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Abstract 

 

In response to claims that the quality (and in particular linearity) of children’s mental 

representation of number acts as a constraint on number development, we carried out a 

longitudinal assessment of the relationships between number line estimation, counting, and 

mathematical abilities. Ninety-nine five-year-olds were tested on four occasions at three-

monthly intervals. Correlations between the three types of ability were evident, but while the 

quality of children’s estimations changed over time, and performance on the mathematical 

tasks improved over the same period, changes in one were not associated with changes in the 

other. In contrast to the earlier claims that the linearity of number representation is potentially 

a unique contributor to children’s mathematical development, the data suggest that this 

variable is not significantly privileged in its impact over and above simple procedural number 

skills. We propose that both early arithmetic success and estimating skill are bound closely to 

developments in counting ability. 
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Introduction 

The importance of understanding the development of mathematical cognition has long 

been recognized, both for the appreciation of the emergence of numerical skills and what it 

can tell us about cognitive development more generally. It is commonly accepted that 

awareness of computational processes alone cannot account for individual differences in 

numeracy, with much to be gained from insights about the detailed nature of the underlying 

conceptual representations. In pursuit of these insights, the increasingly influential number-

line estimation paradigm may offer crucial insights into the link between mental 

representations of number and numerical and mathematical development. In the present 

paper, we show that a longitudinal perspective on estimation and mathematics can offer 

valuable evidence that helps address a series of issues, including the developmental 

association between number line estimation and early arithmetic. 

Age-related changes in children’s mental representation of number 

On number-line estimation tasks children are asked to indicate the position of a target 

number on a blank number line (Booth & Siegler, 2006; Siegler, Thompson & Opfer, 2009; 

Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2010). By comparing the actual position of 

the target number to the position of the child’s estimate, researchers have begun to develop 

detailed models of how numbers are represented in the mind and what developmental 

changes take place in numerical scaling of these representations. 

Unsurprisingly, older children’s estimates are more accurate than those made by 

younger children (Booth & Siegler, 2006, 2008; Siegler & Booth, 2004). More interesting is 

the finding that the distribution of estimates conforms to a particular pattern of change, where 

the resulting estimation plots appear to shift from a logarithmic to linear profile as children 
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get older (Booth & Siegler, 2006, 2008; Siegler & Booth, 2004; Siegler & Opfer, 2003). The 

logarithmic-to-linear shift has been reported to take place among children who are between 5 

and 8 years old (Booth & Siegler, 2008). Moreover, this shift is not only age-related but also 

scale-dependent; estimations of number initially become more accurate and linear on smaller 

number line scales (e.g., 0-10), only later becoming more accurate and linear on larger scales 

(e.g., 0-100). Thus, children may behave as if a particular number lies either on a logarithmic 

or linear scale as a function of their age and the reference points that they refer to when 

making a judgement.  

Mental Representation of Number as a Constraint on Mathematical Ability 

Research has demonstrated that the linearity of numerical estimations correlates with 

standardised arithmetical tasks (Booth & Siegler, 2006; Muldoon, Simms, Towse, Menzies & 

Yue, 2011; Siegler & Booth, 2004) and simple addition tasks (Siegler & Mu, 2008). 

Furthermore, a causal link is supported by the findings of Siegler and Ramani (2009); 

children who played a simple board game where tokens were moved along a line of evenly 

spaced squares following the roll of a dice not only began to produce more linear estimations 

but also displayed improved arithmetic problem solving. The data converge on the idea that 

the number-line estimation task has the potential to be linked with key developmental issues, 

and is not just an abstract, laboratory paradigm.  

Evidence against close developmental ties between estimation and math ability has 

nonetheless recently emerged in a cross-cultural examination of estimation performance. 

Muldoon et al. (2011) matched UK and Chinese children on their math ability (as measured 

by scores on a standardized math test drawn from the British Ability Scales) by removing the 

lowest-scoring Chinese children. Crucially, removing the poorest math performers failed to 

produce significant changes in the linearity or accuracy of the remaining Chinese children’s 
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estimations, providing evidence that the two skills are independent. Of course, manipulating 

the sampling of children to identify developmental relationships is not the same as gathering 

longitudinal data, and so to address a number of key developmental issues we subsequently 

tested the children from the UK on a further three occasions across the school year and report 

our findings here.  

Both estimating and mathematical ability are yoked to counting proficiency 

Previous longitudinal studies have found developmental relationships between math 

ability and procedural counting (e.g., Jordan, Kaplan, Locuniak & Ramineni, 2007). Thus, 

progress in math ability appears linked to both estimating and counting proficiency. Two 

hypotheses emerge from this conclusion. The first is that children whose estimations display 

the greater linearity will outperform other children of the same age on mathematical tasks. 

The second is that the scale-dependency observed in estimating studies results from children 

drawing upon a linear mental representation when the number to be estimated lies within 

their counting range but referring to an intuitive, logarithmic representation for numbers 

beyond this range (Berteletti et al., 2010). This latter hypothesis has already been investigated 

by some (Ebersbach , Luwel, Frick, Onghena, & Verschaffel ,2008; Nuerk, Kaufman, 

Zoppoth, & Willmes, 2004) who maintain that the logarithmic profile observed in younger 

children’s estimations is really two separate linear functions, one (with a steep slope) for 

smaller numbers and another (with a slope close to zero) for larger numbers. According to 

this ‘bi-linear’ model of estimating, the position of the ‘break-point’ (i.e., the point at which 

the two slopes intersect) is related to the number range with which children are familiar 

(Moeller, Pixner, Kaufmann, & Nuerk, 2009).  

However, whilst there are important differences in theoretical accounts of the 

function(s) explaining estimation profiles, the picture to date is that (a) estimations become 



Estimation, counting and math 6 
 

more accurate and linear with age; (b) estimation performance is linked in some way to level 

of mathematical attainment; and (c) both estimating and math performance are yoked to 

counting ability. We use a longitudinal analysis to address the relationships between these 

three number domains. 

Aims of the Present Study 

The present longitudinal study set out to address three key issues. First, we measured 

changes in performance in estimation and math performance to identify the extent to which 

these skills change over the period of one school year and to examine the hypothesis that 

changes in one are associated with changes in the other. Thus far, only cross-sectional data 

have been used to consider math performance and age-related shifts from logarithmic to 

linear representations of number (e.g., Booth & Siegler, 2006; 2008). In using a longitudinal 

design, the data have the potential to reveal any similarities or differences in the trajectories 

of these two skills, and we use growth curve modelling to test the hypothesis that the two 

rates of change are linked.  

Secondly, we investigate the degree to which number line estimations provide a 

unique predictor of math ability, contrasting this with an alternative account that focuses on 

counting knowledge as a reliable predictor of arithmetical development. In a longitudinal 

analysis, kindergartner’s counting proficiency predicted the acquisition of basic arithmetical 

skills the following year (Aunio & Niemivirta, 2010). It is possible, of course, that counting 

ability and number line estimation skill both draw on a common representation of number. 

Using regression analysis we will assess whether counting and estimation skills make 

independent contributions to the variance in math ability.  

Thirdly, we test the claim that only numbers within a child’s counting range generates 

linear estimations on a number line (Ebersbach et al., 2008). If children’s counting 
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proficiency influences the way they space numbers on a mental number line, then children 

who can, for example,  count to 10 (or 20) should produce better estimations than children 

who cannot count to 10 (or 20); at least on 0-10 and 0-20 scales. Although preschoolers are 

likely to be familiar with numbers up to 10, it is rarely assumed that they will be competent 

with numbers above 10 when they begin school. Whilst some familiarity with the decade 

structure up to 100 is typically a goal for children in Year 1, more effort is put into 

introducing children to the numbers 11 to 20. Consequently, the inclusion of a 0-20 scale has 

the potential to capture changes in accuracy and linearity when estimating that might be 

‘hidden’ on the 0-100 scale due to the compression effect evident on larger scales. We also 

address the question of whether logarithmic estimation profiles are really bi-linear, with the 

two separate linear functions associated with numbers within and beyond children’s counting 

range. 

Method 

Participants 

Ninety-nine children were recruited through four primary schools in Edinburgh, 

Scotland for this and another study that compared children from the UK with children from 

China (see Muldoon et al., 2011). The mean age at Time 1 was 64 months (range 57-70 

months, 49 males, 50 females). All children spoke English as their first language and were 

taught under the same guidelines (the Scottish ‘Curriculum for Excellence’). 

Procedure 

Two female researchers visited schools on four occasions throughout the school year. 

The first testing session was in September (Time 1) with others following at 10-week 

intervals. Number line estimation measures were taken on all four visits, while counting and 
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math ability measures were taken only at Times 1, 2 and 4 due to constraints imposed by the 

school calendar. 

Children were tested individually in a quiet part of the school building, or at the back 

of the classroom and completed the following tasks in random order: 

[1] Number estimation tasks. Three number lines were used: 0-10, 0-20 and 0-100. Each line 

was 25 cm long, with 0 on the left end and either, 10, 20, or 100 on the right end, depending 

on the scale. Children were shown where the middle number on each scale (i.e., 5, 10 or 50) 

was positioned by the experimenter. Children were told that their task was to mark where 

they thought a specific number should be positioned on the number line with their pencil 

(these target numbers were positioned centrally, approximately 10 cm above the line, and 

verbalised by the researcher). The target numbers to be estimated were 1, 2, 3, 4, 6, 7, 8, and 

9 (on the 0-10 line); on the 0-20 line were 3, 4, 6, 8, 12, 14 and 17 (on the 0-20 line) and 3, 4, 

6, 8, 12, 14, 17, 18, 21, 24, 25, 29, 33, 39, 42, 48, 52, 57, 61, 72, 79, 81, 84, 90 and 96 (on the 

0-100 line). The presentation of the number lines was in the same order for all children, with 

the 0-10 line presented first, followed by the 0-20 line, and finally the 0-100 number line; 

however the presentation of specific trials was randomised.  

[2] Counting tasks. Children’s counting range can be assessed in at least two ways. One 

approach is to ask them to simply ‘count as high’ as they can (i.e., by reciting the number 

string). Accordingly, children were asked to count as high they could, unaided, in increments 

of one (hereafter referred to as ‘reciting’). Once the child made a mistake in their counting 

sequence the experimenter asked the child to stop and noted the number that they had 

reached. A second index of counting is a child’s ability to enumerate sets of items. Children 

were asked to count a row of 10 dots and a separate row of 20 dots. Children were recorded 
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as being successful or unsuccessful in each case (i.e., they had to count all 10/20 dots without 

making an error; hereafter referred to as ‘enumerating’). 

[3] Math ability tasks. Math ability was measured using the Early Number Concepts 

component of the British Ability Scales. This set of tests is designed for children between 2:6 

and 7:11 years of age. For reference purposes, the maths test comprises 24 items that assess 

various basic numerical competencies:  

1. Recognizing number names and numerals (e.g., “Point to the person who has 3 

boxes”) – 4 items. 

2. Identifying quantitative relationships (less than/more than/same as) (e.g., “Two of 

these people have the same number of boxes. Point to those two people”) – 5 items. 

3. Matching corresponding magnitudes (e.g., [Gesturing to a mixed 

array of small and large spades] “Show me the buckets that go with the little 

spades”) – 5 items. 

4. Matching sets of discontinuous quantity (e.g., [Pointing to the yellow ladybird with 

four dots] “Find the red ladybirds that go with this one.”) – 4 items. 

5. Solving basic addition and subtraction word problems (e.g., “John [shown clutching 

balloons in each hand] is going to give all his balloons to Lisa. How many will she 

have then?”) – 6 items. 

A raw score represents the number of correctly answered questions, which can then be 

converted into an ability score (this also accounts for question difficulty). For all analyses we 

used the ability score. 

Due to constraints in access to schools and the children attending them, it was not feasible to 

collect data on math ability at all four time points (only time points 1, 2, and 4). Since there 

was nothing in the estimation data to suggest that time point 3 shows unusual performance, 



Estimation, counting and math 10 
 

we do not feel this places a major constraint over the ability to analyse the relationship 

between number estimation and other numerical tasks. 

Derivation of performance 

We analysed the estimation data for changes in both linearity and accuracy (denoted 

by error). To establish the trend in children’s estimations both linear and logarithmic 

functions (R2
lin and R2

log) were fitted using the equations ‘y = slopex + b’ (linear function) 

and ‘y = clnx + b’ (logarithmic function). Error was calculated following the method used by 

Siegler and Booth (2004): 

Error = [(child’s estimate- number to be estimated)/number line scale] x 100 

For example, if the number to be estimated on the 0-10 number line was 6, but the 

child made a mark at the position that corresponds to 8, error would be calculated at 20 % for 

this number [i.e., (8-6)/10 x 100 = 20%].  

Results 

The study yielded a very large set of data and it is not feasible to describe in detail all 

possible analytic outcomes without compromising clarity. Accordingly, we focus on the three 

key issues in order. 

Key issue 1: Developmental associations between changes in children’s estimating and 

math ability 

A 4 x 3 repeated  measures ANOVA with Time (Time 1 to Time 4) and scale 

(Number Line; 0-10, 0-20 and 0-100) as factors and the fit of the linear function (R2
lin) as the 

dependent measure shows that linear fits improved over time, F(3, 276) = 16.87, p < .001, ηp
2 

=.16. There was also a main effect of Number Line, F(2, 184) = 454.28, p < .001, ηp
2 = .83, 
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with a less linear performance on the 0-10 relative to the 0-100 scale, F(1, 92) = 508.87, 

p<.001, ηp
2 = .85, and also a less linear performance on the  0-20 than the 0-100 scales, F(1, 

92) = 696.79, p < .001, ηp
2 = .88. There was also a significant interaction between Time and 

Number Line, F(6, 588) = 4.19, p < .001, ηp
2 = .04. Whilst there were no significant changes 

in R2
lin values on the 0-10 scale over testing epoch, F(3, 294) = 2.24, p > .05, ηp

2 = .02, 

estimations became increasingly linear on the 0-20 line, F(3, 294) = 8.20, p < .001, ηp
2 = .08. 

However, there were no significant improvements between consecutive testing sessions (i.e., 

improvement was only evident across a span of roughly 20 weeks). There was also a 

significant improvement on the 0-100 scale, F(3, 276) = 24.36, p < .001, ηp
2 = .21, with a 10 

week gain evident between Time 3 and Time 4, F(1, 94) = 21.85, p < .001, ηp
2 = .19. 

We next examined changes in the fit of the log function (R2
log), again using a 4 x 3 

repeated measures ANOVA. It is important to note that changes to the log function are not, 

contrary to intuition, necessarily the inverse of changes in the fit of the linear function (i.e., a 

better linear fit does not necessarily imply a poorer logarithmic fit; see Muldoon et al., 2011). 

This second series of ANOVAs revealed significant improvement in logarithmic fits over 

time, F(3, 276) = 8.17, p<.001, ηp
2 = .08.  There was also a significant main effect of Number 

Line, F(2, 184) = 154.88, p<.001, ηp
2 = .62, with a more logarithmic performance on the 0-20 

relative to the 0-10 scale, F(1,98) = 131.49, p<.001, ηp
2 = .57, and more logarithmic 

performances on the 0-10, F(1, 92) = 46.02, p<.001, ηp
2 = .33, and 0-20 scales, F(1,92) = 

353.22, p<.001, ηp
2 = .79, relative to the 0-100 scale. There was also a significant interaction 

between Time and Number Line, F(6, 552) = 6.06, p<.001, ηp
2 = .06. The interaction resulted 

from the same pattern found when analysing changes in the linear function fits; although 

there was no significant effect of Time on the 0-10 number line, F(3, 294) = 0.76, p > .05, ηp
2 

= .01, Time did exert an effect on the 0-20, F(3, 294) = 4.56, p < .01, ηp
2 = .04, and 0-100 

number line, F(3, 276) = 15.90, p < .001, ηp
2 = .15.  
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A third 4 x 3 repeated measures ANOVA using error as the dependent measure 

revealed that, on the 0-100 scale in particular, children became more accurate across the four 

waves of the study, F(3, 276) = 12.24, p<.001, ηp
2 = .12. There was, in contrast, no overall 

change in accuracy on the 0-20 scale, F(3, 276) = <1, p > .05, ηp
2 = .01. It is interesting that 

children’s estimations became increasingly linear on the 0-20 scale even though they did not 

become more accurate. Surprisingly, accuracy on the 0-10 scale actually declined over time, 

F(3, 294) = 3.88, p = .01, ηp
2 = .04. When all three number scales were combined and entered 

into a 3 x 4 ANOVA, there was no overall effect of Time, F(3, 276) = 1.30, p > .05, ηp
2 = .01. 

However, this omnibus test revealed a significant main effect of Number Line, F(2, 184) = 

175.12, p < .001, ηp
2 = .66, where the highest error rates were observed on the 0-100 scale. 

There was also a significant interaction between Number Line and Time, F(6,552) = 8.18, p < 

.001, ηp
2 = .08, reflecting the scale-dependent changes already outlined. As longitudinal data 

on number line estimation is relatively scarce, and bearing in mind the fact that it offers the 

potential for crucial contextual information to inform theories and research into the 

assessment of number line estimation, we have included a correlation matrix for measures of 

error taken on all three number lines at all four time points as supplementary material. 

Having identified changes in children’s estimating, we turn to the question of whether 

these changes are related to changes in math ability. To provide most focus on the 

relationship between these two skills, Time 1 was compared with Time 4 to offer maximum 

contrast between phases of the study. A statistically significant increase was observed in math 

scores between Time 1 (M = 133.9, SD = 16.0) and Time 4 (M = 160.1, SD = 13.9); t(98) = 

17.16 p < .001, ηp
2 = .75. Significant correlations were noted between math ability and R2

lin 

values on the 0-20 (r(99) = .28, p = .01) and 0-100 scales (r(99) = .35, p < .001) at Time 1 

and again at Time 4; 0-20 (r(99) = .26, p = .01) and 0-100 (r(96) = .53, p < .001). There were 

no significant correlations between math ability and R2
lin values on the 0-10 number lines 
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probably due to ceiling effects on that scale. A similar pattern was observed for the log 

function fits; there were significant correlations between math ability and R2
log values on the 

0-20 (r(99) = .25, p = .014) and 0-100 number lines (r(99) = .36, p < .001) at Time 1 and the 

0-100 number line at Time 4 (r(96) = .42, p < .001). There was also a significant correlation 

between math ability and estimation error on the 0-20, r(97) = -.34, p = .001, and 0-100, r(97) 

= -.26, p = .01, scales at Time 1, and between estimation error (0-100) and math ability at 

Time 4, r(94) = -.30, p = .003. 

Having identified correlations between estimating and math ability, latent growth 

curve modelling was carried out to test the hypothesis that the rate of changes in one variable 

(in this case linearity of estimations) was developmentally associated with the rate of change 

in the other variable. Growth curve modelling allows for the growth factor(s) of one process 

to be predicted by the growth factor(s) of another process. This was achieved by specifying 

regression relations between various parameters of growth using Mplus statistical software 

(Muthén & Muthén, 2006). We conducted separate growth curve models for the linearity 

values for each of the separate number line scales in order to assess their individual predictive 

quality. One growth curve was created for math ability (3 time points) and three separate 

growth curves for the linearity data (4 time points; one curve for each of the three scales) and 

used ‘Means and Variance Adjusted Weighted Least Square’ (WLSMV) as an appropriate 

and robust estimator for such distributions. In these models we controlled for the influence of 

the initial math ability scores on the rate of growth of the two slopes. These initial curves 

failed to produce a satisfactory model due to co-linearity between estimation and math 

ability. 

However, after ‘banding’ the math ability scores into four ordinal categories (0-25%; 

26-50%; 51-75%; 76-100%), re-analysis yielded one satisfactory model, χ
2
 (df = 10, N = 99) 
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= 17.06, p = .06, using the linearity values produced in response to the 0-20 scale. Initial 

analyses had shown non-significant residuals associated with the slope of the math scores 

(banded). To allow identification of the model, we fixed both the variance and the residual 

variance associated with the slope to zero. Similarly, the growth model for linearity on the 0-

20 scale revealed significant residuals associated with the intercept but no significant residual 

variance associated with the slope. To allow identification of the model the latter was fixed to 

zero. Regressing the preliminary math ability score on the value for linearity on the 0-20 

scale revealed that maths ability at the start of the study (i.e., the intercept for math ability) 

predicts estimation linearity values at Time 1, .02, z = 3.02, p < .01. There was no evidence 

that the rate of change in math ability was related to the rate of change in linearity. However, 

it should be noted that as this model is a relatively poor fit for the data these conclusions must 

be viewed with caution.  Furthermore, as successful models could not be produced using the 

linearity values associated with the 0-10 and 0-100 number line scales we could not 

definitively establish the nature of the relationship between changes in math and changes in 

linearity of estimation on these scales. 

Notwithstanding the limited success of the growth curve analyses, it is still 

worthwhile looking at the trends in changes as the literature on children’s estimation skills 

would benefit from such scrutiny. Also, it is necessary to consider why only performance on 

the 0-20 scale showed any developmental relationship with maths ability. Following the 

approach of Bertelleti et al., (2010) children’s performance was categorized as being either 

linear (when the linear function represented a better fit than logarithmic function), 

logarithmic (when the logarithmic function represented a better fit than linear), or neither 

(when neither of the functions significantly fitted the data). Table 2 underlines several core 

messages. Firstly, most children produced estimations best fitted by the linear function on the 

0-10 scale by the age of 5 (i.e., Time 1), with the superiority of the linear fit being maintained 



Estimation, counting and math 15 
 

over subsequent testing periods. Secondly, as might be expected, the logarithmic function 

was a superior fit on the much larger 0-100 scale for a majority of children at Time 1. 

Perhaps counter-intuitively (but in line with the findings of Bertelleti et al.) not only does the 

logarithmic function provide a superior fit to performance at Time 1, there is a positive 

developmental trend in the numbers of children whose estimations are best fitted by this 

function. Thirdly, estimation profiles on the intermediate 0-20 scale reveal the pattern of 

change that might be expected for children just starting to engage more with numbers 

between 10 and 20; the percentage of children classified as possessing linear representations 

increases steadily from Time 1 to Time 4 with a concurrent reduction in the number of 

children classified as ‘logarithmic’. 

Key issue 2: The quality of number line estimations as a unique predictor of math 

ability 

 The second issue was whether counting ability mediates the relationships between 

that estimation skill and other variables. Although the two counting measures (reciting and 

enumerating) were taken at Time 1, 2 and 4 the following analyses focus on Time 1 and Time 

4. Between Time 1 and Time 4, the highest number children could recite increased 

significantly from a mean of 34 (SD = 30) at Time 1 to 69 (SD = 36) at Time 4, F(1, 95) = 

117.48, p < .001, ηp
2 = .55. In line with expectation, most children (88%) could enumerate 10 

dots at Time 1, with 94% being successful at Time 2 and 98% at Time 4. As anticipated with 

this age group, development was seen on the more challenging task of counting through the 

teens; 47% could enumerate 20 dots at Time 1, rising to 73% at Time 2 and 85% at Time 4.  

There was a significant correlation between Reciting and math ability at both Time 1, 

r(98) = .40, p<.001, and Time 4, r(97) = .58, p < .001. Children who could enumerate all 20 

dots performed significantly better on the math tasks than those who failed to enumerate all 
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20 dots at Time 1, t(97) = 3.2, p = .002, ηp
2 = .09, and again at Time 4, t(95) = 5.70, p < .001, 

ηp
2 = .25. This difference was not evident on the enumerating 10 dots task, probably due to a 

ceiling effect. 

Having established links between counting skills, quality of estimations and math 

ability it is important to consider the extent to which these facets of numerical cognition 

overlap. Although enumerating scores were not, as nominal data, entered into these analyses, 

stepwise linear regression revealed that at Time 1, Reciting was the largest contributor to the 

explained variance in math ability, R2 = .16, F(1, 96) = 18.41, p < .001, with only R2
lin on the 

0-20 scale making a significant contribution thereafter, ∆R2 = .040, F(1, 95) = 4.98, p = .03. 

The additions of R2
lin on the 0-10 and 0-100 number lines failed to make significant 

contributions to the model (p = .90 and .17 respectively). Reciting was similarly the largest 

contributor to the explained variance in math ability at Time 4, R2 = .34, F(1, 92) = 47.14, p < 

.001. As for the Time 1 analysis, only one of the three R2
lin measures made an additional 

contribution to the model once Reciting had been entered; linearity on the 0-100 scale, ∆R2  = 

.07, F(1, 91) = 10.93, p = .001.  

As it had already established that development in estimating can entail a shift towards 

a better logarithmic fit as well as a linear fit, the stepwise linear regressions were run again, 

this time substituting R2
log measures for R2

lin measures. At both Time 1 and Time 4, the 

inclusion of the R2
log  measure on the 0-100 scale made a significant contribution to the 

relevant models once Reciting had been entered; ∆R2  = .07, F(1, 95) = 7.98, p = .006 (Time 

1) and ∆R2  = .06, F(1, 91) = 8.91, p = .004 (Time 4). 

Key issue 3: Are number line estimations more linear for numbers within children’s 

counting range? 
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The final key issue focuses on the impact that number familiarity has on estimation. 

At Time 1 there were significant correlations between the highest number words recited and 

R2
lin values on the 0-20 number line, r(96) = .20, p = .05, and the 0-100 number line, r(96) = 

.44, p < .001, a finding replicated at Time 4; (0-20) r(95) = .26, p = .01, (0-100) r(92) = .501, 

p < .001.  However, significant correlations between Reciting and R2
log values were only 

evident on the 0-100 number line; at Time 1, r(98) = .26, p = .01, and Time 4, r(94) = .37, p = 

.001. As most children (n = 87) could enumerate 10 items at the start of the study (a task 

achieved by all children by Time 4), it was not possible to produce any meaningful 

comparison statistics. However, at Time 1, children who could enumerate all 20 items (n = 

46) produced estimations that were more linear on the 0-20, (t(97) = 3.10, p < .01, Cohen’s d 

= .64, and 0-100, t(97) = 2.40, p < .05, Cohen’s d = .48, scales than children who failed to 

enumerate all 20 items (n = 53). Furthermore, enumerators of all 20 items were more accurate 

on the 0-20 scale than other children, t(97) = 3.30, p < .001, Cohen’s d = .67. Although 

analysis at Time 4 was problematic given the near- ceiling effect on the ‘Enumerate 20 items’ 

task (only 13 children were unable to carry this out successfully), non-significant trends in 

linearity were evident, with those children who could enumerate all 20 items producing 

higher R2
lin values on all three scales. 

In response to the claims that logarithmic estimation profiles should more accurately 

be described as two separate (bi-) linear profiles, and actually reflect separable processes 

(Ebersbach et al., 2008),  we subjected the estimation data to bi-linear regression analysis 

using SegReg software (Oosterbaan, 2002). SegReg carries out a segmented linear regression 

by finding a breakpoint (if possible) in order to fit two separate linear functions that 

maximise the explanatory power of the resulting statistical coefficients. 

  One argument for bi-linearity in estimation profiles is that young children in particular 

hold linear mental representations for numbers they are familiar with, but they guess when 
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estimating numbers above this range (e.g., Berteletti et al., 2010) thereby producing the more-

or-less flat profile that has been taken by others to be part of a continuous logarithmic curve. 

The analysis revealed no break-point on either the 0-10 or 0-20 number lines at any of the 

time points. However, there was a mean break-point at approximately 15 on the 0-100 

number line at all four time points, even though 66% of the group could count beyond 15 at 

Time 1, and over 95% counted beyond 15 at Time 4. Therefore, the stability of the break 

point at such a low value is difficult to explain using the ‘familiarity’ model of number line 

estimation performance, when one asks children directly about number knowledge in 

counting. 

Discussion 

Our longitudinal study provided insights regarding the three key issues we set out to 

address. First, and as anticipated, across the duration of the study variance in children’s 

estimation profiles was evident. Overall, estimations were best explained by a linear function 

on the smallest of the three scales (0-10) and by a logarithmic function on the largest (0-100) 

scale. In line with this developmental trajectory, linear and logarithmic function fits tended to 

be similar (i.e., equally good fits) on the intermediate (i.e., 0-20) scale. The same general 

patterns were observed when children were categorized as having a specific estimation 

profile (linear, logarithmic or neither), results that are consistent with cross-sectional research 

(Bertelleti et al., 2010).  In both Bertelleti et al. and the present study there was an increase in 

both the proportion of children being categorized as linear and logarithmic, and a decrease in 

the proportion of children have no best fitting profile. Also, like Berteletti et al. it was 

observed that not only did the amount of variance explained by R2
lin values significantly 

increase over time (at least on the 0-20 and 0-100 number lines), there was also a significant 

increase in the amount of variance explained by the R2
log values on the same lines. 



Estimation, counting and math 19 
 

Of interest, however, was the question concerning the relationship between estimating 

skill and mathematical progress. One way of assessing the importance of estimation within 

the domain of number development is to ask whether longitudinal advances in estimating 

ability are associated with wider numerical development. Growth curve analysis revealed that 

while math performance was correlated with linearity of estimations on the 0-20 scale at the 

start of the study, and both indices of numerical ability improved over subsequent phases of 

testing, the rate of change in one was not associated with the rate of change in the other. Thus 

we could not find support for the hypothesis that changes in math ability are constrained by 

the linearity of children’s mental representation of number. Although estimating and math 

ability do correlate at a given time point, the trajectories of the underlying processes are not 

tied. 

 There are at least two possible reasons why number line estimation might only 

correlate with mathematics skill when cross-sectional data are analysed. First, children with 

inaccurate internal representations (as manifested on the estimation task) may lack important 

conceptualisations about number that are required for some number tasks but not others. For 

example, linearity of 5-year-old’s estimations is more closely associated with problems where 

the tasks are to match quantities with symbols than it is with problems where the task is to 

match equivalent sets of items (Muldoon, et al, 2011). Accordingly, when performance on a 

battery of different math tasks is taken as the dependent measure, changes in estimation 

quality will potentially constrain only a subset of those tasks.  Second, the two domains – 

estimating and math - may each be a proxy index for one or more other skills, where those 

skills exert an influence differentially at different stages of number development. 

The relationship between math, estimating and another related ability was addressed 

in the second of our key issues. An obvious candidate for a skill that potentially influences 

both the accuracy of children’s mental representations of number and their math ability is 
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counting. At an age when children are still grappling with learning how to count and being 

introduced new number terms, it seems reasonable to infer that knowing the number terms 1 

to 10, and being able to enumerate a set of 10 items, will strengthen the mental 

representations of those numbers and lead to linear estimations. However, at the same time as 

they master the first decade, children are still learning about the numbers 11 to 20, and 

numbers up to 100.  

Thus, an important question was whether estimation performance is a unique 

predictor of mathematical ability compared to counting. Although our range of counting tasks 

were not as extensive as those used by other researchers using counting skills as one facet of 

early numeracy (e.g., Jordan et al., 2007), we nonetheless observed overall improvements 

both in children’s reciting and enumerating, and performance on the battery of math tasks. 

Therefore, the previously established link between counting range, math ability and the 

quality (linearity and accuracy) of children’s internal representation of number is supported 

by the present findings. However, results from regression analysis indicate that after 

accounting for children’s counting ability, performance on estimation tasks (and by 

extension, the linearity of children’s internal representation of number) made, in most 

analyses, only a modest (i.e., non-significant) contribution to variance on standardised 

measures of mathematical attainment. Whilst previous studies have suggested that the 

linearity of number representation is both an important and potentially unique contributor to 

children’s mathematical development (e.g., Booth and Siegler, 2006; Siegler & Booth, 2004; 

Siegler & Mu, 2008) they have not always controlled for many other potential mediating 

variables. By including just one additional number task, our data challenge at least the latter 

conclusion. Although performance on the number line task was related to mathematical 

ability throughout the course of our longitudinal assessment, math performance was equally 
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associated with the most basic of counting tasks, at least for the range of number tasks and 

age group in our study. 

This finding has implications for two other theoretical positions that were addressed 

in the last of our key issues. One possibility is that children’s estimations shift towards 

patterns explained by logarithmic functions and then progress to patterns explained by linear 

functions. Why might this be so? We can speculate that when children who lack a meaningful 

understanding of the number line task are presented with estimation problems, they are likely 

to produce a more-or-less flat (i.e., horizontal) profile of estimations. This yields linear and 

logarithmic functions close to zero that also have slope values close to zero. Development 

therefore entails a shift from a straight line at 0 degrees to one at 45 degrees, with - 

chronologically - a logarithmic profile in between, which would concur with the model 

proposed by Bertelleti et al. (2010) concerning the effects of contextual familiarity. 

In relation to the relatively new research that has put forward a case for a bi-linear 

model of mental number representations our data failed to provide evidence for this type of 

function on two of the three scales we used. On the smallest (0-10) scale we can infer that the 

absence of any bi-linearity in the estimation profiles is inevitable given the goodness of fit of 

a single linear function. More interesting is the absence of bi-linearity on the intermediate (0-

20) scale. Here, the data yielded significant fits for the logarithmic function but there was no 

evidence for two separate linear functions providing a good fit (i.e., the logarithmic curve 

could not be broken down into two linear sections). In contrast, a bi-linear function was 

observed for the 0-100 number line, similar to the results of Ebersbach et al. (2008). The 

identified break-point was inconsistent with Ebersbach et al.’s suggestion that the bi-linear 

function would show a break-point at the extent of children’s familiarity of number, 

(Ebersbach et al. explained the lack of this relationship in their data due to the nature of their 

familiarity task - counting across decades). However, we asked children to count as high as 
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they could, but still did not find an association between reciting and the identified break-

point.  

Conclusions 

Why should we find evidence of a close developmental association between counting, 

estimation and math ability? Counting items is a behavioural analogue of the mental parsing 

of space. Importantly, for very young children, counting is most often conducted on sets of 

items distributed linearly, where the task demands procedure coordinating verbal recitation of 

the number string with pointing to, or touching, items from left-to-right.  In terms of current 

thinking on the development of numeracy, counting provides input to a cognitive system 

attuned to the concept of ‘one’ and the successor function (see Carey, 2004). It is possible 

that the action of counting items – particularly physical objects – supports an emerging 

understanding that the use of one more/one less number word means one more/one less item, 

and that adding or subtracting one item changes the cardinal number by one. 

Thus, advances in counting ability (both reciting the number string and enumerating 

sets of items) have the potential to generate mental representations that conform to the set of 

natural integers. Moreover, better quality representations should aid performance on simple 

number operations like addition, subtraction and judgments of numerical equivalence, and be 

reflected in an increasingly accurate and linear mental number line (Muldoon, Lewis, & 

Freeman, 2009). Siegler and Ramani (2009) found that preschoolers who played board games 

(where counters were moved linearly across equally spaced squares) showed gains in the 

quality of their estimations on a 0-10 scale and outperformed children in control groups on a 

battery of arithmetic tasks (See also Whyte & Bull [2008] for similar results). Siegler and 

Ramani concluded that playing such board games helped children form a retrieval structure 

for encoding, storing, and accessing single-digit numbers. Our data are consistent with this 
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hypothesis. Children who could count all 20 items in a linear array (i.e., those children who 

were able to maintain the coordination required to adhere to 1-1 correspondence between 

words and items) were better on the math tasks and displayed more linear profiles on the 

estimation tasks at both the start and end of the study.  

The conclusion is that children with less accurate internal representations of number 

are probably disadvantaged on some math tasks when compared to children with better 

quality representations. Most importantly, the domains of both arithmetic and estimating 

appear to be tied closely to counting. However, notwithstanding the importance of procedural 

counting to both estimation performance and math attainment, we propose that future work in 

this area might benefit from considering conceptual understanding of counting. Gains in 

procedural counting are typically followed by gains in the ability to reflect on how the 

accuracy of the counting procedure identifies both ordinal relations and cardinal 

representations (Muldoon, Lewis, & Freeman, 2003). It is possible that conceptual 

knowledge of the counting routine is an additional predictor of individual differences in both 

estimation and math performance, and future studies testing this hypothesis would make a 

useful contribution to this line of research. In considering the inter-relationships between 

math ability, counting and estimating, the present findings make it possible to conclude that 

neither procedural counting nor estimation are uniquely or especially privileged correlates 

with mathematical development in the early years. 
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Table 1: Estimation error, slope, R2
lin, R2

log for 0-10, 0-20 and 0-100 number lines at four time 
points 
 
 

Time 

0-10 

 

1        2      3       4 

 0-20 

 

1        2      3       4 

 0-100 

 

1        2       3       4 

 

(a)   Analysis of individual children’s estimates (mean values) 

 

Error(%) 17 19 18 19  15 14 13 15  31 29 28 26 

 

R2
lin .78 .77 .80 .83  .71 .76 .81 .83  .27 .30 .34 .45 

 

R2
log .66 .63 .65 .66  .75 .79 .83 .83  .46 .49 .52 .62 

 

(b)   Analysis by group (median values) 

 

R2
lin .94 .94 .93 .92  .94 .97 .98 .99  .45 .48 .56 .69 

 

R2
log .76 .76 .74 .73  .99 .99 .98 .95  .80 .82 .87 .92 
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Table 2: Participants’ profile (%) for 0-10, 0-20 and 0-100 number lines at four time points 

 0-10 0-20 

 

0-100 

Time 1 2 3 4 1 2 3 4 1 2 3 4 

 

Linear 

 

85 

 

87 

 

93 

 

97 

 

28 

 

33 

 

35 

 

55 

 

4 

 

3 

 

7 

 

8 

 

Logarithmic 

 

8 

 

4 

 

2 

 

2 

 

56 

 

55 

 

59 

 

43 

 

80 

 

85 

 

87 

 

91 

 

Neither 

 

7 

 

9 

 

5 

 

1 

 

16 

 

12 

 

6 

 

2 

 

16 

 

12 

 

6 

 

1 
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Supplementary material. 

As we administered the task with three scales on four separate occasions, we were 

able to investigate the stability / consistency in performance longitudinally. These data offer 

the first assessment that we are aware of, relating to the reliability of number estimation 

measures. This is important in part because it potentially provides an upper bound on the 

ability of number line estimation variables to correlate with others (via attenuation, for 

example). The data also address consistency across different number scales, which can help 

illuminate issues of process overlap. We use the error measure from the main section as an 

exemplar (the inter- correlations across scales and time points are shown in the table below).  

Thus, with both the 0-10 and 0-100 scales, children’s estimations at each time point 

correlated with all three other time points. Performance on the 0-20 scale was less stable, yet 

there was still a correlation between Time 1 and 2, and Time 3 and 4. In contrast, only 6 of 

the 12 correlations between scales at any particular time point were significant. In other 

words, accuracy for a given scale was often correlated across a full school year even when it 

failed to correlate with a neighbouring scale administered at the same time. This leads us to 

believe that there were coherent scale-dependent processes operating over an extended 

period, but that different ranges elicited potentially different representations. 
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Correlation matrix for error rates on all three number line scales (10, 20,100) at all four time points (T1 – T4). 

 T1-10 T2-10 T3-10 T4-10 T1-20 T2-20 T3-20 T4-20 T1-100 T2-100 T3-100 T4-100 

T1-10 1 .479* .263* .462* .020 .105 -.002 .126 -.107 -.036 -.131 -.101 

T2-10   1 .428* .440* .207+ .409* .101 .074 .083 -.100 -.047 -.239+ 

T3-10   1 .496* .050 .046 .261* . 169 .246+ -.032 -.048 .034 

T4-10    1 -.139 .014 .190 . 263* .070 -.056 -.065 -.010 

T1-20     1 .421* .109 . 173 .300* .385* .250+ .211+ 

T2-20       1 .164 . 054 .158 .138 -.066 -.122 

T3-20        1 . 436* .147 .102 .238+ .159 

T4-20         1 .208+ .069 .086 .463* 

T1-100         1 .559* .346* .412* 

T2-100          1 .432* .572* 

T3-100           1 .369* 

Note. + = p<.05; * = p<.01 

 


