learn to count fluently, they have serious problems under-
standing cardinality, for instance (Ansari et al. 2003). Yet, in
infancy WS children are as successful as healthy controls in
discriminating changes in exact small-number displays,
whereas DS infants fail (Paterson et al. 1999). However, the
same WS infants fail to discriminate approximate large-
number displays differing in ratio (1 : 2/2 : 3) (Van Herwegen
et al., in press). Given all the subsequent number problems
experienced by older children with WS, this suggests that
approximate number abilities may be a more important under-
pinning to subsequent conceptual number development than
early discreet number abilities.

In sum, to understand the development of number abilities,
we need to consider full developmental trajectories of both
domain-specific and domain-general abilities that develop in
parallel.
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Abstract: Rips et al. raise important questions about the relation between
infant quantification and achievement of natural number concepts.
However, they may be oversimplifying the interactions that characterize
actual development in real time. Though they propose a worthwhile
agenda for future research, its explanatory power will be limited if it
does not address developmental issues with greater sensitivity.

Rips et al. bring a fresh perspective to the study of numerical
development, and their points are well taken. In particular, they
make a thorough and compelling case against the possibility of a
direct transition from infant quantification to natural number con-
cepts, proposing instead that these concepts are induced from
verbal counting. This is a worthy proposal, indeed, and one that
merits empirical study. However, in and of itself, it is unlikely to
provide a complete account of the way number concepts are con-
structed. In short, achieving a genuinely developmental account is
going to require greater sensitivity to developmental issues.

One of these issues is timing, and, more specifically, how
inputs, contexts, and responses interact in developmental time.
It can be tempting to oversimplify these relations to make the
researcher’s task more tractable. For example, we might ask, as
many – including the present authors – have, whether language
comes before or after concepts. The problem is that elements of
both are in the mix, right from the beginning, and there is no
clear guideline for determining when a child “has” either one
(see Mix et al. 2005). It is true that modern theorists have
given short shrift to the contribution of verbal counting.
However, shifting the explanatory weight from nonverbal pro-
cesses to words is just as unbalanced. Taking such a view
obscures the subtle layering of experiences and insights that
occur as development unfolds over real time (see also Mix 2002).

Second, developmentalists have found that cognitive change
rarely reduces to a single cause. Instead, it emerges from within a
complex, ever-shifting, multifactorial system (e.g., Smith &
Thelen 2003). This means there is no single basis for number con-
cepts. Advanced counting is no more the basis of number concepts
than is experience matching object sets, object tracking, or esti-
mates of continuous amount. The empirical fact is that children
have access to all of this information and more. Moreover, by adult-
hood, all these inputs have been coordinated into an interrelated
conceptual structure, suggesting that none of them winds up cogni-
tively vestigial. Thus, although there may be a key role for advanced
counting, it is not the only relevant input. The challenge is to explain
how these various streams of information coalesce into stable beha-
viors. On a related note, it is not clear why researchers need to adopt
one definition of number over another. Though it is true that recent
research has emphasized number as category, developmentalists
have traditionally defined number as the combination of class
and seriation. Piaget, for example, studied both aspects extensively
and focused on how children integrate the two rather than assigning
precedence to one or the other.

The present argument is similarly overdrawn with respect to the
competence-performance distinction. Its crux seems to be whether
quantification in infancy constitutes “true number concepts,” and if
it does not, what does. The only way to evaluate this question is to
assume we have some way of defining true number concepts; that
there is a clear division between the advent of veritable number
concepts and their illegitimate precursors. However, development
is not like turning on a light: Children do not lack concepts one day,
and then experience them full-blown the next. Instead, they
acquire new insights in fits and starts, enjoying moments of compe-
tence in one context and then losing it in others, until finally their

performance is stable across a range of situations (see Mix 2002;
Sophian 1997; Thelen & Smith 1993). They may grasp various
pieces of the concept at different times, such that partial under-
standings interact for years before children reliably exhibit what
might be considered mature understanding (Mix 2002; Mix et al.
2005). How, then, can we say whether infants have true number
concepts? And what does it profit us to do so? We can admit a
role for what infants and young children seem to understand,
along with a role for advanced counting, and lose nothing.

An analogy from motor development might be helpful. Children
crawl before they can walk. Crawling is not walking, and it is unclear
how a child could suddenly start walking with only a background in
crawling. However, the experience of crawling is not developmen-
tally irrelevant. It tells babies about navigation through space,
the properties of various surfaces, the feeling of balance, and so
forth – information they will need when they start to walk. Further-
more, there is a temporary bridge that helps many babies transition
from crawling to walking, called cruising – moving while upright
but using furniture for support. Again, cruising is not “true”
walking, but it binds the previous experience with navigation
(crawling) with the new skill to be learned (walking), via a self-gen-
erated scaffold. What if number development is the same? Maybe
young children have a way to track objects and estimate continu-
ous amounts. This is not the same as natural number, and, as Rips
et al. contend, they may need advanced counting to get to there.
But these precursors give children important information about
one-one correspondence, ordinality, and equivalence – ideas they
will need to make sense of conventional counting. What might
bridge the two (i.e., nonverbal and verbal enumeration) is labeling
the cardinality of small sets; abundant research tells us children
can do so (see Mix et al. 2005). And researchers long ago proposed
that the juxtaposition of labeling with counting was the mechanism
for coordinating class and seriation, or cardinality and counting, in
the verbal realm (see Klahr & Wallace 1976; Schaeffer et al.
1974). This critical insight, that a set of three is counted 1-2-3,
seems necessary for making sense of advanced counting, but it
can only be achieved via these precursor experiences.

In summary, Rips et al. raise important questions that require
answers. However, these answers are likely to be more complex
than the present analysis suggests.

Making numbers out of magnitudes
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Abstract: We argue that number principles may be learnable instead of
innate, by suggesting that children acquire probabilistically true number
concepts rather than algorithms. We also suggest that non-propositional
representational formats (e.g., mental models) may implicitly provide
information that supports the induction of numerical principles. Given
probabilistically true number concepts, the problem of the acquisition
of mathematical principles is eliminated.

Rips et al. state that the principles of higher-order mathematics
cannot be acquired without sufficient innate knowledge (e.g.,
number principles). We suggest that this conclusion only arises
given two assumptions about the acquisition of mathematics:
(1) “natural numbers” are algorithms and (2) principles of math-
ematics are processed as propositional representations.

The authors suggest that early quantity representations “are not
extendible by ordinary inductive learning to concepts of natural
numbers” (target article, sect. 1, para. 2). Yet it is unclear
exactly how natural numbers are cognitively instantiated. One
possibility is that natural number concepts (NNC) are context-free
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and algorithmic (i.e., applied appropriately, this concept will out-
put a specific solution). Such concepts would not be learnable
by induction and would lead to mathematics errors only when
misapplied (demonstrating performance failure rather than lack
of competence). This suggestion resembles Rips’s (1994) sugges-
tion in logical reasoning (i.e., Natural Logic), that logical infer-
ences are drawn using innate algorithmic logical rules. Natural
logic rules return a conclusion when matched to structure
extracted from natural language (e.g., “If John mows the lawn,
he will get 10 dollars” matches P, Q).

Returning to number, the authors state that understanding the
Dedekind-Peano axioms is necessary for natural number and that
children are unable to acquire them through experience (see
sect. 5.3). This assumption, like natural logic, is an application
of the poverty of stimulus argument, and rejects the possibility
of learning a set of deterministic rules or concepts by observing
specific examples. Stated differently, algorithmic concepts are
only possible given a set of examples that exhaustively map the
space of possible concepts; thus, induction can only yield prob-
abilistically true concepts (Gold 1967). A second possibility is
that NNC themselves are not algorithms. Thus, error may arise
from conceptual inadequacy (i.e., lack of competence) or misap-
plication (i.e., performance). If true, then such concepts are
learnable through induction, which undermines the argument
for innate number knowledge.

Even if we grant that NNC are unlearnable, we contend that
algorithmic concepts are unnecessary for mathematical processing.
An analogy can be made between this characterization of math-
ematical concepts and nativist notions of grammatical rules.
When the necessity of algorithmic rules is removed from the acqui-
sition of language, it also eliminates the problem of the poverty of
the stimulus (cf. Tomasello 2003). If the end point of language
acquisition is not grammar algorithms, but an approximation of
the language of other native speakers, then probabilistically true
rules can be induced from input that should approximate natural
language. Similarly, the assumption of algorithmic NNC seems
unrealistic for human performance. Instead, concepts induced
from positive evidence (i.e., probabilistically useful concepts)
would provide roughly equal explanatory power as natural
number algorithms in all but the most abstract cases.

A second, related assumption made by Rips et al. is that there
is an unresolved problem in mapping magnitudes to the prop-
ositional representations necessary to support natural number
inferences. This problem may only occur if it is necessary to
use propositional representations for numerical inferences – an
assumption which we argue is unnecessary. Humans and nonhu-
man animals use non-propositional representations of quantity to
perform sophisticated computations. For example, rats and
pigeons can track the number of events regardless of perceptual
modality (Church & Meck 1984; Emmerton et al. 1997), and
bumblebees and certain birds (e.g., juncos) track means and

variance in foraging areas (Shafir et al. 1999; Waddington & Got-
tlieb 1990), presumably without using propositions.

Two viable candidates for potential non-propositional represen-
tations of natural number are distributed representations found in
neural networks and mental models. Several of the authors’ prin-
ciples have been demonstrated to emerge from distributed rep-
resentations. For example, the authors cite a neural network
model that initially contained no mathematical principles and no
specific number detectors, and that was able to develop the
ability to compare numbers (Dehaene & Changeux 1993). This
model demonstrated that experience with objects (not numbers)
resulted in specific numerosity detectors. A second model,
ESpaN (Grossberg & Repin 2003), accounts for single- and
multiple-number effects by creating associations between spatial
number representations (a simulated “Where” stream) with
verbal categories for number (a simulated “What” stream). In
both models, successor functions emerge from implicit represen-
tation in the spatial models mapped onto number functions.

Model-based representations also create different conditions
for drawing inferences. Representing transitive relations demon-
strate that different formats are related to different levels of
processing complexity. Transitive relations represented as prop-
ositions require many successive inferential steps to draw a puta-
tive conclusion – perhaps more than a child could simultaneously
hold in working memory. For example, one must represent the
relationship between A and B, and the relationship between
B and C, and then one must add an additional representation of
the relationship between A and C (see Fig. 1A). If one posits a
spatial representation of the premises, then this problem no
longer holds (see Fig. 1B). Solving a transitive relation becomes
immediately apparent simply by scanning the model of the pre-
mises, allowing a solution from direct perception (Morris &
Schunn 2005). Model-based representations make transitive
relations obvious because the relations between objects are con-
veyed in the models themselves, reducing the need for secondary
inferential processing (Johnson-Laird 1983). Model-based rep-
resentations of magnitudes provide implicit information about
relations such as numerical succession, which would be helpful
for inducing principles about ordinal – and perhaps even cardi-
nal – relations (see Mix & Sandhofer 2007). Although the result
of such inductions would be probabilistically true concepts,
rather than natural number principles, further experience (e.g.,
language, formal schooling) would provide additional positive
and negative evidence for their veracity.

The quantity system that represents magnitudes such as
number and duration is well suited for representing “natural”
instances in which quantity distinctions arise. It does not
require propositions and may produce given effects directly (as
in models) or in the emergence of structure through experience
(as in neural networks). In this way, experience with magnitudes
would likely produce highly consistent information (e.g., 4 is
always larger than 3) that would allow the induction of probabil-
istic, but not algorithmic, concepts. If the requirement of algor-
ithms is eliminated, instead allowing for probabilistic ally true
concepts, the problem of the acquisition of mathematical prin-
ciples is also eliminated.
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Don’t throw the baby out with the math water:
Why discounting the developmental
foundations of early numeracy is premature
and unnecessary
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Figure 1. (Morris & Masnick) A comparison of propositional
and model-based representations of the same transitive relation.
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Abstract: We see no grounds for insisting that, because the concept
natural number is abstract, its foundations must be innate. It is possible
to specify domain general learning processes that feed into more
abstract concepts of numerical infinity. By neglecting the messiness of
children’s slow acquisition of arithmetical concepts, Rips et al. present
an idealized, unnecessarily insular, view of number development.

As adults, we treat the concept of cardinal number as an endogen-
ous support for children’s engagement with mathematical reason-
ing. This is fine, as long we can then exogenously disengage
children from treating number words solely as the answer to the
question “How many?” on the grounds that reasoning about inte-
gers cannot be reduced to operations on set sizes (Haylock &
Cockburn 2003). We read Rips et al. as endorsing a notion of dis-
engagement of some part of the child’s representational activity
from physical numerousness as a prerequisite to representing
natural number within an abstract generative system that
reaches up to infinity. However, Rips et al.’s speculative proposal
amounts to a non-engagement mechanism being endogenously
provided. The appeal for an innate specification of natural
number seems surprisingly premature given Rips et al.’s insis-
tence that an account of number concepts must be developmen-
tal, but where the developmental inputs are yet to be specified.

We cannot see that Rips et al.’s radically innate proposal gen-
erates testable hypotheses, though we hope that it will, in the
interests of adversarial testing. Still, Rips et al. assume that the
two ways of looking through the lens – through a philosophical
telescope towards infinity or through a developmental micro-
scope at the earliest cognitive building blocks – have been
resolved from the perspective of mathematics. We, however,
would prefer to hold off, pending an evaluation of an orderly
set of modelings that vary in the richness of initial-state represen-
tations (as propounded by Margolis & Lawrence 2008) and of
subsequently reiterated representational operations on them
(as propounded by Karmiloff-Smith 1992). If magnitude projec-
tion entails the extension of a number concept onto external
items (e.g., the fingers on my hand) to yield the cardinal “five,”
then the proposed disengagement looks like yielding an analysis
of the abstract structure that got me to “five.”

On the other hand, there is every reason to welcome Rips et al.’s
focus on reasoning with – and about – numerical concepts. Disen-
gaging mental representations of number from the real-world
objects that provide numerical input is a start, but one must also
be in a position to operate over such representations. Consider
the following test concerning the successor function. If a child
watches a puppet miscounting five items, “1, 2, 3, 4, 6,” and if he
or she knows that (a) the puppet thinks there are 6, and that (b)
there are really 5, the child is starting to disengage one of the numeri-
cal representations of this event from the veridical how-many rep-
resentation. A child who answers correctly multiple variations of
these questions (i.e., where the miscounts and the discrepancy
between factual and counterfactual representations of cardinality
vary), conceivably appreciates the precise way in which the errors
violate the unique successor function (Freeman et al. 2000).

One naturally wants to look for symptoms of children
spontaneously disengaging themselves from the numerical rep-
resentation of plurality of objects, towards a concept of natural
number as specified by Rips et al., and there is certainly a

paucity of evidence within psychology. As Rips et al. astutely
point out, counting ability is not a good predictor of this. We
can add that neither is it likely to be (Muldoon et al. 2003).
But insight does appear to be associated with an emerging
ability to reflect on how the accuracy of the counting procedure
both identifies ordinal relations and determines the validity of the
cardinal representation of the set (Muldoon et al. 2003). It is from
this perspective that we start to get a picture of how discourse
provides domain general endogenous input for the mental
activity necessary to “disengage.”

Age-appropriate tests can also be amended to link in with set
theory’s insights into the relational nature of sets. A weakness
in Rips et al.’s position is that they appear to be concerned pri-
marily with the structure of a single infinite sequence. But
number has a relational aspect to sequence that is equally import-
ant, and an appreciation of this rests on the criterion that is
rightly identified as second-order mathematical induction. Pre-
schoolers’ engagement with the logical necessity of number is
evident when they share objects out using a “one-for-you, one-
for-me” procedure to produce sets in 1-1 correspondence and
show some understanding that by counting one set, the
number of objects in the other set can be inferred. Crucially, chil-
dren as young as 4 years are sensitive to (1) the fact that numeri-
cal comparisons between two or more counted sets rest on
adherence to the rules governing within-set enumeration (i.e.,
a unique first term and a unique successor); and (2) how the
logic underpinning the ordinal relations between sequential
count terms is tied to the concept of object-to-object correspon-
dence (Muldoon et al. 2005; 2007). As with their appreciation of
the successor function, this is not associated with procedural
mastery of counting or sharing – although these are probably
necessary skills – but with the ability to reason appropriately
about numerically relevant versus irrelevant inputs.

In the final analysis, the presence of any predictors of number
development begs the question of whether prompting children to
reason about numerical data feeds into, or draws from, a schema
for recursion and its extension to problems of numerical relation-
ships. This is the key question that needs answering. There is evi-
dence that such reasoning does not emerge spontaneously
(Muldoon et al. 2007), and the processes of learning – particularly
in social settings – appear to us equally valid candidates for
schema input as the innate representations that Rips et al. propose.
Just because psychology has not revealed the origins of the natural
number concept in its work to date, does not mean yet that we
have to abandon a bottom-up approach in favor of a top-down one.
We do not have to turn the telescope round and look through the
smaller end towards infinity; we need to train the developmental
microscope on the right target and carefully adjust the focus.

The innate schema of natural numbers
does not explain historical, cultural,
and developmental differences
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Abstract: Rips et al.’s proposition cannot account for the facts that (1) a
historical look at the word number systems suggests that the concept of
natural numbers has been progressively elaborated; (2) people from
cultures without an elaborate counting system do not master the
concept of natural numbers; (3) children take time to master natural
numbers; and (4) the competing advantage of the postulated math
schema in the natural selection process is not obvious.
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As Rips et al. have rightly underlined, humans are not only able to
approximate numerosities as many other animal species do, but
they also have the specific possibility to develop the concept of
natural numbers. For Rips et al., natural numbers correspond to
sequences that have a unique first element, a unique immediate
successor for each element in the sequence, and a unique immedi-
ate predecessor for all but the first element. For them, this type of
information would be included in an innate math schema. Yet, this
theoretical proposition cannot account for different facts.

First, it cannot account for the fact that the construction of
word number systems in all cultures is a very slow process
(Hurford 1987) that shows evidences of a progressive elaboration
with common stages across cultures. For instance, in most
languages, small numerosities are expressed by numerals that
do not express, in their morphological structure, a successor
function (e.g., two is not expressed as “one unit after one”) and
do not correspond to the name of fingers. This suggests that
the first numerals have probably not been immediately used as
items of an ordered series characterized by a successor principle,
but as independent lexical units corresponding to the immediate
perception of small numerosities (the subitizing range). The
schema proposed by Rips et al. does not predict such a distinc-
tion between the first three number words and the other ones.
Moreover, when a language possesses a complete system of
numerals organized in series, a regular structure is observed: a
lexical segment of variable length and then an additive structure
that ends at some point at which a multiplicative structure
appears. Interestingly, when a multiplicative structure appears,
it modifies the way of representing the additive structure just
at that point in the series. For example, in many languages, the
first way to indicate numerosities beyond the base 10 is the cre-
ation of particular words reflecting, in their structure, an additive
relation (for instance, “third-teen” in thirteen). But this way of
progressing in the structure will be modified just where the mul-
tiplication structure appears: after that point the additive struc-
ture is created by adding the unit to the decade word (e.g.,
twenty-two). These irregularities indicate that, in the past, indi-
viduals have introduced an additive structure without being aware
that many years later, it would be necessary to introduce a multi-
plicative structure. If we had an innate schema of natural numbers,
why would it take so long and be so chaotic to build a well-struc-
tured numeral system? Hence, this description of the different
numeral systems indicates that the conquest of natural numbers
with their complete formal characteristics has been a long and
effortful story and not simply the expression of an innate schema.

Second, Rips et al.’s proposition is also challenged by the trans-
versal study of different cultures. Indeed, individuals who are
living in societies in which the development of a counting
system is still at the initial stages show similar abilities as people
in Western and other modern societies in tasks requiring to
approximate numerosities, but no signs of a true mastery of the
concept of natural numbers (see the studies of the Mundurukù
by Pica et al. [2004] and those of Pirahà by Gordon [2004]). For
instance, when asked how many dots are presented, the Mundur-
ukù do not use the few numerals of their lexicon in a counting
sequence. Faced with five dots, they produce the word “five”
only in 28% of the trials. This same numeral is also used when
6, 7, 8, or 9 dots are presented. Similarly, in simple subtraction,
they might select 2 dots as the answer for 6–3 dots. In the same
way, the Pirahà can be precise when asked to select the same
number of batteries as presented in a model if it involves less
than 3 batteries, but beyond that point, their answer is approxi-
mate. Accordingly, how can we ascertain whether these people
know that each number has only one immediate successor and
one immediate predecessor if the label connected to a specific
numerosity is variable or if the construction of a collection equiv-
alent to another one is only approximate? In another study of a
group from Papua New Guinea, Wassmann and Dasen (1994)
compared the addition skills of the different members of the
Yupno communities. The Yupno count neither days, nor people.

To them, counting is only meaningful for the exchange of the
bride price. The old men know the traditional body-part counting
system and can use it for solving simple additions. The children go
to math classes, where they learn the Tok Pisin number system
(close to English) and use it to calculate. Yet, the young men
who have not been to school know neither the Tok Pisin, nor
the old body-counting system, and cannot solve any addition.
Thus, here again, natural numbers seem only accessible to the
people of the community who, given their specific environment,
have been exposed to, and can master, a counting system.

Third, if we look at the development of math abilities in children
who are raised in cultures in which numbers are meaningful and an
elaborate counting system exists, it appears that it takes them time
to grasp the meaning of natural numbers. If we all had an innate
schema of natural numbers, why does it take so long, even after
the learning of the counting string, to grasp the meaning of
natural numbers? For Rips et al., this delay is explained by the
fact that, in addition to this innate schema, children would need
to be exposed to the “key information.” However, what is this key
information? Why and how would the exposure to this key infor-
mation be crucial for the development of that math schema? If
the failure to be exposed to this key information explains the very
limited number comprehension of Mundurukùs or Pirahàs, what
is that key information, if not a number system developed and
shared by people in that culture?

In summary, the innate schema of natural numbers postulated
by Rips et al. does not account for a large body of historical, cul-
tural, and developmental observations. This model, based on the
Dedekind and Peano axioms of natural numbers, provides only a
description of the mature understanding of natural numbers; it is
not helpful in explaining the phylogenetic and ontogenetic con-
struction of natural numbers. Moreover, from the natural selec-
tion viewpoint, the competing advantage of such an innate model
is not obvious.

Proto-numerosities and concepts of number:
Biologically plausible and culturally mediated
top-down mathematical schemas
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Abstract: Early quantitative skills cannot be directly extended to provide
the richness, precision, and sophistication of the concept of natural
number. These skills must interact with top-down mathematical schemas,
which can be explained by bodily grounded everyday mechanisms for
abstraction and imagination (e.g., conceptual metaphor, blending) that
are both biologically plausible and culturally shaped (established beyond
the child’s mind).

There is a widespread belief that by studying the basis of the
“counting” numbers we learn about mathematics itself (Butter-
worth 1999; Dehaene 2002). Many experimentalists in child psy-
chology and number neuroscience think that the concept of
natural number is bootstrapped from early quantitative skills
such as estimating magnitudes and enumerating. These basic
skills, however, cannot be directly extended to provide the rich-
ness, precision, and sophistication of the concept of natural
number, let alone that of more complex mathematical concepts.
In their target article, Rips et al. lucidly explain this point and
conclude that children construct the concept of natural
number and arithmetic relying on top-down processes and by
constructing “mathematical schemas.” I agree. However, between
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facts and conclusion – as in good panini – the interesting stuff is
in the middle: Where do these schemas come from?

A major problem in explaining the “acquisition” of the concept
of number is that scholars often introduce crucial elements of the
explanans in the explanandum (e.g., taking number systems as
pregiven). Gallistel et al. (2006), for instance, speak of “mental
magnitudes” referring to a “real number system in the brain” (p.
247); the very real numbers are taken for granted. The system of
(infinitely precise) real numbers is an extremely sophisticated
concept, shaped over centuries with technical notions such as com-
pleted order field and the least upper bound axiom. How could
such a system be simply “in the brain”? For the purposes of a bio-
logical brain dealing with magnitudes in the real world, the dense
ordered field of rational numbers – with infinitely many rationals
between any two rationals – would suffice. But, again, rational
numbers cannot be taken for granted, either. The point is that
in explaining the acquisition of the concept of number, not even
the natural numbers and their properties can be taken for granted.
Rips et al. are aware of this, and go on to propose a top-down
approach based on mathematical schemas. Their characterization
of schema, however, is quite abstract and generic, leaving unan-
swered questions such as: (1) What known cognitive mechanisms
make such schematic abstractions possible? (2) What is the bio-
logical plausibility of these schemas? (3) Can top-down constraints
established beyond the child’s mind shape the consolidation of
such schemas? If yes, how?

Embodied cognition and cognitive semantics have been con-
cerned with questions of precisely this kind. Regarding math-
ematical concepts, George Lakoff and I have suggested that
mathematical abstractions and idealizations such as Rips et al.’s
mathematical schemas can be investigated through everyday cog-
nitive mechanisms for human imagination such as conceptual
metaphor and blending (Fauconnier & Turner 2002), among
others (Lakoff & Núñez 2000). Not only do these mechanisms
sustain human imagination (Q. 1) (Lakoff 1993; Núñez 2006),
but they are also biologically plausible (Q. 2) (Gallese & Lakoff
2005; Núñez et al. 2007). Moreover, they can be culturally
shaped (Núñez & Sweetser 2006) with their inferential organiz-
ation established beyond the individual proper (Q. 3). Rips
et al. are right that the concept of natural number cannot be,
via empirical induction alone, a mere extension of everyday
object manipulation. However, their dismissal of conceptual
mapping theory is based on an incomplete and superficial under-
standing of it. We suggest that the laws of arithmetic for natural
numbers (e.g., additive commutativity) come not just from one
empirical mapping involving object manipulation (i.e., Arith-
metic is Object Collection, as in gathering two and three balls
to get five), but rather, from the isomorphic structure of four
different source domains of primary experiences, one of which
does not deal with objects but with motion along a path (as in
taking two steps and then three to land five steps away; Lakoff
& Núñez 2000, pp. 71–80). Such isomorphism provides structural
correspondences across the source domains of four different
grounding metaphors, yielding equivalent numerical results.
This understanding is not about a mere phrasing of operations
on physical objects, it is about the abstracted numbers. Moreover,
from a neural perspective, the conflation of these isomorphic
primary experiences presumably involves coactivations of brain
areas that sustain those experiences, resulting in relevant neural
links. Finally, this approach explains the precise and ubiquitous
nature (even in technical domains) of numerical metaphorical
expressions such as “greater” than, “smaller” than, “between” p
and -p, and so on. Rips et al.’s mathematical schema does not.

Regarding conceptual mappings, Rips et al. rightly ask why
selected inferences are more convincing than potential compet-
ing ones (i.e., the “No-competing-inference test for psychological
explanations”; see sect. 3). Arguing that our theory fails this test,
they miss that this concern is indeed central in conceptual
mapping theory; and in mathematics, it is this very issue that
shows how the field is largely driven by top-down processes.

Consider an essential property of natural, rational, and real
numbers: order. Then, like Tartaglia in sixteenth-century Italy,
you bump into

p
-1, which, being a nonzero entity, is neither

greater nor smaller than 0.
p

-1 simply fails the usual order test.
Two competing inferences stand out:

p
-1 is not a number,

because it violates order, or it is a number, but “number” must
be redefined by giving up order. Both inferences are perfectly
viable, but it is the latter one that over centuries the mathemat-
ical community has sanctioned as the more desirable one. Clash-
ing inferences leading to competing bodies of knowledge
permeates the history of mathematics, from post-Pythagorean
mathematics with irrational numbers (Lakoff & Núñez 2000,
p. 71) to Georg Cantor (but not Galileo) creating transfinite
numbers (Núñez, in press). Often the mathematical community
ends up adopting one inferential avenue and burying the other
one, but this is not always the case. Competing-inference cases
can also coexist. There are internally consistent but mutually
inconsistent set theories, including one, for instance, that rules
out self-membership (axiom of foundation) and another – hyper-
sets, which allows self-membership (anti-foundation axiom;
Lakoff & Núñez 2000; Núñez 2008).

Looking at how children “acquire” the concept of integers
(natural numbers including zero and their negatives) with
addition and multiplication may be informative here. The usual
“negative times negative yields positive” rule cannot be derived
either from early number skills or from direct mappings of phys-
ical experience. It is a matter of top-down mechanisms that
impose precise, previously sanctioned inferential structure
(which usually is taught dogmatically). Rarely explained in text-
books, this rule is a convention sanctioned by (adult) mathemati-
cians – not children – who saw the fruitfulness of extending the
distributive property of multiplication over addition to negative
numbers. For the developing child who had no say in the sanc-
tioning, the rule seems arbitrary. Similar, although more subtle,
top-down dynamics must be accounted for in explaining the
child’s “acquisition” of the concept of natural number.

ACKNOWL EDGMEN TS
I am grateful to Kensy Cooperrider and Gilles Fauconnier for comments
on an earlier draft.

Natural number concepts: No derivation
without formalization

doi:10.1017/S0140525X08005839

Paul Pietroski and Jeffrey Lidz
Department of Linguistics, University of Maryland, College Park, MD 20742.

pietro@umd.edu http://www.wam.umd.edu/~pietro/

jlidz@umd.edu http://www.ling.umd.edu/~jlidz/

Abstract: The conceptual building blocks suggested by developmental
psychologists may yet play a role in how the human learner arrives at
an understanding of natural number. The proposal of Rips et al. faces a
challenge, yet to be met, faced by all developmental proposals: to
describe the logical space in which learners ever acquire new concepts.

Rips et al. rely on a notion of “deriving” concepts, as when they
say that, “understanding the natural number concept may allow
us to avoid trying to derive it from unwieldy raw material from
which no such derivation is possible” (target article, sect. 6,
para. 3). But, prima facie, derivation requires both (1) starting
points, and (2) something like a logic that permits introduction
of defined notions. The possibilities for licensing particular deri-
vations may be limited by either (1) or (2). It is a familiar point
that a chain of reasoning not licensed by one system (e.g., a prop-
ositional calculus) may be licensed by another (e.g., a predicate
calculus). Analogous points are relevant when reflecting on the
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capacity of human learners to “derive” the concept of natural
number from the starting points suggested by developmental
psychologists (object tracking, approximate number represen-
tations, etc.). Rips et al. suggest, in effect, that these “premises”
are inadequate. What concerns us is the need of a plausible
description of the relevant “background logic” that is somehow
implemented by human psychology.

Our point is not merely that Rips et al. do not provide such a
description, but that (so far as we know) nobody knows how to
characterize the logical space of cognitive change – be it human
concept acquisition or animal learning. In one sense, delineating
this space is a major focus of ongoing work throughout cognitive
science (e.g., debates concerning eliminative connectionism).
However, not even optimists can think we have a remotely adequate
description of the mental logic governing potential derivations of
new concepts from available cognitive resources. Of course, in
the absence of an understood mental logic, it is especially hard to
know whether the resources currently posited by developmental
psychologists are adequate starting points for human learners.

At the beginning of their “Concluding comments” (sect. 6),
Rips et al say that “Thanks to analytic work by Dedekind
(1888/1963), Frege (1884/1974), and others, we have a firm
idea about the constituents of the natural number concept.”
The target article ends with the suggestion referred to earlier,
that “understanding the natural number concept may allow us
to avoid trying to derive it from unwieldy raw material from
which no such derivation is possible.” These statements may be
too bold (current work in philosophical logic suggests disagree-
ment), and a remark about the analytic work may be informative.

Given a consistent fragment of Frege’s second-order logic, the
Dedekind axioms for arithmetic follow from (i) the general prin-
ciple that (the extensions of) two concepts are equinumerous if
and only if they correspond one-to-one, and (ii) suitable defi-
nitions, in notation made available by the logic, of notions such
as “zero” and “precedes.” In this restricted sense, arithmetic
follows from a single non-logical principle concerning an equiv-
alence of equinumerosity and one-to-one correspondence (see
Demopoulos 1994; Zalta 2003). Trivially, however, there can be
no derivation of Dedekind’s axioms without a proof system and
a way of encoding the requisite definitions. Correspondingly,
much of Frege’s accomplishment lies with his invention of a
logic in which proofs by mathematical induction could be con-
ducted, and the axioms could be explicitly represented. The
background logic is needed to define/abstract Frege’s official
concept of natural number. And this is no surprise: Definition
requires a language; abstraction requires apparatus.

In terms of cognition, there is an analogous point. It is not yet
useful to be told that certain “raw materials” are not themselves
“rich enough” to support abstraction of numerical concepts. No
starting points are rich enough without the logical tools that
enable abstraction. The interesting claim in this vicinity is presum-
ably that the “raw materials” discussed in the article are not rich
enough, even given plausible assumptions about the cognitive
apparatus independently available for purposes of abstraction.
But defending this claim would require an argument – not pro-
vided by Rips et al. – concerning the relevant cognitive apparatus,
about which very little is known. Our claim is not that psychologists
should posit unconscious knowledge of points (i) and (ii) referred
to earlier and of Frege’s logic; we have no firm views on this score.
But because understanding a natural language plausibly requires
derivational capacities of the kind reflected in Frege’s logic, it
seems rash to assume that humans do not have capacities that
would let us derive natural arithmetic from analogs of (i) and (ii).

As Frege also stressed, although derivations can reveal logical
relations among concepts, this does not yet tell us anything about
the actual constituents (if any) of the relevant concepts. However,
one can speculate that human learners have the representational
powers required for reasoning along Fregean lines. This might
involve the abilities to: determine equinumerosity via computing
one-to-one correspondence (as Rips et al. note, infants do);

represent an initial number, which need not be zero, in terms
of prior notions (perhaps a singular/plural distinction); represent
a relation of “precedence” that has a definable transitive closure;
and manipulate these representations in ways corresponding to a
consistent but suitably powerful fragment of Frege’s (second-
order) logic. In this way, one might abstract a Fregean notion
of natural number and go on to derive natural analogs of the
Dedekind/Peano axioms. We do not suggest that this must be
the way human children acquire their concept of natural
number. But such scenarios do not strike us as impossible or
even especially implausible, pace Rips et al., given the
alternatives.

To repeat, our point is neither that Rips et al. have it wrong,
nor that the developmental psychologists have it right. But we
want to caution against concluding, in the absence of empirically
motivated assumptions about the abstractive/logical capacities of
children, that the “raw materials” currently posited by the psy-
chologists are inadequate starting points. One can agree that
derivations are not yet to be had, while welcoming new premises.
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Abstract: How children learn number concepts reflects the conceptual
and logical distinction between counting numbers, based on a same-
size concept for collections of objects, and natural numbers,
constructed as an algebra defined by the Peano axioms for arithmetic.
Cross-cultural research illustrates the cultural specificity of counting
number systems, and hence the cultural context must be taken into
account.

Natural numbers are objects of arithmetic, but. . . natural numbers may
not be objects in the original background language from which we
began.

— Stewart Shapiro 1997, p. 126

Children learn about numbers in the cultural context of a
number system as this is conceptualized by adults. For the
latter, Rips et al. comment, “Activities such as estimating the
number of objects in a collection . . . may proceed without
drawing on natural number concepts. Number concepts may
come into play only at a more abstract level – for example, in
arithmetic” (sect. 6, para. 3). In brief, there are different logics
for counting versus natural numbers, despite overlap in
number names. In pre-literate societies, counting number
systems are used for enumeration, but seldom for computation
(Hallpike 1979); only with the natural numbers do we have a
conceptual structure for computation. Even counting number
systems are non-isomorphic across different cultures.

A counting number is based on two primitive concepts:
(1) individuation, whereby an object can be distinguished from
the collection of objects to which it belongs, and (2) matching,
whereby an individuated object in a particular collection can
be matched with an individuated object in another collection.
The logic of matching determines an equivalence relation – call
it “same size” – over an ensemble, E, of object collections as
follows. For collections A and B in E, match an individuated
object from A with an individuated object from B and then
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remove these individuated objects from their respective collec-
tions. Next, recursively apply this matching procedure to the
modified collections until either A or B has no more objects. If
both collections are emptied simultaneously, the collections A
and B have the same size. Same size exhaustively partitions E
into disjoint subensembles, each of which contains all (and
only) collections of the same size, since it is an equivalence
relation.

Next, identify a fixed reference collection – say, the twiggle
collection. Let the counting number TWIGGLE be the name
for the subensemble of E (if any) containing a collection of the
same size as the twiggle collection. Apply the counting number
TWIGGLE to any collection in this subensemble. This labeling
procedure is not determined by the collections making up E;
hence, we may use the counting number, TWIGGLE, without
reference to E.

The Iqwaye of Papua New Guinea (Mimica 1988) used this
matching method for a counting number to represent the quan-
tity of males needed to raid a neighboring group. A special string
of shells was matched with the collection of males to determine
whether they were enough for a raid. The Iqwaye used matching
in this context despite having counting numbers for enumeration.
Our quantity, dozen, is similarly just a counting number designat-
ing a quantity. Its distinction from the natural numbers is shown
by the sentence “I want a half dozen cookies” versus the nonsense
sentence “I want a half 12 cookies.” The natural number, 12, only
provides the reference size for defining the counting number,
dozen.

These examples illustrate that sequentiality is not necessary
when defining counting numbers. Neither the string of shells
nor dozen involves a sequence of counting numbers. Sequential-
ity derives from the between concept (“Is there a collection with
size between the counting numbers X and Y?”). Recursive use of
between stops with sequential counting numbers, beginning with
the counting number “one,” defined as the name for the size of a
collection with a single, individuated object.

The logic of sequentiality leads to finite collections of counting
numbers typified by “one, two, three, many” counting systems,
where many has the meaning “a collection size larger than any
counting number.” Lest we think that counting systems of this
kind are impoverished natural number systems, we need only
consider the word “infinite” in Alfred Tennyson’s Timbuctoo:
“Where are the infinite ways.” Here infinity refers to a size
beyond the counting numbers, not the cardinality of the
natural numbers. Thus, in our “one, two, three . . . infinity”
counting system, common usage of infinity is equivalent to
many, and we only have finitely many (named) counting
numbers.

Just as the logic underlying a counting number does not entail
sequentiality, the logic underlying sequentiality does not entail
the incorporation of a successor function, s (n) ¼ nþ 1,
applied invariantly to all counting numbers. Consider the
Paiela (Papua New Guinea) counting numbers, which are as
follows:

The entire count comprises 28 numbers, a compound of two units of
14 . . . The count begins on the small finger . . . The count then
“ascends” to the thumb, the wrist, the shoulder, the head, stopping
at the nose [the author only lists some of the body parts used in this
sequence]. . . A second unit of 14 is traced [in reverse] on the other
side of the body . . . finishing on the small finger of the opposite
hand for the 27th count. The hands are then clenched and brought
together . . . to signal the completion of a second 14-count unit.
(Biersack 1982, p. 813)

The number names identify sequential body part pairs, with a
modifier added to designate when the pair refers to the other side
of the body. Thus, “one” is “pair of little fingers” and “twenty-
seven” is “pair of little fingers on the other side.” We can interpret
the number names of the Paiela as referring to 1st pair, 2nd pair,
and so on, up to the 13th pair; that is, they count sequentially by

two’s rather than by one’s. Note that “fourteen” is “nose” even
though we have a pair of nostrils, and “twenty-eight” is “clenched
hands” even though we have a pair of hands. Their choices for
these numbers show that the Paiela counting system is concep-
tually closed and not the open system entailed by the successor
function.

I suggest that children initially learn the primitive concepts for
the counting numbers through experience. Alone, this leads
neither to a particular counting number system, nor to the
natural numbers. For these, the developing child has to work
out patterning in number names – and patterning in compu-
tations with the natural numbers for cultures in which the logic
of the natural numbers is also part of the adult’s cultural reper-
toire – through the child’s interaction with culture-bearing
adults. A child goes beyond experientially obtained primitive con-
cepts through enculturation, the process by which cultural
knowledge (in the sense of systems of ideas and concepts) is
transmitted from one generation to the next.
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and children know more than you think
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Abstract: Rips et al.’s critique is misplaced when it faults the induction
model for not explaining the acquisition of meta-numerical knowledge:
This is something the model was never meant to explain. More
importantly, the critique underestimates what children know, and what
they have achieved, when they learn the cardinal meanings of the
number words “one” through “nine.”

This commentary pertains to section 3 of the target article, where
Rips et al. criticize the induction model. I argue that Rips et al.’s
critique fails in two ways. First, it overstates what the induction
is supposed to explain. The induction is about the acquisition
of natural-number concepts, not the concept NATURAL
NUMBER itself. Second, Rips et al. fail to grasp the magnitude
of children’s achievement in learning the cardinal meanings of a
finite set of number words (e.g., the words “one” through “nine”).

Forget NATURAL NUMBER, the induction is about SEVEN. The
first issue to be addressed is one of terminology. There is a differ-
ence between natural-number concepts (e.g., SEVEN) and the
concept NATURAL NUMBER itself. SEVEN is a mental
symbol for a specific cardinality; NATURAL NUMBER is part
of meta-numerical knowledge – knowledge about numbers.

When Rips et al. use the term “natural-number concepts”
interchangeably with the terms “the natural-number concept”
and “the concept NATURAL NUMBER,” they blur the distinc-
tion between number concepts and meta-numerical knowledge.
Similarly, when they argue that the induction model is wrong
because it does not explain how children learn that numbers go
on forever, or that numbers can be added in any order, what
they are really saying is that the induction model does not
explain the acquisition of meta-numerical knowledge.

However, the induction model was never meant to explain the
acquisition of meta-numerical knowledge. The induction model
explains how children acquire natural-number concepts:
mental symbols for cardinalities such as 7. Specifically, we are
interested in cardinalities that are (a) bigger than 4 (and thus
too big for each individual to be represented in parallel), and
(b) exact (and thus too fine-grained to be represented by the
analog magnitude number system).
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The successor rule – no more, no less. Rips et al.’s conflation
of numbers with meta-numerical concepts leads them to misun-
derstand the claims of the induction model. For example, Rips
et al. read s(n) ¼ nþ1 as a function over the natural numbers,
and argue that a child who has the concept s(n) ¼ nþ1 must
ipso facto have the concept NATURAL NUMBER. Partly this
is a problem with notation: We (induction theorists) have used
s(n) ¼ nþ1 as shorthand for something much wordier. The fol-
lowing is what I think the child really learns.

Precursors: The child first learns the words for those cardinal-
ities that are small enough to be represented directly, as sets of
individuals. (These are learned one at a time, in order, over a
period of 1–2 years.).

“one” means 1;
“two” means 2;
“three” means 3;
“four” means 4.

Induction: Then, all at once, the child learns how to assign car-
dinal meanings to the rest of the number words. To continue with
Rips et al.’s example, a child who knows the list up to “nine”
induces the following:

“five” means 1 more than 4;
“six” means 1 more than “five”;
“seven” means 1 more than “six”;
“eight” means 1 more than “seven”;
“nine” means 1 more than “eight.”

The child does not need the concept NATURAL NUMBER in
order to make this induction, and the successor rule itself is rep-
resented only implicitly. The key fact, however, is that the child
learns the higher number-word meanings all at once. That’s
how we know the child is applying a rule.

Rips et al. really seem to miss the import of what the child
achieves when he or she learns this rule, even for a finite set of
number words. A child who can represent the meaning of
“seven” via this rule has acquired a way of mentally representing
an exact, large quantity. This is information that simply was not
representable until a set of symbols (the number words) were
borrowed from outside. This is the really amazing thing about
number-concept development, and it happens very early
on – when the child knows only a few number words.

Even “one”-knowers won’t accept a modular system. Finally,
why do Rips et al. believe that a child who has learned the cardi-
nal meanings of “one” through “nine” doesn’t have natural-
number concepts? One big reason seems to be that (according
to Rips et al.) this child’s knowledge state is equally compatible
with either the natural-number system, or an alternative system
such as Successor-Mod-10. A closer look at children’s behavior,
however, shows us that this is not true.

The original basis for the induction model was the finding that,
from the time children learn what “one” means, they treat the
number words as unique labels for specific cardinalities (Wynn
1992b). This is the very definition of a “one”-knower – it is a child
who, when asked for “one” object, always gives only 1 and never
more than that. Similarly, when a “one”-knower is asked to label a
set of 1, he or she always says “one” and never other number words.

These facts mean that modular systems are off the table as
a possibility by the time the child learns “one.” In order for
Mod-10 or any other modular system to work, children would
have to accept either multiple number words for the same car-
dinality, or multiple cardinalities for the same number word. In
fact, however, even “one”-knowers do not accept the word
“eleven” for a set of 1, or the word “one” for a set of 11.

This basic finding has been replicated many times over, not
only for “one”-knowers, but also for “two”-knowers, “three”-
knowers, and “four”-knowers as well (e.g., Condry & Spelke
2008; Le Corre & Carey 2007; Le Corre et al. 2006; Sarnecka
& Carey, in press; Sarnecka & Gelman 2004; Sarnecka et al.
2007). Moreover, one study (Sarnecka & Gelman 2004) found
that children apply this constraint even to number words

whose meanings they do not yet know: “Two”- and “three”-
knowers treat “five” and “six” as mutually exclusive cardinalities,
even though they cannot identify the actual cardinalities 5 or 6.

Thus, Rips et al.’s critique does not hold up well to scrutiny.
Where it is true (e.g., in pointing out that the induction does not
yield the concept NATURAL NUMBER), it is irrelevant. And
where it is relevant (e.g., in the claim that children’s early
number knowledge is consistent with modular systems), it is false.

Mathematical induction and its formation
during childhood
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Abstract: I support Rips et al.’s critique of psychology through (1) a
complementary argument about the normative, modal, constitutive
nature of mathematical principles. I add two reservations about their
analysis of mathematical induction, arguing (2) for constructivism against
their logicism as to its interpretation and formation in childhood (Smith
2002), and (3) for Piaget’s account of reasons in rule learning.

Rips et al. are right about the crevasse, with psychological research
on children’s quantitative representations is on one side and prin-
ciples of mathematics or the other. But if children’s quantitative
representations are mappings from number-words to numbers
and their successors (“one” represents one, “two” represents
two), this could lead to any of the infinite number sequences in
mathematics: for example, mod983. Rips et al.’s negative argument
is that “children cannot bootstrap their way from these beginnings
to true math concepts” (sect. 5, para. 1), where true math includes
the concept of natural number. On the other side of the crevasse,
principles in the philosophy of mathematics are available. But so is
the stark warning – a child sitting by a heap of peas, picking them
up one by one uttering a number-word, will have access to “no
bridge which leads across from the kindergarten numbers”
(Frege 1979, p. 276). Rips et al.’s positive argument is that the
sole way to bridge the crevasse is by means of principles.

I applaud Rips et al.’s main argument, which I support through
(1) a complementary account of the nature of mathematical prin-
ciples. But I also have a couple of reservations. Their bridge
specifically includes principles of mathematical induction (MI)
with reference to my Piaget-inspired study (Smith 2002). My
reservations are about (2) the authors’ interpretation of MI,
and (3) reasons in rule learning.

1. Support for the argument. Regarding the authors’ discussion
of math principles, first, the following characteristics are worth
bearing in mind:

a. Mathematical principles are normative: “Mathematics
forms a network of norms [in that] if calculation reveals a
causal connexion to you, then you are not calculating” (Wittgen-
stein 1978, pp. 431, 425; cf. Piaget 2006, p. 8). Note that this dis-
tinction between causality and normativity is exclusive.

b. Mathematical principles are modal (i.e., necessary truths):
Their instantiation in experience provides occasions for their rec-
ognition. Their correct understanding depends on normative
demonstration, not merely verification (Leibniz 1996, p. 85;
Piaget 2006, p. 7).

c. Mathematical principles are constitutive: Any principle has a
two-part formation covering origins and constitution. Both are
required because pseudo-rationality has an empirical origin
without a normatively valid constitution (Kant 1787/1933, p. B116;
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Piaget 2006, p. 9). For Kant, mathematical principles are not innate
(see Kant 1790/2002, sects. 8–221). Instead, they are constructed,
making their debut in experience with their derivation being syn-
thetic a priori (Kant 1787/1933, pp. B1, B15, B747).

This trinity supports Rips et al.’s critique of research in the psy-
chology of mathematics. Contra (a), that mathematical principles
are normative, the track-record in this research shows multiple
traces of norm-denial and norm-reduction to causes, but almost
nothing of norm-laden minds (Smith 2006). Contra (b), that
mathematical principles are modal, the focus of this research is
on truth-functionality to the exclusion of modal necessitation
(Smith 2002). Contra (c), that mathematical principles are consti-
tutive, it deals with origins to the exclusion of constitution (Smith,
in press a). That is why principles are required to bridge the cre-
vasse from the other side.

2. Interpreting mathematical induction (MI). Rips et al.’s positive
recommendations specifically refer to MI principles, in relation
to which they note my (Smith 2002) study in section 5.3.3.
However, their discussion is open to challenge in two respects:

First, Rips et al.’s definition of MI is a modernized restatement of
Poincaré’s definition. The open question is its interpretation. The
authors interpret MI through logicism, in that MI is really logical
deduction (their argument is in Rips & Asmuth [2007]). Yet Poin-
caré’s contrary interpretation was for constructivism (Poincaré
1905, p. 15; 1952, p. 52), under which MI is really synthetic a
priori in its generation of novelty (Poincaré 1952, pp. 50, 162,
194). Under logicism, logical deduction and empirical induction
are necessitating and universalizing respectively; for Poincaré
(1905, pp. 13–14), MI combines both in a unique form of reason-
ing. Crucially, Piaget (1942; see Smith 2002, Ch. 3.1) was critical of
logicism, and his constructivism aimed to recast Poincaré’s pos-
ition, notably in Inhelder and Piaget’s (1963) seminal study, other-
wise neglected until my replication. That is why I (Smith 2002, p. 5)
quoted Poincaré’s definition with some sympathy for his interpret-
ation (cf. Smith 1999). Rips et al. state that this definition conflates
universal generalization [UG] and MI. I doubt this, but reckon they
should take this matter up with Poincaré and Piaget.

Next, my (2002) study was about the formation of MI in
children aged 5–7 years who were investigated twice. My opera-
tionalization required serial, equal additions to two contain-
ers – in Study I, both were initially empty; in Study II, their
initial content was unequal. The questions were threefold: the
base equality/inequality through serial additions, universality
about number, and necessity about number (Smith 2002,
p. 58). This operationalization matches Poincaré’s and Rips
et al.’s criteria for MI. My evidence (significant in non-parametric
and logistic analyses) showed these children to be successful with
the first two questions, and promising as to modality (pp. 64–66,
147). Rips et al. challenge this in view of the purported conflation
of MI and UG. I disagree in seeing an early formation of MI in 5–
7-year-olds. (More on this, below, with regard to the second
reservation.)

3. Reasons and rule-learning. Principles are rules about which
four assumptions are commonly made in psychology: (i) math-
ematical rules are clear and exact, (ii) their applications are
well-defined, (iii) their learning is typically through social experi-
ences that (iv) are causal mechanisms responsible for rule-learn-
ing. Rips et al. seem to be committed to this quartet, but all four
are contradicted in Wittgenstein’s (1978) analysis of the rule-fol-
lowing paradox. A companion argument from Piaget’s develop-
mental epistemology leads to the same conclusion: rule-
meaning is dependent on rule-use, not the other way round
(Smith, in press b). Further, rule-use is regulated by reasons
whose role is “to introduce new necessities into systems where
they were merely implicit or remained unacknowledged”
(Piaget 2006, p. 8). Reasons have origins inclusive of pseudo-
necessities; they may also amount to valid necessitations.

Either way, reasons are investigable as normative facts (Smith,
in press a). Returning to Rips et al.’s strictures and using my
(2002, Ch. 6.3.3) study, examples include:

pseudo-necessities: “more there because you have not put the
right number in”; “because it wasn’t fair at the start”

recursion over number: “because if there was the same in there
before and you just add another one in each box, there
would be the same again”

necessitation about number: “because that’s the way it has to be.
From the beginning I started adding more, so there must be
more.”
MI starts somewhere. Well, here is a primitive version in chil-

dren aged 5–7 years. Isn’t rule-learning a fallible process of con-
struction for us all!

In conclusion, I think Rips et al. will welcome my reiteration of
the normative, modal, and constitutive nature of mathematical
principles as complementary to their critique of math psycho-
logy, and on reflection see promise in my two reservations as con-
tributions to Piaget’s developmental epistemology directed on an
empirical account of normativity.

Precursors to number: Equivalence relations,
less-than and greater-than relations, and units
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Abstract: Infants’ knowledge need not have the same structure as the
mature knowledge that develops from it. Fundamental to an
understanding of number are concepts of equivalence and less-than
and greater-than relations. These concepts, together with the concept
of unit, are posited to be the starting points for the development of
numerical knowledge.

The premise of the article by Rips et al. – that characterizations
of initial and mature knowledge must be congruent enough that
there is a viable developmental pathway linking the two – under-
scores the contribution a developmental perspective can make to
cognitive science. The fact that there must be a developmental
pathway between initial and mature knowledge, however, does
not mean that initial knowledge must have the same basic struc-
ture as mature knowledge. The determination of what is the rel-
evant precursor knowledge for a given body of mature knowledge
is therefore itself an important theoretical issue.

Rips et al. begin their inquiry with a consideration of the evi-
dence of numerical discriminations that has emerged from
research with infants. They question, however, whether general-
izations derived from experience with physical collections
provide an adequate basis for mature natural number knowledge.
Instead, they propose that infants have schematic numerical
knowledge that incorporates key structural properties of a
mature concept of natural number. But the chief merit of this
account appears to be that it simplifies the problem of explaining
how children get from initial knowledge to mature knowledge by
positing a close correspondence between the two. No evidence is
cited to support the attribution to infants of the schematic knowl-
edge posited by Rips et al.

An analysis of relations between number and other mathemat-
ical concepts that may be present early in life suggests an alterna-
tive way of thinking about the developmental foundations of
natural number knowledge that better fits available evidence
and that does not require the close correspondence between
initial and mature knowledge that Rips et al. seem to take for
granted. Davydov (1975) argued that, mathematically, the
concept of number presupposes concepts of equivalence, and
of less-than and greater-than relations, which are more funda-
mental than number in that they do not depend upon a
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concept of number (because they apply to unenumerated con-
tinuous quantities, such as lengths, as well as to numerical quan-
tities), whereas a concept of number does entail concepts of
equivalence and less-than and greater-than relations. This con-
ceptual asymmetry in turn suggests that, developmentally, knowl-
edge about number might build on ideas about equivalence and
inequivalence relations that have their origins in comparisons
among non-numerical quantities. Sophian (2007) reviewed a
wide range of empirical evidence consistent with this idea; for
example, evidence that infants are sensitive to less-than and
greater-than relations among non-numerical quantities in reason-
ing about the support relation between an object and the surface
on which it rests (e.g., Baillargeon et al. 1995), and evidence that
3-year-old children pay more attention to correspondence
relations between sets than to specific numerical values in select-
ing pictures to match stories that contains both kinds of infor-
mation (Sophian et al. 1995, Experiment 1).

What distinguishes numerical cognition from thinking about
non-numerical magnitudes is the use of a unit. When we state
the numerical value of a quantity, what we are actually doing is
describing the relation between that quantity and some unit.
The unit is often an individual object, however, conceptually
what is important is not its objecthood but the fact that we can
measure the quantity we are trying to enumerate against it.
Whether we characterize a collection of shoes as six individual
shoes or as three pairs of shoes, the numerical value we give
essentially represents the multiplicative relation between our
chosen unit and the total quantity (cf. Sophian 2007).

Although the notion of a discrete object appears to be an
important part of how infants make sense of the world from a
very early age (Spelke et al. 1992), it seems unlikely that
infants start out with a general mathematical concept of unit or
an understanding of the relation between units and number.
Unfortunately, we know next to nothing about how children do
acquire the concept of unit, beyond the fact that important
aspects of the concept of unit are quite challenging throughout
the preschool period and beyond (Gal’perin & Georgiev 1969;
Shipley & Shepperson 1990; Sophian 2002; 2007). Instruction-
ally, it is possible to introduce units as an extension of
ideas about less-than and greater-than relations (e.g., as a way
of characterizing how much greater one quantity is than
another; cf., Dougherty et al. 2005). Although it is not clear
how closely this corresponds to the way children’s knowledge
develops in the absence of such instruction, the viability of
instruction in units that builds on ideas about less-than and
greater-than relations between unenumerated quantities demon-
strates that a developmental pathway from one to the other is at
least possible.

An important argument that Rips et al. give for rejecting the
idea that the concept of natural number grows out of experience
with physical quantities is that physical quantities are always
finite, whereas the sequence of natural numbers is infinite.
This objection becomes less compelling, however, if we construe
children’s numerical knowledge as building on their understand-
ing of actions that are potentially infinitely repeatable (such as
iterating a unit), rather than on their observations of the quan-
tities generated by those actions, which are of course always
finite. Although physical action sequences, like physical collec-
tions, can never actually be infinite, the repeatability of actions
does correspond to a key insight that children express about
the infinity of the number sequence – that you can go on and
on (cf. Monaghan 2001).

In sum, while there must always be a developmental pathway
from initial knowledge to mature knowledge, there is no guaran-
tee that that pathway is a direct one. Consideration of possible
starting points for natural number knowledge other than specifi-
cally numerical abilities led to the suggestion that numerical
knowledge may develop through the bringing together of initial
knowledge about equivalence relations and less-than and
greater-than relations with somewhat later-emerging knowledge

about units. This account is consistent with several kinds of
empirical evidence, and suggests potentially fruitful directions
for further research as well.

Authors’ Response

Dissonances in theories of number
understanding
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Abstract: Traditional theories of how children learn the positive
integers start from infants’ abilities in detecting the quantity of
physical objects. Our target article examined this view and
found no plausible accounts of such development. Most of our
commentators appear to agree that no adequate developmental
theory is presently available, but they attempt to hold onto a role
for early enumeration. Although some defend the traditional
theories, others introduce new basic quantitative abilities, new
methods of transformation, or new types of end states. A survey
of these proposals, however, shows that they do not succeed in
bridging the gap to knowledge of the integers. We suggest that a
better theory depends on starting with primitives that are
inherently structural and mathematical.

By sometime in early grade school, children have enough
knowledge of the positive integers to perform simple arith-
metic and to recognize properties that are true of the inte-
gers. Our target article looked at the path they take to get
there. Infants and many nonhuman animals are sensitive
to quantitative differences: They react differently to
small versus large groups of elements. Children’s care-
givers build on this ability in teaching them to enumerate
small groups of objects – to assign to these groups the
count term in their native language that denotes the
appropriate number: for example, two pizzas, five cups,
four trees. Developmental psychologists have naturally
taken this ability as the antecedent of the children’s later
knowledge of the integers: two, five, four. It seems a
small step from being able to enumerate small collections
to being able to add two such collections by counting over
them. A further step enables children to appreciate the
properties of integers that support arithmetic reasoning;
for example, that adding two positive integers produces a
new integer larger than the first two.

Our article was meant as a skeptical analysis of the idea
that there is a direct path from early numeric abilities – the
abilities that underlie children’s appraisal of the size of
collections – to their later understanding of the positive
integers.1 Sophian puts this point clearly: “characteriz-
ations of initial and mature knowledge must be congruent
enough that there is a viable developmental pathway
linking the two.” We would add that the pathway must be
not only causal or motivational but also constitutive. That
is, the component must be part of an initial or intermediate
representation that eventuates in the final number concept.
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We learned that 7 � 8 ¼ 56 in part because our grade-
school teacher, Ms Foos, threatened, “No snacks until you
memorize the 7 row of the multiplication table.” But this
threat did not become part of our concept of multiplication,
even though we may still become desperately hungry when-
ever we have to do 7 � 8. In the target article we argued that
there might be no such constitutive pathway from the
current candidates for initial number knowledge, where
these candidates include mental magnitudes, object files,
and internal sets. Knowledge of the integers, we think, is
more likely to be imposed top-down from a mathematical
schema that embodies the integers’ structure.

This is such a radical thesis that we felt fairly sure that when
readers got to our claim that enumerating objects may have
little to do with understanding numbers, they would throw
away the article with a laugh and return to more pressing
business. We are grateful to the commentators for sticking
with us long enough to write their thoughtful remarks.

R1. An overview of the commentaries

Because our claim is that you cannot get from Here to
There, it is vulnerable in a number of places. For one
thing, we may have selected the wrong Here. Our
Figure 1 summarized one possible starting point: A
current picture of infants’ ability to discriminate quantity,
which included parallel individuation of objects, longer-
term representations of objects, and magnitude represen-
tations. As Chiang points out, the Figure 1 model shows
that we were vision chauvinists, since the model is mainly
geared toward assessing the cardinality of groups of visually
presented objects. It is missing processes that infants need
in order to determine the number of tones or actions in
temporal sequences (Note 4 of the article mentions other
patches). Our purpose, however, was not to defend this
model in detail but to use it as a plausible partial theory
of infants’ initial quantitative skills. We also considered
other possible starting points, such as the ability to place
objects in groups and to form abstract representations of
such groups. We argued that none of these representations
provides a good conceptual basis for knowledge of the inte-
gers, as it would be difficult or impossible for children to
extend them to such a concept through ordinary learning
mechanisms. Some of the commentators dig in their heels
and defend mental magnitudes (Barth; Lourenco &
Levine) or, at least, assessments of the cardinality of
small collections (Barner; Le Corre) as part of the story
of number concepts. Gelman defends arithmetic prin-
ciples as starting points – a position more in line with our
own. However, other commentators propose represen-
tations that we did not consider as bases for number devel-
opment. Although internal magnitudes (for example) may
not be a reasonable starting point for numbers, infants
might project numbers from: memory traces that embed
other memory traces (Hintzman); neurons tuned to
specific cardinalities (Fias & Verguts); finger counting
(Andres, Di Luca, & Pesenti [Andres et al.]); spatial pos-
itions (Fischer & Mills); representations of sequences
(Gardiner); and representations of relations of equival-
ence, less than, and greater than (Sophian). We have sum-
marized the commentators’ proposals about starting points
in Part A of Table R1, and we examine them more closely in
Section R3.

A second point of logical vulnerability in our account is
the transition from earlier to later numerical concepts. We
are claiming that current theories have difficulty explain-
ing this transition, but many commentators think that we
adopt too limited a view of how kids get from Here to
There. Part B of Table R1 includes those commentators
who defend current views of the bridge to the positive
integers and those who advance new types of connection.

Table R1. A breakdown of the Commentaries according to their
view of where revision or defense is needed in theories of

acquisition of the positive integers

Commentator Innovation/Critique

A. Bases for Numerical Concepts
Barth Defense of magnitudes
Le Corre Defense of cardinality/

magnitudes
Barner Defense of cardinality
Lourenco & Levine Defense of cardinality
Chiang Magnitudes for small arrays
Gelman Counting and arithmetic

principles
Gardiner Sequences
Sophian Relations of ;, ,, and .

Fias & Verguts Neurons tuned to cardinality
Fischer & Mills Spatial position
Andres et al. Finger counting
Hintzman Recursively structured memory

traces

B. Bridges from Early to Mature Number Concepts
Sarnecka Defense of induction to a

limited domain
Carey Defense of bootstrapping
Martins-Mourao &

Karmiloff-Smith
Part-whole structure

Muldoon et al. Disengagement from objects
Mix Integration of multiple sources

of information
Núñez Integration of multiple

metaphors
Halberda & Feigenson Sets
Gordon Sets
De Cruz Social/Cultural factors
Read Social/Cultural factors
Cowan Social/Cultural factors
Lakoff Brain processes
Cohen Kadosh & Walsh Brain processes

C. End States
Noël et al. Critique of innate number

schemas
Morris & Masnick Algorithmic vs. probabilistic

concepts of number
Smith Rules vs. rule use
Hodes Numeral-individual vs.

metalinguistic concepts
Pietroski & Lidz Peano arithmetic vs. Frege

arithmetic
Decock Peano arithmetic vs. Frege

arithmetic
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Some authors stick to versions of the traditional theory in
which integer concepts arise from mappings between the
first few count terms (“one,” “two,” “three,”. . . “ten”) and
the cardinality of small collections, possibly supplemented
by other mechanisms (Carey; Mix; Muldoon, Lewis, &
Freeman [Muldoon et al.]; Sarnecka). Other authors
implicate the role of additional structures, such as part-
whole relations (Martins-Mourao & Karmiloff-Smith),
empirical experience with objects in sets (Gordon; Hal-
berda & Feigenson), motion along a path, object con-
struction and collection, and measurement (Núñez). A
few commentaries emphasize general factors that got
short shrift in our article: the role of schooling and other
social or cultural influences (Cowan; De Cruz; Read)
and brain processes (Cohen Kadosh & Walsh; Lakoff).
As Le Corre and Núñez note, related questions about brid-
ging arise within our own theory when it comes to explaining
how children achieve the correct schema for a math domain.
We will have more to say about bridging in section R4.

Our argument could also go wrong in describing the
nature of adults’ number concepts. If instead of arriving at
There, children arrive at Elsewhere, then the problems we
raised may be irrelevant. We assumed that children even-
tually attain a concept (i.e., mental representation) of the
positive integers as distinct individuals that obey the Dede-
kind-Peano axioms – what Hodes calls numerical-individual
concepts. But several commentators (see Table R1C) ques-
tion this assumption, suggesting instead that even adults
may have no more than probabilistically defined number
concepts (Morris & Masnick) or metalinguistic concepts
of numerals (Hodes). Others doubt our conjecture that
adults’ number concepts are imposed top-down by schemas
reflecting the axioms (Noël, Grégoire, Meert, & Seron
[Noël et al.]). Perhaps such concepts are use-based (Smith)
or reflect an underlying notion of equivalence between sets
through one-to-one mapping of their elements (Decock;
Pietroski&Lidz). Wediscuss thesepossibilities insectionR5.

The pigeonholing in Table R1 is one way to organize the
commentaries, but it obviously does not capture their full
import. Many commentators’ points fall into more than
one of our categories. For example, if you believe that
adults’ representations of the positive integers involve equiv-
alence relations on sets of objects, then you presumably
think that the starting point for understanding numbers is
the ability to represent sets, and that the route from early
to mature representations takes sets into equivalence
classes of these sets. The likely There carries implications
for Here and for the route between them. Our purpose is
only to indicate the relative emphasis of the critiques, and
we have located them in Table R1 at the position where
we believe their points are most telling. Within each of the
three groups in Table R1, we have also ordered the com-
mentaries roughly from those taking more conservative
approaches (i.e., defending current theories) to those adopt-
ing novel proposals. This ordering suffers from the usual
problem of having to collapse dimensions, and we hope
readers won’t take our listing as more than an outline.

R2. Clarifications

Before we go through the three substantive groups of com-
mentaries in Table R1, we would first like to deal with
some misperceptions about our project. These are all

interrelated and are likely due to the sketchiness of the
theory we tentatively offered in section 5. Several com-
mentators (Mix; Muldoon et al.; Noël et al.; Sophian)
take us to believe that any developmental account (or
theory of learning) of the positive integers is futile;
instead, knowledge of the positive integers is innate,
much like knowledge of universal grammar. Other com-
mentators (Carey; Mix) incorrectly attribute to us a view
in which knowledge of the integers is based on verbal
counting or enumerating objects. A third group
(Barner; Cowan; Morris & Masnick; Muldoon et al.)
seem to think we are evading a proper developmental
account by uncritically accepting proposals from mathe-
maticians and philosophers about the integers and by
unfairly criticizing psychological theories if they fail to
conform to these proposals.

R2.1. Assumptions about development and innateness

Some commentators take us to be advocating a nativist
view of the integers, and they argue that anyone who has
seriously studied the development of number concepts
knows that children’s progress is painfully slow and com-
plicated, a struggle that is inconsistent with the triggering
of an innate schema. We are not claiming, however, that
people are born with an innate schema for the positive
integers. Although this is possible, our approach is consist-
ent with children gradually acquiring such a schema from
more primitive components. In fact, we thought we were
pretty explicit about this: “[Children] therefore do not
start out with a schema for natural numbers in the sense
in which an undergraduate who has just learned the
axioms of set theory has a schema for set theory. Instead,
children gradually acquire the information they need to
understand the meanings of numbers” (target article,
sect. 5.2, para. 1). Our negative thesis is that children
cannot project these meanings from their experience
grouping or enumerating physical objects, but this does
not mean they do not learn them at all. We welcome devel-
opmental theories of how children learn the positive inte-
gers, but these theories won’t get off the ground if they
start with the wrong components.

Of course, something has to be innate in order for chil-
dren to construct number schemas. In section 5.2 we
suggested as starting points the concepts of a mapping
and of uniqueness (among other concepts), because
these would allow children to capture the structure of
the positive integers (a unique initial element, a unique
new element following each given element, and so
forth). Children could also use these primitives to frame
other types of structure, such as circular lists, partial
orders, or finite linear lists (as Le Corre observes), but
they could choose the correct structure through top-
down, inference-to-the-best-explanation for arithmetic
properties. Our suggestion could be completely off
base – to our knowledge, no existing developmental
evidence bears on it – but, contrary to Noël et al., it
does not commit us to denying the gradual evolution of
number concepts either in cultural history or in children.
Again, we thought we were explicit about this: “In addition
to the built-in aspects, however, children must still assem-
ble the schematic or structural information that is specific
to a domain of mathematics. . . . We typically expect chil-
dren to acquire abilities such as these in a measured way
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that depends in part on their exposure to the key infor-
mation” (sect. 5.2, para. 3).

R2.2. Assumptions about counting, enumerating, and
modeling

Nor are we claiming, as Mix believes we are, that children
learn the integers via knowledge of the numeral system
(what we called “advanced counting”). As we mentioned
in section 3.2.2, (para. 2) “we think it more likely that chil-
dren learn an underlying set of principles that facilitates
both advanced counting and the concept of natural
number.” Along related lines, Carey defends her theory
of math learning by claiming that:

the mastery of simple counting is a necessary prerequisite for
the mastery of complex counting, which Rips et al. agree is
likely to be a necessary part of acquiring the math schema of
natural number. The mastery of simple counting draws on
the resources of Figure 1 (plus others), and, in this sense,
these structures are all part of the precursors of natural
number.

However, we don’t go along with this trajectory or with
this description of our views. Carey misdescribes our
account by ignoring our definitions of simple and
advanced counting in section 1.1. Simple counting “con-
sists of just reciting the number sequence to some fixed
numeral, for example, ‘ten’ or ‘one hundred’” (sect. 1.1,
para. 2), and no one’s theory implicates the Figure 1 com-
ponents in this kind of recitation. Second, “advanced
counting is the ability to get from any numeral ‘n’ to its suc-
cessor ‘nþ 1’ in some system of numerals for the natural
numbers” (sect. 1.1, para. 2). Although simple counting
may be necessary for advanced counting, neither draws
on the components of Figure 1. Third, as we just noted,
our view does not commit us to holding that advanced
counting is a necessary part of acquiring the integers. In
short, there is no connection in our account between the
enumeration skills exhibited in Figure 1 and children’s
later knowledge of numbers. This is a good thing,
because as far as we can see, no such connection exists.

Carey also believes that “the big mistake Rips et al.
make is methodological: They miss the fact that modeling
activities can give placeholder structures meaning, even if
in the end the structures involved in these modeling pro-
cesses, such as the schemata of Figure 1, are part of an
acquisition ladder that is not essential to the conceptual
role constructed.” Carey’s “placeholder structure” is
initially the simple count list we just mentioned (e.g., the
sequence of numerals from “one” to “nine”), and the criti-
cal gap in her theory is that she provides no explanation of
how enriching this structure by modeling (or other means)
can give rise to the correct structure of the integers. The
trouble is that the initial placeholder structure is a finite
list, whereas the structure of the integers is a (particular
type of) infinite list. Using the finite list to model the
number of objects in a collection, for example, might
motivate the search for alternative models, but it does
not necessarily provide the right one. Of course, once
you have the right structure – the structure of the positive
integers – further modeling can be useful in establishing
applications, as we describe in section R6. But the
enhancement that these applications provide is not part
of the meaning of the integers, as that meaning is
already inherent in the structure. Numbers obviously

have many uses, from figuring out the distance to
Omaha, to calculating change from a $20 bill, to labeling
house addresses. All these uses enrich the structure of
the numbers, but they do not determine their meaning.

R2.3. Assumptions about mathematics and psychology

In describing what children eventually need to know about
the integers, we relied on the standard Dedekind-Peano
analysis. Mathematics and philosophy of math are
helpful in this respect by providing a clear description of
the properties of mathematical systems. Unlike Morris
& Masnick, we think it extremely unlikely that adults
could possess the intuitions and abilities they have in arith-
metic unless they possess a concept of the integers that
satisfies the requirements of analyses like Dedekind’s or
Frege’s. No one, we hope, would set out to investigate
kids’ concept of prime numbers without taking into
account the relevant mathematical definition (i.e., a posi-
tive integer evenly divisible only by itself and 1), and it is
unclear why the same should not be true for kids’ concepts
of the positive integers themselves. We tried to emphasize,
however, that this does not mean these concepts are iden-
tical to their formal mathematical definitions. What the
axioms impose are constraints that a representation of
the integers has to satisfy.

Moreover, we do not believe our use of these analyses
violates any methodological strictures from the psychologi-
cal side. Barner writes,

Rips et al.’s general thesis is that knowledge of natural number
is defined in terms of an inferential system, and that therefore
developmentalists should focus their efforts on evaluating how
children come to manipulate numbers as syntactic objects,
independent of their particular denotations. Stipulating that
this particular knowledge should act as a metric of competence,
however, is entirely arbitrary, and unprecedented in develop-
mental psychology.

But we are not claiming that representations of numbers
have a purely syntactic role. What we are suggesting is that
rival theories may be wrong in supposing that the referents
of numerals are sets of sets of physical objects (e.g., that
“three” represents the set of all three-membered sets of
physical objects), not that they have no referents at all.
We also see nothing arbitrary in thinking that people’s rep-
resentations of the integers have to ensure that they func-
tion correctly in arithmetic.2 Cowan similarly suggests
that relying on the philosophy of mathematics is unpsycho-
logical because philosophers disagree among themselves
about math foundations and provide definitions that are
not “operationalizable.”3 However, although philosophers
of mathematics differ (just as psychologists do) about the
underlying nature of mathematics, we know of no
serious disagreement about the correctness of the Dede-
kind-Peano axioms. We are also unconvinced that “opera-
tionalizing” mathematically or philosophically inspired
theories is any more problematic than doing the same
for other psychological theories. In short, although we
are taking a novel approach to the development of math,
the approach does not violate any well-grounded meth-
odological principles within cognitive or developmental
psychology.
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R3. Bases for numerical concepts

We proposed that psychologists might be looking in the
wrong place for the origins of knowledge of the integers.
Instead of beginning with representations geared for phys-
ical objects, children may start from primitives that are
more inherently mathematical. However, many of our
commentators believe that we have not considered care-
fully enough the full range of possible initial represen-
tations. These commentaries seem to cluster in roughly
three groups: (1) those that defend the traditional propo-
sals about children’s starting points, (2) those that take a
structural approach closer to our own, and (3) those that
propose novel representations.

R3.1. Magnitudes and cardinalities

As we predicted, several commentators think we are
wrong to doubt that enumerating objects plays a direct
role in number acquisition, and they have attempted to
provide evidence for such a connection. Adults spend a
lot of time getting children to connect the numeral “2”
to pictures of pairs of pizzas, “4” to quartets of trees, and
so on, with the hope that this will advance the children’s
knowledge of numbers. Assertions about cardinality are
preschool teachers’ most frequent use of numbers (e.g.,
“There are five new blocks in the block area”), far more
frequent than use in calculations (Ehrlich 2007). How
could it be that such efforts make no contact with later
math knowledge?

Traditional theories assume that infants represent the
cardinality of groups of objects by means of continuous
internal magnitudes, discrete representations of individual
objects, internal sets of these objects, or some combination
of these. Debates among developmentalists concern what
role (if any) each of these representations plays in promot-
ing later math concepts, and traces of this debate appear in
some of the commentaries. For example, Le Corre and
Carey (2007) believe that magnitudes play no role in
acquiring principles for enumerating objects, including
Principle (3), repeated here:

(3) For any count word “n,” the next count word “s(n)” in the
count sequence refers to the cardinality (nþ 1) obtained by
adding one element to collections whose cardinality is
denoted by “n.”

Barth, however, thinks Le Corre and Carey’s (2007)
evidence is not decisive, and Carey and Le Corre them-
selves allow a role for magnitudes in determining the rela-
tive cardinality of collections containing more than six
items (see also Le Corre 2005). Because we are skeptical
about the role that all such representations play in under-
standing the integers, we won’t dwell on the debate about
magnitudes in particular. For reasons that we give in
section 3.2.2 of our article (and in more detail in Rips
et al. 2006; 2008), even if magnitudes are involved in
acquiring Principle (3), this principle is not sufficient for
understanding the integers. Similarly, Le Corre’s (2005)
experiment shows at most that magnitudes help children
grasp the relative cardinality of small collections, not the
relative ordering of integers. We know that 3,491 is less
than 3,492, but this is far beyond the reach of the magni-
tude system. Although magnitudes might conceivably be a
catalyst for learning integer order, they are not constitutive

unless there is a reasonable story about how people trans-
form magnitudes into integers.4

Our point about cardinality is that children’s ability to
enumerate two pizzas or to use sentences like “Two
pizzas are on the table” does not require the children to
use “two” to refer to an integer, as such sentences are
expressible without reference to numbers. This is the
point that logical paraphrases, such as Proposition (4) in
our article, drive home. Let us call the use of numerals
to refer to small cardinalities of physical objects “c-use”
and the use of numerals to refer to integers as “i-use.”
Then our point is that the ability to engage in c-use does
not determine whether children are capable of i-use. It
is possible that mastering c-use in phrases such as “two
pizzas” is causally necessary for acquiring the concept of
the integer two, but we know of no compelling evidence
that this is so. The fact that c-use emerges before i-use
in children (as Barner and Le Corre assert) is not good
evidence on this point, as the prior appearance of the
former could be due to c-use’s greater practicality, simpli-
city, concreteness, frequency in caregivers’ speech, and
many other factors. Much the same is true for the prior
historical appearance of terms for cardinalities. As Read
points out, the two can coexist in the same culture as inde-
pendent systems.

Is there any empirical evidence for a causal-constitutive
link between the use of numerals for cardinalities and their
use for integers? Lourenco & Levine call our attention to
several recent studies that suggest that early understand-
ing or exposure to c-uses may influence children’s later
math abilities. Two of these studies (Ehrlich 2007 and
Klibanoff et al. 2006) show that the amount of time pre-
school teachers talk about numbers (predominantly in
c-uses) influences their students’ math improvement
during that preschool year. Two others (Denton & West
2002 and Duncan et al. 2007) analyze large-scale studies
linking children’s math skills when they enter kindergarten
to their later math performance in grade school. None of
these studies, however, establishes that c-use causally
influences i-use (nor were they designed to do so). The
preschool studies are powerless in this respect because
the investigators assessed the preschoolers’ math improve-
ment largely in terms of c-uses; i-uses were never tested.
In Klibanoff et al., a particular task asked students to
“point to the one that has more” for a display containing
seven dots and five dots; another showed students a card
with the numeral “2” on it and asked, “Which one of
these goes with this one?” for a display containing one to
four dots. A third task asked children to “point to four”
for a display containing two to five objects. Although one
additional task asked for a calculation, it was also
phrased in terms of c-use, rather than i-use (“Johnny has
one apple, and his mommy gives him one more. Point to
how many apples Johnny has now,” where the display con-
tained pictures of one to four apples). Ehrlich used a stan-
dardized test of math achievement (Ginsburg & Baroody
2004), but according to Klibanoff et al., this test had a
high degree of overlap with their own.5 What these
studies show, then, is that teachers’ number talk influences
pupils’ c-performance, not necessarily their understanding
of integers.

The large-scale math studies are no more helpful in
showing that c-use directly affects i-use. Initial performance
in these studies comes from beginning kindergartners
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(not preschoolers) whose i-abilities may already be in
place, and the investigators do not attempt to break out
the types of math skills that influence later performance.
In fact, Duncan et al. (2007) report that math achievement
at the beginning of kindergarten is not only correlated with
later math skills, but also has a nearly equal correlation with
later language skills, such as reading. This suggests that
whatever the initial math achievement tests are tapping,
it is likely to be considerably more general than
mathematics.

R3.2. Structures and principles

We think psychologists should take more seriously the idea
that the meaning of an integer is its position within the
appropriate structure, and we are therefore sympathetic
to the commentators who see structures or principles
as primary. Like Gardiner, for example, we believe
sequences are fundamental, but of course, the sequence
of integers differs in its properties from the sequence of
notes in a musical scale (with which Gardiner is con-
cerned), letters in the alphabet, or days of the week.
Appreciating that one element follows another is not suffi-
cient for understanding the integers, but at least it is poss-
ible to see how adding further constraints could lead to the
right destination.

Along somewhat similar lines, Muldoon et al. and
Sophian suggest that concepts of equivalence and nonequi-
valence (along with the concept of a unit) may provide a
developmental basis for the integers. The notion presum-
ably is that one-to-one equivalence between sets provides
a criterion for whether the sets have the same number of
elements, an idea sometimes called “Hume’s principle.”
We ignored this possibility in our article mainly because of
Gelman and Gallistel’s arguments that children do not use
Hume’s principle in determining equality (i.e., same cardin-
ality); instead, they enumerate both sets to see whether they
contain the same total:

Young children, however, seem clearly to prefer (if not
require) that decisions about the equivalence or nonequiva-
lence of numerosities be based on the identity or nonidentity
of their numerical representations rather than on the possi-
bility of establishing a one-to-one correspondence between
them. (Gelman & Gallistel 1978, p. 163)

According to this view, equivalence depends on cardin-
ality rather than the other way round.

Of course, as Gelman reminds us, her theory has always
insisted that principles of arithmetic underlie children’s
ability to determine cardinality. In particular, one-one
matching plays a role in enumerating sets, since children
have to match numerals to the objects in the sets in
order to get a correct total. This is Gelman and Gallistel’s
(1978) “One-One Principle.” However, Gelman and
Gallistel believe that this numeral-to-object matching is
special – isolated from more general reasoning about
equality:

From a logical point of view, the child’s procedure for deciding
numerical equivalence depends on the fact that the numeros-
ities of both sets can be placed in a relation of one-to-one
equivalence with the same set of counting tags. But the child
does not normally take cognizance of the transitivity of one-
to-one correspondence. He ignores or is indifferent to the
fact that the cardinal numerons [i.e., mental count tags] repre-
senting two equally numerous sets are identical precisely

because both sets have been placed in one-to-one correspon-
dence with a count sequence that terminates with that cardinal
numeron. (Gelman & Gallistel 1978, pp. 198–99)

It is possible, however, that Muldoon et al. and
Sophian are right and that Gelman and Gallistel’s con-
clusion should be revisited. Both Decock and Pietroski
& Lidz point out that recent work in the foundations of
mathematics shows that Hume’s principle can serve as
the basis for arithmetic (e.g., as an alternative to the Dede-
kind-Peano axioms), and an early appreciation of this prin-
ciple could thus provide the right starting place for later
mathematics. This is a tempting point of view, and we
return to it in section R5.

R3.3. New cognitive starting points

A third set of commentators in Table R1-A propose a role
for initial representations that we did not consider in our
article and that may have properties closer to those of
the integers. All these representations, however, still lack
some of the integers’ essential properties and therefore
require additional learning to take up the slack. Some of
these representations are simply variations on magnitu-
des – for example, neurons tuned approximately to
specific cardinalities (Fias & Verguts) or spatial associ-
ations of numbers, similar to a number line (Fischer &
Mills). Neither is able to represent the precise value of
an integer but only the value plus or minus some
amount. The problem with these representations is, in
this respect, the same as that for magnitude formulations:
There is no obvious method to get from them to mature
integer concepts. Fias & Verguts assume that language is
able to produce this shift, but they don’t explain how this
happens or why this proposal does not succumb to the dif-
ficulties pointed out by Gelman and Butterworth (2005),
Laurence and Margolis (2005), and us.

Other commentators propose starting points that are
genuinely different from magnitudes. For example,
Hintzman suggests that retrieval of a memory trace
creates a further memory trace that includes the first as a
component; retrieval of this new trace creates, in turn, a
third trace that embeds the first two, and so on. This struc-
ture is similar to the recursive representation for “3” that we
presented as a tree diagram in section 3.2.1 (see Fig. 2) and
to Dedekind’s (1888/1963) famous attempt to prove that
infinite systems exist. However, aspects of long-term
memory impose limits on people’s ability to resolve these
degrees of embedding (as Hintzman acknowledges),
whereas there is no such limit on our ability to deal with
the positive integers. We can think about 3,491, but in
doing so we do not represent it as a memory trace 3,491
levels deep. So children would still need a distinct rep-
resentation of the integers and a means to learn this rep-
resentation from the memory traces. Similarly, finger
counting (see Andres et al.) would be a fine basis for the
integers if only people had infinite fingers.

R4. Bridges from early to mature numerical
concepts

Mental magnitudes, object files, internal sets, number
lines, embedded memory traces, fingers, and other pro-
posed representations have some properties in common
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with the integers, and some not in common. If children
had a way to learn the integers from these representations,
then there would be no need for the top-down approach
that we believe is more likely. However, our review of pro-
posals about such learning turned up no possibilities that
did not appear to pull a rabbit out of a hat, where the
rabbit in question is usually the infinite number or the dis-
creteness of the integers. The typical strategy in these pro-
posals is that if a representation lacks an essential integer
property, then combine it with another representation
that has that property. Mental magnitudes are not discrete,
for example, but there are infinitely many of them. The
initial members of the simple count list (“one,” “two,” . . .,
“ten”) are not infinite, but they are discrete. So perhaps
by combining magnitudes with simple counting, children
could learn the integers. This combination strategy is
tricky, however, because the offending properties do not
automatically disappear. If you combine “one” with a fuzzy
magnitude, “two” with a larger, fuzzier magnitude, and so
on, why don’t terms like “four” end up meaning several,
rather than exactly four? When you reach the end of your
(small finite) count list, what gets paired with the next
fuzzy magnitude? “Lots”?

Our commentators adopt a variety of responses to this
problem. One is to retrench, for example, by claiming
that the learning proposal deals only with “one” through
“nine,” not with the entire set of positive integers.
A second response is to continue to apply the combination
strategy by adding further components. A third is to
recruit some external factor, such as schooling or neural
mechanisms, to reinforce the right properties and to
squelch the wrong ones. Let us see if any of these maneu-
vers helps.

R4.1. Retrenchment

We were hoping for an answer to the question, “How do
children learn the positive integers?” where this is the
set of numbers whose characteristics we defined in
section 1.1 of the target article. We sometimes phrased
this question, “How do children learn the concept
of the positive integers (or the concept POSITIVE
INTEGER)?” meaning a mental representation of the rel-
evant set (i.e., the set of all and only the positive integers).
This question perfectly parallels other questions that
developmental psychologists ask about children’s learning,
such as how they learn the concept of cows or tables (or
the concept COW or TABLE). In criticizing proposed
learning procedures for the integers, we pointed to prop-
erties that these procedures failed to capture (e.g., the fact
that there are infinitely many integers), and we concluded
that the procedures were unable to give a correct answer
to our question.

Sarnecka, however, believes we have misdirected these
criticisms, as the learning procedures were never meant
to handle the concepts we singled out. According to
Sarnecka, properties of the positive integers – such as
the property of there being infinitely many of them, or
the property that for any two integers, x and y, xþ y ¼ yþ
x – are parts of “meta-numerical knowledge,” and chil-
dren learn them by other means. The procedures in ques-
tion only learn the meanings of specific integers, such as 7,
which Sarnecka believes are cardinalities. Although these
procedures capture concepts of particular positive

integers (“numerical knowledge”), they are not supposed
to capture the concept of the positive integers (“meta-
numerical knowledge”), and Sarnecka thinks we have
run the two together. This defense, however, is exactly
like the claim that when psychologists investigate how chil-
dren learn the concept of cows (or the concept
COW) – for example, how children learn that all cows
have four stomachs – they are actually investigating
“meta-bovine” knowledge. By implication, this is second-
ary knowledge, and what the psychologists should be
studying is how children learn the concept of Bossie or
Buttercup, which is object-level bovine knowledge.

There is obviously a distinction between concepts of
individual items like 7 or Bossie, and concepts of cat-
egories, like integers or cows, and it is fine to take as
one’s mission the study of concepts of individual integers
(though we do not recommend trying to study all of
them one at a time). So what is the scope of the learning
procedure that Sarnecka is proposing? A first approxi-
mation is “we are interested in cardinalities that are (a)
bigger than 4 (and thus too big for each individual to be
represented in parallel), and (b) exact (and thus too fine-
grained to be represented by the analog magnitude
system),” as Sarnecka writes. This sounds as if the learning
procedure is good for all integers greater than 4, which is
surely how most people read the original proposals (e.g.,
Carey 2004; Carey & Sarnecka 2006). The arguments in
section 3 of our target article (given in more detail in
Rips et al. 2006; 2008) show, however, that the procedure
is useless outside the list of numerals the child currently
knows (say, “one” through “nine”). And, in fact, Sarnecka
now states that what the induction procedure actually
yields is: “‘five’ means 1 more than 4; ‘six’ means 1 more
than ‘five’; [. . .]; ‘nine’ means 1 more than ‘eight.’ ” Full
stop. As we’ve already mentioned, for small numerals
like these and for the cardinality uses with which Sarnecka
is concerned (e.g., “seven pencils”), no conclusions can be
reached about whether children have representations of
the corresponding integers (even the concept SEVEN).
(See sect. 3.3 of our article for our reasoning about this.)
Thus, Sarnecka’s hypothesis fails on its own terms. That
is why general statements about the integers are import-
ant: They are more likely to require concepts of the
integers themselves, since they explicitly quantify over
the integers. Carey asserts that the bootstrapping
process that gets children to “nine” is “only one of
several that eventually result in the capacity for represent-
ing natural number,” but she provides no details on what
these further procedures might be. We don’t mean to dis-
parage children’s achievement in getting from “four” to
“nine” (or investigators’ achievement in explaining how
they do it), but this leaves unanswered our original ques-
tion of how children learn the concept of the positive
integers.6

Martins-Mourao & Karmiloff-Smith’s proposal is
similar to Carey and Sarnecka’s (2006) theory in supposing
that children learn the integers by coordinating methods
for enumerating collections with their knowledge of the
numerals. (For Martins-Mourao & Karmiloff-Smith, the
latter knowledge includes understanding the part-whole
relations that govern the numerals’ place-value system.)
We agree that children eventually have to make these
connections, but we are waiting for an account of how
the learning takes place. The systems are supposed to
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develop in parallel, but it is unclear why this parallel devel-
opment converges on the correct structure (the structure
of the positive integers), rather than on something quite
bizarre: for example, a structure that is like the integers
up to the last term in the child’s current count list – such
as, “nine” – and then circles around from “ten” to “eleven”
onward through to “nineteen” and then back to “ten” (see
Fig. 1 of Rips et al. 2008).

R4.2. Numbers by combination and abstraction

We have no doubt that children reach the integers by a
complex route. But merely acknowledging this complexity
(or the host of possible influences on this process) should
not be confused with a theory. It is possible that the inte-
gers emerge “from within a complex, ever-shifting, multi-
factorial system” (to use Mix’s phrase), but so far we have
not seen even a single persuasive theory of how this emer-
gence takes place. Suppose one type of precursor rep-
resentation has properties p1, p2, p3, and p4, and a
second type of precursor has properties p3, p4, p5, and
p6. We might try to combine the properties of the two rep-
resentations to get something that neither can provide. For
example, we could try taking the intersection of the prop-
erty sets (i.e., p3 and p4) in the hope that intersection will
eliminate possibly offending properties (e.g., p1 might be
fuzziness in the case of magnitudes). However, if each
representation’s resources were initially insufficient (e.g.,
because magnitudes lack discreteness), intersecting their
properties will not provide the missing ingredients. If
instead we take the union of their properties (i.e., p1-p6),
we are including those same offending properties that dis-
qualified them as number representations in the first place
(e.g., fuzziness, again). Apparently, we require a smarter
combination process than simple intersection or union,
but what is it?

The intersection idea is quite similar to the possibility
that children obtain the integers by abstracting over
initial representations. By abstracting over the bad prop-
erties and retaining the good ones, you might get a rep-
resentation more in line with the integers. For example,
if you start with collections of three physical objects and
abstract over them, then you might end up with a rep-
resentation of three. Muldoon et al. suggest that chil-
dren “disengage” numbers from small collections by
reflecting on “how the accuracy of the counting pro-
cedure both identifies ordinal relations and determines
the validity of the cardinal representation of the set.”
But this idea is very similar to the theory that children
learn the integers via Principle (3), and it is susceptible
to the same objections. Some additional process must
be involved in acquiring the integers. What process
could this be?

A related issue puzzles us about Núñez’s and Lakoff’s
commentaries (and about Lakoff & Núñez 2000). The
integers are supposed to be formed from

the isomorphic structure of four different source domains of
primary experiences. . . . Such isomorphism provides struc-
tural correspondences across the source domains of four
different grounding metaphors, yielding equivalent numerical
results. This understanding is not about a mere phrasing of
operations on physical objects, it is about the abstracted
numbers. (Quoted from Núñez’s commentary)

But we do not understand why piling on metaphors is
helpful, especially since there are many competing iso-
morphisms among complex domains. This does not
bother Núñez because he believes that clashing infer-
ences are commonplace in the history of mathematics
and are sometimes resolved and sometimes not. For chil-
dren, according to Núñez, “Similar, although more subtle,
top-down dynamics must be accounted for in explaining
the child’s ‘acquisition’ of the concept natural number.”
Just what might these be?

For Halberda & Feigenson, the fundamental bridging
concepts are sets and the membership relation that binds
individuals to sets. Gordon also proposes that “the indir-
ect process of trying to figure out the nature of objects
as objects and individuals within sets might be the catalyst
for arriving at these principles in the relatively informal
manner that we also acquire knowledge of other
domains of folk-science.” In our article, we considered a
related possibility – proposed by Carey and Sarnecka
(2006) – that internal sets might play a role in learning
the integers. According to this approach, children first
link the count terms “one,” “two,” and “three” to set-like
representations, such as {a}, {a,b}, {a,b,c}, and then infer
that increases in set size correlate with later terms in the
count list (i.e., Principle [3]).7 Carey and Sarnecka (2006),
Halberda & Feigenson, and Gordon might be right that
these internal sets are better representations for one, two,
and three than are magnitudes or object files; and Harberda
& Feigenson are careful to note that the notion of a set to
which they are appealing is not simply perceptual grouping.
However, these sets do not help in learning the full range of
integers for the reasons we spelled out in section 3 of the
target article.

As Halberda & Feigenson acknowledge, “limits on
parallel individuation or on working memory would there-
fore limit these set representations to small numbers of
items,” and we lack an adequate explanation of how
children could extend them to a full representation of
the integers. Of course, investigators could adopt a more
full-blooded notion of set, but these more complex
formulations run directly into the issue raised by Hodes:

Perhaps this emergence of set-theoretic concepts [is] built
upon some sort of ‘implicit conception’ [. . .] of set-hood with
older roots; but such a conception would also be sophisticated.
In places [. . .], [Rips et al.] seem to suggest that reputable psy-
chologists believe children to possess these concepts (or their
precursor conceptions)! I recommend that psychologists
concern themselves with the concept of being three-mem-
bered only when investigating the psychology of professional
mathematicians. (Hodes’s commentary)

R4.3. External factors

Cohen Kadosh & Walsh and Lakoff suggest that brain
processes help explain how children get from preliminary
representations to representations for the integers, but we
don’t see how transposing the problem from mind to brain
helps solve it. The very same difficulties about learning
that we discussed in our target article and in the preceding
subsection would seem to remain, whether the mechan-
isms in question are cognitive or neurological ones.
According to Cohen Kadosh & Walsh, although “[Rips
et al.] suggest why either magnitude or language might
not play a role in the formulation of natural number,
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they do not explain why general magnitude and language
cannot play an integrative role in shaping the understand-
ing of natural numbers” (emphasis in the original). Yet we
discuss exactly that possibility (in sect. 3.2.2) in connection
with Spelke’s (2000) similar proposal. Nor are we the only
ones who have questioned this idea; see Laurence and
Margolis (2005) and Leslie et al. (2007).

A suggestion that may be more helpful is that children
learn the integers through external guidance by parents
and teachers and through interaction with external
symbols, such as the Arabic numerals. And, of course,
mathematical knowledge does propagate through cultural
channels, not only from adults to children but also from
adults to other adults (De Millo et al. 1979). By the time
children have a good grip on the integers, they may well
be in kindergarten or early grade school; so school is a
likely source of their knowledge. Thus, Cowan, De
Cruz, Mix, Read, and others are probably correct in
thinking that schooling, parent-child interactions, and
other social-cultural factors are part of the story. As
these commentators would agree, however, children
cannot absorb this information unless they have enough
relevant background to understand it. There are no
current proposals about what this background is, which
cultural inputs are effective, and how the inputs transform
the background.

R5. End states

Older children and adults can correctly identify arithmetic
facts (e.g., that 4 – 3 ¼ 8,238 – 8,237) that are out of
range for internal magnitudes, object files, working-
memory object representations, internal sets, internal
number lines, finger counting, embedded memory
traces, and similar representations. Of course, in dealing
with these facts, people sometimes make mistakes, due
to the many factors that can interfere with their calcu-
lations. Nevertheless, people usually agree about arith-
metic facts, and this is very unlikely to be entirely a
result of chance or external influences (e.g., calculators,
charts and diagrams, or teachers and mathematicians),
though these external factors sometimes play a role.
People’s typically correct answers to arithmetic problems
therefore require psychological explanation.

R5.1. Probabilistic and diagrammatic representations

We think the likely explanation of adults’ arithmetic abil-
ities is that they know the structure of the integers and
the operations this structure supports. Perhaps people
represent this structure in a non-propositional format,
such as an internal diagram or model, as Morris &
Masnick suggest, but we know of no diagrammatic rep-
resentations that can handle the integers’ infinite extent.
Mental models are inadequate in this respect, because,
as Johnson-Laird notes:

Mental models can contain only a finite number of entities, but
we can reason about infinite quantities and sets of infinite size
such as the natural numbers. There is accordingly a distinction
between naı̈ve or intuitive reasoning, which is directly based
on mental models, and mathematical reasoning, which relies
on other mechanisms. (Johnson-Laird 1983, p. 444)

Morris & Masnick also think that magnitudes could
explain adults’ arithmetic, as long as we are willing to
accept a probabilistic rather than an algorithmic notion
of the integers. However, outputs of the magnitude
system are not just noisy or approximate. Their noise
increases with the size of the represented cardinality. It
is very unlikely that such a system could represent 8,238
as greater than 8,237 with greater than chance frequency,
even after many trials. On any one trial, the likelihood that
the system could represent 4 23 as equal to 8,238 28,237
is zero if each of these numbers is a magnitude. This isn’t
anything like adult performance.

R5.2. Rule use

Like most cognitive psychologists, we assume that adults
have internal principles or rules that govern arithmetic
operations. As Smith mentions, philosophers have chal-
lenged the idea that these internal rules alone can establish
the correctness of their operations (e.g., Kripke 1982;
Wittgenstein 1958). To account for the correctness (nor-
mativity and necessity) of math, we need to appeal to
factors other than a bare description of an individual’s
mental rules, and this idea has sometimes motivated the
view that internal representations and rules are irrelevant
to knowledge of mathematics: “As a body of knowledge,
mathematics is not something I know, you know, or any
individual knows: It is a part of our culture, our collective
possession” (Wilder 1950/1998, p. 188, emphasis in the
original text). Smith, however, does not seem to accept
such a thoroughgoing cultural approach. According to
him, “rule-meaning is dependent on rule-use. . . .
Further, rule-use is regulated by reasons” and “reasons
are investigable as normative facts.” Examples of these
investigable reasons are children’s statements that
certain facts “must be the case” or “have to be true.” We
agree about the psychological importance of justifications
of this kind, but we don’t see how they evade the skeptical
challenges that Smith is trying to address. Taking reasons,
rather than rules, as fundamental leaves exactly the same
problem about the correctness of the reasons. Children’s
statements that certain mathematical facts must be true
(or necessarily follow) do not certify their own correctness
any more than do descriptions of rules.

R5.3. Numerals

The integer schema that we are proposing captures the
structure of the integers, but it also captures the structure
of the numerals for those integers because the two are iso-
morphic. We called knowledge of the numerals “advanced
counting” and noted that it provides a better model for the
integers than groupings of physical objects. As we men-
tioned earlier, though, we did not propose that children
learn the integers through advanced counting. However,
Hodes raises a related possibility – one that we did not
consider – that most people never get beyond advanced
counting. He doubts that even middle-school students
have singular concepts for the integers, and notes that
the claim that they possess such concepts “would have to
distinguish such possession from possession of corre-
sponding metalinguistic concepts; for example, of Arabic
numerals.” Do older children and adults think that
“three” in a sentence like “Three is less than four” refers
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to a numeral rather than a number? If so, then advanced
counting might be the final stage in most people’s con-
ception of the integers. We know of no research on this
matter, but middle-school children learn several different
numeral systems, for example, Roman numerals, Arabic
numerals, scientific notation, and sometimes others. One pre-
algebra text (Wilcox 1990) explicitly compares Chinese,
Roman, Greek, and Arabic numerals. Unless the metaling-
uistic concept in question can encompass, for example,
“6,” “VI,” and “6 � 100,” then the simplest assumption
might be that older children have a concept of six that each
of these numerals represents.8

R5.4. Frege arithmetic

In proposing that children and adults have a schema for
the positive integers, we were not assuming that this
schema takes exactly the shape of the Dedekind-Peano
axioms. As we said in the target article, “we are not claim-
ing that the Dedekind-Peano axioms are the only ones that
are sufficient for producing the natural numbers or that
they are the most cognitively plausible for the job” (sect.
5.3.4). We do believe, however, that the integer schema
has to conform to these axioms in order to provide a
reasonable basis for people’s arithmetical reasoning.
Both Decock and Pietroski & Lidz point out, however,
that there is a route to such knowledge via Hume’s prin-
ciple (there are the same number of F’s as G’s if the F’s
and G’s can be paired one-to-one), and such a route
might be more psychologically plausible than the more
direct specification stated in the axioms. Hume’s principle,
however, is not sufficient for specifying the integers. It is
perfectly consistent, for example, with systems containing
only a finite set of numbers and with systems containing
cardinals beyond the natural numbers. To get the
natural numbers (or the positive integers), you also need
some additional definitions (as Pietroski & Lidz note),
including the following key definition of the natural
numbers: n is a natural number if and only if n is a
member of the successor series beginning with 0 (see,
e.g., Heck [2000] or Zalta [2008] for a formal definition;
further definitions are required for 0 and for the successor
relation). In fact, several of the Dedekind-Peano axioms,
including mathematical induction, follow from the defi-
nition (just given) of natural number alone, without the
need for Hume’s principle (see Rips & Asmuth [2007]
for a derivation).

The attraction of Hume’s principle (and Frege’s
theorem deriving the axioms of arithmetic from this prin-
ciple and the additional definitions) is presumably that it
starts with cardinality (same number of F’s as G’s),
rather than starting with a characterization of the natural
numbers. In a developmental context, we could take this
to mean that children could begin with one-to-one match-
ing between collections as indicating that the collections
have the same number of elements. However, as we
noted earlier, Gelman and Gallistel’s (1978) evidence on
this score is not encouraging. Decock believes that we
shouldn’t take this evidence too seriously, as it may
be biased by the training Western kids receive in enume-
rating objects. Maybe so. But even if we set aside the
empirical evidence, children’s concept of same number
via one-one matching is going to play a limited role in
their understanding of the natural numbers. Although

Decock suggests that “it seems more promising to start
with a psychological study of one-to-one correspondence
[. . .] than with Peano’s mathematical induction or commu-
tativity,” one-to-one correspondence does not allow an end
run around mathematical induction. Even children for
whom “same number” is defined in terms of one-one
matching are going to have to learn mathematical induc-
tion (or an equivalent) in some other way.9 In sum, it is
possible that children start with a concept of cardinality
as defined by one-one matching, learn further definitions
of natural number, zero, and successor; and then deduce
the correct properties of these numbers. However, this
route does not give cardinality the central role that devel-
opmentalists imagine.

Of course, Pietroski & Lidz are right that what is dedu-
cible from what depends on the background logic available
to children, but this doesn’t affect the current point. Four-
year-old logicists who start down the road of Frege’s
theorem armed with Hume’s principle and full second-
order logic still won’t be able to deduce the definition
for natural number, and we lack any account of how
they learn it. Moreover, none of the theories that we
examine in our article holds that children deduce the
defining properties of the integers; assumptions about
children’s logical sophistication are of no help to them.
All assume that children acquire this information by
some form of empirical induction. That’s the process we
don’t understand.

R6. Closing comments

In its instructions for replies, BBS explains that the com-
mentaries will create an expectation among readers that
“the other shoe will drop” for each of the commentators’
points. The purpose of the authors’ response is to drop
those shoes. We thus find ourselves having to release 31
shoes, calculating conservatively just one pair of shoes
per commentary. We have been throwing down shoes as
fast as we can, but we apologize for any mismatched or
undropped items. In surveying this array of often stylish
footwear, we find that most commentators seem to agree
with us that psychologists do not have a complete and con-
vincing story about how children get from their early
quantitative abilities to their later number concepts; but
the commentators differ on the remedy. The solutions
on offer here include beefing up infants’ concepts for
dealing with quantity, widening the range of factors that
could lead them to more mature concepts, revising the
nature of the mature concepts to put them within easier
reach, or some combination of these strategies.

The purpose of most of these proposals is to preserve
the link between early enumeration of physical objects
and later concepts of the integers. The intuition is strong
that enumeration must play some constitutive role in chil-
dren’s understanding of number, and the commentators
see us as too quick to discard it. For the reasons given in
sections R3 through R5 of this Response, however, we
do not find the commentators’ efforts to rescue enumer-
ation convincing. The fancier methods that some com-
mentators propose for early enumeration help reduce
the difficulties with previous methods, but they don’t elim-
inate them. The new learning procedures that other com-
mentators advance to bridge between enumeration and
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number are too vague to be helpful explanations. And
some of the alternative concepts of the integers give up
too many of the properties that adults recognize and use
in arithmetic.

Still, what is the connection between early enumeration
and knowledge of the integers? As Carey suggests, enu-
meration might be important in providing children with
a target for modeling efforts. According to our view,
however, knowledge of the integers precedes this model-
ing. Suppose children have in mind a set of possible struc-
tures that they have constructed from primitive relations
(e.g., x follows y). The structures might include linear
ones with a finite number of elements (useful for under-
standing the alphabet, for example); circular lists (useful
for understanding the days of the week); linear structures
with an initial element but no final element; linear ones
with no initial and no final element; and so on. Once chil-
dren have the notion of a linear list with an initial element
and no final one, they have the concept of the positive inte-
gers. But what purposes could this concept serve? The
children’s experience in enumerating collections suggests
a correlation between the structure of the count terms
and the structure of the cardinality of these collections,
but it does not settle the question of which structure is
the right one. However, evidence from several sources
may increase the likelihood that the integer sequence is
correct. Such sources may include many of those
suggested by the commentators: feedback from prelimi-
nary experiments; hints from teachers and parents; and
facts about the internal structure of the numerals. The
numerals denote the elements of the integer sequence,
and the elements have enumeration as one of their uses.

As important as it is to study such applications, the gist
of our positive proposal is that we also need to look directly
at the integer sequence’s internal properties. There are
already many elegant experiments on principles of enu-
meration and principles of arithmetic. Where are the
studies of the integers’ properties?

NOTES
1. In our article we actually used the term “natural number”

rather than “positive integer,” but since the natural numbers
are usually assumed to start with 0 rather than 1, “positive
integer” is more precise. In this reply, we occasionally use
“integer” for short, but we always mean the positive integers only.

2. Although we are not championing a purely “syntactic”
approach to positive integers, it is worth noticing that the type
of inferential theory Barner has in mind is hardly “unprece-
dented in developmental psychology.” There is a clear tradition
of such theories in the area of reasoning, running from Inhelder
and Piaget (1964) to Osherson (1974) and Braine and O’Brien
(1998).

3. Cowan also believes that philosophers of mathematics are
uninterested in “the development of the individual or even in
explaining the history of mathematics.” But, although this
might be true in some quarters, there are many counterexamples.
For philosophical studies of the history of mathematics, see
Kitcher (1983), Lakatos (1976), and Tappenden (2005), to
name just a few. For studies of people’s knowledge of math,
see Giaquinto (2001), Heck (2000), Maddy (2007), and, of
course, the commentaries from philosophers in this issue.

4. We also find somewhat puzzling the nature of Le Corre’s
claim. Magnitudes are not supposed to be part of the acquisition
of Principle (3), but Principle (3) suffices to determine the

relative ordering of collections, for example, that six fish are
less than ten fish. So why are magnitudes causally necessary for
the latter judgments? Le Corre (2005) thinks that children may
simply be unaware of this implication of Principle (3), but this
is hard to believe since relative ordering would seem to be (3)’s
main business. A more likely explanation, we suspect, is that Le
Corre’s test for whether children knew the principle – which
was whether they could tender six objects in response to the
request “Give me six” – was too lax, classifying children as under-
standing Principle (3) who in fact had a less general form of the
principle.

5. Moreover, Ehrlich’s (2007) results suggest that, although c-
uses dominate teachers’ number talk, they do not seem to have
improved math test scores much more than other number activi-
ties, such as naming number symbols, rote counting, or even
nominal use of numbers in addresses and phone numbers,
when adjustment is made for floor effects on their overall fre-
quency. Ehrlich also included in her study a questionnaire for
parents about home number activities. The results from this
questionnaire found that only one activity seemed to have a sig-
nificant effect on standardized test scores: “mentioned number
facts, such as ‘1þ 1 ¼ 2’ or ‘4 2 2 ¼ 2.’ ” The direction of causal-
ity is uncertain here, as Ehrlich notes, as superior students may
have been more likely to elicit these facts from their parents,
but it is of interest that this item is one of the few that reflects
i- rather than c-use. Moreover, a regression analysis showed
that when these home activities are taken into account, the
effect of teacher talk drops out (though this conclusion may
depend on the sample of children for whom parent question-
naires were available).

6. There is, however, a relevant difference between learning
the concept BOSSIE and learning the concept SEVEN. Sar-
necka is assuming that the meaning of SEVEN is a cardinality
and that it possesses this meaning in isolation from the meanings
of other integers, such as SIX or EIGHT. We doubt that this is
the best theory of integer meanings, however (see sect. 2 of the
target article). Instead, SEVEN may be a function of its relative
position in the integer sequence, and if so, SEVEN may depend
on INTEGER in a way that BOSSIE does not depend on COW.
We also disagree with Sarnecka’s assertion that “modular systems
are off the table as a possibility by the time the child learns ‘one.’ ”
If this were true, then it would be impossible for children to learn
such systems at all, and we very much doubt this is the case, given
their ability to learn other circular lists, such as the days of the
week, months of the year, terms for musical pitches, and so on
(see Rips et al. 2008 for more on this point).

7. No set theorist would use, for example, {a, b} as a represen-
tation for 2, since this representation does not guarantee that a
and b are distinct. The usual proposal for the cardinal 2 in set
theory is {Ø,{Ø}}, where Ø is the empty set. The {a, b} represen-
tation could be a problem for psychological accounts, depending
on how a and b are interpreted. For example, if a and b are vari-
ables that can be bound to any entities, then the theory needs
additional apparatus to ensure they are different. But we won’t
be fussy here and will simply assume that a and b denote distinct
physical objects.

8. Hodes also believes that our argument about learning the
integers versus learning a modular system is irrelevant because
modular counting “is not a way of counting on which Principle
(3) would be true.” We suspect this apparent disagreement is
simply due to an ambiguity about what is meant by “count
sequence” in (3). Our point about (3) is that at the time the
child is supposed to discover it (around age 4), his or her count
sequence consists of only a short initial subsequence of the inte-
gers (e.g., “one” through “nine”). Beyond “nine,” “s(n)” is com-
pletely unknown. Hence, at that point, (3) can’t fix the meaning
of the full set of count terms for the integers.

9. It is true, too, that one-one correspondence is also involved
in the statement of the Dedekind-Peano axioms, since these
axioms specify the successor function as one-to-one. Therefore,
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whether children start with the axioms themselves or with
Hume’s principle and the auxiliary definitions, one-one functions
will be in on the ground floor. This supports Decock’s suggestion
about the developmental importance of one-one relations. Our
present point, however, is that one-one functions are not suffi-
cient to derive the positive integers.
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