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Detecting the harmonics of oscillations with time-variable frequencies
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A method is introduced for the spectral analysis of complex noisy signals containing several frequency
components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal
oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing
combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies
that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the
characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove
other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly
partitioned and the power associated with each component then can be quantified more accurately. The method
is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in
human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent.
The method should be equally relevant to all situations where signals of comparable complexity are encountered,
including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology
and biology.
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I. INTRODUCTION

The identification of periodic processes and their harmonics
in noisy signals is an important data processing task in a
variety of fields, and a number of numerical approaches to the
problem have been developed in recent years, particularly in
astronomy [1–4] and electrical engineering [5–9]. One reason
for continued interest in the problem is that useful information
about the dynamics of a nonlinear system often can be obtained
from a study of the harmonics in its response to an oscillatory
input [10–15]. It is an approach that has proven very useful in
the analysis of physiological time series, where the underlying
system is highly complex, nonlinear, and resistant to modeling
approaches.

Physiological oscillatory processes arise in, e.g., electro-
cardiograms (ECGs), electroencephalograms (EEGs), blood
pressure (Traube-Herring-Mayer waves), and intracranial
pressure monitoring (Lund waves). The profile of the pressure
wave in the circulatory system produced by each heartbeat
provides useful information about the state of the heart and
the cardiovascular system, as does the form of the ECG in
the case of atrial arrhythmias [16], atrial fibrillation [17],
and ventricular fibrillation [18,19]. Typically such wave
forms are described in the time domain, but identification
of the major Fourier components could provide equivalent
information that might be quantified more easily. Harmonic-
based quantitative analyses of the wave forms associated with
such oscillations can provide useful information about the
underlying physiology: The existence of a nonlinear response
function can be diagnosed by the detection of harmonics of
the fundamental frequency, a principle that has been applied to
electroretinography [10,20], to electroencephalography [21],
and to the cardiovascular system [15].

In electrical engineering, methods based on spectral anal-
ysis are commonly used to identify the sources of such
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harmonics so that they can be eliminated [22]. Much the same
problem arises in impedance spectroscopy [23]. In such cases
the fundamental driving frequency is known and constant and
the primary problem is that of spectral estimation by using
Fourier [6] or wavelet [9] analysis of the noisy data. An
allied task is the estimation of the fundamental frequency from
limited noisy data [5,24,25], which also occurs in mechanical
vibration analysis [26].

In this paper we propose and validate an approach to
the problem that allows identification and characterization
of one or more nonsinusoidal oscillatory processes from a
short time series of noisy data—data of the kind that often
arise in practice, e.g., in the cases of vibrating machinery,
electrical circuits, astronomical bodies, and physiological time
series. Unlike earlier methodologies, which generally assumed
a single underlying oscillatory process of fixed fundamental
frequency, and/or that all spectral peaks that can be reliably
identified in the signal belong to the same oscillatory process,
the method proposed is also applicable to those cases where
there may be two or more fundamental frequencies that are
not necessarily constant.

Section II A sets the scene by reviewing briefly the methods
hitherto available for identifying harmonics in cases where the
underlying oscillatory process occurs at a fixed frequency.
In Sec. II B we introduce our proposed approach, and it is
then described in detail in Sec. III. The method is tested in
Sec. IV, first on two different numerically generated time series
in Secs. IV A and IV B, respectively, and then, in Sec. IV C,
on physiological signals to demonstrate its robustness in the
face of the noise and nonidealities present in real experimental
time series. The results are discussed and summarized, and
conclusions are drawn, in Sec. V.

II. METHODS FOR FINDING HARMONICS

A. Estimating harmonics where the period is fixed

In astronomy, noisy univariate data sets such as star light
curves are analyzed to identify periodic behavior. This is a case
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where the fundamental frequency may be unknown, and so
methods focus on accurate curve fitting or estimation of Fourier
components [1,2], or on identifying a minimum in the entropy
of the signal for a given trial period [3]. A wavelet-based
approach has been applied to the similar problem of spectral
estimation that arises in the case of sunspot recordings [4],
and this method is applicable to cases where the fundamental
frequency or frequencies are time variable. Again, it is
generally assumed that only a single independent oscillatory
component is present, or that several such components can
be distinguished easily. No method exists for distinguishing
the harmonics of a time-variable fundamental frequency
where unrelated processes at or near the harmonic frequency
are known to exist (or are suspected).

B. An approach applicable when the period is variable

Where a time series contains only a few periods of
oscillation and is subject to noise, where several significant
oscillatory processes are superimposed with spectra that may
overlap, and where the frequency and shape of the processes
may be time variable, a different approach is required. The
method of finding harmonics that we propose here is based
on mutual information, by analogy with the Shannon entropy-
based sychronization index used by Tass et al. [27] to identify
1:n synchronization in bivariate data. Our comparison of phase
time series differs from the approach used by Stogbauer
et al. [28] to identify admixtures of signals in that, here,
we specifically seek to demonstrate a relationship between
different spectral components in order to better understand the
underlying process responsible for the harmonics.

The Shannon entropy provides a measure of the unpre-
dictability or information content of samples from a discrete
distribution [29]. The distribution (which may be conditional
on another variable) of values has high entropy if it is uniform
and corresponds to an unpredictable variable, and low if the
distribution is sharply peaked and the variable can be predicted.
The mutual information is a measure of the entropy that is
“missing” from a conditional distribution once information
about some underlying variable has been taken into account.

Cincotta et al. [3] assume monotonic phase growth of the
signal fundamental, and test for significant mutual information
between the distribution of signal values and a set of potential
periodic functions. Rather than assuming a fixed signal period,
for the case of oscillators with nonlinear phase growth, we
instead introduce the wavelet transform to determine the
phase at each point in time of each possible fundamental
frequency in the data. After appropriate binning of the phase
data (see below) to generate symbol sequences made up of
discretized phase values, the mutual information of every
possible pair of phase time series in the wavelet transform
can be calculated. Cincotta et al. [3] have shown that the
Shannon entropy of randomly and uniformly distributed signal
values is expected to be a normally distributed variable for
data of finite length. Within a short period of observation,
however, because the phase time series extracted from the
wavelet transform are intrinsically oscillatory, the phase series
may have insufficient time to become uniformly distributed.
Surrogate testing therefore must be applied instead to check
for significant cross correlations.

The method of surrogate testing for mutual information
measures has been developed by Paluš and Vejmellka [30]
for the case of bivariate data representing two oscillatory
processes that may, possibly, be causally related. Here we
generate surrogate data in order to determine the distribution
of mutual information values for independent processes with
frequencies of near integer ratio, in order to confidently reject
the null hypothesis when the actual value obtained reaches
some threshold determined from the surrogate distribution.

We demonstrate the results of this algorithm on numerical
examples incorporating time-variable frequencies and noise:
first a single periodic process with harmonics, and then a
signal incorporating two independent periodic processes with
harmonics. Finally we apply the method to two physiological
time series incorporating several independent periodic pro-
cesses with harmonics, owing to a periodic perturbation in the
first case and occurring spontaneously in the second.

III. THE HARMONIC FINDER

A. Extracting phases

We consider a finite, noisy signal including one or more
oscillatory processes with characteristic (but time-variable)
frequencies and a nonsinusoidal profile, i.e., a shape giving
rise to harmonics. We introduce the harmonic finder method
to identify the harmonics amid spectral peaks owing to noise
or unrelated processes. First the signal is detrended by use
of a moving average to remove the mean and the spectral
content outside the band of interest, and then a Morlet wavelet
transform is applied [31]. In practice, the transform used here
will not provide reliable results for oscillation time scales
longer than ≈1/6 the length of the time series, or shorter
than twice the sampling period by the Nyquist criterion. The
Morlet mother wavelet is a complex plane wave convolved
with a Gaussian envelope function,

ψ (σ,t) = 1

σ 1/2
exp

(−i2πf0t

σ

)
exp

(−t2

2σ 2

)
. (1)

For f0 = 1 the characteristic frequency of the wavelet is 1
σ

.
The wavelet transform of a time series is the convolution of
the complex wavelet [Eq. (2)] with the time series at each
scale σ ,

W (σ,t) =
∫ ∞

−∞
ψ(σ,(t − τ ))f (τ )dτ. (2)

We use a wavelet of center frequency unity, rescaled in
increments of 5% between 0.0025 and 2.5 Hz. The center
frequency of the mother wavelet determines the time and
frequency resolution of the transform at a given scale. The
width of the wavelet in frequency space is proportional to the
rescaled frequency ( f0

σ
) of the wavelet, and the time scale is

proportional to the rescaled period (σ ), thus giving logarithmic
resolution.

This isolates the sinusoidal components of the signal and
produces a matrix of complex values representing the phase of
each frequency component at each point in time. In general,
the phase growth is nonlinear. As the period of the underlying
oscillation varies, the higher-frequency components vary in
lockstep in order to preserve the shape of the wave form. Thus
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the phase time series corresponding to the fundamental or
first harmonic will provide enough information to predict the
phase time series corresponding to higher harmonics. Where
the time series is short, low-frequency components in integer
ratio will always have nonzero mutual information. For the
limited time interval available, a spurious association may
be found between phase values, because insufficient time is
available for the (arbitrary) initial phase relationship found
at the beginning of the time series to change. We test for a
statistically significant excess of mutual information in the
phase time series for different frequency components.

B. Finding the mutual information

The phase time series for each frequency component is
extracted and discretized by equipartition into 24 bins, and
then all the phase time series are compared pairwise. For each
pair of phase time series the Shannon entropy [29] of the
phase distribution p (φ1) of the higher-frequency component is
determined, and then the mean entropy of the distribution given
the corresponding phase of the lower-frequency component
for each moment in time, p (φ1‖φ2). The number of bins
was chosen such that peaks in p (φ1‖φ2) would each fall
into a single bin for frequency ratios of 1:2, 1:3, and 1:4. By
Nyquist’s criterion, the maximum ratio that remains detectable
in theory is 1:12, but the presence of noise in the data
generally prevents this limit from being attained. Because the
distribution obtained is subject to noise, use of a larger number
of bins may not provide higher resolution and can become
counterproductive owing to the smaller number of samples
available to determine the density of the distribution in each
bin. Thus the choice of 24 for the number of bins represents a
compromise.

The entropy of the discretized phase values is

H (�1) = −
24∑

φ1=1

p (φ1) log2 p (φ1) (3)

and the mean entropy of the conditional distribution is

H (�1‖�2) = −
24∑

φ2=1

p (φ2)
24∑

φ1=1

p (φ1‖φ2) log2 p (φ1‖φ2) .

(4)

The mutual information content of the signals is equal to
the difference

M (�1,�2) = H (�1) − H (�1‖�2) . (5)

The proportion of mutual information for φ (ω1,t) and
φ (ω2,t) approaches 1 as ω1 approaches ω2. We also applied the
k-nearest-neighbor estimator of mutual information described
by Kraskov, Stogbauer, and Grassberger [32] to our data and
found that it gave results comparable to those obtained from the
method of binning. In both cases surrogate testing is required
because the mutual information values are strongly biased
by the correlations present in the relatively short phase time
series, not just by the discretization into bins. In practice, we
preferred to use binning because of its greater computational
speed, which was useful when evaluating many surrogates.

C. Generating surrogates

In order to test for statistical significance the (much lower)
2:1, 3:1, . . . , n:1 mutual information values that we obtain,
we need a surrogate distribution of mutual information for
time series that have the same spectral content, but in which
the oscillations at different frequencies are known to preserve
no particular phase relationship. The use of surrogates avoids
the problem of having to calculate the probability of a given
M (φ1,φ2) value for phase time series with known long
autocorrelation times, rather than the random distribution
assumed by Cincotta et al. [3].

We can generate a set of surrogate data by randomizing the
phases of the Fourier components of the original signal and
transforming back into the time domain. In practice, the dis-
tribution of signal values may be non-Gaussian, in which case
this procedure may substantially alter the distribution of the
data. To avoid this, we sort and then map the signal values onto
an equivalent number of sorted values drawn from a normal
distribution. Then we Fourier transform this normalized signal,
phase randomize the components, and inverse transform to
recover a surrogate with a Gaussian distribution, which we map
back onto the values from the original time series. These are
referred to as amplitude-adjusted Fourier transform (AAFT)
surrogates [33]. To generate a surrogate mutual information
value for each frequency pairing, we determine the phase
series mutual information of the putative harmonic frequency
drawn from the surrogate data, and the putative fundamental
frequency drawn from the original data.

The wavelet transform is a function of time incorporating
all the Fourier components around each wavelet frequency. In
order for this surrogate approach to be effective, any spectral
peaks in the data must be sufficiently broad that phase random-
ization of the Fourier components does not merely result in a
fixed phase shift, but a detectable change in the phase dynamics
as determined by the wavelet transform. There must be enough
information in the phase growth time series to randomize.

Kralemann et al. [34] have described the importance of
considering the phase dynamics of a system of nonlinear
oscillators separately from the wave form associated with one
projection of the system, and the possibly nonlinear growth of
a “protophase” extracted from such a variable. The process of
filtering the signal by use of the wavelet transform, and the
subsequent equipartitioning of the phase time series, largely
avoids this issue. The procedure for checking for one or more
fundamental oscillations and their associated harmonics is
predicated on the assumption that the shape of the wave form
itself, and not just the phase dynamics, may provide physically
or physiologically relevant information about the system.

D. Testing significance

Finally, a local maximum in the mutual information for a
pairing of phase time series is deemed to indicate a harmonic
if it occurs some number of standard deviations above the
expectation value of the mutual information distribution for the
uncorrelated surrogates. In practice, the number of standard
deviations required should be adapted to take into account
both the acceptable rate of false positives (typically no more
than 5%) and the effect of multiple testing on this false positive
rate.
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The wavelet transform corresponds to a filter in the
frequency domain, and the lower the center frequency of
the mother wavelet (f0), the lower the frequency resolution,
resulting in a broader range ω1–ω2 for which the neighboring
phase time series are dominated by a single component.
Conversely, greater frequency resolution results in fewer
independent samples of phase and poorer statistics.

IV. TESTS AND APPLICATIONS

Before applying the method to real physiological data, we
test it on numerically generated time series of known harmonic
content.

A. A numerically generated square wave

To begin, we generate a random-walk noise signal of length
2000 s, sampled at 100 Hz. This signal B is the cumulative
sum of 200000 randomly selected values w(τ ) from a normal
distribution N of unit variance:

B(t) =
τ∑

t=1

w(τ ), (6)

where

W ∼ N(0,1). (7)

The random-walk signal B is detrended by subtraction of a
moving 400-s average to give stationarity over long time scales.
This Brown-noise time series has power at all frequencies
above that corresponding to the detrending time scale and
serves to obscure our test signals and their harmonics from
easy detection. Note that the use of additive white Gaussian
noise would be inadequate for this application as a simple
smoothing-resampling of the time series would be enough to
reveal the underlying test signal.

As a first test of the harmonic finder method, we generate
an artificial, approximately periodic signal incorporating har-
monics, and hide it under the Brown noise. Figure 1(a) shows
the noise time series superimposed on a square wave S of
amplitude five units, which itself has a variable period. The
phase of the square wave φ grows at a mean rate of 1 cps,
plus a variable term equivalent to a 10% standard deviation,
generated from another detrended Brown-noise time series
(as above) rescaled by mapping onto samples from a normal
distribution N(1,0.01). This produces slow changes in the rate
of phase growth throughout the time period of observation,
and corresponding changes in the period of the square wave:

S(φ) = 5 sgn[cos(φ)]. (8)

The square wave and its harmonics are not obvious
in the Fourier transform of the noisy signal shown in
Fig. 1(b), but we can see a possible harmonic at 3 Hz in the
wavelet transform [Fig. 1(c)]. We wish to determine rigorously
whether this oscillation is a harmonic of the 1-Hz signal or an
independent higher-frequency oscillation. Figure 1(d) shows
the mutual information of each phase time series pairing: Note
that this plot is of course dominated by the 1:1 relationship
between the phases of wavelet components of close or identical
frequencies.

FIG. 1. (Color) Analysis of a numerically generated noisy square-
wave signal. (a) The raw signal (arbitrary units), (b) its Fourier
transform, (c) its wavelet transform, (d) the corresponding M plot,
(e) the mean M plot for AAFT surrogates, and (f) the M plot relative
to the mean and standard deviation of the surrogates. Regions more
than 5σ above the surrogate mean are marked with blue, and local
maxima are marked with +.

To test the mutual information values obtained at frequency
ratios of 2:1, 3:1, etc., we generate a set of AAFT surrogates
for the original signal, as described above.

016206-4



DETECTING THE HARMONICS OF OSCILLATIONS WITH. . . PHYSICAL REVIEW E 83, 016206 (2011)

This destroys the phase relationships between the har-
monics of the square wave, while leaving the spectrum
largely unchanged. Note that the existence of such surrogates
demonstrates that the identification of harmonics by checking
for spectral peaks is inadequate, as the surrogates no longer
include a square-wave component despite maintaining the
same spectrum as the original signal. The mean mutual
information values for the phase time series of the original
signal and the phase time series of 1000 such surrogates
are shown in Fig. 1(e). We see high but spurious values at
spectral peaks and for low frequencies, as expected owing to
the lower number of independent measurements of phase when
autocorrelation times are long compared to the time scale of
simulation and/or measurement.

Figure 1(f) shows the actual mutual information values
relative to the surrogate distribution, which we will refer to
as an M-plot. Both the third and fifth harmonics are clearly
identifiable. A threshold of five standard deviations above the
mean of the surrogate distribution is marked in blue, and the
local maxima found at 3 and 5 Hz are marked by pluses (+).
Five standard deviations were chosen as the criterion to ensure
that the 1596 tests performed (comparing all possible pairs of
phase time series to their surrogate distributions) would not be
expected to produce false positives for a normal distribution
of surrogate mutual information values. The method has
evidently succeeded in this particular case.

Note that, if the square-wave signal frequency was without
variability, no meaningful calculation of mutual information
could be performed because the phase relationship (and the
complete phase time series) would be determined completely
by the initial phases of the two components. A random-walk-
type Brown-noise signal was used to introduce this variability,
ensuring that the variability was significant over long time
scales (longer than several times the averaging time associated
with the Morlet wavelet envelope). In practice, this is a realistic
pattern for the medium-term variability of physiological data,
as presented below.

Low integer ratios between harmonics are more easily
detected than high ratios, with the result that, in the case
of a square wave, the M plot may correctly find significant
associations between the third and ninth harmonic (not shown),
but not the first and ninth harmonic.

B. Two numerically generated square waves

Next, the method is applied to a more complex signal,
consisting of a Brown-noise time series as before, plus a pair
of uncorrelated square waves with amplitudes of ten units and
mean frequencies at 1 and 2 Hz, as plotted in Fig. 2(a). The aim
here is to test the ability of the method to detect independent
periodic processes and correctly attribute their harmonics to
them. Figure 2(b) shows the Fourier transform, Fig. 2(c) shows
the wavelet transform, and Figs. 2(d)– 2(f) show the M plots
for this more complicated case.

The 1- and 2-Hz components apparent in the Fourier
transform might be interpreted naively as the fundamental and
harmonic of a single oscillatory process. In the wavelet trans-
form, more components become visible, but the relationship
between them is far from obvious. After the mutual infor-
mation of the phase time series for each pair of frequencies

FIG. 2. (Color) Analysis of a numerically generated noisy time
series containing two square-wave signals. (a) The raw signal
(arbitrary units), (b) its Fourier transform, (c) its wavelet transform,
(d) the corresponding M plot, (e) the mean M plot for AAFT
surrogates, and (f) the M plot relative to the mean and standard
deviation of the surrogates. Regions more than 5σ above the surrogate
mean are marked with blue, and local maxima are marked with +.

has been calculated and compared to the distribution obtained
with AAFT surrogates, the components of two independent
oscillations become distinguishable. Crucially, there is no
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detection at (1 Hz, 2 Hz) in the M plot of Fig. 2(f), indicating
that these components are independent. A maximum at (1 Hz,
3 Hz) is found as in case I, together with the maxima at (2 Hz,
6 Hz) corresponding to the second independent square wave.
The (1 Hz, 5 Hz) and (2 Hz, 10 Hz) maxima fall below the
5σ threshold for detection in this complicated signal, but as
expected they reappear if more data are included or if a larger
square-wave amplitude is used.

Having identified two independent fundamental frequen-
cies in the data, we can reconstruct the approximate shape
of each. First we detrend the signal to remove energy
owing to noise below the fundamental frequency. Then, after
equipartition of the fundamental phase values, we average
over the signal values found in each bin to remove energy
owing to noise from above the fundamental. The error in the
mean wave-form value for each phase bin is dominated by
the error in the phase discretization procedure, which tends to
smooth the wave form by assigning neighboring but distinct
values to the same bin, or by simply incorrectly determining
the phase value associated with a certain signal value where
the signal is dominated by noise. Figure 3(a) shows 2 s
of the signal after detrending (in which the square-wave
oscillations are not at all apparent) and Figs. 3(b) and 3(c)
show the reconstructions obtained by using the phase time
series of the two fundamental frequencies, in which we see
that both square waves can be independently reconstructed
from the data with approximately the correct amplitudes.
Accuracy is not improved by the addition of more data owing
to the systematic misattribution of phase values caused by
the noise: Only a reduction of the effective noise in the
phase time series, e.g., by use of a mother wavelet with
a higher center frequency, could improve the accuracy of
the reconstruction for this data.

FIG. 3. (a) A 2-s sample of the noisy two-square-wave numerical
data (arbitrary units) after detrending. (b) The reconstructed 1-Hz
wave form (black curve) and the profile of the original square wave
(gray curve). (c) The reconstructed 2-Hz wave form (black curve)
and the profile of the original square wave (gray curve). Bin numbers
should be multiplied by 2π/24 to recover the phase values in radians
associated with each bin.

C. Skin blood flow

In human subjects, noninvasive measurements of skin
blood perfusion by laser Doppler flowmetry (LDF) enable the
investigation of several linked processes in the cardiovascular
system. Each has its own characteristic time scale of variability,
including cardiac, respiratory, myogenic, neurogenic, and
endothelial processes [35]. The characteristic frequencies of
these processes are known approximately, but vary from
subject to subject and in time. Harmonics of low-frequency
oscillations may be difficult to identify and, consequently,
it may be difficult to determine correctly the signal energy
associated with each process. The signal is also subject to
noise. This represents a useful test case in which to apply our
method of statistical testing for correlated harmonic content.

A DRT4 laser-Doppler flowmeter with DP1T-V2 probe
(Moor Instruments, Axminster, Devon, U.K.) was used to
record subcutaneous blood flow noninvasively. Flow is ex-
pressed here in (arbitrary) standard perfusion units (SPU),
proportional to the density of red blood cells in the sample
volume, and to the mean velocity of the cells [36,37].

We consider 1800 s of laser Doppler skin blood-flow data,
subject to both spontaneous oscillations and induced low-
frequency oscillations owing to the periodic administration
(locally, by iontophoresis) of a vasodilatory drug: This is a
standard procedure, and the resultant signal is typical of LDF
measurements of this kind that require analysis. Acetylcholine
was administered to the skin of the left arm for a period
of 20 s, commencing every 260 s, over a 30-min period of
measurement. Details of the procedure are given by Shiogai,
Stefanovska, and McClintock [38].

For this case, the wavelet time resolution must be relatively
good because the low-frequency components may have highly
time-variable frequencies. The rescaling increment is chosen
appropriately for the associated frequency resolution of the
wavelet. Note that the number of cardiac oscillations in the
time series is comparable to the number of square-wave periods
in the numerical examples above. Without making use of
prior knowledge of which frequency components may produce
harmonics, we examine the wavelet transform across the whole
spectrum from the cardiac frequency downward.

The raw signal during intophoresis for one subject is
shown in Fig. 4(a). The period and shape of the iontophoretic
oscillation in blood flow is apparent from the raw signal and
its wavelet energy spectrum in Fig. 4(b). By visual inspection,
we see that variability in the signal is dominated by the cardiac
pulse oscillation and the periodicity of the iontophoretic pro-
tocol. The corresponding raw M plot identifies the harmonics
of the protocol and also the harmonics of the natural cardiac
oscillation as shown in Fig. 4(c). Because there is no intrinsic
variability in the iontophoretic protocol administered by the
machine, but there is intrinsic variability in the heart rate,
comparison with surrogates reveals that only the maxima
associated with the cardiac component are significant. At
the iontophoretic frequency, the AAFT surrogates have the
same uniform phase growth as the actual data, and thus
the same mutual information with the harmonics of this
process, illustrating an unavoidable limitation of this form
of testing.

In fact, both the cardiac wave form and the wave form
associated with periodic iontophoretic vasodilation can be
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FIG. 4. (Color) (a) A detrended blood-flow signal from human
skin subjected to the periodic iontophoresis of a vasodilatory agent
(in SPU). (b) The Morlet wavelet transform spectrum of the signal
(in SPU2/s). (c) The corresponding M plot. (d) The M plot relative to
the surrogate distribution. Regions more than 5σ above the surrogate
mean are marked with blue. Because the iontophoresis period is fixed,
the maxima at this frequency in the M plot also occur in the surrogates.
(e) Reconstructed wave forms of the iontophoretic response (left) and
the cardiac pulse (right).

reconstructed by using the binned wavelet phase series, as
shown in Fig. 4(e). The cardiac wave form corresponds to
the classic blood-flow wave form associated with the cardiac
pressure wave traveling through the microvasculature. The
wave form associated with the iontophoretic protocol matches
the pattern visible to the eye in the raw data.

Finally, we apply the method to control measurements
that were made on undisturbed skin as part of another study.
This demonstrates the existence of low-frequency harmonic
processes independent of any periodic stimulus. A sample of
the signal is shown in Fig. 5(a), its wavelet energy spectrum
is shown in Fig. 5(b), and the surrogate-adjusted M plot is
shown in Fig. 5(c). We clearly see harmonics of the oscillatory
processes in the cardiac, respiratory, and myogenic bands,
although the fundamental frequencies are less clearly defined.
Focusing on the second harmonic of each frequency, we see
peaks in Fig. 5(c), indicating harmonics at the cardiac (1 Hz),

respiratory (0.25 Hz), and myogenic (∼0.07 Hz fundamental)
frequencies. The M plot is most complex around the myogenic
frequencies, with two sets of two peaks at (0.07 Hz, 0.15 Hz),
(0.08 Hz, 0.16 Hz) and (0.10 Hz, 0.20 Hz), (0.11 Hz, 0.22 Hz).
We reconstruct the form of each oscillation in Fig. 5(d), taking
the myogenic fundamental to be 0.07 Hz.

The presence of several overlapping sets of harmonic oscil-
lations in the myogenic band indicates complicated oscillatory
behavior, possibly including significant rate variability of the
underlying process. The reconstructed wave form is sharply
peaked, and this may provide a clue to the origin of the
harmonics. Oscillations of the smooth muscle in arterioles
are thought to alter the vascular resistance by widening and
narrowing the vessels. By Poiseulle’s law, the resultant flow
is expected to vary as the fourth power of the radius, and
this nonlinear relationship may account for some of the high
harmonics corresponding to the nonsinusoidal nature of the
myogenic oscillation profile.

FIG. 5. (Color) (a) A detrended blood-flow signal from undis-
turbed human skin (in SPU). (b) Its Morlet wavelet transform spec-
trum (in SPU2/s). (c) The M plot relative to the surrogate distribution.
Regions more than 5σ above the surrogate mean are marked with blue,
and local maxima are marked with +. (d) Reconstructed wave forms
of (left to right) the myogenic and respiratory oscillations, and the
cardiac pulse.
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V. SUMMARY AND CONCLUSION

The application of the method to both simulated data and
real-time series demonstrates its usefulness in detecting the
harmonics of nonsinusoidal oscillations in relatively short
segments of noisy data. Where the characteristic profile of
a particular oscillatory process is visible by the eye, the use of
a statistical method with surrogate testing may help to validate
the observation objectively. Where the profile is unclear this
method may open up new ways of analyzing the data, if the
source is otherwise considered as a “black box,” and if it is
unknown what relationships may exist between the spectral
components of its output.

While the harmonic content of nonsinusoidal oscillations
is of intrinsic interest, in other circumstances the existence of
unrecognized harmonics in a time series thought to consist
of independent oscillatory processes may cause statistical
distortions. For example, when performing wavelet coherence
analysis, an areawise test of coherence [39] may give false
positives if a single large coherent patch is formed by
spuriously coherent oscillations and their harmonics (which
would be treated as independently testable oscillations

by surrogating techniques, unless the harmonics had been
identified). Identifying the harmonics in the data set enables
us to eliminate this possibility.

The harmonic finder method introduced in this paper can be
used to identify the harmonics of noisy periodic processes with
time-variable frequencies, such as oscillations in skin blood
flow (both stimulated and spontaneous). The use of the wavelet
transform enables us to determine the phase of each component
at each point in time, and use of the Shannon entropy enables
us to identify correlations between putative harmonics. When
frequencies are time variable, surrogate testing allows us to
identify significant correlations. We can thus test for harmonics
without the use of a fixed trial period and hence determine
statistical significance while making minimal assumptions
about the data.
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