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inhomogeneous plasmas
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Keckwick Lane, Daresbury, Warrington, Cheshire WA4 4AD United Kingdom

(Received 24 November 2010; accepted 15 February 2011; published online 4 April 2011)

The notion of a 2-point susceptibility kernel used to describe linear electromagnetic
responses of dispersive continuous media in nonrelativistic phenomena is general-
ized to accommodate the constraints required of a causal formulation in spacetimes
with background gravitational fields. In particular the concepts of spatial material
inhomogeneity and temporal nonstationarity are formulated within a fully covariant
spacetime framework. This framework is illustrated by recasting the Maxwell–Vlasov
equations for a collisionless plasma in a form that exposes a 2-point electromagnetic
susceptibility kernel in spacetime. This permits the establishment of a perturbative
scheme for nonstationary inhomogeneous plasma configurations. Explicit formulae
for the perturbed kernel are derived in both the presence and absence of gravita-
tion using the general solution to the relativistic equations of motion of the plasma
constituents. In the absence of gravitation this permits an analysis of collisionless
damping in terms of a system of integral equations that reduce to standard Lan-
dau damping of Langmuir modes when the perturbation refers to a homogeneous
stationary plasma configuration. It is concluded that constitutive modeling in terms
of a 2-point susceptibility kernel in a covariant spacetime framework offers a nat-
ural extension of standard nonrelativistic descriptions of simple media and that its
use for describing linear responses of more general dispersive media has wide ap-
plicability in relativistic plasma modeling. C© 2011 American Institute of Physics.
[doi:10.1063/1.3562929]

I. INTRODCTION

The behavior of a material medium in response to electromagnetic and gravitational fields
encompasses a vast range of classical and quantum physics. For media composed of a large collection
of molecular or ionized structures recourse to a statistical description is required and this often leads
to a coarser description in terms of a few thermodynamic variables and their correlations. Such a
description relies on the efficacy of particular constitutive models or phenomenological constitutive
data that serve to circumscribe its domain of applicability.

For phenomena where the relative motions of the constituents approach the speed of light
in vacuo or the material experiences bulk accelerations or gravitational interactions such constitutive
descriptions must be formulated within a relativistic framework. However, even within a space-
time covariant formulation there remains great freedom in how to accommodate electromagnetic
responses that depend on material dispersion induced by spatial correlations or temporal delays of
electromagnetic interactions.1 The incorporation of such effects in a theoretical description often
relies on a detailed structural model of the medium particularly if it is inhomogeneous or external
gravitational gradients are relevant. Notwithstanding these complexities simple constitutive mod-
els have proved of considerable value for homogeneous polarizable media that exhibit temporal
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dispersion in a laboratory frame where gravity plays no essential role. Indeed the notion of permit-
tivity and permeability tensors is often adequate to parameterize a large range of experimental linear
responses of simple polarizable media to external static and dynamic electromagnetic fields. More
generally, for nondispersive media these tensors can be subsumed into a susceptibility kernel that
readily accommodates special relativistic effects on the bulk motion of media.

In this article the degree to which the notion of a susceptibility kernel can be generalized to
describe linear electromagnetic responses of dispersive continuous media is explored. In particu-
lar the effects of spatial material inhomogeneity and nonstationarity will be formulated within a
fully covariant spacetime framework. In this manner the formulation can accommodate arbitrary
gravitational and electromagnetic interactions. The framework will be illustrated by recasting the
Maxwell–Vlasov equations for a collisionless plasma in a form that exposes a 2-point2 electromag-
netic susceptibility kernel in an arbitrary external gravitational field. This permits the establishment
of a perturbative scheme for nonstationary inhomogeneous plasma configurations in terms of such
a kernel. Explicit formulae for the perturbed kernel are derived in both the presence and absence of
gravitation in terms of the general solution to the equations of motion of the plasma constituents.
In the absence of gravitation this permits an analysis of collisionless damping in terms of a sys-
tem of integral equations that reduce to standard Landau damping of Langmuir modes when the
perturbation refers to a homogeneous stationary plasma configuration.

It is concluded that constitutive modeling in terms of a 2-point susceptibility kernel in a covariant
spacetime framework offers a natural extension of standard nonrelativistic descriptions of simple
media and that its use for describing linear responses of more general dispersive media has wide
applicability in relativistic plasma modeling.

II. CONSTITUTIVE RELATIONS

In the following spacetime M is considered a globally hyperbolic, topologically trivial four-
dimensional manifold endowed with a metric tensor g with signature (−1,+1,+1,+1) describing
gravitation. A closed 2-form F describes the electromagnetic field. The bundle of exterior p-forms
over M is denoted �p M and its sections ��p M are p−forms on M . The bundle of all forms is
�M = ⋃p=4

p=0 �
p M . Associated with g is the Hodge map �. Thus for α ∈ ��p M its corresponding

Hodge dual is denoted �α ∈ �4−p�M . The tangent bundle over M is denoted T M and its sections
�T M are vector fields on M . We call the 1-form J̃ = g(J,−) ∈ ��1 M the metric dual of the vector
field J ∈ �T M . Maxwell’s equations for the electromagnetic field F ∈ ��2 M in a polarizable
medium containing an electric current J ∈ �T M , satisfying the continuity (or current conservation)
equation d � J̃ = 0, are written

d F = 0, d � G = − � J̃ . (1)

The excitation 2-form G ∈ ��2 M can always be expressed,

G = ε0 F +�, (2)

in terms of the permittivity ε0 of free space. The polarization3 2-form � ∈ ��2 M results from all
electromagnetic field sources not made explicit in J .

In general � and J are nonlinear functionals of F and other fields such as matter and initial
data on any initial spacelike hypersurface �M ⊂ M . Such functionals are the constitutive relations
describing G and J in terms of F and the other fields.

It is convenient to introduce integration on a fibered manifold N of dimension n + r with
projection πN : N → N over a manifold N of dimension n. Thus at each point σ ∈ N one has the
fiber Nσ = π−1

N {σ } = {
(σ ′, ς ) ∈ N

∣∣πN (σ ′, ς ) = σ
}

so dim(Nσ ) = r is the fiber dimension. For
α ∈ ��p+rN we define4, 5 the form �

∫
πN
α ∈ ��p N by∫

N
β ∧ �

∫
πN

α =
∫
N
π�N (β) ∧ α (3)

for all β ∈ ��n−p N .
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In terms of local coordinates (σ 1, . . . , σ n) and (σ 1, . . . , σ n, ς1 . . . ς r ) for patches on N and N ,
respectively, one may write the fiber integral(

�
∫
πN

α

)∣∣∣∣
σ

=
∑

1≤I1<...<Ip≤n

dσ I1 ∧ . . . ∧ dσ Ip

∫
ς∈Nσ

i∂/∂σ I p . . . i∂/∂σ I1α|(σ,ς), (4)

where Nσ = π−1
N ({σ }) is the fiber over the point σ ∈ N and i∂/∂σ Ik is the contraction on forms.

Observe that if α does not contain the factor dς1 ∧ · · · ∧ dς r then �
∫
πN
α = 0. The proof of this is

given in Lemma 2 in the Appendix.
A key result of fiber integration, used to establish the current continuity equation, is that it

commutes with the exterior derivative,(
d�
∫
πN

α

)∣∣∣∣
σ

=
(

�
∫
πN

dα

)∣∣∣∣
σ

(5)

for σ not on the boundary of N provided the support of α does not intersect the boundary of N . The
proof is given in Lemma 3 in the Appendix.

In general models for � demand a knowledge of the dynamics of sources responsible for
polarization as well as any permanent polarization that may exist in the medium. A full dynamical
description depends on a specification of appropriate initial value data ζ on�M . The exact structure
of ζ depends on the sources of the polarization. For the plasma model described in Sec. III the initial
data corresponds to the velocity profile for each particle species at each point on �M in the plasma.

In this article � is considered to be an affine functional of F of the form

�[F, ζ ] = �
∫

pX

χ ∧ p�Y (F) + Z [ζ ] (6)

for some functional Z of ζ . The first term on the right is expressed in terms of the fiber integral of a
2-point susceptibility kernel χ ∈ ��4(MX × MY ) expressible locally as

χ = 1
4χabcd (x, y)dxa ∧ dxb ∧ dyc ∧ dyd . (7)

Here MX and MY are two copies of M , locally coordinated by (x0, . . . , x3) and (y0, . . . , y3), re-
spectively, with projections pX : MX × MY → MX , pY : MX × MY → MY , pX (x, y) = x , pY (x, y)
= y and initial hypersurfaces �MX ⊂ MX and �MY ⊂ MY . Throughout, summation is over roman
indices a, b, c = 0, 1, 2, 3 and greek indices μ, ν, σ = 1, 2, 3.

To consistently remove any reference to M (without a subscript) let F ∈ ��2 MY , ε0 F ∈
��2 MX , G ∈ ��2 MX , J ∈ �T MX , and �[F, ζ ] ∈ ��2 MX . Thus ε0 can be regarded as a map
ε0 : ��2 MY → ��2 MX which is the pullback of the natural isomorphism MX → MY , together
with a scaling to accommodate the choice of electromagnetic units.

In terms of local coordinate bases on MX and MY the components of (6) are

�[F, ζ ]ab(x) =
∫

y∈M
χabcd (x, y) Fef (y) dycde f + Z [ζ ]ab (8)

in a multiindex notation with

dxa1...ap ≡ dxa1 ∧ · · · ∧ dxap ,

i (x)
a1...ap

≡ i ∂

∂xap
· · · i ∂

∂xa1
.

(Note the reverse order for internal contraction.) Summations over multiindices I ⊂ {1, . . . , n}
considered as an ordered p-list I1 < I2 < . . . < Ip of length |I | = p will also be employed. Thus

dx I ≡ dx I1···Ip = dx I1 ∧ · · · ∧ dx Ip ,

i (x)
I ≡ i (x)

I1···Ip
= i ∂

∂x I p
· · · i ∂

∂x I1

so that, via summation, if α ∈ ��p M then dx I ∧ i (x)
I α = α, where |I | = p.
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In this notation the product manifold MX × MY inherits the following maps that will be em-
ployed below

dX : ��p(MX × MY ) → ��p+1(MX × MY ) ,

dX (α) = ∂αI J

∂xa
dxa ∧ dx I ∧ dy J

dY : ��p(MX × MY ) → ��p+1(MX × MY ) ,

dY (α) = ∂αI J

∂ya
dya ∧ dx I ∧ dy J

�X : ��(MX × MY ) → ��(MX × MY ) ,

�X (α) = αI J (�dx I ) ∧ dy J ,

where α = αI J dx I ∧ dy J .
Since F = d A and for A with compact support away from any boundary of MY it follows

from (6) that

�[F, ζ ] = −�
∫

pX

(dYχ ) ∧ p�Y (A) + Z [ζ ].

Hence �[F, ζ ] remains invariant6 under the gauge transformation

χ −→ χ + dY ζ̌ (9)

for any ζ̌ = ζ̌abcdxab ∧ dyc ∈ ��3(MX × MY ). Since the support of A can be made arbitrarily small
dYχ is uniquely specified by �[F, ζ ]. Furthermore,

d � �[F, ζ ] = −�
∫

pX

(dX �X dYχ ) ∧ p�Y (A) + d � Z [ζ ],

hence d � �[F, ζ ] is invariant under the gauge transformation

χ −→ χ + dY ζ̌ + �X dX ξ̌ (10)

for any ζ̌ = ζ̌abcdxab ∧ dyc and ξ̌ = ξ̌abcdxa ∧ dybc. Similarly dX �X dYχ is uniquely determined
by d � �[F, ζ ].

In general, the permittivity functional � is a nonlocal functional in spacetime given by the
integral (8). If χ is smooth, and not identically zero, then � is always nonlocal. However, for
distributional susceptibility kernels it is possible for � to remain local. In this category one has the
local, linear Minkowski constitutive relations

�[F] = ε0(εr − 1)ivF ∧ ṽ + ε0(μ−1
r − 1) �

(
(iv � F) ∧ F

)
,

where v ∈ �T MY is a vector field representing the bulk 4-velocity of the medium and εr , μr ∈
��0 MY are the relative permittivity and permeability scalars of the medium. These relations
can be represented by a distributional susceptibility kernel with support on the diagonal set
{(x, y) ∈ MX × MY |x = y}.

In general � is said to be causal on all of M if �|x only depends of the values of F which lie
on or within the past light-cone7, 8 J−(x) ⊂ MY of x . If � depends on ζ it may be causal on M+

X ,
where M+

X = �MX ∪ {
x lies to the future of�MX

}
. The functional � is causal on M+

X if �[F, ζ ]|x

only depends on the values of F and ζ which lie on or within its past light-cone J−(x) ∩ M+
X of x

and x ∈ M+
X . The data functional Z is casual on M+

X if Z [ζ ]|x depends only on ζ ∈ �MX ∩ J−(x)
for all x ∈ M+

X . For � to be causal on M+
X it is necessary and sufficient (Lemma 5 in the Appendix)

that the following be satisfied:

• Z is causal on M+
X ,

• (dYχ )|(x,y) = 0 for all (x, y) ∈ M+
X × M+

Y such that y /∈ J−(x), and
• ι��MY

(χ )
∣∣

(x,y) = 0 for all (x, y) ∈ M+
X ×�MY such that y /∈ J−(x), where ι�MY

: M+
X ×

�MY ↪→ M+
X × M+

Y is the natural embedding.
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A. Spacetime homogeneous constitutive relations for media in Minkowski spacetime

Minkowski spacetime has properties that underpin the notions of material spatial homogeneity
and stationary processes. Being isomorphic to a real four-dimensional vector space it can be given an
affine structure in addition to its light-cone structure. Physically this implies that no particular point
in a spacetime without gravitation has a distinguished status and the concepts of material and field
energy, momentum, and angular momentum can be defined in terms of the Killing symmetries of
the spacetime metric. Since all points of the spacetime are equivalent relative to this affine structure
it is sufficient to denote MX and MY by M and, relative to any point chosen as origin, a point with
coordinates x can be identified with a vector denoted by x ∈ R4. It is then convenient to introduce
the Minkowski translation map Az : M → M , Az(x) = x + z that maps points x to x + z on M .

If the electromagnetic properties of an unbounded medium are independent of location in
spacetime they will be called spacetime homogeneous. Such electromagnetic constitutive properties
imply that variations in F at event y ∈ M produce an induced variation in a functional �H[F] at
event x ∈ M , via a kernel χabcd (x, y) that depends on the 4-vector x − y. If the constitutive relation
is causal then there is no induced variation if x /∈ J+(y). Furthermore, in a spacetime homogeneous
medium Z [ζ ] = ZH, where ZH ∈ ��2 M is independent of ζ .

In terms of Az an electromagnetic constitutive functional �H is given by

�H[F] = �
∫

pX

χ ∧ p�Y (F) + ZH. (11)

The functional �H is said to be spacetime homogeneous9 if

�H[A�z F] = A�z�H[F]. (12)

This follows if the susceptibility kernel χ satisfies

χ |(x+z,y+z) = χ |(x,y) (13)

and A�z ZH = ZH. The contribution ZH may model the presence of an externally prescribed sta-
tionary uniform permanent magnetic or electric polarization. Equation (13) implies the components
of χ in (7) can be written

χabcd (x, y) = Xabcd (x − y), (14)

where

Xabcd (x) = χabcd (x, 0). (15)

Thus, in a Minkowski spacetime for materials with electromagnetic spacetime homogeneous prop-
erties, (8) can be written in terms of a convolution integral

�H[F]ab(x) = 1
4

∫
y∈M

Xabcd (x − y)Fef (y)dycde f + (ZH)ab

≡ 1
4ε

cde f (Xabcd ∗ Fef )(x) + (ZH)ab, (16)

where εcde f = ±1, 0 denotes the Levi-Civita alternating symbol in coordinates in which the metric
tensor takes the form g = ηabdxa ⊗ dxb, where ηab = diag(−1,+1,+1,+1). In these coordinates
the (ZH)ab are all constants.

Let F̂e f (k) and �̂H[F]ab(k) denote the Fourier transforms of Fef (x) and �H[F]ab(x), respec-
tively, i.e.,

F̂e f (k) =
∫

x∈R4
Fef (x)eik·x dx0123,

�̂H[F]ab(k) =
∫

x∈R4
�H[F]ab(x)eik·x dx0123,
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where k = kadxa , k · x = ka xa . Similarly let X̂ab
e f (k) be the Fourier transformation of

1
2ε

cde f Xabcd (x), i.e.,

X̂ab
e f (k) = 1

2ε
cde f

∫
x∈R4

Xabcd (x)eik·x dx0123. (17)

If ZH = 0 then it follows from (16) that

�̂H[F]ab(k) = 1
2 X̂ab

cd (k) F̂cd (k). (18)

Since χabcd is a real function on M its Fourier transform satisfies

X̂ab
cd (k)

∗ = X̂ab
cd (−k).

The 36 components of X̂ab
cd (k) subject to this symmetry can be expressed in terms of permittivity,

permeability, and magnetoelectric tensors relative to any observer frame. A specification of these
components together with relations that determine the electric current J serve as an electromag-
netic model for a spacetime homogeneous medium in Minkowski spacetime. If the medium lacks
this electromagnetic homogeneity recourse to the Fourier transform (16) is not possible and the
constitutive properties must be given in terms of a 2-point kernel and (8).

III. CONSTITUTIVE MODELS FOR A COLLISIONLESS IONIZED PLASMA

As noted in the Introduction the computation of the susceptibility for homogeneous stationary
dispersive media owes much to phenomenological models and input from experiment. For certain
conductors, semiconductors, insulators, and low-dimensional structures much can also be learnt
from the application of quantum theory. For inhomogeneous and anisotropic media subject to
nonstationary electromagnetic fields linear responses are often the subject of a perturbation approach.
This is particularly so in the case of ionized gases.

As an application of the above formalism the classical linear response of a fully ionized
inhomogeneous nonstationary collisionless plasma to a perturbation is considered in the presence
of an arbitrary background gravitational field. The perturbed constitutive tensor will be calculated
in terms of solutions to the classical Maxwell–Vlasov equations for the system. This system is
described in terms of the electromagnetic 2-form F ∈ ��2 M+ over a gravitational spacetime M+,
lying in the future of an initial hypersurface �M , and a collection of “one-particle distribution”
forms (of degree 6), θ �α� ∈ ��6E+ (one for each charged species of particle �α� with mass m�α� and
charge q�α�) on the upper unit hyperboloid bundle π : E+ → M+ over M+. The seven-dimensional
manifold E+ is a subbundle of the eight-dimensional tangent bundle T M+ over M+ whose sections
are all future pointing timelike unit vector fields on M+. Thus generic elements of E+ can be written
(z, w) with z ∈ M+ , π (z, w) = z, and g(w,w) = −1. The initial values of the one-particle forms
are given on the hypersurface �E , where �E = π−1{�M} ⊂ E+.

The Maxwell–Vlasov system is usually written in terms of the Maxwell system in vacuo and
all sources are contained in the total current J ∈ �T M+. This in turn is given by the sum over each
species current

J =
∑
�α�

J �α�, (19)

where J �α� ∈ �T M+. Thus in terms of F and J the Maxwell subsystem is

d F = 0, ε0d � F = − � J̃. (20)

The dynamic equations for each θ �α� can be written succinctly in terms of forms on E+ and
a collection of Liouville vector fields W �α� ∈ �TE+ describing the flow of the charged particles
associated with each species [α],

W �α�|(z,w) = H(z,w)(z, w) + q�α�

m�α�V(z,w)(ĩ(z,w) F), (21)
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in terms of certain horizontal and vertical lifts.10 With these vector fields the distribution forms θ�α�
are defined to satisfy the collisionless conditions,

dθ �α� = 0, (22)

iW �α�θ �α� = 0. (23)

To close this system one requires

� J̃ �α� = q�α��
∫
π

θ �α�. (24)

The closure of θ �α� leads, from (5), to the continuity equation for each species current,

d � J̃ �α� = d
(
�
∫
π

θ �α�
)

= �
∫
π

dθ �α� = 0, (25)

so the total current 3-form � J̃ is closed away from the boundary �M .
A local coordinate system (z0, . . . , z3) for a region containing z on M+ induces a local coordinate

system (z0, . . . , z3, w1, w2, w3) on E+. Since E+ ⊂ T M+ the tangent vector for a generic element
(z, w) ∈ E+ may be written

(z, w) = wa ∂

∂za

∣∣∣∣
z

∈ E+
z ⊂ Tz M+,

where E+
z = π−1({z}) is the three-dimensional fiber of E+ over z coordinated by (w1, w2, w3) and

w0(z, w) is the solution to gabw
awb = −1 with w0 > 0. All indices in the range 0, 1, 2, 3 are raised

and lowered using gab and gab so that w0 = waga0. Given a pair of vectors (z, w), (z, v) ∈ E+
z ⊂

Tz M+ the horizontal lift of the vector (z, v) to the point (z, w) ∈ E+ will be denoted H(z,w)(z, v) ∈
T(z,w)E+ and is given by

H(z,w)(z, v) =
(
va ∂

∂za
− �ν e f (z)wev f ∂

∂wν

)∣∣∣
(z,w)

, (26)

where �a
e f are the Christoffel symbols determined by the metric components gab. Furthermore, if

g(v,w) = 0 then the vertical lift of the vector (z, v) to the point (z, w) ∈ E+ is given by

V(z,w)(z, v) =
(
vμ

∂

∂wμ

)∣∣∣
(z,w)

∈ T(z,w)E+. (27)

Thus from (21), each Liouville vector field in these coordinates can be expressed as

W �α�|(z,w) = wa ∂

∂za
+

(
− �ν e f (z)wew f + q�α�

m�α� Fef (z)gνew f

)
∂

∂wν
(28)

Denote by � ∈ ��7E+ the natural 7-form measure on E+ given in these coordinates by

� = | det g|
w0

dz0123 ∧ dw123. (29)

In Ref. 11, Eq. (94)] it is shown that for all species �α�,

diW �α�� = 0. (30)

The distribution function f �α� ∈ ��0E+ relative to � for the species �α� is defined implicitly via

θ �α� = iW �α�( f �α��). (31)

From (30) and (31) it follows that (23) is equivalent to

W �α�( f �α�) = 0 (32)

and from (24) the components of the species current �α� are given in terms of f �α�(z, w) by

J �α� b(z) = q�α�
∫
E+

z

wb|(det g)(z)|1/2
w0(z, w)

f �α�(z, w)dw123. (33)
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A. Perturbation analysis

Let θ �α�
1 ∈ ��6E+ and F1 ∈ ��2 M+ be perturbations of θ �α�

0 and F0, i.e.,

θ �α� = θ
�α�
0 + θ

�α�
1 + · · · , F = F0 + F1 + · · · , (34)

where

dθ �α�
0 = 0 , iW �α�

0
θ

�α�
0 = 0 ,

d F0 = 0 , ε0d � F0 = −
∑
�α�

q�α��
∫
π

θ
�α�
0 ,

(35)

W �α�
0 |(z,w) = H(z,w)(z, w) + q�α�

m�α�V(z,w)
(

˜i(z,w) F0
)
, (36)

i.e., given by substituting F = F0 into (28). Substituting F into (21) yields W �α� = W �α�
0 + W �α�

1 + · · ·
where W �α�

1 = Ŵ �α�
1 (F1) and the map Ŵ1 : ��2 M+ → �TE+ is given by

Ŵ �α�
1 (F1)|(z,w) = q�α�

m�α�V(z,w)
(

˜i(z,w) F1
)
. (37)

The first order linear system for the perturbation (θ1, F1) is then

dθ �α�
1 = 0 , (38)

iW �α�
0
θ

�α�
1 = −iŴ �α�

1 (F1)θ
�α�
0 , (39)

d F1 = 0 , (40)

ε0d � F1 = −
∑
�α�

q�α��
∫
π

θ
�α�
1 . (41)

Using (5) and (38) it follows that each species current in the sum on the right hand side of (41)
is closed away from the initial hypersurface �M . In terms of the excitation field G1 ∈ ��2 M+

Eq. (41) will be written

d � G1 = 0, (42)

where

G1 = ε0 F1 +�1[F1, ζ 1] (43)

for some linear functional �1 of F1 and ζ such that

d � �1[F1, ζ 1] = −
∑
�α�

�
∫
π

θ
�α�
1 (44)

and ζ 1 =
{
ζ

�α1�
1 , ζ

�α2�
1 , . . .

}
, where ζ �α�

1 = ξ
�α�
1 |�EY

for some ξ �α�
1 ∈ ��5E+

Y which solves θ �α�
1 = dξ �α�

1 .

Thus ζ �α�
1 is related to the initial velocity profile of the species �α�.

In Sec. III B the general susceptibility kernel χ ∈ ��0(M+
X × M+

Y ) and linear functional Z1,
determined by θ �α�

0 and F0, are found such that

�1[F1, ζ 1]|x = �
∫

pX

χ ∧ p�Y (F1) + Z1[ζ 1] (45)

satisfies (44).
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B. A general formula for the functional �1 in an unbounded plasma

In this section a general expression for a susceptibility kernel will be constructed in terms of the
integral curves of the vector field W [α]

0 ∈ �TE+. Such curves describe segments of particle world
lines under the influence of the Lorentz force due to the external electromagnetic field F0. Although,
for a general F0, it is not possible to derive an analytic form for such integral curves, special cases
are amenable to an analytic analysis.

It proves convenient to let the final and initial states of each species of particle reside in fibers over
M+

X and M+
Y , respectively, bounded by the equivalent hypersurfaces �MX ⊂ M+

X and �MY ⊂ M+
Y .

Thus the corresponding upper unit hyperboloid bundles πX : E+
X → M+

X and πY : E+
Y → M+

Y with
boundary hypersurfaces �EX ⊂ E+

X and �EY ⊂ E+
Y are used to accommodate the final and initial 4-

velocities of the particles. The generic elements of these bundles are written (x, v) ∈ E+
X and (y, u) ∈

E+
Y , where x ∈ M+

X , y ∈ M+
Y and g(v, v) = g(u, u) = −1. The induced coordinate systems for E+

X
and E+

Y are (x0, . . . , x3, v1, v2, v3) and (y0, . . . , y3, u1, u2, u3). Let v0(x, v), v0(x, v), u0(y, u), and
u0(y, u) be defined in the same way as w0(z, w) and w0(z, w).

The contribution to the tensor �1[F1, ζ 1] due to all dynamic sources, arises from all particle
histories in the past light-cone of x ∈ M+

X . The history of the species particle �α� which passes
through event x with 4-velocity (x, v) ∈ E+

X will therefore be parametrized by negative proper time
τ : C�α�

(x,v) : [τ �α�
0 (x, v), 0] → M+, τ �→ C�α�

(x,v)(τ ). Such a history is the unique solution to the Lorentz
force equation,

∇Ċ�α�
(x,v)

Ċ�α�
(x,v) = q�α�

m�α�
(

˜iĊ�α�
(x,v)

F0
)
, (46)

with

g(Ċ�α�
(x,v), Ċ�α�

(x,v)) = −1 (47)

and final condition

C�α�
(x,v)(0) = x , Ċ�α�

(x,v)(0) = (x, v), (48)

where Ċ�α�
(x,v)(τ ) = C�α�

(x,v)�(∂τ |τ ) = Ċ�α�a
(x,v)(τ ) ∂

∂xa and the value τ �α�
0 (x, v) ≤ 0 solves

C�α�
(x,v)

(
τ

�α�
0 (x, v)

) ∈ �MY . (49)

This defines the prolongation of C , Ċ�α�
(x,v) : [τ �α�

0 (x, v), 0] → E+. For each species �α�, (x, v) ∈
E+

X and τ ∈ [τ �α�
0 (x, v), 0] let (y, u) ∈ E+

Y denote the initial state, i.e., y = C�α�
(x,v)(τ ) and (y, u)

= Ċ�α�
(x,v)(τ ), see Fig. 1.
The family of all such histories is described in terms of the maps

φ�α� : N �α�
X → E+

Y , φ�α�(τ, x, v) = Ċ�α�
(x,v)(τ ), (50)

where

N �α�
X =

{
(τ, x, v) ∈ R− × E+

X

∣∣ τ �α�
0 (x, v) ≤ τ ≤ 0

}
.

y

u
x

v

τ

FIG. 1. A segment of the solution curve C(x,v) to the unperturbed Lorentz force equation (46) with final position x , final
velocity (x, v), initial position y = C(x,v)(τ ), and initial velocity (y, u) = Ċ(x,v)(τ ).
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The manifold N �α�
X with boundary is naturally a fiber bundle over E+

X with projection � �α�
X : N �α�

X

→ E+
X , (τ, x, v) �→ �

�α�
X (τ, x, v) = (x, v) and for any form α ∈ ��pNX it follows from (4) that

�
∫
�

�α�
X

α = dx I ∧ dy J
∫ 0

τ
�α�
0 (x,v)

α(1)(τ, x, v)dτ,

where α = α(1)(τ, x, v)dx I ∧ dy J ∧ dτ + α(2)(τ, x, v)dx I ∧ dy J .
Let ��5

�EY
E+

Y be the set of sections over �EY with values in �5E+
Y , i.e., if α ∈ ��5

�EY
E+

Y then

for each (y, u) ∈ �EY , α|(y,u) ∈ �5
(y,u)E+

Y . Let the map ϕ�α� : ��5
�EY

E+
Y → ��5E+

X be given by

ϕ�α�(α)|(x,v) = φ
�α��
τ

�α�
0 (x,v)

(α|
τ

�α�
0 (x,v)) ∈ �5

(x,v)E+
X , (51)

where φ�α�
τ : E+

X → E+, φ�α�
τ (x, v) = φ(τ, x, v). For each species �α� let the initial data be given by

ζ
�α�
1 ∈ ��5

�EY
E+

Y with iW �α�
0
ζ

�α�
1 = 0.

In terms of these maps, it will now be shown that the general polarization functional �1 on M+
X

is given by

�1[F1, ζ 1] =
∑
�α�

q�α� ��
∫
πX

�
∫
�

�α�
X

dτ ∧ φ�α��(iŴ �α�
1 (F1)θ

�α�
0 ) + �d

(
�1[F1]

)
+

∑
�α�

q�α� ��
∫
πX

ϕ�α�(ζ �α�
1 ) + �d

(
Ž1[ζ 1]

)
,

(52)

where�1 and Ž1 are arbitrary linear functionals of F1 and ζ 1, respectively. The excitation�1[F1, ζ 1],
in (52), is the general solution to (44) where the source θ1 satisfies (38) and (39). The first two terms
on the right hand side of (52) are linear functionals of F1 whereas the last term is a linear functional
of the initial data ζ 1. Clearly �d

(
�1[F1]

)
and �d

(
Ž1[ζ 1]

)
are in the kernel of d�, the homogeneous

differential operator associated with (44).
The proof that (52) solves (44) requires the following lemma which is proved in the Appendix.

Lemma 1: Let N be a manifold with a boundary �N ⊂ N and let V ∈ �T N be a nonvanishing
vector field on N such that every integral curve of V intersects �N precisely once. For each σ ∈ N
let the integral curve of V terminating at σ be given by γσ : [τ0(σ ), 0] → N, where γσ (0) = σ and
γσ (τ0(σ )) ∈ �N . The set N = {

(σ, τ ) ⊂ R− × N
∣∣ τmin(σ ) ≤ τ ≤ 0

}
is a fibered manifold over N

with projection �N : N → N, (τ, σ ) �→ �N (τ, σ ) = σ . The family of integral curves of V can be
described by the map φN : N → N, φN (τ, σ ) = γσ (τ ). Let ζ ∈ ��

p
�N

N such that iV ζ = 0, i.e.,
ζ is a p-form on �N with values in �p N . Let ϕN : ��p

�N
N → ��p N be given by ϕN (ζ )|σ =

φ�N τ0(σ )(ζ |τ0(σ )) ∈ �
p
�N

N .
If β ∈ ��p N is a p-form on N with compact support such that iVβ = 0 and ξ ∈ ��p N has

the form

ξ = �
∫
�N

φ�N (β) ∧ dτ + ϕN (ζ ) (53)

then

iV dξ = β, (54)

ξ |�N = ζ .
This lemma is applied with N = E+

X , �N = �
�α�
X , V = W �α�

0 , τ0 = τ
�α�
0 , φN = φ�α�, ϕN = ϕ�α�,

ζ = ζ
�α�
1 , and

β = −iŴ �α�
1 (F1)θ

�α�
0 . (55)

Thus ξ in (53) becomes the 5-form ξ
�α�
1 ∈ ��5E+

X ,

ξ
�α�
1 = −�

∫
�

�α�
X

φ�α��(iŴ �α�
1 (F1)θ

�α�
0

) ∧ dτ + ϕ�α�(ζ �α�
1 ) = �

∫
�

�α�
X

dτ ∧ φ�α��(iŴ �α�
1 (F1)θ

�α�
0

) + ϕ�α�(ζ �α�
1 ),

(56)
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since deg
(
φ�α��(iŴ �α�

1 (F1)θ
�α�
0 )

) = 5. In order to satisfy (38) let

θ
�α�
1 = dξ �α�

1 . (57)

Furthermore, from (54) and (55)

iW �α�
0
θ

�α�
1 = iW �α�

0
dξ �α�

1 = −iŴ �α�
1 (F1)θ

�α�
0

so (39) is satisfied. In terms of ξ �α�
1 (52) can be written

�1[F1, ζ 1]|x =
∑
�α�

q�α� ��
∫
πX

ξ
�α�
1 + �d

(
�1[F1]

)|x + �d
(
Ž1[ζ 1]

)
.

Then from (5)

d � �1[F1, ζ 1] = d � �
( ∑

�α�
q�α��

∫
πX

ξ
�α�
1

)

= −
∑
�α�

q�α�d�
∫
πX

ξ
�α�
1 = −

∑
�α�

q�α��
∫
πX

dξ �α�
1

= −
∑
�α�

q�α��
∫
πX

θ
�α�
1 .

Thus the Maxwell equation (44) is also satisfied. That (52) is the general solution to (44) follows from
the fact that the difference between any two solutions of (44) satisfies the homogeneous differential
equation associated with (44).

Thus we have succeeded in eliminating θ �α�
1 from the perturbation system (38)–(41), thereby

reducing the system to d F1 = 0 and

ε0d � F1 + 1
2

∑
�α�

q�α�d�
∫
πX

�
∫
�

�α�
X

dτ ∧ φ�α��(iŴ �α�
1 (F1)θ

�α�
0 ) +

∑
�α�

q�α�d�
∫
πX

ϕ�α�(ζ �α�
1 ) = 0 (58)

in terms of (θ0, F0), for the perturbation F1. The perturbation θ1 is then given by (57) and (56).

C. The susceptibility kernel for an unbounded collisionless plasma

Equating (52) and (45) with the initial data,

Z1[ζ 1] =
∑
�α�

q�α� ��
∫
πX

ϕ�α�(ζ �α�
1 ) + �d

(
Ž1[ζ 1]

)
, (59)

yields

�
∫

pX

χ ∧ p�Y (F1) =
∑
�α�

q�α� ��
∫
πX

�
∫
�

�α�
X

dτ ∧ φ�α��(iŴ �α�
1 (F1)θ

�α�
0 ) + �d

(
�1[F1]

)
(60)

Away from the initial hypersurface boundary ∂(M+
X × M+

Y ) = �MX × M+
Y ∪ M+

X ×�MY , using (5)
and (A2) one has

�
∫

pX

�X dX ξ̌ ∧ p�Y (F1) = �
∫

pX

�X d ξ̌ ∧ p�Y (F1) = �d�
∫

pX

ξ̌ ∧ p�Y (F1) = �d
(
�̌1[F1]

)
,

where �̌1[F1] is a linear functional of F1. The gauge freedom χ → �X dX ξ̌ given in (10) is equivalent
to the addition of the term �d

(
�1[F1]

)
in (52).

If F1 is restricted to have support in a certain domain one may find χ such that

�
∫

pX

χ ∧ p�Y (F1) =
∑
�α�

q�α� ��
∫
πX

�
∫
�

�α�
X

dτ ∧ φ�α��(iŴ �α�
1 (F1)θ

�α�
0 ). (61)
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To find such a susceptibility kernel requires the following maps.
For (y, u) ∈ E+

Y , let C�α�
(y,u) : R+ → M+ and Ċ�α�

(y,u) : [0, τ �α�
1 (y, u)

) → E+ be the unique solutions
to the unperturbed Lorentz force equation (46) and (47) with initial conditions

C�α�
(y,u)(0) = y Ċ�α�

(y,u)(0) = (y, u), (62)

where τ �α�
1 (y, u) ∈ R+ ∪ {∞} is the supremum of the values of τ such that C�α�

(y,u)(τ ) ∈ M . Let

��α� : N �α�
Y → M+

X × M+
Y ,

��α�(τ, y, u) = (
C�α�

(y,u)(τ ), y
)
, (63)

where

N �α�
Y =

{
(τ, y, u) ∈ R+ × E+

X

∣∣ 0 ≤ τ < τ
�α�
1 (y, u)

}
.

This map gives the final and initial positions of a solution to the unperturbed Lorentz force equation
in terms of the initial position, velocity, and proper time parameter τ ∈ [0, τ �α�

1 (y, u)
)
.

Observe that��α� is never surjective, since if��α�(τ, y, u) = (x, y) then x ∈ J+(y). Also��α� is
never injective since��α�(0, y, u) = (y, y) for all (y, u) ∈ E+

Y . Thus��α� does not possess an inverse
and one must work locally on M+

X × M+
Y in order to establish the diffeomorphism ��α� : D → D′,

��α� = (
��α�|D′

)−1
, (64)

i.e.,

��α�(C(y,u)(τ ), y
) = (τ, y, u)

with D ⊂ M+
X × M+

Y and D′ ⊂ N �α�
Y given by

D =
{

(x, y)

∣∣∣∣ There exists a unique u∈Ey and τ∈R+ such that C�α�
(y,u)(τ ) = x for all �α�

}
, (65)

D′ =
{

(τ, y, u)
∣∣∣��α�(τ, y, u) ∈ D for all �α�

}
.

This map ��α� encodes the solution to the 2-point problem, namely given an initial event y ∈ MY

and final event x ∈ MX find the unique worldline to the unperturbed Lorentz force equation which
passes though these two points. This worldline is specified by its initial velocity (y, u) ∈ E+

X and its
proper time τ . The statement that ��α� does not have an inverse is equivalent to the statement that
in general there may not be a unique solution to the two point problem on an arbitrary domain. The
domain D is the set of all pairs (x, y) such that there is a unique worldline.

Set

χ =
∑
�α�
χ �α�, (66)

where

χ �α�|(x,y) = 1
2

q�α� 2

m�α� �X dycd ∧ i (y)
abcd�

�α��
(

dτ ∧�
�α��
Y

(
gνaubi (u)

ν θ
�α�
0

))∣∣∣
(x,y)

(67)

for points (x, y) ∈ D. In the Appendix (Lemma 6) it is shown that given x ∈ M+
X (61) and F1 with

support in

Dx = D ∩ p−1
X {x} = {y ∈ MY |(x, y) ∈ D} (68)

then (61) holds at x . Furthermore, although (dYχ )|(x,y) is unique, χ has the gauge freedom given by
(9).

One may write (67) implicitly as

χ �α� ∧ p�Yγ = −q�α� �X S��α��
(

dτ ∧�
�α��
Y (i

Ŵ
�α�
1 (γ )

θ
�α�
0 )

)
(69)
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for all γ ∈ ��2 M+
Y where S : �6

(x,y)(M+
X × M+

Y ) → �6
(x,y)(M+

X × M+
Y ),

S(α) = i (y)
0123α ∧ dy0123. (70)

The tensor projector S has the simplest representation in the coordinate basis employed here since
i (y)
a dyb = δb

a .
From (64) for a chosen species �α� one must consider τ and u to be functions of (x, y) as well as

the species label �α�. Thus let��α� be given by the functions τ = τ (x, y) and uμ = uμ(x, y), where
we have dropped the species label, i.e., τ (x, y) and uμ(x, y) solve the implicit equation

C�α�
(y,u(x,y))

(
τ (x, y)

) = x, (71)

where u0(x, y) is the solution to ua(x, y)ub(x, y)gab(y) = −1 and u0(x, y) = ga0(y)ua(x, y). Let
f �α�
0 = f �α�

0 (y, u) represent the unperturbed probability function on E+
Y . The contribution to the

susceptibility kernel from species �α� is given in local coordinates by (Lemma 7 in the Appendix.)

χ �α�|(x,y) = − f �α�
0

q�α�2

m�α�
| det g|3/2

4u0
gμcubεdejkεcbihεμνσ×(

ua

2

∂τ

∂ya

∂uν

∂xd

∂uσ

∂xe
− ua

2

∂τ

∂xd

∂uν

∂ya

∂uσ

∂xe
+ ua

2

∂τ

∂xd

∂uν

∂xe

∂uσ

∂ya

+ ( − �ν p f u pu f + q�α�

m�α� F0p f gνpu f
) ∂τ
∂xd

∂uσ

∂xe

)
dx jk ∧ dyih,

(72)

where g, F0, and �ν e f are all evaluated at y ∈ M+
Y and each τ and u belongs to the species �α�. This

is a key result of our article.

D. A spacetime inhomogeneous microscopically neutral plasma

In a Vlasov model, a plasma or gas is deemed microscopically neutral if in its unperturbed
state F0 = 0. Let M be Minkowski spacetime with global Lorentzian coordinates so that �νab = 0.
Assume that f �α�

0 solves the zeroth order Maxwell–Vlasov system (35) with θ �α�
0 = i

W
�α�
0

( f �α�
0 �) and

F0 = 0. In this scenario one can calculate χ explicitly.
Since Minkowski spacetime is flat and F0 = 0 the integral curves C(x,v) in global Lorentzian

coordinates are the straight lines

τ =
√

−g(x − y, x − y) u = (x − y)

τ
. (73)

Differentiating with respect to xa and ya gives

∂τ

∂xa
= −ua ,

∂τ

∂ya
= ua ,

∂ua

∂xb
= (δa

b + uaub)

τ
,

∂ua

∂yb
= − (δa

b + uaub)

τ
. (74)

If follows from (72) that

χ �α�|(x,y) = q�α� f
�α�
0 (y,u)

4u0τ 2 gμcubεcbih
(
2dx0μ + εdσ jkεμνσuνuddx jk

) ∧ dyih, (75)

where τ (x, y) and u(x, y) are given by (73).
It is often useful to explore the response of an inhomogeneous plasma due to a monochromatic

electromagnetic plane wave with constant amplitude E ,

F1 = Ee−iωx0+ikx1
dx01 . (76)

Setting the initial hypersurface as �EY = {
y0 = y0

0

}
, the general initial 5-form ζ

�α�
1 ∈ ��5

�EY
E+

Y

satisfying iW0ζ
�α�
1 = 0 is given in terms of its components by

ζ
�α�
1 |(0,yμ,uν ) = (

u0dy1 − u1dy0
) ∧ (

ζ
�α�
1,1dy2 ∧ du123 + ζ

�α�
1,2dy3 ∧ du123

) + ζ
�α�
1,3dy23 ∧ du123

+(
u0dy123 − u1dy023

)(
ζ

�α�
1,4du12 + ζ

�α�
1,5du13 + ζ

�α�
1,6du23

)
,

(77)
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where ζ �α�
1,A = ζ̌

�α�
1,A(yμ, uν) for A = 1, . . . 6. For the integral curves (73) and the initial hypersurface

�EY = {
y0 = y0

0

}
one has τ0(x, v) = (y0

0 − x0)/v0 and the map ϕ is given by (51) with φ�τ (ya) =
xa + τ ya and φ�τ (ua) = va . From (45) with χ given by (75) and Z1[ζ 1] given by (59) one has

�1[F1, ζ 1] =

−
∑
�α�

q�α� 2

m�α� Ee−iωx0+ikx1

{
dx01

∫
dv123T �α� (v0)2 − (v1)2

v0
+ dx12

∫
dv123T �α�v2

−dx02
∫

dv123T �α� v
2v1

v0
+ dx13

∫
dv123T �α�v3 + dx03

∫
dv123T �α� v

3v1

v0

}

+
∑
�α�

q�α�
{

dx02
∫

dv123
(
ζ

�α�
1,4

v1(x0 − y0
0 )

v0
− ζ

�α�
1,1v

1
)

+dx03
∫

dv123
(
ζ

�α�
1,5

v1(x0 − y0
0 )

v0
− ζ

�α�
1,2v

1
)

+dx12
∫

dv123
(
v0ζ

�α�
1,1 − ζ

�α�
1,4(x0 − y0

0 )
)

+ dx13
∫

dv123
(
v0ζ

�α�
1,2 − ζ

�α�
1,5(x0 − y0

0 )
)

+dx23
∫

dv123

(
ζ

�α�
1,3 + ζ

�α�
1,4

v1v3(x0 − y0
0 )

(v0)2
− ζ

�α�
1,5

v1v2(x0 − y0
0 )

(v0)2
+ ζ

�α�
1,6(x0 − y0

0 )
(v1

v0
− 1

))}

+ � d
(
�1[F1]

) + �d
(
Ž1[ζ 1]

)
, (78)

where
∫

dv123 denotes the triple integral operator
� ∞

−∞ dv123, v0 = √
1 + vμvμ,

T �α� = T �α�(x, v) =
∫ 0

(y0
0 −x0)/v0

eiτ (−ωv0+kv1) f �α�
0 (x + τv, v)τdτ, (79)

and ζ �α�
1,A = ζ

�α�
1,A(xμ, vμ) = ζ̌

�α�
1,A

(
xμ − x0vμ/v0, vν

)
in (78). This response is not in general plane

fronted.
For the particular case of a plane fronted plasma distribution,

f �α�
0 (x, v) = h�α�

0 (x0, x1, v1)δ(v2)δ(v3), (80)

with initial data,

ζ
�α�
1 = 0,

(78) becomes the plane fronted 2-form,

�1[F1, ζ ]|x

= −dx01
∑
�α�

q�α� 2

m�α� Ee−iωx0+ikx1
∫ ∞

−∞
dv1

∫ 0

(y0
0 −x0)/v0

dτ eiτ (−ωv0+kv1)h�α�
0 (x0 + τv0, x1 + τv1, v1)

τ

v0

+ � d
(
�1[F1]

)
, (81)

describing the response of a spacetime inhomogeneous unbounded plasma to (76).

E. Spacetime homogeneous unbounded plasmas

The previous discussion simplifies considerably if the unperturbed plasmas is homogeneous in
space and time. In Minkowski spacetime M , an unbounded unperturbed plasma is deemed spacetime
homogeneous if A�z F0 = F0 and Ȧ�zθ

�α�
0 = θ

�α�
0 for all z ∈ M , where the translation map Az : M → M ,

Az(x) = x + z induces the map Ȧz : E → E , Ȧz = Az�. Such spacetime homogeneity implies that
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in all inertial frames the medium is stationary and spatially homogeneous in all directions. Such
a spacetime homogeneous plasma will give rise to a spacetime homogeneous electromagnetic
constitutive relation. In addition to the components (F0)ab with respect to an inertial frame being
constant, the functions f �α�(x, v) are independent of event position x and can therefore be written
f �α�(v).

In this scenario the Fourier transform (17) of the susceptibility kernel (18) for each species, is
then given by

χ̂ �α�
ab

e f (k)dxab

= 1
2 q�α�dxgh

∫ 0

−∞
dτ

∫
dv123 f �α�

0 (v)e−ik·L�α�v v
g

v0

(
gνeu f −gν f ue

)(
L�α�

ν
h(τ ) − uν

u0
L�α�

0
h(τ )

)
,

(82)

where F0 is the 4 × 4 real matrix with components (F0)a
b = ηac(F0)cb generating the matrices

D�α�a
b(τ ) = exp

(
τ

q�α�
m�α� F0

)a

b
, D�α�

b
a(τ ) = gbc D�α�c

d (τ )gda ,

L�α�a
b(τ ) =

∫ τ

0
D�α�a

b(τ ′) dτ ′, L�α�
b

a(τ ) = gbc L�α�c
d (τ )gda ,

(83)

k · L�α�v = ka L�α�a
b(τ )vb,

ua(τ, v1, v2, v3) = D�α�a
b(τ )vb. (84)

The susceptibility kernel (82) can be shown to agree with the results of O’Sullivan and Derfler.12

Furthermore, for a microscopically neutral spacetime homogeneous plasma with F0 = 0,
G1 = 0, and f �α�

0 (v) = h�α�
0 (v1)δ(v2)δ(v3) it follows from (81) and (43) that for Im(ω) > 0,

1 =
∑
�α�

q�α� 2

m�α�ε0

∫ ∞

−∞

h�α�
0 (v1) dv1

v0(−ωv0 + kv1)2
. (85)

The relativistic Landau damped dispersion relation for plane fronted Langmuir modes in an unper-
turbed spacetime homogeneous plasma arises by analytic continuation of the integral (85) to the
lower-half complex ω plane.

F. Langmuir modes for an inhomogeneous unbounded plasma in Minkowski spacetime

If the plasma is microscopically neutral but spacetime inhomogeneous in its unperturbed state the
Landau dispersion relation corresponding to (85) becomes more involved. We define the generalized
Langmuir sector to contain perturbations described by (81) but with the external polarization specified
by �1[F1] set to zero. Since ζ �α�

1 = 0, �1[F1, 0] will be denoted �1[F1]. Thus (43) with G1 = 0
becomes

ε0 F1 = −�1[F1]. (86)

Consider the case where planar inhomogeneities in a plasma composed of electrons and ions arise
from the unperturbed spacetime inhomogeneous solution to the Maxwell–Vlasov system Eqs. (35)
and (36) with F0 = 0 and

f �el�
0 (x0, x1, x2, x3, v1, v2, v3) = f �ion�

0 (x0, x1, x2, x3, v1, v2, v3)

= h
(

x1 − v1x0

v0
, v1

)
δ(v2)δ(v3),

(87)

where q�el� = −q�ion�.

Downloaded 22 Nov 2011 to 194.80.32.9. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



042901-16 J. Gratus and R. W. Tucker J. Math. Phys. 52, 042901 (2011)

For example, one might consider

h(x1, v1) = n�ion�(x1)A�ion�(x1) exp
(

− m�ion�v0

kB T �ion�(x1)

)
,

where A�ion�(x1) normalizes (87). Then f �ion� initially at x0 = 0 represents a distribution of
ions where, at each spatial point x1, the velocities belong to the one-dimensional Maxwell–
Jüttner distribution. In such a distribution the temperature T �ion�(x1) and the number den-
sity of ions n�ion�(x1) depend on position. It follows from (87) that f �el� also initially repre-
sents a position dependent Maxwell–Jüttner distribution, where n�el�(x1) = n�ion�(x1) and T �el�(x1)
= T �ion�(x1)m�el�/m�ion�. After the initial moment, the ions and electrons drift according to (87) and
velocities do not remain in the Maxwell–Jüttner distributions. Alternatively (87) might describe a
plasma composed of particles and antiparticles.

In the theory of a spacetime homogeneous plasma ω and k satisfy the transcendental dispersion
relation (85). This relation contains an integral that is potentially singular. The Landau prescription
circumvents this singularity by complexifyingω and defining an analytic continuation for the integral
in the complex ω plane.

Setting h�α�
0 (x0, x1, v1) = h

(
x1 − v1x0/v0, v1

)
in (80) yields (87) and (81) becomes

�1[F1]|x

=−dx01q�el� 2
( 1

m�ion� + 1

m�el�
)

Ee−iωx0+ikx1
∫ ∞

−∞
dv1h

(
x1−v1x0

v0
,v1

)∫ 0

(y0
0 −x0)/v0

dτ eiτ (−ωv0+kv1) τ

v0
.

(88)

To compare with the results (85) given for the homogeneous case, consider the limit y0
0 → −∞

with Im(ω) > 0. Furthermore, for the nonevanescent modes considered here Im(k) = 0. Thus (88)
becomes

�1[F1]|x = −dx01ε0Q2
0 Ee−iωx0+ikx1

∫ ∞

−∞
dv1 h(x1 − v1x0/v0, v1)

v0(−ωv0 + kv1)2
, (89)

where

Q2
0 = q�el� 2

ε0m�ion� + q�el� 2

ε0m�el� .

In a spacetime inhomogeneous plasma there is no time-harmonic solution or associated transcen-
dental dispersion relation between ω and k. We therefore propose solving (86) with a longitudinal
field F1 represented as the packet

F1(x0, x1) = dx01
∫ ∞

−∞
dω̂

∫ ∞

−∞
dk̂ Ê(ω̂, k̂)e−iω̂x0+i k̂x1

. (90)

Substituting (89) and (90) into (86) yields∫ ∞

−∞
dω̂

∫ ∞

−∞
dk̂ Ê(ω̂, k̂)e−iω̂x0+i k̂x1

= Q2
0

∫ ∞

−∞
dω̂

∫ ∞

−∞
dk̂ Ê(ω̂, k̂)e−iω̂x0+i k̂x1

∫ ∞

−∞
dv1 h(x1 − v1x0/v0, v1)

v0(ω̂v0 + k̂v1)2
.

Performing the inverse Fourier transform gives

4π2 Ê(ω, k)

= Q2
0

∫ ∞

−∞
dx0

∫ ∞

−∞
dx1

∫ ∞

−∞
dω̂

∫ ∞

−∞
dk̂ Ê(ω̂, k̂)ei(−(ω̂−ω)x0+(k̂−k)x1)

∫ ∞

−∞
dv1 h(x1 − v1x0/v0, v1)

v0(ω̂v0 + k̂v1)2
.
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Since ∫ ∞

−∞
dx0

∫ ∞

−∞
dx1ei(−(ω̂−ω)x0+(k̂−k)x1)h(x1 − v1x0/v0, v1)

= 2π ĥ(k − k̂, v1)δ
(
ω̂ − ω + v1(k − k̂)/v0),

where

ĥ(k, v1) =
∫ ∞

−∞
e−iksh(s, v1)ds,

one has

Ê(ω, k) = Q2
0

2π

∫ ∞

−∞
dω̂

∫ ∞

−∞
dk̂

∫ ∞

−∞
dv1 Ê(ω̂, k̂)

v0(ω̂v0 + k̂v1)2
ĥ(k − k̂, v1)δ

(
ω̂ − ω + v1(k − k̂)/v0

)
.

(91)

Since we restrict to nonevanescent modes k and k̂ are real. For Ê(ω, k) to be nonzero one requires
the argument of the δ-function to be zero. Since v1 is real and therefore v1(k − k̂)/v0 is real it
follows that although Im(ω) > 0 and Im(ω̂) > 0 the difference ω − ω̂ is real. Furthermore, from
ω̂ − ω + v1(k − k̂)/v0 = 0 it follows that |ω̂ − ω| < |k̂ − k|. Thus (91) becomes

Ê(ω, k) = Q2
0

2π

∫ ∞

−∞
dk̂ I (ω, k, k̂), (92)

where

I (ω, k, k̂) =
∫

S(ω,k,k̂)
dω̂ Ê(ω̂, k̂)

(k − k̂)

(ω̂k − k̂ω)2
ĥ

(
k − k̂,

k − k̂√
(k̂ − k)2 − (ω̂ − ω)2

)
(93)

and the contour of integration for ω̂ in (93) is the straight line S(ω, k, k̂) where Im(ω̂) = Im(ω) > 0
and −|k̂ − k| < Re(ω̂ − ω) < |k̂ − k|. Since (ω̂ − ω)2 < (k̂ − k)2 the arguments of ĥ in (93) are
always real and nonsingular on S(ω, k, k̂).

To accommodate the situation when Ê(ω, k) describes damped electromagnetic waves one must
continue (93) to Im(ω) < 0 for real k. However, there is a double pole in the complex ω̂ plane at
ω̂ = ω̂0 = k̂ω/k that coincides with S(ω, k, k̂) when Im(ω) = 0 and |ω| < |k|. To define an analytic
continuation of (93) to Im(ω) < 0 when |Re(ω)| < |k|, we indent S(ω, k, k̂) to encircle the pole in
the standard manner and write the contour integral in terms of a principle part and associated residue,
see Fig. 2. Such a continuation scheme gives rise to branches in the ω plane for I (ω, k, k̂) as shown
in Fig. 3.

This analytic continuation of (93) to Im(ω) < 0 acquires the residue

R(ω, k, k̂) = |k − k̂|
k |k|

∂ Ê

∂ω

(ωk̂

k
, k̂

)
ĥ
(

k − k̂,
sksk−k̂ω√
k2 − ω2

)

− k

(k2 − ω2)3/2
Ê

(ωk̂

k
, k̂

)
ĥv1

(
k − k̂,

sksk−k̂ω√
k2 − ω2

)
,

ω̂ - C-plane
Im(ω̂)

Re(ω̂)

Im(ω) > 0

Im(ω) < 0

ω

ω

ω̂0

ω̂0

ω+|k−k̂|ω−|k−k̂|

ω+|k−k̂|ω−|k−k̂|

FIG. 2. The upper contour denotes S(ω, k, k̂) when Im(ω) > 0 for real k, k̂. The lower contour of integration is used when
Im(ω) < 0 for real k, k̂.

Downloaded 22 Nov 2011 to 194.80.32.9. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



042901-18 J. Gratus and R. W. Tucker J. Math. Phys. 52, 042901 (2011)

ω - C-planeIm(ω)

Re(ω)

|k|− |k|

br
an

ch
cu

t

br
an

ch
cu

t

√
k2 − ω2 > 0

FIG. 3. Branch cuts in ω for I (ω, k, k̂).

where ĥv1 (k, v1) = ∂ ĥ
∂v1 (k, v1), sk = k/|k|, and sk−k̂ = (k − k̂)/|k − k̂|. In the case when Im(ω) = 0,

the principle value of (93) is taken together with residue 1
2 R(ω, k, k̂). Equation (92) then gives

Ê(ω, k) = k

2π

∫ ∞

−∞
I (ω, k, k̂) dk̂ if Im(ω) > 0 or |Re(ω)| > |k|,

Ê(ω, k) = k

2π

∫ ∞

−∞
I (ω, k, k̂) dk̂ − ik

∫ ∞

−∞
R(ω, k, k̂) dk̂

if Im(ω) < 0 and |Re(ω)| ≤ |k|,

Ê(ω, k) = k

2π

∫ ∞

−∞
P I (ω, k, k̂) dk̂ − ik

2

∫ ∞

−∞
R(ω, k, k̂) dk̂

if Im(ω) = 0 and |Re(ω)| < |k|,
(94)

where P I (ω, k, k̂) in (94) refers to the principle part of (93) when Im(ω) = 0 and |Re(ω)| < |k| and
hence the pole at ω̂0 lies on the contour S(ω, k, k̂). Thus in each domain above, the perturbation
Ê(ω, k) must be determined by solving a nonstandard integral equation.

IV. CONCLUSIONS

In this article a classical covariant description of electromagnetic interactions in continuous
matter in an arbitrary background gravitational field has been formulated in terms of a polarization
2-form that enters into the macroscopic Maxwell equations. Linear dispersive constitutive rela-
tions arise when this 2-form is expressed as an affine functional of the Maxwell 2-form with the
aid of a 2-point susceptibility kernel. We have explored the constraints on this kernel imposed
by causality requirements, spacetime Killing symmetries and local gauge freedoms. The formal-
ism has been applied to an analysis of constitutive models for waves in collisionless plasmas. In
particular a formula for the linear susceptibility of a fully ionized inhomogeneous unbounded non-
stationary collisionless plasma to a perturbation in the presence of gravity has been given in terms
of maps describing the dynamics of the plasma. This formula has been elucidated by reference
to both homogeneous and inhomogeneous perturbations in Minkowski spacetime. In the former
case one recovers the standard Landau dispersion relation when perturbing Langmuir modes. In
the latter case we have described a generalized damping mechanism for such modes that may
arise when the unperturbed state is both inhomogeneous and nonstationary. Such a mechanism
arises from the analytic continuation of an integral equation that replaces the Landau dispersion
relation.

It is concluded that the use of a covariant 2-point affine susceptibility kernel in describing
the electromagnetic response of dispersive media offers a modeling tool that naturally generalizes
the use of permittivity and permeability tensors used to model electromagnetic interactions in
nonrelativistic media. The formulation in terms of an arbitrary background spacetime metric offers
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potential applications in a number of astrophysical contexts involving electromagnetic fields in
inhomogeneous or nonstationary plasmas.
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APPENDIX: PROOFS OF RESULTS USED USED IN THE TEXT

Lemma 2: Local representation of �
∫
πN
α in (4) from the implicit definition in Eq. (3).

Proof: On a fibered manifold N of dimension n + r with projection πN : N → N over
a manifold N of dimension n. Thus at each point σ ∈ N one has the fiber Nσ = π−1

N {σ }
= {

(σ ′, ς ) ∈ N
∣∣πN (σ ′, ς ) = σ

}
so dim(Nσ ) = r is the fiber dimension. Let (σ 1, . . . , σ n) and

(σ 1, . . . , σ n, ς1 . . . ς r ) be local coordinates for patches on N and N , respectively.
Consider first the case when α ∈ ��p+rN consists of a single component αI (σ, ς )dσ I ∧

dς1...r with no sum on I . Hence explicit summation will be used in this particular proof.
Set Î = {1, . . . , n}\I so that dσ Î ∧ dσ I = ±dσ 1...n and let β = ∑

J βJ (σ )dσ J then β ∧ dσ I

= ±β ÎαI dσ 1...n so that

∑
J

∫
(σ,ς)∈N

π�N (βJ (σ )dσ J ) ∧ αI (σ, ς )dσ I ∧ dς1...r

=
∑

J

∫
(σ,ς)∈N

βJ (σ )dσ J ∧ αI (σ, ς )dσ I ∧ dς1...r

=
∑

J

∫
(σ,ς)∈N

βJ (σ )dσ J ∧ dσ I ∧ αI (σ, ς )dς1...r

=
∫

(σ,ς)∈N
β Î (σ )dσ Î ∧ dσ I ∧ αI (σ, ς )dς1...r

=
∫
σ∈N

β Î (σ )dσ Î ∧ dσ I
∫
Nσ

αI (σ, ς )dς1...r

=
∑

J

∫
σ∈N

βJ (σ )dσ J ∧ dσ I
∫
Nσ

αI (σ, ς )dς1...r

=
∫
σ∈N

β ∧ dσ I
∫
Nσ

αI (σ, ς )dς1...r .

Thus by linearity ∫
N
π�N (β) ∧ α =

∑
I

∫
σ∈N

β ∧ dσ I
∫
Nσ

αI (σ, ς )dς1...r , (A1)

where α = ∑
I αI (σ, ς )dσ I ∧ dς1...r . If (4) holds then for α = ∑

I αI (σ, ς )dσ I ∧ dς1...r ,∫
N
β ∧ �

∫
πN

α =
∑

I

∫
N
β ∧ dσ I

∫
ς∈Nσ

i (σ )
I α|(σ,ς) =

∑
I

∫
N
β ∧ dσ I

∫
ς∈Nσ

αI dς1...r

=
∫
N
π�N (β) ∧ α.
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Hence (3). Conversely if (3) holds for α = ∑
I αI (σ, ς )dσ I ∧ dς1...r then from (A1)∫

N
β ∧ �

∫
πN

α =
∫
N
π�N (β) ∧ α =

∑
I

∫
N
β ∧ dσ I

∫
ς∈Nσ

i (σ )
I α|(σ,ς).

Since this is true for all β then (4) holds.
If α does not contain the factor ς1...r , i.e., α = αI K (σ, ς )dσ I ∧ dς K , where K �= {1, . . . , r}

then the right hand side of (3) becomes∫
N
π�N (β) ∧ α =

∑
J

∫
N
βJαI K (σ, ς )dσ J ∧ dσ I ∧ dς K = 0

and the right hand side of (4) becomes

∑
I

dσ I
∫
ς∈Nσ

αI K (σ, ς )dς K = 0.

Thus by linearity (3) and (4) are equivalent for all α. �
Lemma 3: Verification of Eq. (5)(

d�
∫

πN

α

)∣∣∣∣
σ

=
(

�
∫

πN

dα

)∣∣∣∣
σ

.

Proof Let deg(α) = p + r , deg(β) = n − p − 1 and ∂N and ∂N be the boundaries of N and
N . Since σ /∈ ∂N one may choose β to have support away from ∂N thus∫

∂N
β ∧

(
�
∫

πN

α
)

= 0

and since α has support away from ∂N then∫
∂N
π�Nβ ∧ α = 0.

It follows that∫
N
β ∧

(
�
∫

πN

dα
)

=
∫
N
π�N (β) ∧ dα

= (−1)n−p−1
∫
N

d
(
π�N (β) ∧ α

) + (−1)n−p
∫
N

dπ�N (β) ∧ α

= (−1)n−p−1
∫
∂N
π�N (β) ∧ α + (−1)n−p

∫
N
π�N (dβ) ∧ α

= (−1)n−p
∫

N
dβ ∧

(
�
∫

πN

α
)

= (−1)n−p
∫

N
d
(
β ∧

(
�
∫

πN

α
))

+
∫

N
β ∧ d

(
�
∫

πN

α
)

= (−1)n−p
∫
∂N
β ∧

(
�
∫

πN

α
)

+
∫

N
β ∧ d

(
�
∫

πN

α
)

=
∫

N
β ∧ d

(
�
∫

πN

α
)
. �
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Lemma 4: Proof of

�
∫

pX

�Xα = ��
∫

pX

α. (A2)

Proof: The only nontrivial α ∈ ��(MX × MY ) in (A2) can be written α = αI dx I ∧ dy0123.
Then

�
∫

pX

�X
(
αI dx I ∧ dy0123

) = �
∫

pX

αI (�dx I ) ∧ dy0123 = �dx I

∫
MX

αI dy0123 = ��
∫

pX

αI dx I ∧ dy0123.

�
Lemma 5: � is causal on M+

X if and only if

• Z is causal on MX
+,

• (dYχ )|(x,y) = 0 for all (x, y) ∈ M+
X × M+

Y such that y /∈ J−(x), and

• ι��MY
(χ )

∣∣
(x,y) = 0 for all (x, y) ∈ M+

X ×�MY such that y /∈ J−(x), where

ι�MY
: M+

X ×�MY ↪→ M+
X × M+

Y is the natural embedding.

(A3)

Proof: If ι̂�MY
: �MY ↪→ M+

Y is the natural embedding then i (x)
ab ι

�
�MY

χ |(x,y) = ι̂��MY
i (x)
ab χ |(x,y) and∫

y∈M+
Y

i (x)
ab

(
χ | ∧ p�Y (d A|y)

)
=

∫
y∈M+

Y

i (x)
ab

(
χ ∧ dY (p�Y A)

)|(x,y)

=
∫

y∈M+
Y

i (x)
ab dY

(
χ ∧ p�Y A|y

)∣∣
(x,y) −

∫
y∈M+

Y

i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y)

=
∫

y∈M+
Y

dY
(
i (x)
ab χ ∧ p�Y A|y

)∣∣
(x,y) −

∫
y∈M+

Y

i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y)

=
∫

y∈�MY

ι̂��MY
i (x)
ab

(
χ ∧ p�Y A|y

)∣∣
(x,y) −

∫
y∈M+

Y

i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y)

=
∫

y∈�MY \J−(x)
i (x)
ab ι

�
�MY

(
χ ∧ p�Y A|y

)∣∣
(x,y) +

∫
y∈�MY ∩J−(x)

i (x)
ab ι

�
�MY

(
χ ∧ p�Y A|y

)∣∣
(x,y)

−
∫

y∈M+
Y \J−(x)

i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y) −

∫
y∈M+

Y ∩J−(x)
i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y).

(A4)

First one argues that (A3) implies that� is causal on M+
X . Given x ∈ M+

X and F1, F2 ∈ ��2 M+
Y

such that F1|y = F2|y = 0 for y ∈ J−(y), set F = F1 − F2 so that F = 0 on J−(x). Since M+
Y

is topologically trivial F is exact, F = d Â, and hence d Â = 0 on J−(x). Then since J−(x) is
topologically trivial there exists f ∈ ��0 M+

Y such that Â = d f on J−(x). Thus one can choose a
gauge A = Â − d f so that A = 0 on J−(x). Given ζ such that ζ |y = 0 for y ∈ J−(x) ∩�MY then
Z [ζ ]|x = 0 since Z is causal. Thus from (A4)

�[F, ζ ]ab(x) =
∫

y∈M+
Y

i (x)
ab

(
χ | ∧ p�Y (d A|y)

)

=
∫

y∈�MY \J−(x)
i (x)
ab ι

�
�MY

(
χ ∧ p�Y A|y

)∣∣
(x,y) +

∫
y∈�MY ∩J−(x)

i (x)
ab ι

�
�MY

(
χ ∧ p�Y A|y

)∣∣
(x,y)

−
∫

y∈M+
Y \J−(x)

i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y) −

∫
y∈M+

Y ∩J−(x)
i (x)
ab

(
dYχ ∧ p�Y A|y

)∣∣
(x,y) = 0,

since ι��MY
χ |(x,y) = 0 for y ∈ �MY \J−(x), A|y = 0 for y ∈ J−(x), and dYχ = 0 for y ∈ M+

Y \J−(x).
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Conversely if� is causal on M+
X then setting F = 0 in (6) shows that Z must be causal on M+

X .
Then setting ζ = 0 then for all A such that A = 0 on J−(x) (A4) yields

0 = �[F, ζ ]ab(x)

=
∫

y∈�MY \J−(x)
i (x)
ab ι

�
�MY

(
χ(x,y) ∧ p�Y A|y

)∣∣
(x,y) −

∫
y∈M+

Y \J−(x)
i (x)
ab

(
dYχ(x,y) ∧ p�Y A|y

)∣∣
(x,y). (A5)

The four-dimensional domain M+
Y \J−(x) denotes points outside the backward light-cone of x , while

the three-dimensional domain�MY \J−(x) denotes the points on�MY that are not causally connected
to x . Choosing such an A to have support about a small neighborhood of y ∈ M+

Y \J−(x)\�MY results
in the first term of (A5) being zero and thus (dYχ )|(x,y) = 0. Likewise setting A to have support
about a small neighborhood of y ∈ �MY \J−(x) implies ι��MY

(χ )|(x,y) = 0. �
One can now prove Lemma 1 in Sec. III B.

Proof of Lemma 1: Given σ ∈ N , with V nonvanishing there exists a coordinate system
(σ 1, . . . , σ n) on N adapted to V so that V = ∂

∂σ 1 and the image of the curve γσ : [τ0(σ ), 0] → N
is contained in the coordinate patch. Write β = βI dσ I then since iVβ = 0 the sum is over
I ∈ {2, . . . , n}. With σ 1 distinguished write βI (σ ) = βI (σ 1, σ ), where σ = (σ 2, . . . , σ n). Also since
iVβ = 0, β|(σ 1,σ ) = βI (σ 1, σ )dσ I . Likewise since iV ζ = 0 one has ζ |σ0 = ζI (σ0)dσ I .

Solving for the integral curves of V gives φN (τ, σ 1, σ ) = (τ + σ 1, σ ),

φ�N (β)|(τ,σ 1,σ ) = βI (τ + σ 1, σ )dσ I ,

and one may write τ0(σ 1, σ ) = τ0(σ ) − σ 1, giving

ϕN (ζ )|(σ 1,σ ) = φ�Nτ0(σ 1,σ )(ζ |τ0(σ )) = ζI
(
τ0(σ ), σ

)
dσ I .

Thus,

ξ |(σ 1,σ ) = �
∫

�N

φ�N (β) ∧ dτ + ϕN (ζ )

=
( ∫ 0

τ=τ0(σ )−σ 1
βI (σ 1 + τ, σ )dτ + ζI

(
τ0(σ ), σ

))
dσ I .

Hence iV ξ = 0 and one may write ξ |(σ 1,σ ) = ξI (σ 1, σ )dσ I . Now

ξI (σ 1, σ ) =
∫ 0

τ=τ0(σ )−σ 1
βI (σ 1 + τ, σ )dτ + ζI

(
τ0(σ ), σ

)

=
∫ σ 1

τ=τ0(σ )
βI (τ ′, σ )dτ ′ + ζI

(
τ0(σ ), σ

)
,

where τ ′ = τ + σ 1 and

iV dξ |(σ 1,σ ) = i ∂

∂σ1
d(ξI (σ 1, σ )dσ I ) = i ∂

∂σ1

(
dξI (σ 1, σ ) ∧ dσ I

) = ∂ξI (σ 1, σ )

∂σ 1
dσ I

= ∂

∂σ 1

( ∫ σ 1

τ=τ0(σ )
βI (τ ′, σ )dτ ′ + ζI

(
τ0(σ ), σ

))
dσ I = βI (σ 1, σ )dσ I = β|(σ 1,σ ).

Since σ 1 = 0 on �N

ξ |(0,σ ) = ξI (τ0(0, σ ), σ )dσ I = ξI (τ0(σ ), σ )dσ I = ζI (τ0(σ ), σ )dσ I = ζ |(0,σ ),

i.e., ξ |�N = ζ . �
Lemma 6: Proof that (66) and (67) implies (61) and that (66) and (69) implies (61).
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Proof: First (67) is equivalent to (69) since given γ ∈ ��2 M+
Y one has ĩ(y,u)γ = uaγabgbc ∂

∂yc

and hence Ŵ �α�(γ ) = q�α�
m�α�V(y,u)(ĩ(y,u)γ ) = q�α�

m�α� uaγabgbν ∂
∂uν . From (67) it follows that

χ �α� ∧ p�Yγ = 1
2

q�α� 2

m�α� �X dycd ∧ i (y)
abcd�

�α��
(

dτ ∧�
�α��
Y

(
gνaubi (u)

ν θ
�α�
0

)) ∧ p�Yγ

= q�α� 2

m�α� �X Si (y)
ab �

�α��
(

dτ ∧�
�α��
Y

(
gνaubi (u)

ν θ
�α�
0

)) ∧ p�Yγ

= −q�α� 2

m�α� �X S��α��
(

dτ ∧�
�α��
Y

(
gνaubi (u)

ν θ
�α�
0

)) ∧ i (y)
ab p�Yγ

= −q�α� 2

m�α� �X S��α��
(

dτ ∧�
�α��
Y

(
γabgνaubi (u)

ν θ
�α�
0

))
= −q�α� �X S��α��

(
dτ ∧�

�α��
Y

(
iŴ�α�(γ )θ

�α�
0

))
,

i.e., (69). That (69) implies (67) follows since the above argument is true for all γ .
To prove (61) note that the domains N �α�

X and N �α�
Y are related via the diffeomorphism

ϒ�α� : N �α�
Y → N �α�

X , ϒ�α�(τ, y, u) = ( − τ, Ċ�α�
(y,u)(τ )

)
. (A6)

Thus ϒ�α��(dτ ) = −dτ and setting (x, v) = Ċ�α�
(y,u)(τ ) with τ > 0 yields

φ�α�(ϒ�α�(τ, y, u)
) = φ�α�( − τ, Ċ�α�

(y,u)(τ )
) = φ�α�(−τ, x, v) = (y, u) = �

�α�
Y (τ, y, u)

so that � �α�
Y = φ�α� ◦ϒ�α� and thus � �α��

Y = ϒ�α�� ◦ φ�α��. Now

ϒ�α��
(

dτ ∧ φ�α��(iŴ�α�(F1)θ
�α�
0

))
= ϒ�α��(dτ ) ∧ ϒ�α��φ�α��(iŴ�α�(F1)θ

�α�
0

) = −dτ ∧�
�α��
Y

(
iŴ�α�(F1)θ

�α�
0

)
,

hence

χ �α� ∧ p�Y F1 = q�α� �X S��α��ϒ�α��
(

dτ ∧ φ�α��(iŴ�α�(F1)θ
�α�
0

))
. (A7)

From (63)

pX
(
��α�(τ, y, u)

) = pX
(
C�α�

(y,u)(τ ), y
) = C�α�

(y,u)(τ )

and from (A6)

πX
(
�

�α�
X

(
ϒ�α�(τ, y, u)

)) = πX
(
�

�α�
X

( − τ, Ċ�α�
(y,u)(τ )

)) = πX
(
Ċ�α�

(y,u)(τ )
) = C�α�

(y,u)(τ ).

Hence pX ◦��α� = πX ◦� �α�
X ◦ ϒ�α� and so

��α�� ◦ p�X = ϒ�α�� ◦� �α��
X ◦ π�X . (A8)

From the definition of S one has

�
∫

pX

Sγ = �
∫

pX

γ (A9)

for any γ ∈ ��8(MX × MY ).
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Since ��α� : D → D′ is a diffeomorphism then∫
D
��α��γ =

∫
D′
γ (A10)

for any γ ∈ ��8(D′). Likewise since ϒ�α� : N �α�
Y → N �α�

X is a diffeomorphism∫
N �α�

Y

ϒ�α��γ =
∫
N �α�

X

γ (A11)

for any γ ∈ ��8(N �α�
X ).

For convenience set α�α� = dτ ∧ φ�α��(iŴ�α�(F1)θ
�α�
0

) ∈ ��5N �α�
X . For fixed x assume that F1 has

support in Dx . Then one can choose β ∈ ��2 MX so that p�Xβ ∧ p�Y F1 has support inside D. Thus
from (A7)

supp
(

p�X (�β) ∧��α��ϒ�α��α�α�) = supp
(

p�Xβ ∧ χ �α� ∧ p�Y F1
) ⊂ D. (A12)

Now∫
MX

β ∧ �
∫

pX

χ �α� ∧ p�Y F1 =
∫

MX

β ∧ �
∫

pX

q�α� �X S��α��ϒ�α��α�α� from (A7)

= q�α�
∫

MX

β ∧ ��
∫

pX

S��α��ϒ�α��α�α� from (A2)

= q�α�
∫

MX

β ∧ ��
∫

pX

��α��ϒ�α��α�α� from (A9)

= −q�α�
∫

MX

(�β) ∧ �
∫

pX

��α��ϒ�α��α�α�

= −q�α�
∫

MX ×MY

p�X (�β) ∧��α��ϒ�α��α�α� from (3)

= −q�α�
∫
D

p�X (�β) ∧��α��ϒ�α��α�α� from (A12)

= −q�α�
∫
D
��α��

(
��α�� p�X (�β) ∧ ϒ�α��α�α�

)
from (64)

= −q�α�
∫
D′
��α�� p�X (�β) ∧ ϒ�α��α�α� from (A10)

= −q�α�
∫
N �α�

Y

��α�� p�X (�β) ∧ ϒ�α��α�α� sinceD′ ⊂ N �α�
Y

= −q�α�
∫
N �α�

Y

ϒ�α��� �α��
X π�X (�β) ∧ ϒ�α��α�α� from (A8)

= −q�α�
∫
N �α�

X

�
�α��
X π�X (�β) ∧ α�α� from (A11)

= −q�α�
∫
EX

π�X (�β) ∧ �
∫

�
�α�
X

α�α� from (3)

= −q�α�
∫

MX

(�β) ∧ �
∫

πX

�
∫

�
�α�
X

α�α� from (3)

= q�α�
∫

MX

β ∧ ��
∫

πX

�
∫

�
�α�
X

α�α�.

Summing over �α� gives∫
MX

β ∧ �
∫

pX

χ ∧ p�Y F1 =
∑
�α�

q�α�
∫

MX

β ∧ ��
∫

πX

�
∫

�
�α�
X

α�α�.

Since this is true for all β with support in a neighborhood of x then (61) holds at x . �
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Lemma 7: The derivation of (72) from (67).

Proof: The derivation of (72) from (67) follows by first writing the Liouville vector field (36) as

W �α�
0 = ua ∂

∂ya
+ H ν ∂

∂uν
, where H ν = −�ν e f ueu f + q�α�

m�α� F0e f gνeu f .

Then setting f �α�(y, u) = f �α�
0 (y, u) + f �α�

1 (y, u) it follows from (31) that

θ
�α�
0 = i

W
�α�
0

( f �α�
0 �) = f �α�

0 i
W

�α�
0

( | det g|
u0

dy0123 ∧ du123
)

= f �α�
0

| det g|
u0

(
ucYc ∧ du123 + 1

2 HμεμνσY ∧ duνσ
)
,

where Ya = i ∂
∂ya

dy0123 and Y = dy0123. Consequently

gμaubi (u)
μ θ

�α�
0 = f �α�

0

| det g|
u0

gμaub
(

− 1
2 ucεμνσYc ∧ duνσ − H νεμνσY ∧ duσ

)
,

−dτ ∧ gμaubi (u)
μ θ

�α�
0 = f �α�

0

| det g|
u0

gμaubεμνσ

(uc

2
dτ ∧ Yc ∧ duνσ + H νdτ ∧ Y ∧ duσ

)
.

Under the maps � �α�
Y and ψ̂�α�� one has

�
�α��
Y (dya) = dya , �

�α��
Y (duμ) = duμ,

and

ψ̂�α��(dya) = dya , ψ̂�α��(duμ) = ∂uμ

∂xa
dxa + ∂uμ

∂ya
dya , ψ̂�α��(dτ ) = ∂τ

∂xa
dxa + ∂τ

∂ya
dya .

So using the projector S given in (70) yields

−Sψ̂�α��(dτ ∧ gνaubi (u)
ν θ

�α�
0

) = f �α�
0

| det g|
u0

gμaubεμνσ

(uc

2

∂τ

∂yc

∂uν

∂xd

∂uσ

∂xe
− uc

2

∂τ

∂xd

∂uν

∂yc

∂uσ

∂xe

+uc

2

∂τ

∂xd

∂uν

∂xe

∂uσ

∂yc
+ H ν ∂τ

∂xd

∂uσ

∂xe

)
Y ∧ dxde .

Hence from (67)

χ �α� = −q�α�2

m�α� �X

(
i (y)
ab Sψ̂�α��

(
dτ ∧��

Y (gνaubi (u)
ν θ

�α�
0 )

))

= q�α�2

m�α� �X i (y)
ab

(
f �α�
0

| det g|
u0

gμaubεμνσ

(uc

2

∂τ

∂yc

∂uν

∂xd

∂uσ

∂xe
− uc

2

∂τ

∂xd

∂uν

∂yc

∂uσ

∂xe

+uc

2

∂τ

∂xd

∂uν

∂xe

∂uσ

∂yc
+ H ν ∂τ

∂xd

∂uσ

∂xe

)
Y ∧ dxde

)

= − �X

(
f �α�
0

| det g|
u0

gμaubεμνσ εab f g

(uc

2

∂τ

∂yc

∂uν

∂xd

∂uσ

∂xe
− uc

2

∂τ

∂xd

∂uν

∂yc

∂uσ

∂xe

+uc

2

∂τ

∂xd

∂uν

∂xe

∂uσ

∂yc
+ H ν ∂τ

∂xd

∂uσ

∂xe

)
dxde ∧ dy f g

)

= q�α�2

m�α� f �α�
0

| det g|3/2
2u0

gμbuaεμνσ εab f gε
dehi

(uc

2

∂τ

∂yc

∂uν

∂xd

∂uσ

∂xe
− uc

2

∂τ

∂xd

∂uν

∂yc

∂uσ

∂xe

+uc

2

∂τ

∂xd

∂uν

∂xe

∂uσ

∂yc
+ H ν ∂τ

∂xd

∂uσ

∂xe

)
dxhi ∧ dy f g.

�
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