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Single-parameter pumping in graphene
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We propose a quantum pump mechanism based on the particular properties of graphene, namely chirality and
bipolarity. The underlying physics is the excitation of evanescent modes entering a potential barrier from one
lead, while those from the other lead do not reach the driving region. This induces a large nonequilibrium current
with electrons stemming from a broad range of energies, in contrast to the narrow resonances that govern the
corresponding effect in semiconductor heterostructures. Moreover, the pump mechanism in graphene turns out
to be robust, with a simple parameter dependence, which is beneficial for applications. Numerical results from a
Floquet scattering formalism are complemented with analytical solutions for small to moderate driving.
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I. INTRODUCTION

Ratchets and pumps are devices in which spatiotemporal
symmetry breaking turns an ac force without net bias into
directed motion.1,2 If the time-dependence enters via only one
parameter, the pump current vanishes in the adiabatic limit.3

Therefore, single-parameter pumping requires nonequilibrium
conditions enforced by driving beyond the adiabatic limit.
This distinguishes single-parameter pumps from devices that
operate with oriented work cycles, like turnstiles4 or sluices.5

Quantum pumps can be implemented with quantum dots in a
two-dimensional electron gas (2DEG) driven by microwaves,6

surface-acoustic waves,7 ac gate voltages,8–11 or nonequilib-
rium noise.12 Here we propose a single-parameter pump based
on the particular properties of graphene and show that these
display a broad-band response, in contrast to 2DEG-based
ratchets or pumps for which isolated resonances govern the
effect.6,12,13

Owing to the chiral and gapless nature of charge carriers
in graphene, an electron hitting a potential step in this
material may propagate forward as a hole with opposite
momentum.14,15 Due to this Klein tunneling, it is difficult to
confine electrons by electrostatic potentials. This phenomenon
even extends to evanescent modes, i.e., modes that decay expo-
nentially as a function of the barrier penetration. In graphene,
electrons populating such modes can tunnel a large distance.16

This impediment to electrostatic confinement constitutes a
drawback for many switching and sensing applications.

An inspection of present quantum pump designs suggests
that graphene pumps would be negatively affected by this issue
as well. For example, pumps have been realized with electro-
statically defined double quantum dots in a 2DEG.6,12 In these
experiments, a driving field induces dipole transitions of an
electron from a metastable state below the Fermi energy in the,
say, left dot to a metastable state in the right dot. Subsequently,
the electron will leave to the right lead, and an electron from the
left lead will fill the empty state in the left dot. The emerging
pump current therefore requires resonant conditions with a pair
of energetically well-defined states, i.e., well isolated states
with long life times, which do not exist in graphene.

Nevertheless, the alternative, graphene-specific mechanism
identified here allows realizing highly efficient pumping,

which may indeed outperform conventional devices. The
large pump current emerges in the bipolar regime around
the Dirac point. This is due to a scattering process where
a whole continuum of evanescent modes is promoted into
unidirectionally propagating states, which couple well to the
leads because of chirality. Since this mechanism does not
rely on intricate resonance conditions, but invokes graphene’s
intrinsic features of bipolarity and chirality, the pump current
is robust and displays a simple parameter dependence curve,
as is desirable for electronic sensor applications.

This paper is organized as follows: In the next section
we describe our proposal for a single-parameter pump and
give typical values for length and energies scales. In Sec. III
we introduce the Floquet scattering theory that applies to
nonequilibrium pumping in graphene. We first present the
general formalism and then consider the weak driving regime,
where we derive analytical expressions for the one-photon
transmission probability. In Sec. IV we present numerical
results for the pumped current comparing the performances
of graphene and a 2DEG pump. Moreover, we compare the
numerics with the semiclassical approximation derived in
the preceding section and find good agreement. The specific
pumping mechanism by excitation of evanescent modes is
explained in Sec. V. Finally, we conclude in Sec. VI.

II. DESCRIPTION OF THE SYSTEM

As a single-parameter pump setup, sketched in Fig. 1(a),
we consider a graphene ribbon of length 2L and width W

attached to two metallic electron reservoirs, with its left half
driven by a time-dependent gate. The driving by variation of
only one parameter excludes the emergence of an adiabatic
pump current.3,17 However, considering that spatial symmetry
is broken by the placement of the gate, a finite dc current
arises in nonequilibrium conditions, which can be achieved
by nonadiabatic driving. In order to assess the importance of
graphene’s chirality and bipolarity in the nonadiabatic context,
we contrast our results with those found for the corresponding
setup of a 2DEG in a semiconductor heterostructure.

We assume that the sample sizes are smaller than the mean
free path and that W � L, so that the effects coming from the
boundaries, electron-electron interactions, and disorder play
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FIG. 1. (Color online) Sketch of a single-parameter graphene
pump connected to two leads. The left half of the graphene ribbon is
exposed to an ac gate voltage. Dispersion of (b) graphene and (c) a
2DEG, with longitudinal and transverse momenta k and q, including
the branches of evanescent modes. Photon absorption (and in the
case of graphene also emission) may excite an evanescent mode to
propagating.

a minor role. Besides, we restrict ourselves to the low-energy
regime such that the Dirac approximation remains valid. Then,
our quasi one-dimensional model contains three natural energy
scales, namely the driving frequency ω, the driving amplitude
U , and the energy associated with the length L of the device.
Additionally, the leads’ Fermi momentum h̄k

(∞)
F becomes

a relevant scale in a 2DEG, since the contact resistance
depends on its value. For graphene with Fermi velocity
vF ≈ 106 m/s and L = 5 μm, the latter is EG

L = h̄vF /L ≈
0.13 meV. For a 2DEG with the same geometry and effective
mass m∗ = 0.067 me (GaAs/AlGaAs), it is roughly four orders
of magnitude smaller, EN

L = h̄2/2 m∗L2 ≈ 0.02 μeV. Driving
beyond the adiabatic limit requires frequencies ω � EL/h̄.
Electrons can then absorb or emit photons, and after a short
transient period, these excitations will establish a nonequilib-
rium population of the electronic states.

III. FLOQUET SCATTERING THEORY IN GRAPHENE

A quantitative description of nonadiabatic charge transport
is provided by Floquet scattering theory. Subsequently, we
show that this theory provides the probability T

(n)
LR for an

electron to be scattered from the left to the right lead
under the absorption or emission of n photons, and with
it we can calculate the dc current.18 In order to focus
on the graphene-specific features, we will restrict ourselves
to the zero temperature limit so that all electronic states below
the Fermi energy EF are initially occupied.

A. General formalism

When scattered at a periodically time-dependent potential,
an electron with initial energy ε may absorb or emit |n| quanta
of the driving field (n < 0 corresponds to emission), such
that its final energy is ε + nh̄ω. This is embodied in the

decomposition of the transmission probability from the left
to the right reservoir:

TLR(ε) =
∞∑

n=−∞
T

(n)
LR (ε). (1)

The corresponding time-averaged dc current is given by the
generalized Landauer formula,18,19

Ī = ge

h

∫
dε

∑
n

[
T

(n)
LR (ε)fL(ε) − T

(n)
RL(ε)fR(ε)

]
, (2)

where e is the electron charge and f (ε) is the Fermi-Dirac
distribution. Spin and valley degeneracy of graphene is
responsible for the prefactor g = 4, while g = 2 accounts for
the spin in a 2DEG. The application of Eq. (2) to graphene
(or any other two-dimensional material) requires extending
the summation to transverse momenta h̄q. For a driving field
that breaks reflection symmetry, one generally finds TRL(ε) �=
TLR(ε). Then, even when the leads are in equilibrium, such that
fL(ε) = fR(ε) ≡ f (ε), a net current may flow, and a pump
current emerges,

Ī = ge

h

∫
dεf (ε)�T (ε), (3)

where �T = TLR − TRL.
For the computation of the transmission probabilities we

adopt the Floquet scattering formalism of Ref. 20 and consider
electrons in two dimensions under the influence of a time-
dependent potential described by the Hamiltonian

H (t) = H0(x) + U (x) cos(ωt). (4)

Here, H0 comprises the kinetic energy and the static potential
V (x), while U (x) is the profile of the time-dependent potential
with frequency ω. Since the potential is y-independent, the
transverse momentum is conserved and the problem becomes
effectively one-dimensional. We assume that both the static
potential V (x) and the driving profile U (x) are piecewise
constant, and that U (x) = 0 outside the scattering region;
see Fig. 2. For graphene, H0 = h̄vF k · σ + V (x) with the
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FIG. 2. Quasi-one-dimensional scattering potential. Profile of
the pump, modeled as a barrier for which the left half (region l)
experiences an oscillatory gate voltage. Regions L and R correspond
to highly doped leads. Dotted lines denote sidebands to which the
electron energy changes by absorption and emission of photons from
the driving field.
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wavevector k = ±kex + qey . The free solution with energy
E reads

ϕ±
E = e±ikx

√
2|E|k/h̄

( |E|/h̄vF

±k + iq

)
, (5)

where k is positive and fulfills the dispersion relation E2 =
h̄2v2

F (k2 + q2), while ± is the sign of the corresponding cur-
rent. The normalization has been chosen such that propagating
waves have unit longitudinal current, vF (ϕ±

E )†σxϕ
±
E = ±1.

This is convenient since then the coefficients of a superposition
become probability amplitudes. For evanescent solutions
with imaginary longitudinal wavenumber k = iκ , the current
vanishes.

According to the Floquet theorem, the Schrödinger equa-
tion with a time-periodic Hamiltonian H (t) = H (t + 2π/ω)
possesses a complete set of solutions with structure ψ =
e−iεt/h̄φ(t), where the Floquet state φ(t) = φ(t + 2π/ω)
obeys the time-periodicity of the Hamiltonian and ε is the
quasienergy. Here we are looking for Floquet scattering states,
i.e., solutions of the Schrödinger equation that (i) are of Floquet
structure and (ii) have an incoming plane wave as boundary
condition. For clarity, we derive here only the transmission
from left to right—for the opposite direction, it follows by
simple relabeling.

Condition (i) is equivalent to employing for the wave-
function in any of the four regions � = L,l,r,R, the ansatz
ψ�(x,t) = e−iεt/h̄φ�(x,t). The time-periodic parts φ�(x,t) still
have to be determined, while the quasienergy ε turns out to
equal the energy of the incoming wave. Inserting ψ� into the
Schrödinger equation of region � yields for φ�(x,t) a partial
differential equation, which we solve by a separation ansatz.
The resulting solutions

φ±
n,�(x,t) = e−inωt−i(U�/h̄ω) sin(ωt)ϕ±

ε+nh̄ω−V�
(x)

=
∞∑

n′=−∞
Jn′−n(U�/h̄ω)e−in′ωtϕ±

ε+nh̄ω−V�
(x), (6)

comply with the requirement of time-periodicity provided that
the separation parameter n is of integer value. The separation
parameter labels all possible solutions and determines the
time-averaged energy ε + nh̄ω. The Bessel function of the
first kind Jn stems from the relation exp[−iz sin(ωt)] =∑

n Jn(z) exp(−inωt). Note that in the present case, U� is
nonzero only in the driving region � = l. The ansatz Eq. (6)
has also been used to study photo-assisted tunneling in
graphene.21,22

Condition (ii) means that in region L, the Floquet state
consists of an incoming plane wave and a reflected part,
φL = ϕ+

ε−VL
+ ∑

n rnφ
−
n,L, while in region R, we have only an

outgoing state, φR = ∑
n tnφ

+
n,R . With the normalization cho-

sen for the free solutions, Eq. (5), the coefficients of the latter
superposition relate to the left-to-right transmission probabil-
ity under absorption or emission of n quanta according to

T
(n)
LR (ε) = |tn(ε)|2. (7)

In the scattering regions l and r , the Floquet solution
must be a superposition of the states of Eq. (6); i.e.,
φ� = ∑

n t (�)
n φ+

n,� + ∑
n r (�)

n φ−
n,�. The coefficients t (�)

n and r (�)
n

follow from the requirement that the scattering states have to

be continuous at any time. These matching conditions can be
written as a set of linear equations, with the incoming wave
appearing as inhomogenity. In matrix notation it reads∑

n′
Mn,n′ · (

rn′ ,t
(l)
n′ ,r

(l)
n′ ,t

(r)
n′ ,r

(r)
n′ ,tn′

) = δn,0ϕ̃
+
L,in, (8)

where ϕ̃+
L,in ≡ ϕ+

ε−VL
denotes the incoming wave written

as a 6-dimensional vector. The 6 × 6 matrices Mn,n′ are
constructed from the wavefunctions of Eq. (6) evaluated at
the interfaces. They can be written efficiently as

Mn,n′ = M(ε − n′h̄ω)
∑

�

Jn′−n(U�/h̄ω)P�, (9)

where M(ε) contains the wave-matching condition at energy ε

in the absence of driving. The matrix P� is a projector to region
�, constructed such that MP� contains only wavefunctions
from region �. In particular, Pl = diag(0,1,1,0,0,0) projects
onto the driving region. Equation (8) fully determines
the transmission and reflection amplitudes tn and rn. The
tight-binding version18 of this method is suitable for studying
ac driving of smaller carbon-based conductors, such as
ribbons with a size of only a few lattice constants23 or
nanotubes.24,25 Via time-dependent density functional theory,
it can be generalized to the presence of interactions.26

For electrons in a 2DEG with effective mass m∗, the static
Hamiltonian reads H0 = h̄2k2/2m∗ + V (x). Its free solutions
are scalar fields, which must be continuous. But since their
derivatives must also be continuous, it is convenient to write
them in spinor notation

ϕ±
E = e±ikx

√
h̄k/m∗

(
1

±ik

)
, (10)

with the dispersion relation E = h̄2k2/2m∗. The normal-
ization is such that the first vector component has unit
current, 1

m∗ (ϕ±
E,1)†(−ih̄∂x)ϕ±

E,1 = ±1. With these ingredients,
the Floquet-scattering formalism can be directly applied to the
2DEG case.

B. Weak driving limit

The set of linear Eqs. (8) can be solved analytically in the
limit of small driving amplitudes or large frequencies, such that
p ≡ (U/2h̄ω)2 
 1. We aim at finding analytical expressions
for the one-photon transmission probabilities T (±1) in terms
of the static transmission for Klein tunneling at energy ε with
respect to the top of a high barrier15 of length L,

T (ε,q) = k2
ε

k2
ε + q2 sin2(kεL)

, (11)

where kε = [(ε/h̄vF )2 − q2]1/2. The semiclassical limit L →
∞ of the above relation is obtained by integration over fast
oscillations, which yields T (ε,q) ≈

√
1 − (h̄vF q/ε)2. In order

to relate these expressions to our formalism, we extract from
the solution of Eq. (8) in the undriven limit, U = 0, the
transmission amplitude t0 by multiplication with the vector
p†R = (0,0,0,0,0,1) and obtain

T (ε) = |p†RM−1(ε)ϕ̃+
L,in|2. (12)
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Next, we simplify Eq. (8) using for the Bessel functions
the approximations J0(U/h̄ω) = 1, J±1(U/h̄ω) = ±U/2h̄ω,
while Jn(U/h̄ω) = O|n|(U/h̄ω) for U/h̄ω 
 1. Thus, to
first order in U/h̄ω, only the Floquet indices n = 0, ±1
remain. The resulting 18 × 18 matrix (Mn,n′ ) can be in-
verted via the approximation [A + (U/2h̄ω)B]−1 = A−1 −
(U/2h̄ω)A−1BA−1, which provides t±1 and, thus,

T
(±1)
LR = p|p†RM−1(ε ∓ h̄ω)M(ε)PlM

−1(ε)ϕ̃+
L,in|2. (13)

The calculation of the elastic transmission T
(0)
LR up to leading

order in p is more tedious, but fortunately not required, because
our Hamiltonian obeys time-reversal symmetry. Therefore,
T

(0)
LR(ε) = T

(0)
RL(ε), which implies that the elastic channel does

not contribute to the pump current.18

Our numerical calculations will reveal that the relevant
contributions to the pump current stem from modes that, in
the absence of driving, are evanescent in the barrier region.
For such modes, Eq. (13) can be connected to Eq. (12) in a
simple way, because the modified source term in Eq. (13)
has an invariant forward amplitude, M(ε)PlM

−1(ε)ϕ̃+
L,in =

ϕ̃+
L,in + α−ϕ̃−

L,in. Although α− is not necessarily zero, it does
not affect the transmission, since it merely redefines the reflec-
tion amplitude r0. As a result, the one-photon transmission,
Eq. (13), becomes, besides a prefactor p, identical to the static
transmission of Eq. (12) in the evanescent region:

T
(±1)
LR (ε) = p T (ε ± h̄ω,q). (14)

For the evanescent modes entering from the right, the same
reasoning lets us conclude that the waves decay exponen-
tially and do not reach the driven region l. Consequently,
PlM

(−1)(ε)ϕ̃−
R,in ≈ 0 and T

(±1)
RL (ε) 
 p can be neglected. Then

the net transmission appearing in Eq. (3) becomes

�T = p[T (ε + h̄ω,q) + T (ε − h̄ω,q)] + O(e−2κL). (15)

The magnitude of the correction reflects the fact that we have
neglected the exponentially small transmission of the evanes-
cent modes, which decays with the imaginary wavenumber
iκ = i[q2 − (ε/h̄vF )2]1/2. Since 0 � T � 1, it follows that
the maximal net transmission for evanescent waves is 2p.

IV. NONADIABATIC PUMP CURRENT

In the relevant weak driving regime U 
 h̄ω, the absorption
or emission probabilities are of the order p ≡ (U/2h̄ω)2 
 1
[see Eq. (14)], so that �T ∼ p. Moreover, for short and wide
systems (width W � L), the total current takes the form of an
integral over modes q. Hence, the current Eq. (3) at a given
Fermi energy EF (measured from the Dirac point of the barrier)
can be expressed as

Ī = ge

h

(
U

2h̄ω

)2

W

∫ EF

−∞
dε

∫ ∞

−∞
dq

�T

p
. (16)

We compute �T numerically by wave-matching in Floquet
space [see Eq. (8)]. Using typical parameters L = 5 μm,
W/L = 4, U = 40 μeV, h̄ω = 2 meV (around 500 GHz), we
obtain the results shown in Fig. 3. As long as p 
 1, the
structure of the transmission for graphene depends only on the
product Lω, unlike for the 2DEG. Graphene develops a far
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FIG. 3. (Color online) Pump current Ī for graphene and 2DEG.
Dashed lines mark the semiclassical result, which closely matches
the numerical ones. The upper inset is a blowup of the 2DEG case.
The lower inset depicts the differential current, demonstrating that the
main contribution to the pump current arises from an energy range
h̄ω around the Dirac point, populated by modes that are evanescent
in the barrier region.

larger pump current than a 2DEG, saturating to an L- and ω-
independent maximal value Īmax ≈ 3 nA for |EF | � h̄ω, while
the smaller pump current in the 2DEG case already saturates
at |EF | � 0. The semiclassical approximation described in
Sec. III B, valid for h̄ω � EL, yields

ĪG ≈ e

h̄

(U/2)2

EG
W

×
{(

2 − |EF |
h̄ω

)
EF

h̄ω
, |EF | < h̄ω

±1, |EF | > h̄ω
, (17)

where the energy EW is the analog of EL, with L replaced
by the width W . The corresponding calculation for a 2DEG
provides the result

ĪN ≈ e

h̄

(U/2)2

2k
(∞)
F WEN

W

×
⎧⎨
⎩

0, EF < −h̄ω(
1 + EF

h̄ω

)2
, −h̄ω < EF < 0

1, EF > 0
.

These approximations are plotted as dashed curves in Fig. 3.
Unlike for graphene, the pump current in the 2DEG depends
on the leads’ large Fermi momentum k

(∞)
F (around 12 nm−1

for gold electrodes), which has been assumed equal for
both leads. The relative pump performance, ν ≡ Īmax

G /Īmax
N =

h̄k
(∞)
F /m∗vF , assuming gold electrodes and GaAs/AlGaAs

2DEGs, is ν ≈ 20; i.e., the pump current in the graphene device
is much larger than in the 2DEG device.

V. DIRECTION-DEPENDENT EXCITATION
OF EVANESCENT MODES

In the following, we show that the large and robust pump
current of the graphene device stems from a mechanism,
whereby the ac field promotes evanescent modes from the
left lead with probability p into propagating modes, unlike
evanescent modes from the right lead, which couple poorly
to the driving region. In order to support this picture, we
consider the differential response dĪ/dEF , shown in the lower
inset of Fig. 3. It indicates that the main contribution to the
current stems from the bipolar regime |ε| < h̄ω in the case of
graphene, or from the gap boundary region −h̄ω < ε < 0 in
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FIG. 4. (Color online) Scaled net transmission �T/p, where p =
(U/2h̄ω)2, for (a) the graphene and (b) the 2DEG pump as a function
of transverse wave number q and the initial energy ε for weak driving
U 
 h̄ω at photon energy h̄ω = 2 meV ∼ 500 GHz. The dashed lines
separate regions with propagating and evanescent modes under the
barrier. (c) Cut at zero energy revealing the behavior in the evanescent
region. The dashed line marks the static transmission 2T for graphene
at energy h̄ω, while the dotted curve is its semiclassical approxi-
mation. The transverse wave number q is scaled by qω, which is
defined by qωL = h̄ω/EG

L for graphene, and (qωL)2 = h̄ω/EN
L for the

2DEG.

the case of the 2DEG. In the absence of driving, these energy
ranges are populated by electronic modes that become evanes-
cent in the barrier region. Whether modes are evanescent or
propagating furthermore depends on their transverse momen-
tum q. Their response to driving is encoded in the function
�T/p, which represents the differential response for a given
mode with transverse momentum q and total energy ε [see
Eq. (16)].

Figure 4 depicts �T/p for graphene and the 2DEG.
In the 2DEG case, at each energy only a discrete set
of resonant modes contributes to the pump effect. These
resonances correspond, up to a shift of ±h̄ω in energy, to
quasibound levels in the static system, which form because
of the velocity mismatch at the interface with the metallic
leads, resulting in strong confinement. The contact resistance
increases with increasing Fermi momentum k

(∞)
F L, and the

resonances become increasingly narrow, resulting in a sup-
pressed response of the 2DEG. By contrast, in graphene a
broad range of modes contributes at all energies, and the
response is particularly strong in a diamond-shaped region

FIG. 5. (Color online) Evanescent mode pump mechanism.
Evanescent modes penetrating the barrier from the left absorb or
emit photons such that they become propagating. The corresponding
modes from the right lead decay before reaching the region with the
ac gating. Solid arrows indicate strong population; open arrows mark
negligible scattering channels.

within the bipolar regime (red square in Fig. 4), in agreement
with our earlier observation in Fig. 3. Graphene’s response
does not exhibit sharp resonances due to the fact that, in the
static case, carrier chirality prohibits their confinement, so that
carriers in the graphene pump remain strongly coupled to the
leads, even when they are driven far out of equilibrium. Instead,
graphene’s response in Fig. 4(a) has features associated with
the cone ε = h̄vF q (dashed lines) and its replicas shifted
by multiples of h̄ω. For the weak driving considered here,
only the two replicas at ε = h̄vF q ± h̄ω are visible. The first
cone divides the modes entering the scattering region into
two categories, propagating and evanescent: any incoming
carrier in mode q will become evanescent under the barrier
if its energy fulfills |ε| < h̄vF q, and will remain propagating
otherwise. The other two cones determine whether carriers
populate evanescent or propagating modes after absorption
or emission of a single photon. Analogously, in the 2DEG the
threshold between propagating and evanescent modes is found
at ε = h̄2q2/2m∗ and under photon emission or absorption
shifts to ε = h̄2q2/2m∗ ± h̄ω.

In both systems, it can now be seen that the main mechanism
of charge transfer is established by a process whereby an
evanescent mode coming from the left lead may get transmitted
to the right by absorbing or emitting a photon, as long as in
this process it jumps to an existing propagating mode that may
travel into the right lead. An evanescent coming from the right,
in contrast, first encounters the static region not covered by the
gate, and so gets reflected with a high probability (see Fig. 5).
This spatial asymmetry rectifies the carrier flux such that a net
transport from left to right emerges.

In the 2DEG, when photon absorption is at resonance with
a quasibound state, this process via evanescent modes yields a
maximal value �T/p ∼ 1, but because the resonances are
narrow, the integrated current remains small. In graphene,
on the other hand, all evanescent modes with qL < h̄ω/EG

L

exhibit a response �T/p � 2, close to twice the optimal
value of resonant evanescent modes in a 2DEG but without
the need to satisfy any resonance condition. The factor two
comes from the two possible transitions to a propagating
mode, by absorption but also by emission of a photon; i.e.,
it is directly related to bipolarity. Resonant conditions are not
required because Klein tunneling in the propagating modes and
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macroscopic tunneling in evanescent modes keep the contacts
always open; this is directly related to chirality. In combination,
these two graphene-specific effects maximize the differential
pump response around the Dirac point and, thus, determine
the robust characteristic features of the total pump current in
Fig. 3.

VI. CONCLUSIONS

With this work, we have put forward a pump mechanism
that makes use of the evanescent modes under a potential
barrier in graphene. If an ac gate voltage acts upon the, say,
left half of the barrier, electrons penetrating the barrier from the
left lead are excited into propagating modes and, thus, will be
scattered to the right lead. By contrast, electrons from the oppo-
site side will reach the driving region only with exponentially
small probability. This breaking of spatiotemporal symmetries
induces surprisingly large nonadiabatic pump currents in the
range of several nA, significantly larger than what has been
observed so far with semiconductors. The main reason for
this efficiency is that a whole range of evanescent modes
is excited, while in the corresponding setup with a 2DEG,
only isolated resonances contribute. Despite the large pump
currents, the main effect stems from single-photon absorption,
which allows one to obtain analytical results. Moreover, owing

to current conservation, ratchets that are built by several
pumps in series exhibit identical operation characteristics
(repetition of the element is therefore not desirable for practical
implementations).

A further important observation is that the resulting pump
current changes smoothly, symmetrically, and almost mono-
tonically with the distance of the Fermi energy to the Dirac
point. This behavior is a direct consequence of bipolarity and,
thus, particular to graphene pumps. As an application, it allows
steering the dc current into a direction of choice by simply
shifting the barrier height via a local dc gate voltage across
the Dirac point. This effect can also be used to detect a static
electric field by measuring the current in response to a small
oscillating probe electric field, or detecting the amplitude of
such an oscillating field when the static field is fixed to a
moderately large value, beyond which the response flattens
out.
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