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Luttinger Liquid of Trimers in Fermi Gases with Unequal Masses
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We investigate one dimensional attractive Fermi gases in spin-dependent optical lattices. We show that
three-body bound states—*“trimers”’—exist as soon as the two tunneling rates are different. We calculate
the binding energy and the effective mass of a single trimer. We then show numerically that for finite and
commensurate densities ny = n;/2 an energy gap appears, implying that the gas is a one-component
Luttinger liquid of trimers with suppressed superfluid correlations. The boundaries of this novel phase are
given. We discuss experimental situations to test our predictions.
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Recent advances with ultracold atoms are opening new
prospects to address fundamental theoretical issues in di-
rect experiments [1]. A long standing problem is whether
superconductivity can coexist with the presence of an
unequal number of up and down fermions. An intriguing
possibility is the celebrated Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state [2], where the superconducting
order parameter becomes modulated in space. The experi-
mental search for polarized superfluids in atomic quantum
gases has so far been restricted to 3D configurations [3,4].
A new and promising direction is to confine atoms in
highly elongated traps, where the FFLO state is known to
be very robust [5-7], as confirmed by detailed numerical
simulations [8].

Another exciting topic that is currently being explored
experimentally is the pairing in Fermi gases with unequal
masses, like mixtures of °Li and °K near a heteronuclear
Feshbach resonance [9-11]. Alternatively, one can also
trap a two-component Fermi gas in a spin-dependent opti-
cal lattice so that the corresponding effective masses are
different [12]. Assuming that the transverse motion of
atoms is frozen by a strong radial confinement, the system
can then be described by the 1D asymmetric Fermi-
Hubbard [13-15] model:

Hy ==Y ty(cl c;p + He) + U gy, (1)
(ipo i
where U < 0 is the on-site attraction and ¢,, are the spin-
dependent tunneling rates. Here c;, annihilates a fermion
with spin o at site i and 7;, is the local density.

For t; = 0 Eq. (1) is a spinless version of the Falicov-
Kimball model [16], originally devised to explain metal-
insulator transition in mixed-valence materials, and the
corresponding ground state is known to feature a devil’s
staircase structure [17]. The model (1) has been recently
suggested to feature Bose-Einstein condensation of d-f
excitons with macroscopic polarization [18] and a sponta-
neous ferroelectric state [19].

For equal masses, | = f;, the exact (Bethe ansatz) solu-
tion shows that n-body bound states with n > 2 are gen-
erally forbidden [20]. When the tunneling rates are
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different, #; < 1;, the above model is no longer integrable
and many interesting questions arise: are three-body bound
states (trimers) allowed? What are their properties ? Can
trimers open an energy gap like pairs do? And if so, what
are the differences between the two gapped phases? The
purpose of this Letter is to provide an explicit answer to
these relevant questions. We show that there is formation of
three-body bound states of two heavy (]) fermions and one
light (1) fermion. We first find the regime where these
trimers are stable as a function of mass asymmetry and
attraction strength by solving the three-body problem. We
then use the density matrix renormalization group
(DMRG) method to show that at low but finite density
there exists a novel phase with a nonzero energy gap which
is a one-component Luttinger liquid of trimers, with ex-
ponentially suppressed superconducting FFLO correla-
tions. Finally, we calculate the boundaries of the trimer
phase in the grand canonical phase diagram. These results
are in agreement with the generic bosonization analysis of
Ref. [21] where the role of higher harmonics of the density
operator was elucidated. The trimers discussed here are a
cold atom analog of the trions recently observed in semi-
conductors [22]. Three-body bound states (though of dif-
ferent origin) have also been predicted to occur in three-
component Fermi gases [23]. In the following we set ; = 1
and assume #; < 1 without loss of generality.

Three-body problem.—We start by calculating the bind-
ing energy and the effective mass of the trimer. The
Schrodinger equation can be conveniently rewritten in
integral form by using Green functions. For the three-
body problem in a lattice one finds [24]:

™ dq Uf(q)

—n2m Rg(WRg(q)[E(k, q) — ET
where E(k, q) = €)(k) + €/(q) + (P — k — q), P being
the quasimomentum of the trimer and €,(k) =
2t,(1 — cosk) the energy dispersions of the two compo-
nents. Moreover Ry(q) = [1 + Ulg(g)]"/2, with
dp 1

27 Ek, p) — E

flk) = 2

I5(k) = (3
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Equation (2) can be considered as an eigenvalue problem
K - f = Af, where the energy F is fixed by the constraint
A = 1. We solve this equation numerically for zero quasi-
momentum P = 0. The binding energy E% of the trimer is
related to the total energy E by —E = E’ . + E’, where

pair

Eby = —2(1+ 1)) + /U + 4(1 + 1,)? is the binding en-

ergy of the constituent pair [25]. In Fig. 1 we plot the
binding energy of the trimer as a function of the mass
asymmetry 7 for increasing values of the attraction U.
We see that EY vanishes at the symmetric point 7, = 1, in
agreement with the Bethe ansatz solution [20]. As the mass
asymmetry increases the binding energy also increases
until it saturates at £y — 0. In this limit the function (3)
reduces to a constant I;(k) = 1/4/E(E — 4), implying that
Eq. (2) has solution of the form f(k) = sink. Substituting
this into Eq. (2) and integrating over momentum we find
E = —U?/(1 — U). This gives

2
1 v =42 VU2 + 4, )
in agreement with our numerical solution. In particular, for
infinitely strong attraction, Eq. (4) yields E; = 1, showing
that the trimer binding energy remains finite in contrast
with the pair binding energy which is instead divergent.
Indeed, when the heavy particles are at neighboring sites,
the light fermion can hop from one site to the other without
changing the interaction energy. Therefore the total energy
gain is at most equal to #. In the strong coupling limit,
|U| > 1, Eq. (2) can be solved by the ansatz f(k) =
sink/Rg(k) yielding E{(U = —o0) = (1; — 1)?, which is
shown in Fig. 1 with black line.

Etbr(ll = O) =

b
tr

FIG. 1 (color online). Solid lines: Binding energy E% of a
trimer (one light and two heavy fermions) as a function of the
hopping ratio #, for increasing values of the attraction strength
U = —2 (bottom), —4, —8, —oo calculated from the exact
solution of the three-body problem. Open circles represent
DMRG calculations in a chain of L = 100 sites. Inset: Inverse
effective mass of the trimer as a function of the hopping ratio 7,
for increasing values of the attraction strength U = —2 (top),
—4, —8 shown by solid lines. At the symmetric point 7, = I the
bound state disappears and the effective mass reduces to the sum
of the masses of constituents (dashed lines).

Let us now briefly discuss the effective mass M;. of the
trimer which is defined by 1/M;. = 9>E/dP? evaluated at
P = 0. The inverse effective mass is plotted in the inset of
Fig. 1 as a function of the hopping rate #; and for different
values of the attraction strength. We see that the trimer
becomes heavier as #; decreases or |U| increases. At the
breaking point, #; =1, the effective mass reduces to

(y/4(z; + 1)? + U* + 2)/41,, corresponding to the sum of

the masses of a pair [25], and of a heavy fermion. This
quantity is plotted in the inset of Fig. 1 with dashed lines.

Trimer gap.—We now turn our attention to the effects of
trimers at finite density. We first calculate the trimer gap,
namely, the energy needed to break a single trimer. This is
defined as

A, = _Llim [EL(Ny + 1, Ny + 2) + EL (N}, N))
—E,(N;+ LN+ 1) — E,(N, N, + )], (5)

where E; (N;, N)) is the ground state energy of a gas with
spin populations N;, N in a chain of size L. The limit in
Eq. (5) is taken assuming N, — oo with n, = N, /L being
fixed. The trimer gap (5) is the generalization of the
binding energy at finite density, with the reference state
being the many-body state (N;, N)) rather than the vacuum
(0, 0). We evaluate Eq. (5) numerically via DMRG tech-
nique on lattices of up to L = 160 sites with open bound-
ary conditions and perform careful finite-size scaling in
order to extract the thermodynamic limit behavior. For
equal masses, #; = 1, our results are consistent with A, =
0 for any concentration. For unequal masses, correspond-
ing to #; # 1, the trimer gap (5) is finite only when the two
concentrations are commensurate, namely n; = 2n;.
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FIG. 2 (color online). Trimer energy gap plotted versus density
ny of the heavy component (n; = n;/2) and for different values
of the attraction U = —2 (bottom) and U = —4. The mass
anisotropy is #) = 0.3. The gap A, reduces to the binding energy
E? at zero density (see arrows) and vanishes at a critical value of
the density. The data are obtained from finite-size scaling after
DMRG simulations with system sizes L = 80, 120, 160, assum-
ing a linear dependence in 1/L. In the inset we show the scaling
analysis for two different concentrations n; = 0.45 and n; = 0.6
with U = —4.
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Figure 2 shows typical results for A, at fixed #; = 0.3
and ny/ny = 2. For vanishing density the trimer gap re-
duces to the binding energy E%, shown in Fig. 2 by arrows.
As the density increases, A, decreases and eventually
vanishes at a critical concentration n) = nj"—in a sharp
contrast with the case of equal densities, n; = nj, where the
associated pairing gap is always positive for any filling. In
other words, the opening of the trimer gap is a nonpertur-
bative effect requiring finite coupling strength, or equiva-
lently, low enough densities. This is consistent with our
bosonization approach [21].

Correlation functions.—The opening of the trimer gap
drastically affects the ground state properties of the gas,
since correlation functions of all operators breaking trimers
fall off exponentially rather than algebraically. In particu-
lar, the superconducting correlations decay as

exp(—li — jl/$)

= cos(Qli = jI),  (6)

<c2}c21cjlcﬁ> o
where the decay length & o< A, !, Q = [kl — k| is the
FFLO momentum, and « is a nonuniversal number. Two-
point correlations (c;f[,c o) display similar behavior. In
Fig. 3 we explicitly check this prediction by showing the
superconducting correlations in the gapped (n; < n}") and
gapless () > n{") phases. We see that in the gapped phase
the typical FFLO modulation is preserved, as discussed in
Refs. [14,15], but quasi—long-range order is lost.

Phase diagram.—The presence of trimers and other
bound states induced by the mass asymmetry changes the
topology of the grand canonical phase diagram of the gas.
The latter is obtained by replacing the densities ny, | by two
new variables, corresponding to the mean chemical poten-
tial u = 9E/d(N; + Ny) and the effective magnetic field
h = dE/d(N; — N)), where E is the ground state energy.
The evolution of the overall shape of the phase diagram
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FIG. 3 (color online). Superconducting correlations as a func-
tion of the distance from the center of the chain. The upper curve
corresponds to n; = 0.7, where the trimer gap is zero, cf. Fig. 2.
The lower curve refers to low density n) = 0.3, where A, > 0.
The parameters used are U = —4, ) = 0.3, and L = 200 and the
densities are commensurate, ny = n;/2. Notice the change from
algebraic decay (upper curve) to exponential decay (lower
curve).

with changing #| has been presented in Ref. [15]. Here we
concentrate on the nontrivial changes due to the extra
bound states induced by the mass asymmetry, which
were not discussed previously. To that end we work at
fixed values of U and t;. We approximate the derivatives
by finite-difference formulas similar to Eq. (5), and obtain
the phase diagram shown in Fig. 4. The partially polarized
phase (PP) corresponds to configurations with imbalanced
spin populations (1 > n; > ny > 0). This phase is limited
from the right by the phase of equal densities (ED) (n; =
np) and from below by the fully polarized (FP) phase where
the minority component is absent (n; = 0) [26]. For equal
masses, #; = 1 the three phases meet at a single point. In
presence of n-body bound states with n > 2 this special
point splits into an extended line, corresponding to a direct
boundary between PP phase and vacuum. To see this,
suppose there exists a bound state made of p T fermions
and ¢ | fermions, where p and ¢ are non-negative integers.
Since the system density is zero, the Taylor expansion
E—o(p,q) =(p+qu+(p—q)h becomes exact,
yielding a straight line in the (A, w) plane associated to
the bound state. The true phase boundary w = ty,.(h)
with the vacuum is given by

L E—opg) —(p—qh
Myac = TN , @)
pq ptq

resulting in a piecewise straight line, cf. Fig. 4. While for
equal masses the only states entering (7) are a single
| -fermion and a pair (p =0, ¢g=1and p =g =1, re-
spectively), for 1| # 1 additional bound states appear, e.g.,
trimers (p = 1, ¢ = 2), quadrimers (p = 1, g = 3), etc.—
leading to an extended PP-vacuum boundary, as shown in

FP vacuum
-3 1 1 1

-4 -3 -2 -1 0

FIG. 4 (color online). Phase diagram for unequal masses ob-
tained from DMRG simulations. Here #; = 0.3 and U = —4.
The novel line boundary between partially polarized phase and
vacuum is a consequence of the existence of n-body bound states
with n > 2. Inset: a zoom-in of the low density region of the PP
phase. The locus of commensurate densities 7; = n)/2 corre-
sponds to the shaded area. For clarity we only display the 7 <0
part of the phase diagram corresponding to a majority of heavy
(}) fermions. The i > 0 side is immediately obtained by the
particle-hole transformation u — —u + U, h — —h.
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Fig. 4. It is also instructive to consider the locus of n; =
n;/2 on the phase diagram. At low density (n; < nj"), the
trimer gap is nonzero and the commensurate densities
occupy a finite area of the (4, w) plane. At higher density
(ny > nf"), the energy gap closes and the locus shrinks to a

single line, as illustrated in the inset of Fig. 4. As the mass
asymmetry increases, the trimer phase grows in size.
Similar behavior is found for the gapped phases associated
to all other bound states (not shown in Fig. 4). We empha-
size that in all the simulations reported above we observed
a uniform ground state, apart from the usual Friedel oscil-
lations due to the open boundary conditions. Collapsed
phases occur for larger values of the ratio |U|/7; [14].
Relevance for experiments.—Let us finally discuss how
our predictions can be tested in experiments with trapped
Fermi gases. The presence of shallow harmonic traps
Vio(z) = mw?,z%/2 can be taken into account via local
density approximation, starting from the homogeneous
solution. Here m is the atom mass and w.,, the trapping
frequencies. In order to form trimers, we require 7,
hw., < Eb, T being the temperature of the gas. For in-
stance, consider a sample of °Li atoms in a lattice with
periodicity d = 250 nm and tunneling rates #, = 345 nK
and t; = 0.2¢;. Assuming U = —4¢;, from Fig. 1 we obtain
El = 0.34; = 104 nK, well within experimental reach.
The binding energy of trimers (Fig. 1) can be directly
measured by rf spectroscopy [27,28]. The effective mass
(inset in Fig. 1) can be obtained by measuring the fre-
quency of the dipole oscillations of the cloud [1]. For small
displacements around the equilibrium position, the kinetic

energy of trimers is quadratic, P?>/2M;., and the latter is

simply given by wg;, = \/(w% + 20])m/Mg. To enter the
trimer phase at finite density, the above condition becomes
more stringent, namely 7, hw,, = A,. Moreover both
components must be degenerate, implying T < Ep, Ep
where Er, are the Fermi energies in the absence of inter-
action. This sets a lower bound on the values of the
densities at the center of the trap. For the above choice of
parameters, the best tradeoff occurs around n)(0) =
2m4(0) ~ 0.3/d yielding T, hw,, =< 60 nK. The two spin
populations should be tuned close to the commensurate
point Ny = N,/2, otherwise phase separation in shells will
occur [6,7]. Finally, the suppression of the superconducting
correlations (Fig. 3), signaling the emergence of the trimer
phase, can in principle be detected using interferometric
techniques, as discussed in Ref. [29].

Concluding, we have shown that 1D attractive fermions
with unequal masses form trimers and other more exotic
bound states. Differently from pairs, these states can only
open a gap at low density or, equivalently, strong interac-
tions. In the gapped phase FFLO superconducting correla-
tions are exponentially suppressed. The properties of
trimers in vacuum and at finite densities are experimentally
accessible with ultracold atoms. The DMRG simulations
were performed using the ALPS libraries [30].
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