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ISOMORPHISM PROBLEMS OF NONCOMMUTATIVE
DEFORMATIONS OF TYPE D KLEINIAN SINGULARITIES

PAUL LEVY

Abstract. We construct all possible noncommutative deformations of a
Kleinian singularity C2/Γ of type Dn in terms of generators and relations, and
solve the isomorphism problem for the associative algebras thus constructed.
We prove that (in our parametrization) all isomorphisms arise from the action
of the normalizer NSL(2)(Γ) on C/Γ. We deduce that the moduli space of iso-
morphism classes of noncommutative deformations in type Dn is isomorphic
to a vector space of dimension n.

0. Introduction

Let V be a complex vector space of dimension 2 and let Γ be a finite sub-
group of SL(V ). Such subgroups are classified: up to conjugacy, they are in one-
to-one correspondence with the simply-laced Dynkin diagrams An(n ≥ 1),
Dn(n ≥ 4), E6, E7, E8. Let ∆ be the Dynkin diagram of Γ. The quotient V/Γ,
which has coordinate ring C[V ]Γ and embeds as a hypersurface in A3 is a Kleinian
singularity or rational double point of type ∆. The Dynkin diagram ∆ arises as the
exceptional configuration of the minimal resolution of the singularity V/Γ (see [17,
§6]) or as the type of the McKay graph of Γ, which is isomorphic to the extended
Dynkin diagram ∆̂ ([15]).

It follows from the identification of V/Γ with the set of zeros of a weight homoge-
neous polynomial in C

3 that there is a Poisson bracket on C[V ]Γ and an associated
Poisson structure on the polynomial ring C[X, Y, Z]. (See Section 1 for the defini-
tions. This Poisson bracket is a nonzero scalar multiple of that given by restricting
a choice of symplectic bracket on C[V ] to the ring of invariants C[V ]Γ.) In [8],
Crawley-Boevey and Holland constructed a family of (in general noncommutative)
deformations Oλ of (the Poisson bracket on) C[V ]Γ, parametrised by λ ∈ Z(CΓ).
This generalized work of Hodges [14] and Smith [18] who constructed deformations
of, respectively, a Kleinian singularity of type A and the corresponding Poisson
structure on C[X, Y, Z]. The algebras of Hodges were earlier studied by Bavula in
[2, 3] in the context of generalized Weyl algebras. It is perhaps a little surpris-
ing that until recently no one had attempted to describe the possible deformations
of the nontype A singularities in terms of generators and relations. In Section 1
we carry this out for type D. We construct all noncommutative deformations of
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a Kleinian singularity of type Dn, parametrised by a pair (Q, γ), where Q(t) is
a monic polynomial of degree (n − 1) and γ ∈ C. We denote the corresponding
associative algebras by D(Q, γ) (Definition 1.5). We also classify the noncommuta-
tive deformations of the corresponding Poisson structure on C[X, Y, Z], which are
parametrised by γ ∈ C and a polynomial P with leading term (n − 1)tn−2. We
denote the associative algebras thus produced by H(P, γ). (One could perform this
process for the exceptional types. The calculations are rather detailed, but not
impossible.)

Let g be a complex simple Lie algebra with Dynkin diagram ∆ and let E be a
subregular nilpotent element of g. Choose an sl(2)-triple {H, E, F} ⊂ g containing
E. It was proved by Brieskorn [7] that the intersection of the Slodowy slice E+zg(F )
with the nilpotent cone of g is isomorphic to V/Γ. (This was generalized to the
case of nonsimply-laced ∆ by Slodowy [17].) Singularities can be constructed in this
manner for arbitrary nilpotent orbits. In [16], Premet proved that all singularities
constructed in this way have natural noncommutative deformations (see [13] for
a simplified proof). It was recently proved (by Arakawa [1] for regular E and in
the Appendix of [10] for general E) that Premet’s deformations are isomorphic to
the finite (quantum) W -algebras of mathematical physics, constructed via quantum
Hamiltonian reduction and the BRST cohomology (see de Boer and Tjin [9]).

The associative algebras of Hodges-Bavula and Smith have straightforward pre-
sentations in terms of generators and relations: if a and P are polynomials, then
let A(a) (resp. R(P )) be the algebra with generators e, f, h (resp. H, A, B) and
relations

he − eh = e, hf − fh = −f, ef = a(h − 1), fe = a(h)

(resp. HA − AH = A, HB − BH = −B, AB − BA = P (H)).

If P (t) = a(t − 1) − a(t), then A(a) is the quotient of R(P ) by the ideal generated
by the central element AB − a(H − 1) = BA − a(H). The problem of when two
algebras A(a1), A(a2) are isomorphic was solved by Bavula and Jordan in [4]: the
isomorphisms are precisely the ‘obvious’ ones. Namely, A(a1) ∼= A(a2) if and only
if a1(t) = ηa2(τ ± t) for some η ∈ C

×, τ ∈ C. A similar isomorphism theorem for
the algebras R(P ) then follows. In Section 2 we tackle the isomorphism problem for
the algebras D(Q, γ). This turns out (unsurprisingly) to be more straightforward
in the case n > 4, where we have the following result (Theorem 2.22):

Theorem. Let n > 4, let Q1, Q2 be monic polynomials of degree (n − 1) and let
γ1, γ2 ∈ C. Then D(Q1, γ1) ∼= D(Q2, γ2) if and only if Q1 = Q2 and γ1 = ±γ2.
The automorphism group of D(Q1, γ1) is trivial unless γ1 = 0, in which case it is
cyclic of order 2.

It follows that the moduli space of isomorphism classes of deformations of (the
Poisson bracket on) a Kleinian singularity of type Dn, n > 4, is isomorphic to affine
n-space (Corollary 2.23), generalizing the same result for type An. In Section 3 we
carry out specific calculations for the case n = 4, where the situation is rather
more interesting. Here there are six sets of isomorphisms, corresponding to the six
elements of NSL(V )(Γ)/Γ ∼= S3, or equivalently to the six graph automorphisms of
a Dynkin diagram of type D4 (Theorem 3.6). The moduli space of isomorphism
classes is nevertheless isomorphic to a vector space of dimension 4 (Corollary 3.8).
We also apply our results on D(Q, γ) to solve the problem of when two algebras
H(P, γ), H(P̃ , γ̃) are isomorphic (Theorem 2.24 and Theorem 3.9).
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Our methods share a certain similarity with those of Bavula and Jordan [4],
who adapted Dixmier’s approach to solving the isomorphism problem for the case
deg a = 1, 2 ([11, 12]). In particular, we construct a filtration of D(Q, γ) by the
additive group Z2 endowed with the lexicographic ordering (which compares to
Bavula and Jordan’s family of filtrations of A(a) [4, Thm. 3.14]) and exploit a pe-
culiar property of one of the generators for D(Q, γ) to analyse its possible images
in the corresponding graded algebra (Lemma 2.5). On the other hand, at this point
we diverge sharply from the path of [4], since elimination of the remaining cases
requires an in-depth study of certain expressions involving commutators. How-
ever, one advantage of this analysis is the explicit construction of the ‘nontrivial’
isomorphisms in type D4 (Definition 3.3).

Since the first version of this article was completed we have learned that a con-
struction of all possible noncommutative deformations of type D Kleinian singular-
ities was carried out in the Ph.D. thesis of Boddington [5]. Boddington defines a
family of noncommutative deformations D(q) parametrised (in type Dn) by a poly-
nomial of degree n (which can be assumed to be monic) and solves the problem,
for n ≥ 5, of when two such algebras are isomorphic as filtered algebras. The con-
struction in [5, 6] identifies D(q) with a subalgebra of an Ore localization of A(a)
for suitably chosen a. More recently [6] Boddington has proved that each D(q) is
isomorphic to some D(Q, γ) (and vice versa), and that any noncommutative defor-
mation in type D is isomorphic to one of the algebras Oλ. Let I be the vertex set
of the McKay quiver for Γ, with the vertex corresponding to the trivial represen-
tation labelled by 0. Recall [8] that Oλ is isomorphic to e0Πλe0, where Πλ is the
deformed preprojective algebra and e0 is the trivial path at 0. For each i ∈ I there
is a simple reflection si of the lattice ZI and a corresponding dual reflection ri of
the centre Z(CΓ). (See [8] for definitions.) In [8, §5], Crawley-Boevey and Holland
introduced certain Morita equivalences called ‘reflection functors’ Ei : Πλ → Πriλ.
Hence there is such a Morita equivalence Ew for any element w of the affine Weyl
group W of type D. If w fixes 0 (in particular if w is in the subgroup W0 of W gen-
erated by the ri, i �= 0), then there is an induced Morita equivalence Oλ → Ow(λ).
Moreover, it turns out that such reflection functors Ew with w ∈ W0 are not merely
Morita equivalences but are isomorphisms, and after nonzero scaling in Z(CΓ) any
isomorphism between noncommutative Crawley-Boevey-Holland deformations can
be described in terms of such reflections and graph automorphisms [6, Thm. 8.2].

Boddington’s parametrisation of the noncommutative deformations is more
closely related to the Crawley-Boevey-Holland construction than our parametri-
sation, as we now explain. Let Y be the set of λ ∈ Z(CΓ) which have trace 1 on
the regular representation of Γ; hence any noncommutative Oµ is isomorphic to
some Oλ with λ ∈ Y . Then Boddington’s parametrisation of the noncommutative
deformations of type Dn corresponds to the set Y , that is, factoring out Crawley-
Boevey-Holland by nonzero scaling. Our parametrisation via (Q, γ) corresponds
to taking the quotient of Y by W0, that is, a Weyl group of type Dn. Also, the
moduli space of isomorphism classes corresponds to the quotient of Y by the full
automorphism group of a root system of type Dn (namely, a Weyl group of type Bn

if n > 4, and a Weyl group of type F4 if n = 4). We expect similar constructions
to exist for the exceptional type Kleinian singularities.

Notation. We denote by [x, y] the commutator xy − yx. If m and j are positive
integers, then [m/j] will denote the integer part of m/j.
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1. Generators and relations

Let V be a complex vector space of dimension 2. Identify SL(V ) with SL(2) by
a choice of basis for V , and let x, y be the corresponding coordinate functions on
V . Up to conjugacy, there is a unique binary dihedral group Γ ⊂ SL(V ) of order
4(n − 1) for each n ≥ 3. Following [17], we choose the following generators for Γ:

σ =
(

ζ 0
0 ζ−1

)
and τ =

(
0 1
−1 0

)
, where ζ = eπi/(n−1).

The quotient V/Γ is a Kleinian singularity or rational double point of type Dn+1.
It is easy to see that the coordinate ring C[V ]Γ is generated by x2y2, (x2(n−1) +
y2(n−1)) and xy(x2(n−1)−y2(n−1)), hence is isomorphic to C[X, Y, Z]/(Xn +XY 2 +
Z2). Accordingly, we consider the grading on C[X, Y, Z] in which X has degree 4,
Y has degree 2(n−1) and Z has degree 2n. Clearly the polynomial Xn +XY 2 +Z2

is homogeneous with respect to this grading.
Recall that a Poisson algebra is a commutative algebra B endowed with a Poisson

bracket {. , .} satisfying:
(i) (B, {. , .}) is a Lie algebra,
(ii) {b, .} is a derivation of B for each b ∈ B.
If B is graded, then the Poisson bracket on B is of degree (−r) if {b, c} ∈ Bi+j−r

for all b ∈ Bi, c ∈ Bj .
Any polynomial φ ∈ C[X, Y, Z] induces a Poisson structure on C[X, Y, Z], which

we denote {. , .}φ, such that

{X, Y }φ = ∂φ/∂Z, {X, Z}φ = −∂φ/∂Y, {Y, Z}φ = ∂φ/∂X.

Moreover, since (φ) ⊂ C[X, Y, Z] is a Poisson ideal, there is an induced Pois-
son bracket on the quotient C[X, Y, Z]/(φ). If φ is a weight homogeneous poly-
nomial (that is, homogeneous with respect to a grading of C[X, Y, Z] obtained
by attaching certain degrees to X, Y, Z), then C[X, Y, Z] and C[X, Y, Z]/(φ) are
graded Poisson algebras. (It is easy to see that the Poisson bracket has degree
(deg φ−deg X −deg Y −deg Z).) In the case φ = Xn +XY 2 +Z2 and the grading
of C[X, Y, Z] defined above, the Poisson bracket has degree −2. The Poisson struc-
ture is equivalent to that obtained by considering C[V ]Γ as a (Poisson) subalgebra
of C[V ], equipped with the symplectic bracket satisfying {x, y} = 1. We will first
construct (all possible) noncommutative deformations of the Poisson bracket on
C[X, Y, Z]. We denote the algebras thus produced by H(P, γ), parametrised by a
polynomial P with leading term ntn−1 and a scalar γ ∈ C. The H(P, γ) are the
analogues in type D of the algebras R(P ) constructed by Smith [18]. In Lemma 1.4
we show that the centre of H(P, γ) is a polynomial ring C[Ω] on one generator, and
provide a precise description of Ω. The various factor algebras H(P, γ)/(Ω − c),
c ∈ C, thus determine all possible noncommutative deformations of the Kleinian
singularity C[X, Y, Z]/(φ) of type Dn+1.

Recall that an associative C-algebra B is (Z-)filtered if there exist vector sub-
spaces Bi of B such that B =

⋃
i∈Z

Bi and Bi · Bj ⊂ Bi+j . The correspond-
ing graded algebra of a filtered algebra B, denoted grB, is the graded algebra⊕

i∈Z
Bi/Bi−1. For any b ∈ B \ {0} there exists a minimum i such that b ∈ Bi.

(If
⋂

i∈Z
Bi �= {0}, then we could of course have i = −∞. However, in this paper

we will always assume that a Z-filtration satisfies Bi = {0} for all i < 0.) We call
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this i the degree of b and write gr b = b + Bi−1 ∈ gr B. For completeness, define
gr 0 = 0.

For our purposes, a noncommutative deformation of a graded Poisson algebra
(A0, {. , .}) with Poisson bracket of degree −r is a filtered associative algebra A
such that

- gr A = A0,
- gr [x, y] = {grx, gr y} for any x, y,∈ A.
For the moment we wish to determine all noncommutative deformations of

the graded Poisson algebra (C[X, Y, Z], {. , .}φ). Since gr A = A0 and the Pois-
son bracket is of negative degree, we can choose generators U, V, W such that
{U iV jW k : i, j, k ≥ 0} is a basis for A. In particular grU = X, grV = Y , and
gr W = Z and hence the filtration on A satisfies deg U = 4, deg V = 2n − 2 and
deg W = 2n. (We note that since the grading of C[X, Y, Z] is even, A2i+1 = A2i

for all i ≥ 0.) More generally, we have

deg
∑

i,j,k≥0

aijkU iV jW k = max
aijk �=0

(4i + (2n − 2)j + 2nk).

Moreover, with respect to this filtration, [U, V ] = 2W + lower terms, [U, W ] =
−2UV + lower terms, and [V, W ] = V 2 + nUn−1 + lower terms. We wish to find
the possible expressions for these commutators which satisfy the Jacobi identity.
But it clearly changes nothing to replace U (resp. V, W ) by an equivalent element
modulo the scalars (resp. A2n−4, A2n−2).

Hence, after substituting for W , we assume that [U, V ] = 2W . Now [U, W ] =
−2UV + αW + βV + p(U) for some polynomial p ∈ C[t] of degree ≤ (n + 1)/2 and
some α, β ∈ C. Substituting (U − β/2) for U , we may assume that β = 0. Let
p = tq + γ for q ∈ C[t], γ ∈ C. Replacing V by (V − q(U)/2), we may assume that
[U, W ] = −2UV + αW + γ. Finally, there exist polynomials P, m1, m2 ∈ C[t] with
m1 of degree ≤ (n−3)/2, m2 of degree ≤ (n−2)/2 and P with leading term ntn−1

such that [V, W ] = V 2 + P (U) + m1(U)W + m2(U)V . But the Jacobi identity now
requires that [U, [V, W ]] = [V, [U, W ]], hence that m1 = m2 = 0 and α = 2.

Definition 1.1. Let P (t) be a polynomial of degree (n − 1) and let γ ∈ C.
The algebra H(P, γ) has generators U, V, W and relations [U, V ] = 2W , [U, W ] =
−2UV + 2W + γ and [V, W ] = V 2 + P (U).

This definition does not require P to have leading term ntn−1; but by scaling
generators (U, V, W ) 	→ (U, αV, αW ) we can easily see that H(P, γ) is isomorphic
to H(α2P, αγ) for any α ∈ C×. Lemma 1.2 follows immediately from the above
discussion.

Lemma 1.2. Let A be a noncommutative deformation of (C[X, Y, Z], {. , .}φ), where
φ = Xn + XY 2 + Z2. Then A is isomorphic (as a filtered algebra) to H(P, γ) for
some polynomial P (t) with leading term ntn−1 and some γ ∈ C.

We now describe the centre of H(P, γ). To do this we need a little preparation.
By definition [U, V ] = 2W and [U, W ] = −2UV + 2W + γ. It follows that there
exist polynomials αn, βn ∈ C[t] such that [Un, V ] = αn(U)[U, V ] + βn(U)[U, W ].
Indeed, then

[Un+1, V ] = Un[U, V ] + (αn(U)[U, V ] + βn(U)[U, W ])U

= (Un + αn(U) + 2Uβn(U))[U, V ] + ((U − 2)βn(U) − 2αn(U))[U, W ].
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Hence αn+1 = tn +tαn +2tβn and βn+1 = (t−2)βn−2αn. To solve these difference
equations, let ι : C[t] ↪→ C[s] be the algebra embedding which sends t to −s(s + 1).
For f ∈ C[t] (temporarily) denote by f the image ι(f). Let ρn = αn − sβn and let
µn = αn+(s+1)βn. A straightforward calculation shows that ρn+1 = (−s(s+1))n−
s(s−1)ρn and µn+1 = (−s(s+1))n−(s+1)(s+2)µn. But ρ1 = µ1 = 1, hence ρn =
((−s(s−1))n−(−s(s+1))n)/2s and µn = ((−s(s+1))n−(−(s+1)(s+2))n)/2(s+1).
It would be straightforward to write explicit expressions for αn and βn, but this
will suffice for our purposes. Let ρ, µ : C[s] → C[s] be the linear maps given by
ρ(p) = (p(−s) − p(s))/2s and µ(p) = (p(−(s + 1)) − p(s + 1))/2(s + 1). We note
that for any f ∈ C[t] there exist unique polynomials α(f), β(f) ∈ C[t] such that
α(f)− sβ(f) = ρ(f). Indeed, by the above discussion there exist unique α(f), β(f)
such that α(f)−sβ(f) = ρ(f) and α(f)+(s+1)β(f) = µ(f). But −s(s+1) is stable
under the algebra endomorphism of C[s] which sends s to −(s + 1), hence the first
condition implies the second. Thus we introduce the linear maps α, β : C[t] → C[t]
such that α(f) − sβ(f) = ρ(f) for all f ∈ C[t].

Lemma 1.3. (a) [f(U), V ] = α(f)(U)[U, V ] + β(f)(U)[U, W ].
(b) [f(U), W ] = −Uβ(f)(U)[U, V ] + (α(f) + β(f))(U)[U, W ].

Proof. The first assertion is an immediate consequence of the discussion in the
paragraph above. For (b), we note that 2[U, W ] = [U, [U, V ]] = 2α(f)(U)[U, W ] −
2Uβ(f)(U)[U, V ] + 2β(f)(U)[U, W ]. �
Lemma 1.4. Let P (t) be a polynomial with leading term ntn−1 and let γ ∈ C. Then
there is a unique monic Q ∈ C[t] up to addition of scalars such that Q(−s(s−1))−
Q(−s(s+1)) = (s− 1)P (−s(s− 1))+ (s+1)P (−s(s+1)). Let Ω = Q(U)+UV 2 +
W 2 − 2WV − γV ∈ H = H(P, γ). Then Z(H) = C[Ω].

Proof. Let h be an element of H of the form Q(U) + UV 2 + W 2 + αWV + βV 2 +
p1(U)W + p2(U)V , where Q ∈ C[t] is monic of degree n and p1, p2 ∈ C[t] are
polynomials of degrees ≤ (n − 1)/2 and ≤ n/2 respectively. To find the possible
Q, p1, p2 such that h ∈ Z(H), we have only to find the conditions under which
[z, U ] = [z, V ] = 0 (since then [z, [U, V ]] = 0, hence z ∈ Z(H)). It is easy to see
that

[U, UV 2 + W 2] = 2UWV − 2WUV + 4W 2 + 2γW = [U, 2WV + γV ].

It follows that [U, h] = 0 if (and only if, though this is unnecessary) h = Q(U) +
UV 2 + W 2 − 2WV − γV . Assume h is of this form. To determine when [h, V ] = 0
we apply Lemma 1.3. By a straightforward calculation,

[UV 2 + W 2 − 2WV, V ] = −[V, [V, W ]] − 2P (U)W + [P (U), W ]
= [P (U), V ] + [P (U), W ] − P (U)[U, V ].

But therefore h ∈ Z(H) if and only if [Q(U)+P (U), V ]+ [P (U), W ] = P (U)[U, V ].
By Lemma 1.3, α(Q) = P + tβ(P ) − α(P ) and β(Q) = −(α + 2β)(P ). It follows
that α(Q) − sβ(Q) = P + (s − 1)(α − sβ)(P ). Hence Q is the unique polynomial
modulo addition of scalars such that Q(−s) − Q(s) = (s − 1)P (−s) + (s + 1)P (s).

This proves that Ω = Q(U) + UV 2 + W 2 − 2WV − γV ∈ Z(H). Let B be
the Poisson algebra (C[X, Y, Z], {. , .}φ). It is well-known (and easy to check) that
the Casimir elements CasB = {f ∈ B : {f, g} = 0 ∀g ∈ B} = C[φ]. It is easy
to see that if h ∈ Z(H), then gr h ∈ Cas B. Suppose therefore that h ∈ Z(H),
but h �∈ C[Ω]. We may assume that the degree of h is minimal subject to this



NONCOMMUTATIVE DEFORMATIONS OF KLEINIAN SINGULARITIES 2357

condition. Then grh ∈ Cas B, hence gr h = ξφi for some i and some ξ ∈ C×.
But now h − ξΩi ∈ Z(H) has degree strictly less than h, which contradicts our
assumption on h. �

We note that the condition on Q, P is equivalent to the condition

Q(−s(s + 1)) + (s + 1)P (−s(s + 1)) is an even polynomial in s.(1)

Moreover, for each monic polynomial Q(t) there is a unique P (t) satisfying (1),
necessarily with leading term ntn−1 (where n is the degree of Q).

Definition 1.5. Let Q(t) be a polynomial of degree n and let γ ∈ C. We define
D(Q, γ) to be the associative algebra with generators u, v, w and relations

[u, v] = 2w, [u, w] = −2uv + 2w + γ, [v, w] = v2 + P (u)

and Q(u) + uv2 + w2 − 2wv − γv = 0,

where P (t) is the unique polynomial of degree (n − 1) such that

Q(−s(s − 1)) − Q(−s(s + 1)) = (s − 1)P (−s(s − 1)) + (s + 1)P (−s(s + 1)).

In common with the convention for type A, we have not assumed that Q is monic
in the above definition. But the change of generators (u, v, w) 	→ (u, ξv, ξw) gives
a natural isomorphism D(Q, γ) ∼= D(ξ2Q, ξγ). Hence any such algebra D(Q, γ) is
isomorphic to some D(Q0, γ0) with Q0 monic.

2. The isomorphism problem

Recall that if A =
⋃

i∈Z
Ai is a Z-filtered algebra satisfying Ai = {0} for all

i < 0, then there is a uniquely defined degree function on nonzero elements of A:
deg x = minx∈Ai

i. In fact this degree function defines the filtration. Fix a monic
polynomial Q(t) of degree n ≥ 3 and γ ∈ C, and let A = D(Q, γ). Let P (t) be the
unique polynomial such that Q(−s(s + 1)) + (s + 1)P (−s(s + 1)) is even in s. By
construction A is a Z-filtered algebra such that {uivjwε : i, j ∈ Z ≥ 0, ε ∈ {0, 1}}
is a basis for A and deg

∑
i,j,ε aijεu

ivjwε = maxaijε �=0(4i + (2n − 2)j + 2nε).
However, for any integer N > n we can also define a Z-filtration on A with degree

function deg
∑

i,j,ε aijεu
ivjwε = maxaijε �=0(4i + (2N − 2)j + 2Nε). To see this we

have only to check that if x, y ∈ A, then deg xy ≤ deg x + deg y. Hence suppose
x =

∑
aijεu

ivjwε and y =
∑

bijεu
ivjwε. Then 4i + (2N − 2)j + 2Nε ≤ deg x for

all aijε �= 0, and 4k + (2N − 2)l + 2Nη ≤ deg y for all bklη �= 0. It follows that

4(i + k) + (2N − 2)(j + l) + 2N(ε + η) ≤ deg x + deg y

for all aijεbklη �= 0. But

xy =
∑

i,j,k,l≥0,ε,η∈{0,1}
aijεbklη(ui+kvj+lwε+η − ui+kvj [vl, wε]wη − ui[uk, vjwε]vlwη).

Hence by induction on deg x + deg y we have only to show that the commutator
relations [u, v] = 2w, [u, w] = −2uv+2w+γ, [v, w] = v2+P (u) and the substitution
w2 = −Q(u)−uv2 − 2vw + 2v2 + 2P (u) + γv are of nonpositive degree; that is, the
terms on the right are of equal or lower degree than the corresponding terms on the
left. This is easily checked. We remark that the corresponding graded algebra of
A under this filtration is C[X, Y, Z]/(XY 2 + Z2), with X in degree 4, Y in degree
(2N−2) and Z in degree 2N . It will be extremely useful for us to consider the ‘limit
as N tends to infinity’ of these filtrations. Hence consider the group of pairs (a, b)
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of integers, with the lexicographic ordering (a, b) > (a′, b′) if and only if a > a′ or
a = a′ and b > b′. Let A

(0)
0 = C ⊂ A, and let A

(b)
a (a, b ∈ Z) be the subspace of A

spanned by all monomials of the form uivjwε with (j+ε, 2i+ε) ≤ (a, b). (We assume
that ε ∈ {0, 1}, although this isn’t strictly necessary.) Note that A

(b)
a =

⋃
b′∈Z

A
(b′)
a−1

for any a ∈ Z and any b < 0. Let A
(∞)
a = A

(−1)
a+1 for all a ∈ Z. It is straightforward

to check that the commutation relations [u, v] = 2w, [u, w] = −2uv + 2w + γ and
[v, w] = v2 + P (u) satisfy deg[x, y] = deg x + deg y − (0, 1) and that the equality
w2 = −uv2−Q(u)+2wv+γv replaces w2 by a term of equal degree (2, 2) (congruent
to −uv2 modulo A

(1)
2 ). It follows by the argument above that A =

⋃
a,b∈Z

A
(b)
a is a

well-defined filtration of A, which we call the limit filtration. It is easy to see that
the corresponding graded ring is isomorphic to C[X, Y, Z]/(XY 2 + Z2), where X
has degree (0, 2), Y has degree (1, 0) and Z has degree (1, 1). (The induced Poisson
bracket satisfies {X, Y } = 2Z, {X, Z} = −2XY , {Y, Z} = Y 2, and is of degree
−(0, 1).)

Until further notice we fix the limit filtration on A. It turns out to be significantly
easier for us to calculate using the monomials uiwvj−1 rather than uivj−1w. (This
does not affect our definition of the filtration since wv = vw+terms of lower degree.)
Hence we express elements of A in terms of the basis {uiwεvj : i, j ≥ 0, ε = 0, 1}.
Denote by grlim A the associated graded ring, that is, grlim A =

∑
a,b∈Z

A
(b)
a /A

(b−1)
a .

Since grlim A =
∑

a,b≥0 A
(b)
a /A

(b−1)
a and any subset of Z≥0 × Z≥0 has a minimal

element (in the ordering on Z2), there is a well-defined degree function on nonzero
elements of A. Hence we can associate to any element a of A a corresponding
element grlim a ∈ grlim A. It is easy to see moreover that uiwεvj has degree (a, 2b)
if and only if i = b, j = a and ε = 0, and has degree (a, 2b + 1) if and only if
a > 0, ε = 1, i = b and j = a − 1. Hence each component in the grading of grlim A
is of dimension 1. We will write “x = ξuiwεvj+lower terms” to mean that x is
congruent to ξuiwεvj modulo A

(2i+ε−1)
j+ε (implicitly assuming ξ �= 0). We refer to

ξuiwεvj as the ‘leading term’ in x.
Note that [u, vm] = 2mwvm−1+ lower terms and [u, wvm−1] = −2muvm+lower

terms; thus the cosets of (ad u)j(vm), j ≥ 0, form a basis for A
(∞)
m /A

(∞)
m−1. Define

polynomials Fm ∈ C[S, T ], m ∈ Z≥0, by F0 = S and

Fm = (S2 − 2m2S + m2(m2 − 1) + 4m2T )

for m ≥ 1. For x ∈ A, let ad x denote the derivation y 	→ xy − yx of A. Clearly
ad u and left multiplication by u, denoted lu, commute.

Lemma 2.1. Let x ∈ A. Then there exists m such that
∏m

i=0 Fi(ad u, lu)(x) = 0.

Proof. Since ad u and lu preserve each of the subspaces A
(∞)
m , it is enough to show

that Fm(ad u, lu)(x) ∈ A
(∞)
m−1 for any x ∈ A

(∞)
m . But A

(∞)
m /A

(∞)
m−1 is spanned by (the

cosets of) (adu)i(vm), i ∈ Z≥0, hence it will suffice to show that Fm(adu, lu)(vm) ∈
A

(∞)
m−1.
Clearly

[u, vm] = 2wvm−1 + 2vwvm−2 + . . . + 2vm−1w

= 2mwvm−1 +
∑m−1

j=1 [vj , w]vm−1−j ,

but since [v, w]≡v2 (mod A
(∞)
0 ), we deduce that [vj , w]vm−1−j ≡jvm (modA

(∞)
m−2).

It follows that [u, vm] ≡ 2mwvm−1 + m(m− 1)vm (mod A
(∞)
m−2). Now [u, wvm−1] =
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−2uvm + 2wvm−1 + γvm−1 + w[u, vm−1]. Thus

[u, wvm−1] ≡ −2uvm + ((m − 1)(m − 2) + 2)wvm−1

+ γvm−1 + 2(m − 1)w2vm−2 (modA
(∞)
m−2).

But w2 ≡ −uv2 + 2wv + γv (modA
(∞)
0 ) by the defining relations for A. Hence

[u, wvm−1] ≡ −2muvm + m(m + 1)wvm−1 + (2m − 1)γvm−1 (mod A
(∞)
m−2).

This proves the statement about vm. In fact we have shown that

Fm(ad u, lu)(vm) ≡ 2m(2m − 1)γvm−1 (mod A
(∞)
m−2). �

Lemma 2.2. Let P (S, T ) =
∏m

i=0 Fi(S, T ). If P is written in the form∑2m+1
i=0 ai(T )Si, then a2m+1 = 1 and deg a2m+1−i ≤ i/2.

Proof. Let S be the set of all polynomials in C[S, T ] of the form
∑N

i=0 ai(T )Si,
where aN �= 0 and deg aN−i ≤ i/2. The product of any two elements of S is also
in S, since the coefficient of Si in (

∑
aj(T )Sj)(

∑
bl(T )Sl) is

∑
j+l=i aj(T )bl(T ).

But clearly Fi ∈ S for all i, hence P ∈ S. �

Lemma 2.3. Let x be a monomial in X, Y, Z. Then unless x = Y b or x = Xb,
there exists some monomial y in X, Y, Z such that {x, .}M (y) �= 0 for all M ≥ 0.

Proof. Since Z2 = −XY 2, we have only to prove the lemma in the case where
x = XaY bZε with ε ∈ {0, 1}. Suppose x′ = xr for some r ≥ 2. Then {x′, .}(y) =
rxr−1{x, y}. Hence {x′, .}M (y) = rMxM(r−1){x, .}M (y). It follows that we need
only prove the lemma in the case where x cannot be expressed as a power of any
other monomial. Note that if (i, j) is the degree of x in grlim A, then this holds if
and only if i and j are coprime.

Suppose first of all that x = XaY b such that b and 2a are coprime (and
ab �= 0). By calculation {XaY b, XcY d} = 2(ad − bc)Xa+c−1Y b+d−1Z. Moreover,
{XaY b, XcY d−1Z} = (b(2c + 1) − 2ad))Xa+cY b+d. Hence by our condition on x,
{x, y} = 0 if and only if y = xr for some r. We claim that {x, .}2i+1(XcY d) = 0 if
and only if (c, d) = (ka+j, kb) for some k ≥ 0, 0 ≤ j ≤ i, and {x, .}2i(XcY d−1Z) = 0
if and only if (c, d) = (ka + j, kb) for some k ≥ 0, 0 ≤ j ≤ (i − 1). This is true for
i = 0 by the above calculations. Hence suppose the claim is proved for (i−1). Then
{x, .}2i(XcY d−1Z) = 0 if and only if (b(2c + 1) − 2ad){x, .}2i−1(Xa+cY b+d) = 0.
By the induction hypothesis, this is true if and only if (c, d) = (ka + j, kb) for some
k ≥ 0 and some j, 0 ≤ j ≤ (i−1). This proves the induction step for XcY d−1Z. But
now {x, .}2i+1(XcY d) = 0 if and only if 2(ad−bc){x, .}2i(Xa+c−1Y b+d−1Z) = 0. It
follows from the above step that {x, .}2i+1(XcY d) = 0 if and only if (c, d) = k(a, b)
or (c − 1, d) = (ka + j, kb) for some j, 0 ≤ j ≤ i − 1. This proves our claim. Thus
{x, .}M (y) = 0 for some M if and only if y = Xka+cY kd or y = Xkc+aY kd−1Z for
some k ∈ N. Therefore (for example) {x, .}M (Y ) �= 0 for all M ≥ 0.

Suppose now that x = XaY b−1Z where b and (2a + 1) are coprime. By the
above {x, XcY d} = (2bc − d(2a + 1))Xa+cY b+d. It follows that {x, XcY d−1Z} =
(b(2c + 1) − d(2a + 1))Xa+cY b+d−1Z. Thus (once more) {x, y} = 0 if and only
if y = xr for some r. If a and (b − 1) are not both zero, then it follows that
{x, .}M (Z) is a nonzero multiple of XMaY Mb+MZ for each M ≥ 0. On the other
hand, if x = Z, then {x, .}M (Y ) is a nonzero multiple of Y M+1 for each M ≥ 1.
This completes the proof. �
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Remark 2.4. We note that it follows from the proof of Lemma 2.3 that if x and y
are monomials of coprime degrees (m, i) and (m′, i′), then {x, y} = ±(mi′ − im′)z,
where z is the standard monomial of degree (m + m′, i + i′ − 1).

Lemma 2.5. Suppose f is an element of A satisfying the condition: for any a ∈ A
there exists m such that

∏m
i=0 Fi(ad f, lf )(a) = 0. Then either f ∈ C[u] or there

exist r and ξ �= 0 such that f = ξvr+lower terms.

Proof. Let f be such an element, let a ∈ A and suppose
∏m

0 Fi(ad f, lf )(a) = 0.
Recall by Lemma 2.2 that P (S, T ) =

∏m
i=0 Fi(S, T ) is of the form S2m+1+a2mS2m+

a2m−1(T )S2m−1 + . . . + a0(T ), where deg a2m+1−i ≤ i/2. Suppose grlim f = x is
not of the form ξXi or ξY i. Then by Lemma 2.3 there exists y ∈ grlim A such that
{x, .}M (y) �= 0 for all M ≥ 0. Let a ∈ A be such that grlim a = y. Then it is
easy to see that deg(ad f)M (a) = deg{x, .}M (y). Let deg x = (r, s) with r > 0 by
assumption. Then it follows that

deg(ad f)2m+1(a) = ((2m + 1)r + c, (2m + 1)(s − 1) + d),

where deg a = (c, d). But each remaining term in the equation for Fm(ad f, lf )(x)
is of strictly smaller degree. Hence P (ad f, lf )(a) �= 0, which contradicts the as-
sumption on f . �

Our approach here is similar to that of [4] in that we exploit the Poisson structure
on grlim A to pin down the possible images of the minimal degree element u ∈ A.
However, u is not strictly semisimple in the sense of [4, 3.3]. To determine all
isomorphisms D(Q2, γ2) → D(Q1, γ1) we carry out a case-by-case study of the
possible images of the standard generators for D(Q2, γ2).

Hence let Q2 (resp. Q1) be monic of degree N ≥ 3 (resp. n ≥ 3) and let f, g, h
be the respective images of the standard generators for D(Q2, γ2) in D(Q1, γ1).
Assume until further notice that f = ξvr+ lower terms. Recall from the proof of
Lemma 2.1 that F1(ad f, lf )(g) = 2γ2. Thus F1(ad f, lf )(2h) = F1(ad f, lf )([f, g]) =
[f, F1(ad f, lf )(g)] = 0. It follows that either g = ξ′wvs−1+lower terms or g =
ξ′vs+lower terms, for some ξ′ �= 0 and s. Similarly, either h = ξ′′wvt−1+lower
terms or h = ξ′′vt+lower terms, for some ξ′′ �= 0 and t. By considering the equalities
[f, g] = 2h, [f, h] = −2fg + 2h + γ2 and Q2(f) + fg2 + h2 = 2hg + γ2g, we obtain
the following list of possibilities:

(i) g = ξ′wv(N/2−1)r−1+lower terms, h = ξ′′vNr/2+lower terms, where ξ′′2 +
ξN = 0,

(ii) g = ξ′v(N−1)r/2+lower terms, h = ξ′′wv(N−1)r/2−1+lower terms, where ξ′2 +
ξN−1 = 0,

(iii) g = ξ′v(N−1)r/2+lower terms, h = ξ′′vt+lower terms, where (N − 1)r/2 <
t < Nr/2 and ξ′2 + ξN−1 = 0,

(iv) g = ξ′vs+lower terms, h = ξ′′vNr/2+lower terms, where (N/2 − 1)r < s <
(N − 1)r/2 and ξ′′2 + ξN = 0,

(v) g = ξ′vs+lower terms, h = ξ′′vs+r/2+lower terms, where s > (N −1)r/2 and
ξξ′2 + ξ′′2 = 0,

(vi) g = ξ′v(N−1)r/2+lower terms, h = ξ′′vNr/2+lower terms, where ξN + ξξ′2 +
ξ′′2 = 0.

To deal with these cases, we examine in detail the monomials in f, g, h of highest
degree in the expression for

∏m−1
i=0 Fi(ad f, lf )(gm), and similarly for hgm−1. We
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will show that the degree of any expression in f, g, h is too high to be equal to u
unless N = 3, where the only possible case is (ii) with r = 1.

From now on, all monomials in f, g, h will be of the form f ihεgj with ε ∈ {0, 1}.
For each monomial x in f, g, h and for each nonnegative integer r, let Jr(x) denote
the (finite-dimensional) subspace of A generated by all monomials f ihεgj with
j + ε ≤ r and deg f ihεgj < deg x.

Lemma 2.6. Let f, g, h be as in one of the cases (i)-(vi) above.
(a) [f, gm] = 2mhgm−1 + m(m − 1)gm + m(m − 1)NfN−1gm−2 + a, for some

a ∈ Jm−2(fN−1gm−2) for all m ≥ 2,
(b) [f, hgm−1] = −2mfgm − 2(m − 1)fNgm−2 + m(m + 1)hgm−1 +

(2m−1)γ2g
m−1 +(m−1)(m−2)NfN−1hgm−3 +a′, where a′ ∈ Jm−2(fN−1hgm−3)

for all m ≥ 3.

Proof. Clearly

[f, gm] = 2
m−1∑
j=0

gjhgm−1−j = 2mhgm−1 +
m−1∑
j=0

[gj , h]gm−1−j

and [gj , h]=
∑j−1

l=0 gl[g, h]gj−1−l. Moreover, gl[g, h]gj−1−l =gj+1 + NglfN−1gj−1−l

= gj+1 + NfN−1gj−1 + bl for some bl ∈ Jj−1(fN−1gj−1). It follows that [gj , h]
= jgj+1+jNfN−1gj−1+b for some b ∈ Jj−1(fN−1gj−1). But then clearly bgm−1−j

∈ Jm−2(fN−1gm−2). We deduce that [f, gm] ≡ 2mhgm−1 + m(m − 1)gm +
m(m − 1)NfN−1gm−2 (modJm−2(fNgm−2)).

For (b), [f, hgm−1] = [f, h]gm−1 + h[f, gm−1]. By the definition of D(Q2, γ2),
[f, h]gm−1 = −2fgm + 2hgm−1 + γ2g

m−1. Moreover,

h[f, gm−1] = 2(m − 1)h2gm−2 + (m − 1)(m − 2)hgm−1

+ (m − 1)(m − 2)NfN−1hgm−3 + b′

for some b′ ∈ hJm−3(fN−1gm−3) ⊆ Jm−2(fN−1hgm−3). The result now follows
from the equality h2 = −Q2(f) − fg2 + 2hg + γ2g. �

Corollary 2.7. (a) If m ≥ 2, then there exists a ∈ Jm(fgm) + Jm−2(fNgm−2)
such that

Fi(ad f, lf )(gm) = −4(m2 − i2)fgm − 4m(m − 1)fNgm−2 + a.

(b) If m ≥ 3, then there exists a′ ∈ Jm(fhgm−1) + Jm−2(fNhgm−3) such that

Fi(ad f, lf )(hgm−1) = −4(m2 − i2)fhgm−1 − 4(m − 1)(m − 2)fNhgm−3 + a′.

Proof. By Lemma 2.6:

[f, [f, gm]] = [f, 2mhgm−1 + m(m − 1)gm + m(m − 1)NfN−1gm−1 + a0],

where a0∈Jm−2(fNgm−2). But then clearly [f, gm]∈Jm(fgm) and [f, fN−1gm−2],
[f, a0] ∈ Jm−2(fNgm−2). Applying Lemma 2.6 again, we see that [f, hgm−1]=
−2mfgm −2(m−1)fNgm−2 +a1 for some a1 ∈ Jm(fgm)+Jm−2(fNgm−2). Hence
the result for Fi(ad f, lf )(gm) follows.
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Similarly, Lemma 2.6 implies that

[f, [f, hgm−1]] = [f,−2mfgm − 2(m − 1)fNgm−2

+m(m + 1)hgm−1 + (2m + 1)γ′gm−1 + (m − 1)(m − 2)NfN−1hgm−3 + a2],

where a2 ∈ Jm−2(fN−1hgm−3). But it is immediate that [f, hgm−1], [f, gm−1] ∈
Jm(fhgm−1) and [f, fN−1hgm−3], [f, a2] ∈ Jm−2(fNhgm−3). Hence the result for
Fi(ad f, lf )(hgm−1) follows by Lemma 2.6(a). �

For ease of notation, for the rest of this section let Pi =
∏i

j=0 Fj(ad f, lf ).
Corollary 2.7 allows us to describe the monomials in f, g, h which are of highest
degree in the expression for Pi(gm) (resp. Pi(hgm−1)). We begin with cases (i) and
(iv) listed after Lemma 2.5. Here we use the notation x = χf ihεgj+lower terms to
mean that x = χf ihεgj + a, where a is a sum of monomials in f, g, h, each of lower
degree than f ihεgj .

Lemma 2.8. Suppose h = ξ′′vNr/2+lower terms and either g = ξ′wv(N/2−1)r−1+
lower terms (case (i)) or g = ξ′vs+lower terms, where (N/2−1)r < s < (N−1)r/2
(case (iv)). Then for any m ≥ 1:

(a) Pi(g2m) =
{

χif
iNhg2m−2i−1 + lower terms if 0 ≤ i < m,

χif
i+(m−1)(N−1)hg + lower terms if m ≤ i < 2m.

(b) Pi(g2m−1) =
{

χif
iNhg2m−2i−2 + lower terms if 0 ≤ i < m,

χif
i+(m−1)(N−1)h + lower terms if m ≤ i < 2m − 1.

(c) Pi(hg2m−1) =
{

ηif
(i+1)Ng2m−(2i+2) + lower terms if 0 ≤ i < m,

ηif
i+1+m(N−1) + lower terms if m ≤ i < 2m.

(d) Pi(hg2m−2) =
{

ηif
(i+1)Ng2m−(2i+3) + lower terms if 0 ≤ i < m − 1,

ηif
i+1+(m−1)(N−1)g + lower terms if m − 1≤ i< 2m − 1.

Here χi (resp. ηi) is a real number of sign (−1)i (resp. (−1)i+1).

Proof. Our proof is by induction on m and i. Since P0 = ad f , the lemma is true
for i = 0 by Lemma 2.6 and the fact that deg fN > deg fg2. For m = 1, this
proves (b) and (d). By a direct calculation, P1(g2) = −48fhg+lower terms and
P1(hg) = 24fN+1+lower terms. Hence (a) and (c) are also true for m = 1. We
assume therefore that m ≥ 2.

By Corollary 2.7, P1(gl) = [f,−4(l2 − 1)fgl − 4l(l − 1)fNgl−2 + a] for some
a ∈ Jl(fgl) + Jl−2(fNgl−2). Let δ be equal to (r,−1) in case (i), and equal to
(Nr/2 − s, 0) in case (iv). Then deg[f, gl] = deg gl + δ for any l ≥ 1. More-
over, if x is any monomial in f, g, h and

∑
aijεf

ihεgj is the unique expression for
[f, x] in terms of monomials in f, g, h, then it follows from Lemma 2.6 that each
nonzero term aijεf

ihεgj has degree less than or equal to deg x + δ. But there-
fore [f, a] and [f, fgl] are both of degree less than fNhgl−3. Hence P1(gl) =
−8l(l − 1)(l − 2)fNhgl−3+lower terms for any l ≥ 3. This proves (a) and (b)
for i = 1. A direct calculation establishes that P1(hg2) = 144fN+1g+lower
terms. Hence (d) is true for m = 2 and i = 1. We therefore consider P1(hgl−1)
for l ≥ 4. By Corollary 2.7, F1(ad f, lf )(hgl−1) = −4(l2 − i2)fhgl−1 − 4(l − 1)
(l−2)fNhgl−3 + a′, where a′ ∈ Jl(fhgl−1) + Jl−2(fNhgl−3). The highest degree
term here is fNhgl−3. Moreover, [f, fNhgl−3] = −2(l − 3)f2Ngl−4+lower terms,
and deg f2Ngl−4 = deg fNhgl−3 + δ. By the remarks above, P1(hgl−1) = 8(l − 1)
(l − 2)(l − 3)f2Ngl−4+lower terms, which confirms (c) and (d) for i = 1.
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An equivalent statement for the lemma can be formulated in terms of degrees
(and leading coefficients) of the Pi(gl), Pi(hgl−1). Specifically:

deg Pi(g2m) − deg g2m =
{

(2i + 1)δ if i < m,
(2m − 1)δ + (i − m + 1)(r, 0) if m ≤ i < 2m.

deg Pi(g2m−1)−deg g2m−1 =
{

(2i + 1)δ if i < m,
(2m − 1)δ + (i − m + 1)(r, 0) if m ≤ i < 2m − 1.

deg Pi(hg2m−1) − deg hg2m−1 =
{

(2i + 1)δ if i < m,
(2m − 1)δ + (i − m + 1)(r, 0) if m ≤ i < 2m.

deg Pi(hg2m−2) − deg hg2m−2

=
{

(2i + 1)δ if i < m − 1,
(2m − 3)δ + (i − m + 2)(r, 0) if m − 1 ≤ i < 2m − 1.

(We retain of course the assumption on the signs of the leading coefficients χi, ηi.)
Assume therefore that i ≥ 2 and that (a)-(d) are known to be true for all pairs

(m′, i′) with m′ < m or m′ = m and i′ < i. By Corollary 2.7,

Fi(ad f, lf )(g2m) = −4(4m2 − i2)fg2m − 8m(2m − 1)fNg2m−2 + a

for some a ∈ J2m(fg2m) + J2m−2(fNg2m−2). But let a = a1 + a2, where a1 ∈
J2m(fg2m) and a2 ∈ J2m−2(fNg2m−2). By the induction hypothesis and the re-
marks above,

deg Pi−1(a1) − deg a1 ≤ deg Pi−1(fg2m) − deg fg2m

and

deg Pi−1(a2) − deg a2 ≤ deg Pi−1(fNg2m−2) − deg fNg2m−2.

Hence Pi(g2m) = −4(4m2 − i2)Pi−1(fg2m) − 8m(2m − 1)Pi−1(fNg2m−2)+ lower
terms. If i < m, then by the induction hypothesis Pi−1(fg2m) = χi−1f

N(i−1)+1

hg2m−2i+2+lower terms and Pi−1(fNg2m−2) = χ′
i−1f

iNhg2m−2i−1+lower terms,
where χi−1 and χ′

i−1 are both of sign (−1)i−1. It follows that Pi(g2m) =
−8m(2m − 1)χi−1f

iNhg2m−2i−1+lower terms, which proves the induction step
for (a) in the case i < m. If 2m − 1 > i ≥ m, then by the induction hy-
pothesis Pi−1(fg2m) = χi−1f

i+(m−1)(N−1)hg+lower terms and Pi−1(fNg2m−2) =
χ′

i−1f
i+(m−1)(N−1)hg+lower terms, where χi−1 and χ′

i−1 are of sign (−1)i−1. This
proves the induction step in this case. Finally, P2m−2(fNg2m−2) = P2m−2(a2) = 0,
hence P2m−1(g2m) = −4(4m − 1)P2m−2(fg2m)+lower terms. But P2m−2(g2m) =
χ2m−2f

2m−1+(m−1)(N−1)hg+lower terms, where χ2m−2 is positive. It follows that
P2m−1(g2m) = −4(4m − 1)χ2m−2f

m+(m−1)Nhg+lower terms.
This proves the induction step for (a). The arguments for (b) and (c) are identi-

cal. For (d) we need to be slightly careful, for if x is a monomial in J2m−1(fhg2m−2),
then it is not necessarily true that deg Pi−1(x) − deg x ≤ deg Pi−1(fhg2m−2) −
deg fhg2m−2 (and similarly for J2m−3(fNhg2m−4)). In fact, one can see easily
from the description of degrees above that if x is a monomial in J2m−1(fhg2m−2),
then deg Pi−1(x) − deg x > deg Pi−1(fhg2m−2) − deg fhg2m−2 if and only if i =
m and x = g2m−1 or x = fg2m−1. However, in this case we still have that
deg Pi−1(x) ≤ deg Pi−1(fhg2m−2). Similarly, if x ∈ J2m−3(fNhg2m−4), then
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deg Pi−1(x) ≤ deg Pi−1(fNhg2m−4). It follows that

Pi(hg2m−2) = −4(4m2 − i2)Pi−1(fhg2m−2)

− 4(m − 1)(m − 2)Pi−1(fNhg2m−4) + lower terms.

The rest of the argument now proceeds as above. �

Corollary 2.9. Suppose g, h are as in Lemma 2.8. Then there is no possible
expression for u in terms of f, g, h.

Proof. Suppose there exists such an expression u =
∑

i,j≥0,ε∈{0,1} aijεf
ihεgj , and

let m = max{aijε �=0}(j + ε). Clearly deg gm < deg hgm−1 < deg fgm. More-
over, deg Pm−1(gm) < deg Pm−1(hgm−1) < deg Pm−1(fgm) by Lemma 2.8. Ap-
plying Pm−1 to both sides of the equation, we have the equality Pm−1(u) =∑

j+ε=m aijεPm−1(f ihεgj). Thus deg Pm−1(u) ≥ deg Pm−1(gm). To show that
there can be no such expression for u, it will therefore suffice to show that

deg Pm−1(u) < deg Pm−1(gm).

If m = 1, then deg Pm−1(u) = (r, 1) < deg Pm−1(g) = (Nr/2, 0). Suppose therefore
that m ≥ 2, hence deg Pm−1(u) < ((2m − 1)r, 0).

If m is even, then by Lemma 2.8, Pm−1(gm) = χm−1f
(m/2−1)(N+1)+1hg+lower

terms; hence deg Pm−1(gm) = (m(N + 1)r/2, 1) in case (i) and deg Pm−1(gm) =
(m(N + 1)r/2 + (s− (N/2− 1)r), 0) > (m(N + 1)r/2, 0) in case (iv). But N + 1 ≥
4, hence deg Pm−1(gm) > ((2m − 1)r, 0) in both cases. Similarly, if m is odd,
then Pm−1(gm) = χm−1f

(m−1)(N+1)/2h+lower terms, hence deg Pm−1(gm) =
((m(N + 1) − 1)r/2, 0) > ((2m − 1)r, 0). This completes the proof. �

Next we deal with case (v). This case is fairly straightforward, since the highest
degree term in the expression for h2 is fg2. Once more we write x = χf ihεgj+lower
terms to mean x = χf ihεgj +a, where a is a sum of terms aklεf

khεgl, each of degree
strictly less than that of f ihεgj .

Lemma 2.10. Suppose g = ξ′vs+lower terms and h = ξ′′vs+r/2+lower terms,
where s > (N − 1)r/2 (hence r is even). Then for any 0 ≤ i < m, Pi(gm) =
χif

ihgm−1+lower terms, where χi is a real number of sign (−1)i, and Pi(hgm−1) =
ηif

i+1gm+lower terms, where ηi is a real number of sign (−1)i+1.

Proof. We apply a similar argument to that in the proof of Lemma 2.8. The
statement of the lemma for i = 0 follows immediately from Lemma 2.6. Hence
assume i ≥ 1 and that the lemma is known to be true for all pairs (m′, i′) with
i′ < m′ and either m′ < m or m′ = m and i′ < i. Note that the induction
hypothesis implies that deg Pi′(gm′

) − deg gm′
= (2i′ + 1)(r/2, 0) for any such pair

(m′, i′), and similarly for hgm−1. It follows that if a ∈ Jm(fgm) (resp. a′ ∈
Jm(fhgm−1)), then deg Pi−1(a) ≤ deg f ihgm−1 (resp. deg Pi−1(a′) ≤ deg f i+1gm).
By Corollary 2.7, Fi(ad f, lf )(gm) = −4(m2 − i2)fgm + a, where a ∈ Jm(fgm).
Moreover, Pi−1(fgm) = χi−1f

ihgm−1+lower terms, where χi−1 is a real number of
sign (−1)i−1. Hence

Pi(gm) = Pi−1(−4(m2 − i2)fgm + a) = −4(m2 − i2)χi−1f
ihgm−1 + lower terms.

This proves the induction step for Pi(gm). Similarly, Fi(ad f, lf )(hgm−1) =
−4(m2 − i2)fhgm−1 + a′, where a′ ∈ Jm(fhgm−1). But Pi−1(fhgm−1) =
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ηi−1f
i+1gm+lower terms, where ηi−1 is real of sign (−1)i. Since Pi−1(a′)

∈ Jm(f i+1gm), we deduce that

Pi(fhgm−1)=−4ηi−1(m2 − i2)f i+1gm + lower terms.

This completes the proof. �

Corollary 2.11. Suppose g and h are as in Lemma 2.10. Then there is no possible
expression for u in terms of f, g, h.

Proof. Suppose there exists an expression u =
∑

aijεf
ihεgj , and as in the proof

of Lemma 2.8, let m = max{aijε �=0}(j + ε). Applying Pm−1 to both sides, we
have an equality Pm−1(u) =

∑
j+ε=m aijεf

iPm−1(hεgj). Moreover, it is immediate
from Lemma 2.10 that deg Pm−1(gm) < deg Pm−1(hgm−1) < deg fPm−1(gm), thus
deg Pm−1(u) ≥ deg Pm−1(gm). Hence to prove the lemma we have only to prove
that deg Pm−1(u) < deg Pm−1(gm). Clearly [u, vr] = 2rwvr−1+lower terms, hence
deg P0(u) = (r, 1). But P0(g) = 2h is of degree (s + r/2, 0) > (Nr/2, 0) > (r, 1).
On the other hand, if m ≥ 2, then deg Pm−1(u) < ((2m − 1)r, 0). Furthermore,
deg Pm−1(gm) = (ms + (m + 1/2)r, 0) > ((m(N + 1) − 1)r/2, 0). Since N ≥ 3,
deg Pm−1(gm) > deg Pm−1(u). This completes the proof. �

We have therefore eliminated cases (i), (iv) and (v) listed after Lemma 2.5.
Roughly speaking, the highest degree monomial in the expression for h2 (fN in
cases (i) and (iv), fg2 in case (v)) contributes the highest degree monomial in the
expression for Fi(ad f, lf )(gm), and thus eventually in the expression for Pi(gm)
(and similarly for Pi(hgm−1)). For the remaining cases, we must replace h2 by
terms of possibly higher degree, since we wish to find the expressions for Pm−1(gm)
and Pm−1(hgm−1) in terms of the monomials f ihεgj with ε ∈ {0, 1}. In these
circumstances fN and fg2 are now of equal degree; hence our final expression for
the leading term of Pm−1(gm) will contain a number of monomials in f, g, h of
equal degree. Here we write x =

∑
χjf

i+j(N−1)hgm−2j−1+lower terms (resp. x =∑
ηjf

i+1+j(N−1)gm−2j+lower terms) to mean that x =
∑

χjf
i+j(N−1)hgm−2j−1+

a (resp. x =
∑

ηjf
i+1+j(N−1)gm−2j + a), where a is a sum of monomials in f, g, h,

each of degree less than that of f ihgm−1 (resp. f i+1gm).

Lemma 2.12. Suppose that g = ξ′v(N−1)r/2+lower terms and that either h =
ξ′′wv(N−1)r/2−1+lower terms (case (ii)) or h = ξ′vt+lower terms, where (N−1)r/2
< t ≤ Nr/2 (cases (iii) and (vi)). Then for any i < m:

(a) Let l = min{i, [(m − 1)/2]}. Then Pi(gm) =
∑l

j=0 χjf
i+j(N−1)hgm−2j−1

+lower terms, where the χj are real numbers of sign (−1)i.
(b) Let l = min{i + 1, [m/2]}. Then Pi(hgm−1) =

∑l
j=0 ηjf

i+1+j(N−1)gm−2j

+lower terms, where the ηj are real numbers of sign (−1)i+1.

Proof. We follow a similar argument for the proofs of Lemmas 2.8 and 2.10. If
i = 0, then (a) and (b) are direct consequences of Lemma 2.6. Assume therefore
that m > i ≥ 1 and that the lemma is known to be true for all pairs (m′, i′)
with i′ < m′ and either m′ < m or m′ = m and i′ < i. By a direct calculation,
P1(ad f, lf )(g2) = −48fhg+lower terms and P1(hg) = 48f2g2 + 24fN+1+lower
terms. Hence assume m ≥ 3. Let δ = deg h − deg g ≤ (r/2, 0). By Corollary 2.7,

Fi(ad f, lf )(gm) = −4(m2 − i2)fgm − 4m(m − 1)fNgm−2 + a
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and Fi(ad f, lf )(hgm−1) = −4(m2 − i2)fhgm−1 − 4(m − 1)(m − 2)fNhgm−3 + a′,
where a ∈ Jm(fgm) and a′ ∈ Jm(fNhgm−1). We note that if i − 1 < m′ ≤ m,
then by the induction hypothesis Pi−1(gm′

) is a sum of monomials in f, g, h, each
of degree less than or equal to δ + ((i − 1)r, 0) + deg gm′

. On the other hand,
Pi−1(hgm′−1) is a sum of monomials of degree less than or equal to (ir, 0) − δ +
deg hgm′−1. But therefore Pi−1(a′) ∈ Jm(f i+1gm) for any a′ ∈ Jm(fhgm−1). It
follows by the induction hypothesis that

Pi(hgm−1) = Pi−1(−4(m2 − i2)fhgm−1 − 4(m − 1)(m − 2)fNhgm−3 + a′)

= −4(m2 − i2)Pi−1(fhgm−1) − 4(m − 1)(m − 2)Pm−1(fNhgm−3) + b′,

where b′ ∈ Jm(f i+1gm). This proves the induction step for (b).
For (a) we have to be careful, for it is not in general true that if x is a monomial

in f, g, h, then deg Pi−1(x) − deg x ≤ deg Pi−1(gm) − deg gm. In fact we can see
that this is true if and only if x = f i′gm′

for some i′, m′. On the other hand, if
x ∈ Jm(fgm) is of the form f i′hgm′−1, then deg x ≤ deg gm − (r, 0) + δ. By our
statement above on the degrees of Pi−1(gm′

), Pi−1(hgm′−1), we nevertheless have
that Pm−1(x) ∈ Jm(f ihgm−1), hence that Pm−1(a) ∈ Jm(f ihgm−1). The argument
now proceeds exactly as above. �

Suppose therefore that g, h are as in Lemma 2.12. Then

Pm−1(gm) = χ0f
m−1hgm−1 + χ1f

m+N−2hgm−3 + . . . + a,

where a ∈ Jm(fm−1hgm−1) and the χj are real numbers of the same sign. Since
deg g2 = deg fN−1, the monomials fm−1+j(N−1)hgm−2j−1 are of equal degree. We
ask therefore whether it is possible that the highest degree terms of these monomials
(expressed in terms of u, v, and w) cancel out. Specifically, this holds if and only if
χ0ξ

′(m−1) + χ1ξ
N−1ξ′(m−3) + χ2ξ

2(N−1)ξ′(m−5) + . . . = 0, which is true if and only
if χ0 + χ1µ + χ2µ

2 + . . . = 0, where µ = ξN−1/(ξ′)2. In cases (ii) or (iii), µ = −1.
In case (vi) µ �= −1, since ξN + ξξ′2 + ξ′′2 = 0.

Lemma 2.13. (a) Pm−1(gm) = χ0f
m−1hgm−1+χ1f

N+m−2hgm−3 + . . .+a, where

a ∈ Jm(fm−1hgm−1) and χi = χ0 ·
(

m − i − 1
i

)
/4i for 0 ≤ i ≤ [(m − 1)/2].

(b) Pm−1(hgm−1) = η0f
mgm +η1f

m+N−1gm−2 + . . .+a′, where a′ ∈ Jm(fmgm)

and ηi = η0 · (
(

m − i
i

)
+

(
m − i − 1

i − 1

)
)/4i for 0 ≤ i ≤ [m/2].

Proof. The fact that Pm−1(gm) has the above form for some constants χ0, χ1, . . .
follows immediately from Lemma 2.12. Moreover, Fm(ad f, lf )(Pm−1(gm)) = 0.
Let ωi = (m − 2i + 1)(m − 2i)χi−1 + ((m − 2i)2 − m2)χi for 1 ≤ i ≤ [(m − 1)/2].
By application of (the argument in the proof of) Corollary 2.7,

Fm(ad f, lf )(Pm−1(gm)) = −4
[(m−1)/2]∑

1

ωif
m−1+i(N−1)hgm−2i−1

+ Fm(ad f, lf )(a).

But by the observation in the proof of Lemma 2.12,

Fm(ad f, lf )(a) ∈ Jm(fN+m−1hgm−3).
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Hence each of the coefficients (m − 2i)(m − 2i + 1)χi−1 − 4i(m − i)χi is equal to
zero. We deduce that

χi

χ0
=

(m − 1)!
(m − 2i − 1)!

· 1
i!
· (m − i − 1)!

(m − 1)!
· 1
4i

=
(

m − i − 1
i

)
/4i.

Similarly, the existence of some constants ηi and an expression for Pm−1(hgm−1)
as in (b) follow immediately from Lemma 2.12. We apply the same argument as
above. Thus let ω′

i = (m− 2i + 2)(m− 2i + 1)ηi−1 − 4i(m− i)ηi for 1 ≤ i ≤ [m/2].
Then

Fm(ad f, lf )(Pm−1(hgm−1)) = −4
[m/2]∑

0

ω′
if

m+1+i(N−1)gm−2i

+ Fm(ad f, lf )(a′) = 0.

By Lemma 2.12, Fm(ad f, lf )(a′) ∈ Jm(fm+Ngm−2). Hence each of the coefficients
(m − 2i + 2)(m − 2i + 1)ηi−1 − 4i(m − i)ηi is equal to zero. We conclude that

ηi

η0
=

m!
(m − 2i)!

· (m − i − 1)!
i!(m − 1)!

· 1
4i

=
(m − i − 1)!
i!(m − 2i)!

· m

4i
,

from which (b) follows. �

We thus introduce the polynomials

pm(t) =
[(m−1)/2]∑

0

(
m − i − 1

i

)
(t/4)i

and

qm(t) =
[m/2]∑

0

(
(

m − i
i

)
+

(
m − i − 1

i − 1

)
)(t/4)i.

Lemma 2.14. (a) pm+1(t) = pm(t)+ tpm−1(t)/4 and qm+1(t) = qm(t)+ tqm−1(t).
(b) qm(t) = pm(t) + tpm−1(t)/2.
(c) pm(−1) = m/2m−1 and qm(−1) = 1/2m−1.

Proof. Part (a) follows immediately from the fact that
(

m − i − 1
i

)
−

(
m − i − 2

i

)

=
(

m − i − 2
i − 1

)
and similarly for

(
m − i

i

)
,
(

m − i − 1
i − 1

)
. For part (b), we see by

a simple re-indexing exercise that qm(t) = pm+1(t) + tpm−1(t)/4, hence that the
equality is true by application of (a). If αm = pm(−1) and βm = qm(−1), then
it follows that αm+1 = αm − αm−1/4 and βm+1 = βm − βm−1/4. The general
solution to this difference equation is (Am + B)/2m. But α2 = 1, α3 = 3/4. Hence
αm = m/2m. Similarly, β2 = 1/2 and β3 = 1/4, hence βm = 1/2m−1. �

Corollary 2.15. If h = ξ′′wv(N−1)r/2−1+lower terms (case (ii)) or h=ξ′′vt+lower
terms, where (N − 1)r/2 < t < Nr/2 (case (iii)), then

deg Pm−1(gm) = deg fm−1hgm−1 and deg Pm−1(hgm−1) = deg fmgm.

Proof. We remarked after Lemma 2.12 that the degree of Pm−1(gm) (resp.
Pm−1(hgm−1)) is lower than that of fm−1hgm−1 (resp. fmgm) if and only if
χ0+χ1µ+. . .+χ[(m−1)/2]µ

[(m−1)/2] = 0 (resp. η0+η1µ+. . .+η[m/2]µ
[m/2] = 0). But
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here µ = −1; hence by Lemmas 2.13 and 2.14 χ0+χ1µ+. . .+χ[(m−1)/2]µ
[(m−1)/2] �=

0 and η0 + η1µ + . . . + η[m/2]µ
[m/2] �= 0. �

Corollary 2.16. If µ �= −1, then there exists no m such that pm(µ) and qm(µ) are
both zero. Hence if h = ξ′′vNr/2+lower terms (case (vi)), then either deg Pm−1(gm)
= deg fm−1hgm−1 or deg Pm−1(hgm−1) = deg fmgm.

Proof. Suppose there exists an m such that pm(µ) = pm+1(µ) = 0. Let m′ be
minimal such. Then by Lemma 2.14(a) pm′−1(µ) = 0, which contradicts the min-
imality of m′. Hence there exists no m such that pm(µ) = pm+1(µ) = 0. But if
pm(µ) = qm(µ) = 0, then pm−1(µ) = 0 by Lemma 2.14(b). �

Lemma 2.17. Let a ∈ Jm+1(f ihgm) and a′ ∈ Jm(f igm). If h = ξ′′vNr/2+lower
terms (case (vi)) then [f, a] ∈ Jm+1(f i+1gm+1), and [f, a′] ∈ Jm(f ihgm−1).

Proof. In case (vi), we have [f, g] = 2h and deg h − deg g = (r/2, 0). Moreover,
[f, h] = −2fg+lower terms, and deg fg−deg h = (r/2, 0). It follows that deg[f, y]−
deg y ≤ (r/2, 0) for any monomial y in f, g, h. Hence [f, a] ∈ Jm+1(f i+1gm+1) for
any a ∈ Jm+1(f ihgm), and [f, a′] ∈ Jm(f ihgm−1) for any a′ ∈ Jm(f igm). This
completes the proof. �

Note that Lemma 2.17 is not true in cases (ii) and (iii). (Hence the proof of
Lemma 2.18 really requires different arguments for the cases µ = −1, µ �= −1.)

Lemma 2.18. Suppose f, g, h are as in Lemma 2.12.
(a) If N ≥ 4, then there is no possible expression for u in terms of f, g, h.
(b) If N = 3, then there exists no possible expression for u in terms of f, g, h

unless f = ξv+lower terms, g = ξ′v+lower terms, and h = ξ′′w+lower terms.
Moreover, in this case any expression for u must be of the form c1g + c2f + c3,
where c1, c2 ∈ C

× and c3 ∈ C.

Proof. Suppose there is such an expression u =
∑

ijε aijεf
ihεgj (with the sum taken

over all i, j ≥ 0, ε ∈ {0, 1}). Let m = maxaijε �=0(j + ε). Assume m > 1: we will
show that such an expression is impossible for all N . Suppose first of all that
aim0f

igm is the term of highest degree in the expression for u among those of the
form f jgm, f jhgm−1. By Lemma 2.12, Pm−1(u) = aim0f

iPm−1(gm) + a, where
a ∈ Jm(f i+m−1hgm−1). If µ = −1 (cases (ii) and (iii)), then by Corollary 2.15,
deg Pm−1(gm) = deg fm−1hgm−1. But

deg fm−1hgm−1 ≥ ((m(N + 1)/2 − 1)r, 0) ≥ ((2m − 1)r, 0) > deg Pm−1(u),

hence such an equality is impossible. On the other hand, if µ �= −1 (case (vi)),
then either deg Pm−1(gm) = deg fm−1hgm−1 or deg Pm−1(hgm−1) = deg fmgm. If
deg Pm−1(gm) = deg fm−1hgm−1, then the argument above provides a contradic-
tion. If not, then we consider the equality [f, u] = 2maim0f

ihgm−1 +a′, where a′ ∈
Jm(f ihgm−1). By Lemmas 2.17 and 2.12, Pm−1([f, u]) = 2maim0f

iPm−1(hgm−1)+
a, where a ∈ Jm(fmgm). But now

deg Pm−1([f, u]) < (2mr, 0)

and
deg f iPm−1(hgm−1) ≥ deg fmgm = (m(N + 1)r/2, 0).

Hence there is no such expression for u.
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Assume therefore that ai(m−1)1f
ihgm−1 is the highest degree term in the expres-

sion for u among those of the form f jgm, f jhgm−1. Once more we apply Pm−1:
Pm−1(u) = ai(m−1)1f

iPm−1(hgm−1) + a, where a ∈ Jm(f i+mgm). If µ = −1 (cases
(ii) and (iii)), then deg Pm−1(u) < ((2m−1)r, 0) and deg f iPm−1(hgm−1) ≥ (m(N+
1)r/2, 0), which gives a contradiction. If µ �= −1 (case (vi)), then
either deg Pm−1(hgm−1) = (m(N + 1)r/2, 0) or deg Pm−1([f, hgm−1]) =
((m(N + 1) + 1)r/2, 0). In the first case, the argument for µ = −1 shows that
equality of degrees is impossible. In the second case, by Lemma 2.17 there is
an equality [f, u] = −2mai(m−1)1f

i+1gm + a′, where a′ ∈ Jm(f i+1gm). Then
deg Pm−1([f, u]) < (2mr, 0). But deg f iPm−1(f i+1gm) > (m(N + 1)r/2, 0). This
proves our claim.

Suppose therefore that m = 1. Hence u = m1(f)g + m2(f)h + m3(f) for some
polynomials m1(t), m2(t), m3(t). Applying (ad f), we have an equality [f, u] =
m1(f)[f, g] + m2(f)[f, h]. But deg h = deg[f, g] < deg[f, h] < deg f [f, g] and
deg[f, u] = (r, 1). Hence such an equality is only possible if h = ξ′′w+lower terms,
that is to say, if N = 3, r = 1 and we are in case (ii). Thus (b) follows. �

Lemma 2.18 essentially completes our determination of the isomorphisms

D(Q2, γ2) → D(Q1, γ1)

in the case N ≥ 4 (or n ≥ 4). The following straightforward lemma is the final
step.

Lemma 2.19. Let Q1 and Q2 be monic polynomials of degree ≥ 3 and γ1, γ2 ∈ C.
Suppose φ : D(Q2, γ2) → D(Q1, γ1) is an isomorphism, and let f, g, h be the images
in D(Q1, γ1) of the standard generators for D(Q2, γ2). If f ∈ C[u], then f = u,
Q1 = Q2 and either:

(i) γ1 = γ2 and g = v, h = w (the trivial isomorphism) or,
(ii) γ1 = −γ2 and g = −v, h = −w.

Proof. Since the cosets of (ad u)j(vm), j ≥ 0, form a basis for A
(∞)
m /A

(∞)
m−1, the

centralizer of u in D(Q1, γ1) is C[u]. But therefore the centralizer of f in D(Q1, γ1)
is C[f ]. It follows that f = au + b for some a ∈ C×, b ∈ C. By (the proof
of) Lemma 2.1, F1(ad f, lf )(h) = 0. Suppose g = ξ′uivj+lower terms (resp.
g = ξ′uiwvj−1+lower terms). Then h = ξ′′uiwvj−1+lower terms (resp. h =
ξ′′ui+1vj+lower terms). Thus Fj(ad u, lu)(h) ∈ A

(∞)
j−1, and if P ∈ C[S, T ] is any

polynomial of the form S2 + c1S + c2 + dT which is not equal to Fj(ad u, lu), then
P (adu, lu)(h) �∈ A

(∞)
j−1. (This is clear since h, [u, h], uh are linearly independent over

A
(∞)
j−1.) Hence we must have F1(ad f, lf ) = a2Fj(adu, lu). It follows that a = 1/j2

and b = 1/4 − 1/4j2. But by the same argument for the inverse isomorphism
φ−1 : D(Q1, γ1) → D(Q2, γ2), we must have u = f/k2 + (1− 1/k2) for some k ≥ 1.
It follows that k = j = 1. Hence f = u.

Now g = ξ′uiv+lower terms or g = ξ′uiw+lower terms for some i ≥ 0 and
some ξ′ ∈ C× by Lemma 2.1. Applying the same argument to φ−1, there is an
equality v = q1(u)g + q2(u)h + q3(u) for some polynomials q1(t), q2(t), q3(t). But if
g = ξ′uiv+lower terms (resp. g = ξ′uiw+lower terms), then h = ξ′uiw+lower terms
(resp. h = −ξ′ui+1v+lower terms). In other words, the leading terms of q1(u)g
and q2(u)h are of different degrees. Hence g = ξ′v + p(u) for some polynomial p(t).
Moreover, F1(adu, lu)(g) = 2ξ′γ1 + 4up(u) = 2γ2, hence p(t) = 0. Thus g = ξ′v
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and h = ξ′w. But now

Q1(u) + uv2 + w2 − 2wv − γ1v = Q2(u) + (ξ′)2uv2 + (ξ′)2w2

− 2(ξ′)2wv − ξ′γ2v = 0.

It follows that ξ′2Q1(u) − ξ′2γ1v = Q2(u) − ξ′γ2v, hence that ξ′ = ±1. This leaves
only one nontrivial possibility: that g = −v and h = −w. But one can clearly
define such an isomorphism D(Q1,−γ1) → D(Q1, γ1). This completes the proof of
the lemma. �

We have therefore solved the isomorphism problem in type Dn+1, n ≥ 4.

Definition 2.20. Let Q(t) be a monic polynomial of degree n ≥ 4, let γ ∈ C

and let u, v, w be the standard generators for D(Q, γ). Then we denote by Θ the
isomorphism D(Q, γ) → D(Q,−γ) which maps u 	→ u′, v 	→ −v′, w 	→ −w′, where
u′, v′, w′ are the standard generators for D(Q,−γ).

Remark 2.21. This definition of Θ should perhaps refer to the defining parameters
Q, γ in its definition. However, Θ can be thought of as the action of the non-
identity element of NSL(V )(Γ)/Γ on our space parametrising the noncommutative
deformations of V/Γ.

Theorem 2.22. Let Q(t) be a monic polynomial of degree n ≥ 4 and let γ ∈ C.
(a) If Q̃ is monic of degree greater than or equal to 3 and γ̃ ∈ C, then D(Q, γ)

is isomorphic to D(Q̃, γ̃) if and only if Q̃ = Q and γ̃ = ±γ.
(b) The automorphism group of D(Q, γ) is trivial unless γ = 0, in which case

the automorphism group is cyclic of order 2, generated by Θ.

Proof. This follows from Lemma 2.19, Lemma 2.18, Corollary 2.11 and Corollary
2.9. �

Corollary 2.23. The moduli space of isomorphism classes of noncommutative de-
formations of a Kleinian singularity of type Dn, n ≥ 5, is isomorphic to a vector
space of dimension n.

Proof. The vector space V of monic polynomials of degree (n− 1) is isomorphic to
C

n−1. Hence we map the isomorphism class of D(Q, γ) to (Q, γ2) ∈ V ⊕C ∼= C
n. �

We apply this to determine when two of the algebras H(P, γ) (where P (t) has
leading term ntn−1, n ≥ 4) are isomorphic.

Theorem 2.24. Let P (t) be a polynomial with leading term ntn−1 (n ≥ 4), let
P̃ (t) be a polynomial with leading term NtN−1 (N ≥ 3) and let γ, γ̃ ∈ C. Then
H(P, γ) ∼= H(P̃ , γ̃) if and only if P = P̃ and γ = ±γ̃.

Proof. Suppose there exists some isomorphism φ : H(P, γ) → H(P̃ , γ̃). Let Q(t)
(resp. Q̃(t)) be the unique monic polynomial with zero constant term such that
Q(−s(s + 1)) + (s + 1)P (−s(s + 1)) (resp. Q̃(−s(s + 1)) + (s + 1)P̃ (−s(s + 1))) is
an even polynomial in s. Let Ω = Q(U) + UV 2 + W 2 − 2WV − γV (resp. Ω̃ =
Q̃(Ũ) + Ũ Ṽ 2 + W̃ 2 − 2W̃ Ṽ − γ̃Ṽ ), where U, V, W (resp. Ũ , Ṽ , W̃ ) are the standard
generators for H(P, γ) (resp. H(P̃ , γ̃)). By Lemma 1.4, Z(H(P, γ)) = C[Ω] and
Z(H(P̃ , γ̃)) = C[Ω̃]. But therefore φ(Ω) = aΩ̃ + c for some a ∈ C×, c ∈ C. It
follows that φ induces an isomorphism H(P, γ)/(Ω) → H(P̃ , γ̃)/(Ω̃ − c/a). But
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H(P, γ)/(Ω) ∼= D(Q, γ) and H(P̃ , γ̃)/(Ω̃ − c/a) ∼= D(Q̃ − c/a, γ̃). It follows that
γ̃ = ±γ and Q̃ = Q + c/a, hence P̃ = P . �

3. Isomorphisms in type D4

Theorem 2.22 solves the problem of determining all isomorphisms D(Q2, γ2) ∼=
D(Q1, γ1), where the degree of Q2 is greater than or equal to 4. Hence we have
only to deal with the case N = 3. When considering the inverse isomorphism, we
see that n = 3 as well. Furthermore, if φ : D(Q2, γ2) → D(Q1, γ1) is not of the
form described in Lemma 2.19, then by Lemma 2.18, f = ξv +p(u), g = ξ′v + q(u),
h = ξ′′w+lower terms and u = c1g + c2f + c3 for some polynomials p(t), q(t) and
some c1, c2 ∈ C×, c3 ∈ C. Replacing φ by φ−1, we may assume that p is linear.
(Evidently this therefore holds for both φ and φ−1.) Since Q2(f)+fg2 +h2−2hg−
γ2g = 0, we must have ξ′ = ±iξ. After composing with an isomorphism of the form
given in Lemma 2.19, if necessary, we may assume furthermore that ξ′ = iξ. Now
2ξ′′w = 2h = [f, g] = iξ[p(u), v] − ξ[q(u), v]. It follows that q is also linear. Hence
assume p(t) = at + b and q(t) = ct + d. Then ξ′′ = ξ(ia − c). Moreover,

[f, h] = ξ2(ia − c)[v, w] + ξa(ia − c)[u, w]
= ξ2(ia − c)(v2 + P1(u)) + a(ia − c)ξ(−2uv + 2w + γ1),

where P1(t) is the unique polynomial such that Q1(−s(s+1))+(s+1)P1(−s(s+1))
is even in s. On the other hand, by assumption [f, h] = −2fg + 2h + γ2 and
fg = iξ2v2 + ((ai + c)u + (bi + d))ξv − 2iaξw + (au + b)(cu + d). We deduce that
a = −1/2, c = 3i/2, d = −bi and −4iξ2P1(u) + 2iξγ1 = i(u − 2b)(3u − 2b) + 2γ2.
Suppose P1(t) = 3t2 + X1u + Y1. Then it follows that ξ2 = −1/4, 8b = −X1 and
γ2 = i(Y1/2−X2

1/32)+iξγ1. We choose ξ = i/2. (The case ξ = −i/2 will then arise
as the inverse of the isomorphism we construct below, composed with the nontrivial
isomorphism from Lemma 2.19.) Assume therefore that

f = iv/2 − u/2 − X1/8, g = −v/2 + 3iu/2 + iX1/8, h = w.

We wish to determine for which values of Q2, γ2 there exists an isomorphism φ
mapping the standard generators for D(Q2, γ2) onto f, g, h. By the calculation
above, we must have γ2 = i(Y1/2−X2

1/32)−γ1/2. We note the following description
of the coefficients of the polynomial P (t) in terms of those of Q(t).

Lemma 3.1. Suppose Q(t) = t3 + At2 + Bt + C and P (t) = 3t2 + Xt + Y . Then
Q(−s(s + 1)) + (s + 1)P (−s(s + 1)) is an even polynomial in s if and only if
X = 2A + 8 and Y = 2A + B + 8.

Proof. We have

Q(−s(s + 1)) = −s6 − 3s5 + (A − 3)s4 + (2A − 1)s3 + (A − B)s2 − Bs + C

and

(s + 1)P (−s(s + 1)) = 3s5 + 9s4 + (9 − X)s3 + (3 − 2X)s2 + (Y − X)s + Y.

The lemma follows by comparing odd powers of s. �

To proceed, we therefore calculate Q2(f) + g2f + h2 + 2gh − γ2g, assuming
Q2(f) = f3 + A2f

2 + B2f + C2. By a straightforward calculation

(2) f2 = −v2/4 − (u + X1/4)iv/2 + iw/2 + (u + X1/4)2/4
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and

(3) g2 = v2/4 − (3u + X1/4)iv/2 + 3iw/2 − (3u + X1/4)2/4.

Summing (2) and (3), we obtain f2 + g2 = −2(u + X1/8)iv + 2iw − 2u(u + X1/8).
Multiplying on the right by f , we obtain f3 + g2f = (u + X1/8)v2 − wv +
((X1/4 − 2)u + X2

1/32)iv − (3u + (X1/2 − 2))iw + u(u + X1/8)(u + X1/4) + iγ1.
Hence f3 + g2f + h2 = wv + (X1/8)v2 + ((X1/4 − 2)u + X2

1/32 − iγ1)iv −
(3u + (X1/2 − 2))iw + u(u + X1/8)(u + X1/4) − Q1(u) + iγ1. Moreover, X1/8 =
1 + A1/4. We deduce that

f3 + g2f + h2 + 2gh = A1v
2/4 + (A1u/2 + 2(1 + A1/4)2 − iγ1)iv

−A1iw/2 + u(u + 1 + A1/4)(u + 2 + A1/2) − Q1(u) − P1(u) + iγ1.(4)

It follows that A2 = A1. Multiplying (2) by A1 and substituting for X1, we have

A1f
2 = −A1v

2/4 − (A1u/2 + A1(1 + A1/4))iv
+A1iw/2 + A1u

2/4 + A1(1 + A1/4)u + A1(1 + A1/4)2.(5)

We notice moreover that γ2 = i(B1/2 + 2(1 − A2
1/16) + iγ1/2). It follows that

−γ2g = (B1/4 + 1 − A2
1/16 + iγ1/4)iv

+ (B1/4 + 1 − A2
1/16 + iγ1/4)(3u + 2 + A1/2).

(6)

Let B2 = 6(A2
1/16− 1) + 3iγ1/2−B1/2. Taking the sum of (4), (5) and (6), we see

that

f3 + A1f
2 + g2f + h2 + 2gh − γ2g = −B2iv/2

+B2u/2 + B2(1 + A1/4) + (B1 − iγ1 + 4(1 − A2
1/16))A1/4 − C1.(7)

Summing B2f and (7), we deduce that Q2(t) = t3 + A1t
2 + B2t + C2, where

C2 = C1 − A1(B1/4 − iγ1/4 + 1 − A2
1/16).

Lemma 3.2. Let f = iv/2 − u/2 − (1 + A1/4), g = −v/2 + 3iu/2 + i(1 + A1/4)
and h = w. Then f3 + A1f

2 + B2f + C2 + fg2 + h2 − 2hg − γ2g = 0, where

B2 = 6(A2
1/16 − 1) + 3iγ1/2 − B1/2,

C2 = C1 − A1(B1/4 − iγ1/4 + 1 − A2
1/16),

γ2 = iB1/2 − 2i(A2
1/16 − 1) − γ1/2.

Moreover, [f, g] = 2h, [f, h] = −2fg + 2h + γ2 and [g, h] = g2 + 3f2 + (2A1 + 8)f +
(2A1 + B2 + 8).

Proof. Let Q2(t) = t3 + A1t
2 + B2t + C2. By construction, [f, g] = 2h and [f, h] =

−2fg+2h+γ2. Moreover, by the discussion above, Q2(f)+g2f+h2+2gh−γ2g = 0.
But it follows from the commutator relation [f, g] = 2h that g2f +2gh = fg2−2hg.
Hence we have only to show that [g, h] = g2 + 3f2 + (2A1 + 8)f + 2A1 + B2 + 8.
We deduce from the Jacobi identity [f, [g, h]] = [[f, g], h] + [g, [f, h]] and the known
commutator relations for f that [f, [g, h]] = 2(gh + hg) = [f, g2]. Hence [g, h] =
g2 + z for some z ∈ ZD(Q1,γ1)(f) = Z(f). We claim that Z(f) = C[f ]. Indeed, let
x be an element of Z(f) \C[f ] of minimal degree. By considering {grlim f, grlim x}
we see that x = χvj+lower terms for some χ ∈ C× and j. But now x − χ(−2if)j

is an element of Z(f) \ C[f ] of lower degree than x, which gives a contradiction.
It follows that z = p(f) for some polynomial p(t). Thus there is a homomorphism
H(p, γ2) → D(Q1, γ1) which sends the standard generators U, V, W for H(p, γ2) to
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f, g, h. The equality Q2(f) + fg2 + h2 − 2hg − γ2g = 0 now implies that p(t) =
3t2 + (2A1 + 8)t + 2A1 + B2 + 8. �

Definition 3.3. For a monic polynomial Q of degree 3 and γ ∈ C, let Θ be the
isomorphism D(Q, γ) → D(Q,−γ) given by u 	→ u′, v 	→ −v′, w 	→ −w′, where
u′, v′, w′ are the standard generators of D(Q,−γ).

Let B̃ = 6(A2/16 − 1) + 3iγ/2 − B/2, C̃ = C − A(B/4 − iγ/4 + 1 − A2/16),
γ̃ = i(2(1 − A2/16) + B/2 + iγ/2) and Q̃(t) = t3 + At2 + B̃t + C̃. Let Ψ be the
isomorphism D(Q, γ) → D(Q̃, γ̃) given by

u 	→ iṽ/2 − ũ/2 − (1 + A/4), v 	→ −ṽ/2 + 3iũ/2 + i(1 + A/4), w 	→ w̃,

where ũ, ṽ, w̃ are the standard generators of D(Q̃, γ̃).

Remark 3.4. As for the case n ≥ 4, the isomorphisms Θ, Ψ depend on the choice
of Q, γ and therefore should perhaps refer to these defining parameters in their
definition. However, one can think of Θ and Ψ as representatives of elements of
NSL(V )(Γ)/Γ acting as transformations of the space of noncommutative deforma-
tions of V/Γ. Since any element of NSL(V ) preserves the invariant ring C[V ]Γ, there
is a natural action of NSL(V )(Γ)/Γ on V/Γ. Our construction above and Theorem
3.6 below therefore say that each such element of NSL(V )/Γ has a unique induced ac-
tion on the space of noncommutative deformations of V/Γ, and this induced action
produces all possible isomorphisms between points (Q, γ).

Lemma 3.5. (a) Ψ3 is the identity map on each D(Q, γ).
(b) Θ ◦ Ψ ◦ Θ−1 = Ψ2.

Proof. Consider Ψ : D(Q, γ) → D(Q̃, γ̃) and Ψ : D(Q̃, γ̃) → D(Q̂, γ̂). Let u, v, w

(resp, ũ, ṽ, w̃, û, v̂, ŵ) be the standard generators for D(Q, γ) (resp. D(Q̃, γ̃),
D(Q̂, γ̂)). Then by calculation Ψ2 : u 	→ −iv̂/2 − û/2 − 1 − A/4, v 	→ −v̂/2 −
3iû/2 − i(1 + A/4) and w 	→ ŵ. This proves (b). By considering the compo-
sition of Ψ2 : D(Q, γ) → D(Q̂, γ̂) with Ψ : D(Q̂, γ̂) → D(Q, γ), we see that
Ψ3 : u 	→ u, v 	→ v, w 	→ w. But therefore Q = Q and γ = γ. �

We therefore define the isomorphism Ψ−1 = Ψ2: for A, B, C, γ ∈ C let B̂ =
6(A2/16 − 1) − 3iγ/2 − B/2, let Ĉ = C − A(B/4 + iγ/4 + 1 − A2/16), let γ̂ =
i(2(A2/16 − 1) − B/2) − γ/2 and let Q̂(t) = t3 + At2 + B̂t + Ĉ. Then there exists
an isomorphism Ψ−1 : D(Q, γ) → D(Q̂, γ̂) given by u 	→ −iv̂/2 − û/2 − (1 + A/4),
v 	→ −v̂/2− 3iû/2 − i(1 + A/4), w 	→ ŵ, where û, v̂, ŵ are the standard generators
for D(Q̂, γ̂).

Hence, we have completed our task.

Theorem 3.6. Let Q be a monic polynomial of degree 3 and let γ ∈ C.
(a) There are exactly six isomorphims from D(Q, γ) to algebras D(Q, γ), namely

IdD(Q,γ) and Ψ, Ψ−1, Θ, (Θ ◦ Ψ), (Θ ◦ Ψ−1).
(b) If γ = 0 and B = 4(A2/16 − 1), then AutD(Q, γ) is isomorphic to the

symmetric group S3 and is generated by Ψ and Θ.
(c) AutD(Q, γ) is of order 2 if exactly one of B − 4(A2/16 − 1) − iγ, B −

4(A2/16 − 1) + iγ and γ is zero. If B = 4(A2/16 − 1) + iγ (resp. B =
4(A2/16 − 1) − iγ) and γ �= 0, then AutD(Q, γ) is generated by Θ ◦ Ψ (resp.
Θ ◦ Ψ−1). If γ = 0 but B �= 4(A2/16 − 1), then AutD(Q, γ) is generated by Θ.
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(d) If γ �= 0 and B �= 4(A2/16 − 1) ± iγ, then there are no nontrivial automor-
phisms of D(Q, γ).

Proof. This follows from Lemma 2.5, Corollary 2.9, Corollary 2.11, Lemma 2.18,
Lemma 2.19 and the discussion above. �

We therefore think of the symmetric group S3 as acting on the space of noncom-
mutative deformations via the representatives Θ, Ψ. It is not difficult to describe
the invariants with respect to this action. Let σ =

(
1 2 3

)
and τ =

(
1 2

)
be generators for S3.

Lemma 3.7. Let S3 act as algebra automorphisms of C[A, B, C, γ] with the action
of σ (resp. τ) given by that of Ψ (resp. Θ) on Q(t) = t3 + At2 + Bt + C and γ.
Let x1 = B − 4(A2/16 − 1) − γ

√
3, x2 = B − 4(A2/16 − 1) + γ

√
3, x3 = 6C − AB

and x4 = A.
Then C[A, B, C, γ] = C[x1, x2, x3, x4] and σ(x1) = e2πi/3x1, σ(x2) = e−2πi/3x2,

τ (x1) = x2, τ (x2) = x1. The action of S3 on x3 and x4 is trivial.

Proof. The fact that C[A, B, C, γ] = C[x1, x2, x3, x4] is clear, since x2−x1 = 2γ
√

3,
x1 +x2 +4(x2

4−1) = 2B and x3 +AB = 6C. The action of σ and τ on x1, x2, x3, x4

follows immediately from Definition 3.3. �

Corollary 3.8. The moduli space of isomorphism classes of noncommutative de-
formations of a Kleinian singularity of type D4 is isomorphic to a vector space of
dimension 4.

Proof. By Lemma 3.7 the ring of invariants C[A, B, C, γ]S3 is generated by x3
1 +

x3
2, x1x2, x3 and x4. But hence the map D(Q, γ) 	→ ((B − 4(A2/16 − 1))

((B − 4(A2/16 − 1))2 + 9γ2), (B − 4(A2/16 − 1))2 − 3γ2, 6C − AB, A) induces a
bijective map on isomorphism classes of deformations. �

Finally, we can now solve the problem of when two algebras H(P, γ), H(P̃ , γ̃)
are isomorphic.

Theorem 3.9. Let P (t) = 3t2 + Xt + Y , P̃ (t) = 3t2 + X̃t + Ỹ and γ, γ̃ ∈ C. Then
H(P, γ) ∼= H(P̃ , γ̃) if and only if X = X̃ and either

(i) Ỹ = 3(X + X2/32 + iγ/2) − Y/2 and ±γ̃ = i(Y/2 − X − X2/32) − γ/2, or
(ii) Ỹ = 3(X + X2/32− iγ/2)−Y/2 and ±γ̃ = −i(Y/2−X −X2/32)− γ/2, or
(iii) Ỹ = Y and γ̃ = ±γ.

Proof. Let φ : H(P, γ) → H(P̃ , γ̃) be an isomorphism. Let Q(t) (resp. Q̃(t)) be
the unique monic polynomial with zero constant term such that Q(−s(s + 1)) +
(s + 1)P (−s(s+ 1)) (resp. Q̃(−s(s + 1)) + (s + 1)P̃ (−s(s + 1))) is even in s and let
Ω = Q(u)+uv2 +w2−2wv−γv, Ω̃ = Q̃(ũ)+ ũṽ2 + w̃2 −2w̃ṽ− γ̃ṽ. By Lemma 1.4,
Z(H(P, γ)) = C[Ω] and Z(H(P̃ , γ̃)) = C[Ω̃]. It follows that φ(Ω) = aΩ̃+ c for some
a ∈ C×, c ∈ C. Hence φ induces an isomorphism H(P, γ)/(Ω) → H(P̃ , γ̃)/(Ω̃−c/a).
But H(P, γ)/(Ω) ∼= D(Q, γ) and H(P̃ , γ̃)/(Ω̃− c/a) ∼= D(Q̃− c/a, γ̃). The theorem
now follows from Theorem 3.6 and the fact that Q(t) = t3 +(X/2−4)t2+(Y −X)t,
Q̃(t) = t3 + (X̃/2 − 4)t2 + (Ỹ − X̃)t. �
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