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Abstract. Disinformation as a result of epistemic error is
an issue in hydrological modelling. In particular the way in
which the colour in model residuals resulting from epistemic
errors should be expected to be non-stationary means that
it is difficult to justify the spin that the structure of residu-
als can be properly represented by statistical likelihood func-
tions. To do so would be to greatly overestimate the infor-
mation content in a set of calibration data and increase the
possibility of both Type I and Type II errors. Some princi-
ples of trying to identify periods of disinformative data prior
to evaluation of a model structure of interest, are discussed.
An example demonstrates the effect on the estimated param-
eter values of a hydrological model.

1 Introduction

The starting point for this paper is the belief in certain parts
of the modeling community that it is necessary to use a
statistical framework to evaluate the uncertainty in model
predictions. This has been the subject of much discussion
in the past, with a range of positions from the pure (even
if Bayesian) probabilistic views of, for example,O’Hagan
and Oakley(2004), Goldstein and Rougier(2004), Manto-
van and Todini(2006), Stedinger et al.(2008) and others, to
the sceptical views ofBeven(2006) andAndréassian et al.
(2007). Statistical treatments of errors have been applied
quite widely in hydrological modelling, developing from the
use of likelihoods based on assumptions about model resid-
uals (e.g.Sorooshian and Dracup, 1980) to the much more
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sophisticated hierarchical treatments of multiple sources of
error exemplified by the BATEA (Kuczera et al., 2006; Thyer
et al., 2009; Renard et al., 2010) and DREAM (Vrugt et al.,
2008, 2009) methodologies.

There are two main advantages of this approach. The
first is that it provides a formal framework underpinned by
decades of development of statistical methods, including for
example the use of Monte Carlo Markov Chain techniques
within a Bayesian framework for evaluating the posterior dis-
tributions when new data are added. The second is that it
aims to provide an estimate of the probability of predicting
an observation conditional on a particular model structure
(or structures in Bayesian model averaging) and calibration
data set (though note that Bayes original1763 formulation
was not in this form). We will not consider further cases
where only forward uncertainty estimation can be carried
out. Uncertainty estimates then depend entirely on the prior
assumptions about different sources of uncertainty. Condi-
tioning on some calibration data makes the problem much
more interesting.

However (as noted by the referees), it is necessary to be
very careful about terminology here. “Statistics” can apply to
the analysis of any sample of numbers (originally referring to
information about a State). As such it can apply to both for-
mal and informal methods of manipulating data, although it
is now normally reserved for methods that are founded in the
axioms of probability. The questions we raise here about the
application of formal statistical methods to series of hydro-
logical model residuals are concerned with whether the as-
sumptions required for a formal statistical analysis are valid
or appropriate. These assumptions generally imply a rather
simple stationary model of the residuals but a consideration
of the way in which different types of uncertainty affect the
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modelling process would suggest that the assumptions will
be too simplistic.

However, the objectivity claimed for formal statistical
methods, in this type of application, lies in the possibility of
testing those assumptions against the summary statistics for
a particular set of model residuals. It should be good prac-
tice in any modelling study to carry out such checks (though
this is not often reported in papers based on formal statisti-
cal likelihoods). If those assumptions cannot be shown to be
valid then, despite the mathematical formalism of the con-
sequent inference, there is no objectivity. There may also
be some limitations of this kind of objectivity when a num-
ber of different sets of assumptions appear to be acceptable,
such that a subjective choice between different (formal) er-
ror models must be made. In Bayesian statistics there is also
the subjective choice of prior distributions that, in some ap-
plications, have a significant effect on the resulting posterior
distributions. It can also be shown (see for exampleBeven
et al., 2008) that an objective analysis of one data set can
lead to erroneous forecasts of new data. This paper discusses
one reason why such a situation may arise; the role of epis-
temic uncertainties in determining the nature of a series of
model residuals. It is suggested that the assumptions of for-
mal statistics might be inappropriate in assessing the infor-
mation content in such cases. Consequently this may result in
misleading inference about model parameters and forecasts.

The main alternative to the formal statistical approach, at
least up to now, has been the Generalised Likelihood Uncer-
tainty Estimation (GLUE) methodology, first introduced by
Beven and Binley(1992). GLUE is consistent with hierar-
chical Bayesian methods in that if an error model component
is added and the associated likelihood based on formal statis-
tical assumptions is used, then the results should be the same
(Beven et al., 2007, 2008). However, GLUE also allows in-
formal likelihoods (or fuzzy measures) to be used, can treat
residual errors implicitly in making predictions, and provides
ways of combining likelihoods other than Bayesian multipli-
cation, where this seems appropriate. There are some con-
ditions under which the resulting posterior likelihoods can
be considered as probability distributions (seeSmith et al.,
2008), but the meaning will be different. When an informal
likelihood is used, the resulting predictions will no longer
formally be conditional estimates of the probability of pre-
dicting an observation, but rather conditional estimates of the
probability of a model prediction. This has led to significant
criticism of the GLUE method (e.g.Mantovan and Todini,
2006; Stedinger et al., 2008); though both of these critical
studies are based on hypothetical examples where the model
structure is known to be correct so that there is no epistemic
uncertainty (see the extension of one of these cases to an in-
correct model structure inBeven et al., 2008).

Experience of using the GLUE methodology with a variety
of different likelihood measures suggests that for cases where
the ensemble of model predictions can cover the available
observations (e.g. in hypothetical examples with a correct

model structure) the resulting estimates of model uncertainty
can be rather similar. They will differ more in cases where a
model structure is, for whatever reason, biased in part or parts
of the calibration in the sense that it is impossible for that
model structure to match an observation regardless of choice
of parameter values. Some simple error structure, such as
constant bias or a simple trend, can be easily handled in a
statistical likelihood approach (e.g.Kennedy and O’Hagan,
2001) as can constant heteroscedastic variations in the er-
ror variance or a constant autocorrelation function. Time
variable changes in bias or variance are more difficult (they
suggests that the error series does not have a simple statisti-
cal structure) but can be “handled” in the sense of increas-
ing the error variance of the identified error model, even in
cases when the “best available” (maximum likelihood) model
might not actually be fit for purpose, or where the source of
the error comes from the poor specification of inputs for one
or more events (though note that separating these cases might
often be difficult).

In doing so, however, the validity of the model structure
as a hypothesis about how the system is functioning will not
be questioned. Since the statistical estimates of uncertainty
are always conditional on the choice of model(s), there is no
inherent testing of the validity of the model as hypothesis.
Different models can be tested relative to each other (e.g. by
the use of Bayes ratios) but there is no mechanism for total
model rejection.

This is different from the GLUE approach which devel-
oped out of the earlier Hornberger-Spear-Young (HSY) gen-
eralized sensitivity analysis (Hornberger and Spear, 1981).
The HSY method investigates the sensitivity of complex sys-
tems by differentiating between those models considered to
be “behavioural” and those that can be rejected as “non-
behavioural”. In that the predictions of model outputs within
GLUE are intended to be useful guides to the future out-
puts from the system, there is no point in making predictions
with models that have not proved to be behavioural in cali-
bration. Thus models not thought to be useful in prediction
are rejected (or given a likelihood of zero; in the statistical
approach a very small likelihood would be given to such a
model, but no model would be rejected).

However, this introduces a further degree of subjectivity in
GLUE. There is commonly a complete range of behaviours
in calibration between models that fit the data well (or as well
as might be expected) and those that clearly do not. Thus,
deciding on a threshold between what will be considered be-
havioural and what will not is necessarily subjective (even
if generally common sense will prevail in doing so; see the
limits of acceptability approach suggested inBeven, 2006).
The effect of this selection can be mitigated to some extent
by using an informal likelihood measure that reduces to zero
at the rejection limit.

Such subjectivity is, of course, anathema to many scien-
tists. For example, one referee highlights the difficulty of
subjecting informal likelihoods to rigorous testing. The aim
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of science is to be as objective as possible, even if the history
of science records very many instances of the subjective and
selective use of evidence in many different subject areas: the
history of using the Hortonian model to explain storm runoff
is just such an example in hydrology (seeBeven, 2004). We
like to have formal frameworks for doing things, in which the
consequences follow directly and straightforwardly from the
assumptions. So why should we even consider using infor-
mal likelihoods and subjectively chosen thresholds? In fact, a
somewhat deeper reflection turns that question around. How
can we possibly justify the use of statistical error models and
formal likelihoods when many of the errors that affect mod-
eling uncertainty in hydrology are not “statistical” in nature?

2 Aleatory and epistemic errors

The application of formal statistical methods requires that
the representation of errors is fundamentally as random or
aleatory variables. Aleatory errors can be represented in
terms of the odds (or probabilities) of different outcomes.
The original paper ofBayes(1763), for example, was con-
cerned with estimating odds on different potential hypothe-
ses when there might be some prior (subjective) beliefs about
the hypotheses. Bayes equation then provides a formal
means for incorporating evidence as represented by a like-
lihood function with the subjective prior beliefs to condition
a posterior distribution in a way that satisfies the axioms of
probability theory.

The issue in the application of Bayes theory to inference
about models and their predictions is how to choose a like-
lihood function to reflect the evidence contained in a set of
model residuals when there are multiple sources of uncer-
tainty in the modelling process. Hierarchical Bayesian meth-
ods do so by providing a representation of all of the impor-
tant sources of uncertainty as aleatory. These representations
will then have “hyper-parameters” that are estimated as part
of the inference process, based on the series of model residu-
als. It is critical to this process, however, that all the sources
of error can be treatedas if they are aleatory.

This is not, however, the case. Many of the errors that
enter into the modelling process are not the result of ran-
dom natural variation but the result of a lack of knowledge
about processes and boundary conditions. These epistemic
uncertainties are, as pointed out in the 1920s by Frank Knight
and Maynard Keynes, the “real” uncertainties. They include
the poor measurements, the processes that we have left out
because they are not deemed to be important (or for which
we have no agreed mathematical representation), and the lo-
cal catchment characteristics that we cannot know in detail.
They also include the “unknown unknowns” that we have not
even perceived as being important because of lack of knowl-
edge and which therefore are unexpected (and not predicted)
when they occur (these are also sometimes referred to as
ontological or irreducible uncertainties). We cannot be too

concerned about the latter since past surprises have probably
been incorporated into present models and future surprises
are difficult to predict. In fact, an ontological uncertainty
will become an epistemic uncertainty as soon as it is recog-
nised as an issue. We should, however, be directly concerned
about the category of epistemic uncertainties, that we can
surely perceive but do not know enough about.

3 Colour and spin in epistemic errors

There are very many epistemic errors of this type (see Fig.1),
from spatial patterns of rainfall inputs that vary from storm to
storm, to the water equivalent of drifting snow, to radar rain-
falls subject to multiple (deterministic) corrections, to rating
curve non-stationarities and extrapolations, to evapotranspi-
ration fluxes in hetereogeneous terrain. Some of these may
be due to natural variability (as well as the limitations of
available measurement techniques to observe that variability)
but none can be considered as fundamentally aleatory. Such
variability will not be “white” but structured or coloured in
a variety of ways and it is a significant spin of our under-
standing to try to suggest to users of model predictions that
they can be treatedas if they were aleatory in order to be
“objective”.

The general effect of epistemic uncertainty is to make the
error characteristics of the variable under study (whether in-
put or model residual) to appear structured. If that structure
is a well-behaved red noise with stationary characteristics
then a statistical model might be found to represent it (e.g.
Li et al., 2011). The issue with epistemic error is, however,
that it is likely to induce colour that isnon-stationary. A
classic example is the way in which an error in an input vari-
able when processed through a nonlinear model, produces
a set of residuals that exhibit bias and autocorrelation that
might vary depending on the model structure. That is a logi-
cal consequence of the nature of the model dynamics. Since
the errors in the inputs are expected to vary from event to
event (but not in a random way) that bias and autocorrela-
tion will be non-stationary, and normally gradually reduc-
ing in effect over time. The colour will change over time.
It is known that in simple statistical inference, the neglect
of bias and autocorrelation in error series produces bias in
the inferred parameters (e.g.Beven et al., 2008). We should
therefore expect the same in more complex cases involving
non-stationarity.

In extreme cases, the data being used to drive a model or
evaluate the predictions might even be adding disinforma-
tion to the inference process (Beven and Westerberg, 2011).
In hydrological modelling this would be the case when a
rainfall input is so poorly represented by a set of raingauges
that there is no way that a model could conceivably provide
a good estimate of the resulting discharge (see the exam-
ple in Beven, 2009a). The same could happen if an unver-
ified extrapolation of a discharge rating curve resulted in a
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Fig. 1. Potential sources of epistemic error in measuring and modelling catchment responses.

significant overestimation (or underestimation) of discharges
at flood stages (modellers should be wary of simply accept-
ing discharge values provided by monitoring Agencies with-
out information about quality control and uncertainties, see
Westerberg et al., 2011a). Such errors will not be simply
statistical (even where a statistical technique such as regres-
sion is used to fit a rating curve to observations). Using
any variance-based likelihood function or performance mea-
sure that is based on squared residuals (including the Nash-
Sutcliffe efficiency measure) might mean that the inference
is biased because of just a few periods of such measurements.
In rapidly responding catchments timing discrepancies in ei-
ther the rainfalls or discharges that affect the apparent timing
of the rising limb might also have a significant effect on the
apparent residual variance. A timing error in the onset of
snow melt can have a persistent effect on the error in model
simulations that is specific to that period (e.g. see the exam-
ple inFreer et al., 1996).

Distributed models are particularly interesting in respect
of epistemic errors. Distributed models allow for model pa-
rameters to vary spatially in every solution element (though
this is rarely done, and where it has been done by interpo-
lation it has not generally been very successful, seeLoague
et al., 2005). Deeper in the subsurface, distributed models
can also allow the geological structure to be reflected in the
patterns of parameters. There will be epistemic uncertainty
in the detail of that structure and it is usually the case that the
choice of a “conceptual model” of the geology (and the first
estimates of the associated hydrogeological parameters) is a
subjective interpretation based on limited amounts of map
and geophysical survey data. This is a case where the epis-
temic uncertainty is treated in terms of one or more possible
scenarios (see the case study ofRefsgaard et al., 2006).

It is, of course, rare that model parameters can be identi-
fied for all the solution elements in the discretisation. It is
much more common to fix parameters over some part of the
domain. This means that local predictions will be in error
but because of the complex nonlinear interactions in space
between elements and process representations, the effect of
this on model residuals will be difficult to quantify. The ef-
fect should certainly not, however, be expected to be aleatory,
because of the connected, nonlinear, nature of the distributed
simulation model. The colour should not, therefore, be ex-
pected to be simple in nature.

4 Colour, spin and information content

The reason why this is important is because any colour re-
duces the information content of the data that are available.
Thus, the inference is likely to be over-conditioned if the
colour is neglected or represented as if it was a simple sta-
tionary process. The result will be generally poorer perfor-
mance in prediction than in calibration because the character-
istics of the sources of uncertainty in prediction will be dif-
ferent to the calibration data. Epistemic errors are expected
to lead to this type of non-stationarity. It is indeed generally
accepted in hydrological modelling (and in published results
of hydrological models) that performance will be poorer in
“validation”, even after “optimisation” of a model in calibra-
tion (though it is probably doubtful if many studies where
performance is very much poorer in validation actually get
published; it is more likely that a further model iteration takes
place).

This expectation of poorer performance in validation is a
form of implicit recognition of the effects of epistemic error
on the modelling process. In calibration we have no infor-
mation about how the errors in prediction might be different
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from those in calibration. We can therefore only assume that
the characteristics will be in some sense “similar” in predic-
tion. In the case of statistical inference, this is to assume that
the parameters of the error models fitted in calibration will be
constant in prediction (despite the evidence that they might
be difficult to identify in calibration, seeBeven, 2005 and
Beven et al., 2008). In GLUE it is to assume that the like-
lihood weights associated with a model parameter set (with
its implicit error characteristics) will stay the same in predic-
tion. This does not protect against the unexpected (an exam-
ple, from the extensively modelled Leaf River data set in the
paper byVrugt et al., 2008, led to the comment ofBeven,
2009a).

It is therefore a modelling aphorism that a calibration data
set can only be partially informative in the face of epistemic
errors. There is no theory of information content to cover
such cases. Hence the attraction of spinning the nature of
sources of uncertainty to suggest that they can be treatedas
if they were aleatory. Statistical inference does provide a
theory of information content. Classical Gaussian theory, for
example, allows individual residual errors to contribute to the
likelihood function as:

L ∝ exp
(
−ρt e2

t

)
(1)

whereet is the residual error at timet . amdρt a scaling
factor. In the simplest case of an error model that can be as-
sumed to be zero mean and Gaussian with no autocorrelation,
this leads to the likelihood function:∏

t

1
√

2 π σ
exp

(
−

1

2 σ 2
e2
t

)
(2)

whereσ 2 is the residual variance. In this framework every
residual is considered to be informative (albeit with contri-
butions that can be weighted according toρt ). Indeed some
hydrological modellers would require this to be the case (e.g.
Mantovan and Todini, 2006) for the inference to be “co-
herent” (see also the response ofBeven et al., 2008). The
smaller the error, the higher the contribution, but the multi-
plicative effect over a large number of time steps is to pro-
duce a highly peaked likelihood surface, with the danger
therefore that where the assumptions of the error model on
which the likelihood function is based are not correct (Eq.2
would not be appropriate for the autocorrelated residuals of
most hydrological models, for example), then the contribu-
tion to the information content of individual residuals is be-
ing overestimated.

As Tarantola(2005) for example points out, the assump-
tion in Eq. (1) is subjective (see alsoBeven, 2002, 2009b).
It is not the only choice about how far a residual contributes
information to the conditioning process.Laplace(1774) for
example developed an alternative theory based on the abso-
lute values of residuals, i.e.:

L ∝ exp (−|ρt et |). (3)

Since this was mathematically less tractable, it was largely
dropped in favour of the Gaussian measure. But neither is a
truly objective assessment of information content. They are
only objective within the context of the basic assumptions of
Eqs. (1) and (3). This applies also to other error norms, or
subjective choices of likelihood, that might be chosen.

Such measures should therefore be treated more as hy-
potheses about future performance to be tested. Statistical er-
ror models then provide a formal expectation of performance
(in terms of the probability of predicting a future observation)
that can be evaluated in terms of actual performance (e.g. in
terms of quantile-quantile plots for new prediction periods).
Models chosen on the basis of subjective likelihood measures
do not have such a probabilistic expectation (as noted earlier,
the interpretation of the resulting uncertainty bounds is dif-
ferent). There is an assumption, however, that the character-
istics of the errors in prediction should be “similar” to those
seen in calibration (see, for example,Liu et al., 2009). Such
an assumption can be tested in a similar way. Departures
from the range of model predictions (in both calibration and
prediction periods) might be useful in identifying consistent
model structural error or non-stationary epistemic error (see,
for example,Westerberg et al., 2011b).

There is no real reason why a more direct recognition of
epistemic errors should not be based on choices about in-
formation content in a way that allows for the expectation
of future variability in error characteristics. The difficulty
in doing so is that epistemic errors are those for which, by
definition, we have little or no information about their na-
ture in calibration and even less about the potential errors in
prediction.

What we can do, however, is list some desirable qualities
or principles for an assessment of information content when
we suspect that the modelling process is subject to structural
error. These should then be reflected in any model evalua-
tion and likelihood assessment. In their strongest form these
principles might be expressed as:

1. Information should be assessed so as to minimise, as far
as possible, Type I (false positive, or accepting a model
that would not provide useful predictions) and Type II
(false negative, or rejecting a model that would provide
useful prediction) errors.

2. Periods of disinformative inputs or outputs should be
identified as far as possible independently of any model
structure to avoid thereductio ad absurdumof all peri-
ods that do not fit a particular model being rejected as
disinformative.

3. Contributions to model likelihood evaluations should be
a function of the time varying information content of the
observations.

4. Account should be taken of the potential for input er-
rors to have an effect on model outputs over multiple
consequent events.
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These features may be desirable but will be difficult to sat-
isfy because of the expectation that the epistemic errors will
be non-stationary and of complex structure, while principle
2 precludes the use of model residuals in assessing informa-
tion content in this sense. It is difficult therefore to define a
strategy for the independent estimation of such errors with-
out additional information being provided (which generally
is not possible for periods of past calibration data).

5 Avoiding false negatives

The first principle above is important. It is a fundamental
principle for the assessment of information content. It is
worth noting, however, that false negative errors are much
more important than false positives. The potential for false
positives is the reason underlying principle 2, but false posi-
tives will generally be less serious because they can be cor-
rected as more information becomes available. However,
once a model that would provide useful predictions in the
future is rejected (a false negative), those useful predictions
will not then be available. There is little experience in testing
hydrological models as hypotheses within such a framework
(Beven, 2010).

False positive and false negative inferences can be ex-
pected to result when the driving data for a model are hydro-
logically inconsistent with the observed variables with which
model simulated variables will be compared. We might ex-
pect such an inconsistency to be expressed in terms of large
model residuals (even for a model that might be useful in
prediction) but, following principle 2, we would ideally wish
to assess consistency independently of the model hypothesis
being evaluated.

So what does hydrological consistency mean? That the in-
puts and outputs should be consistent with the mass, energy
and momentum balances and what is known about the pro-
cesses in a catchment. But these are difficult to assess. As
part of the Representative Elementary Watershed concepts,
Reggiani and Schellekens(2003, see alsoReggiani et al.,
2000, 2001) have shown that the mass, energy and momen-
tum balances can be expressed for catchment or subcatch-
ment units but that they are subject to an important closure
problem. Expressed in terms of the simplest lumped catch-
ment water balance for example, we can classically write:

Q = R + E + 1S

whereQ is discharge,P is all types of precipitation,E is
evapotranspiration rate and1S is the integral change in stor-
age for all points and at all levels in the catchment. In fact,
even this is too simplistic, since there may be unmeasured
discharges,U , from a catchment (due to regional groundwa-
ter fluxes, or unmeasured subsurface fluxes beneath a gaug-
ing site). Thus:

Q = R + E + 1S + U

In addition each of these terms would be subject to estimation
errors, particularly over short periods of time (such as those
for which we might wish to assess the information content
of data). Allowing for such uncertainties in observed val-
ues of the variables is, in general and even for experimental
catchments, the only way in which the water balance can be
closed. In practice, therefore, inconsistencies can only be as-
sessed in the broadest sense of departures from the behaviour
seen in the data series as a whole.

In keeping with principle 2 therefore, is there a way of
identifying periods of inconsistent data independent of any
model structure being evaluated? Two strategies (at least)
would seem feasible. One is to use a non-parametric method
for explaining relationships in the observations themselves,
such as the regression tree methodology used byIorgulescu
and Beven(2004). Past experience suggests that this can be
useful in identifying anomalous periods of data. The sec-
ond would be to identify a characteristic response function
for a catchment (the unit hydrograph) and test for anomalies
in runoff coefficients for individual storms (allowing for the
antecedent state of the catchment and seasonal effects in the
form of accumulated evapotranspiration since the previous
event).

There are dangers in both of these approaches, in that “un-
usual” periods in the observations, if they were in fact hydro-
logically consistent, would probably be themostinformative
in differentiating between model hypotheses. There is there-
fore a need to differentiate between hydrologically consistent
and hydrologically inconsistent anomalies (with analogous
possibilities of being wrong as a result of uncertainty). Re-
member, however, that we should expect not to be sure about
identifying hydrological inconsistencies in all cases. There
will always be the potential for making Type Iand Type II
errors.

More generally, principle 3 suggests that it might be possi-
ble to rank observations or periods of observations in terms of
their contribution to total information content in conditioning
a model. This implies a more continuous scale of information
than simply excluding certain periods of data considered to
be disinformative. Such a ranking, or weighting, of different
periods of data might be expected to be context dependent,
with relevance to the particular type of application of interest
and to the expected observation errors (the classical statisti-
cal weighting as an inverse function of observation variance
is an example of this). It is also the case that the same set
of observations might have more information content with
respect to one model output or component than to another.
There has been some (limited) exploration of this concept al-
ready in hydrological modelling, withGupta et al.(2008);
Wagener et al.(2003).

Principle 4 is important. Model output uncertainties in hy-
drology and hydraulics are often dominated by input data un-
certainties, due to limited measurement sites in space or time
or both. Thus the information content of accurate output ob-
servations that are being used to evaluate model performance
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might be compromised by input uncertainties that, in many
cases, are very difficult to characterise because of hetero-
geneities and non-stationarities between events. It was this
type of uncertainty that was the issue at the heart of the dis-
cussion betweenBeven(2009a) andVrugt et al.(2008, 2009)
and that was illustrated byBeven and Westerberg(2011).

6 An example

The above points can be illustrated by considering an exam-
ple, the calibration of a rainfall-runoff model to observed
data. The observed data are those readily available in the
UK, discharges from an Environment Agency stream gauge
and hourly rainfall totals from Met Office rain gauges. The
catchment is the South Tyne station 23006 at Featherstone
(322 km2). This catchment is predominantly moorland veg-
etation and the land-use is mainly for rough grazing. The
geology is mainly Carboniferous limestone. An important
consideration for the choice of this catchment was that the
flows for this site are natural to within 10 % at the 95 per-
centile flow. Five recording rain gauges are available within
the catchment boundary of the chosen site, with catchment
average rainfalls being estimated using a Thiessen polygon
method. Comparison with storage gauges in the catchment
revealed that the recording gauges generally estimated higher
rainfall totals than the storage gauges. There is scope for both
the under and overestimation of the inputs to the catchment
under different rainfall patterns.

Discharges are measured using a compound Crump weir,
which contains the flow at all stages and remains modular
throughout its range. There is some suspicion of truncation
of higher peaks, possibly due to stilling well problems, but
the discharge data are generally considered to be of good
quality and are included in the UK HiFlows database.

Periods of disinformative data were assessed though the
use of event runoff coefficients. Variability in event runoff
coefficients is to be expected due to inadequacies in observ-
ing both the precipitation input and the output discharge as
well as differing internal states of the system. However,
events whose runoff coefficients differ substantially from
similar events (e.g. those with similar rainfall totals falling
in the same season) should be further investigated. In some
cases these may be examples of catchment dynamics not of-
ten observed so should remain in the analysis; in other cases
they may be disinformative.

6.1 Selection of disinformative periods

To perform the selection of disinformative data periods on an
event basis, the observed data needs to be broken into events
for which the total runoff and precipitation can be computed.
Calculating the total runoff requires the extrapolation of the
falling limb of the event hydrograph to estimate the volume

Fig. 2. Plot of the lower part of the master recession curve.

of discharge that might have been observed if further rainfall
had not occurred.

The analysis of recession curves has a long history in hy-
drology and extensive reviews have been provided byHall
(1968) and Tallaksen(1995). In spite of well-known dif-
ficulties with recession variability and partitioning of flow
sources, an analysis of recession curves can often give some
indication of the characteristics of the subsurface discharges
from a catchment and can be used to develop catchment stor-
age models (Lamb and Beven, 1997).

The approach taken for this study was to develop a master
recession curve (MRC) by piecing together individual shorter
recession curves. Ideally, only true flow recessions should be
selected where there is no rainfall and minimal evapotran-
spiration during the flow recession period. In practise this
ideal is difficult to achieve and in this study the MRC was
constructed by piecing together individual recession curves
of greater than 12 h duration during which less then 0.2 mm
of rainfall fell. Figure2 shows the lower part of the MRC.

Figure3 outlines the calculation of the runoff volume for
an event. The time period was divided into events. An event
was considered to start at the first rainfall after 12 dry hours
(hours with rainfall less then 0.2 mm) when the discharge at
that time was less then 0.8 mm and so within the range of
a parametric approximation to the MRC. Figure4 shows the
runoff coefficient for the 1817 events plotted against the to-
tal event rainfall. From this it is clear that the runoff co-
efficient for small events is often poorly estimated. While
the approximation of the MRC at low discharges may play
a role in this, the misobservation of low catchment rainfall
totals, which may indicate localised patterns of rainfall over
the catchment, is felt to be the dominant cause. These events
are deemed disinformative. A number of rainfall events with
larger totals (Fig.4) also show unreasonable runoff coeffi-
cients (greater than 0.95). For whatever reason, these events
are hydrologically inconsistent and are also deemed disinfor-
mative as are those with a runoff coefficient of less than 0.05
in this upland UK catchment. These limits on the runoff co-
efficients are such that some inconsistent events might still be
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Table 1. Table showing the number of Monte Carlo samples considered behavioural for varying thresholds. Values for the data series with
disinformative periods removed are shown in brackets.

κmin κmax

1 0.99 0.98 0.97 0.95 0.93

−100 10 152 (10 192) 5819 (9544) 456 (6082) 145 (2968) 22 (1408) 1 (789)
−50 8733 (8754) 4885 (8201) 333 (5213) 111 (2561) 16 (1175) 1 (641)
−30 7459 (7478) 4095 (7011) 235 (4442) 81 (2181) 12 (977) 1 (507)
−10 4192 (4214) 2210 (3920) 86 (2471) 25 (1262) 2 (496) 0 (215)
−5 2276 (2308) 980 (2090) 13 (1162) 6 (549) 1 (164) 0 (56)

Fig. 3. Schematic showing the calculation of the runoff volume as-
sociated with an event. The lighter shaded area represents the runoff
volume associated with the event which starts at time 0 and the
darker shaded area an underlying baseflow The subsequent events
starts after 67 h (solid line) so the lighter shaded area after this time
is extrapolated using the MRC.

accepted (the mean runoff coefficient over the whole period
in this catchment is 0.8).

6.2 Influence of disinformative data on calibration

Consider calibrating a lumped hydrological model to the ob-
served flow series. The effects of the disinformative data
on the calibration of a hydrological model can be illustrated
using the lumped rainfall runoff model outlined in Eqs. (4)
and (5). The model is Hammerstein in form representing
a non-linear transform of the input rainfall series (Eq.4)
and then routing through two parallel tanks expressed as a
linear transfer function. The linear transfer function is as-
sumed to be mass conservative so that the parameterisation
(α1, α2, β1, β2) can be simplified to(α1, α2, ρ) whereρ is
the split fraction of effective input entering the first path. To
ensure the model is physically meaningful(α1, α2, ρ, φ1)

lie between 0 and 1, whileφ2 is greater than 0 (the range 0
to 2 is considered). To ensure identifiability the condition
α2 > α1 is imposed.

Fig. 4. Scatter plot of runoff coefficient against total rainfall for the
1817 events identified in the time period. Those in red are consid-
ered as disinformative.

ut = φ2 y
φ1
t rt (4)

xt =
β1

1 − α1
ut−2 +

β2

1 − α2
ut−2 (5)

Twelve thousand uniformly distributed random samples were
drawn from the parameter ranges outlined above. For each
parameter set the maximum and minimum values of the
scaled residual(yt −xt )/yt were computed for: (a) the first
900 events identified in the time series and (b) those events
in the first 900 that are not excluded as disinformative. Pa-
rameter sets were considered behavioural if

min
t

yt − xt

yt

> κmin

and

max
t

yt − xt

yt

< κmax.

Table1 shows the number of parameter sets considered be-
havioural for various combinations ofκmin andκmax. These
indicate that by including the disinformative data in the anal-
ysis there may be a risk of making a Type II error for
given values ofκmin andκmax. Moreover the results show
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Fig. 5. Cumulative distribution ofφ1 for behavioural parameter sets
of the two situations considered: Analysis using the full data set
with (κmin, κmax) = (−10, 0.98) (solid) and with the disinformative
data removed with(κmin, κmax) = (−5, 0.93) (dot-dash).

that the model which is not considered behavioural for say
(κmin, κmax) = (−10, 0.98) may be considered behavioural
for stricter conditions (e.g.(κmin, κmax) = (−10, 0.9) when
the disinformative data is removed.

Specification of the behavioural threshold can therefore
affect the potential for making Type II errors, but specify-
ing too generous a bound will also increase the possibility of
Type I errors. To illustrate how these trade-offs may influ-
ence the conclusions drawn from analysis of the model two
situations are contrasted. Situation 1 relates to considering
the full calibration data set and specifying behavioural limits
of (κmin, κmax) = (−10, 0.98). The second situation consid-
ers analysis using only the informative data and behavioural
thresholds of(κmin, κmax) = (−5, 0.93).

Figures5 and6 show that the resulting distribution of the
behavioural parameters sets may change both in location and
spread. Figure7 shows how the selection of the threshold
may influence the output of the behavioural model simula-
tions for several events outside the calibration period. The
simulation results indicate that the very simple model used is
structurally deficient, failing to capture the changes in timing
in the rising limb of the hydrograph while tending to over-
estimate the peak discharge.

7 Back to the unexpected future

In calibration, therefore, we can attempt to identify periods
of data that might be disinformative in model inference inde-
pendent of model runs. We should not expect a behavioural
model to predict such periods of data (while recognising that
we might still be making Type I errors in accepting some
models as behavioural). There might be similar periods of
hydrologically inconsistent data in prediction, that can be
identified in similar ways to those applied in calibration. It
therefore follows that we should not expect such periods to

Fig. 6. Cumulative distribution ofα2 for behavioural parameter sets
of the two situations considered: Analysis using the full data set
with (κmin, κmax) = (−10, 0.98) (solid) and with the disinformative
data removed with(κmin, κmax) = (−5, 0.93) (dot-dash).

Fig. 7. Simulation results for an event not within the calibra-
tion period. the shaded area represents the limits (evaluated
on a time step by time step basis) of the simulations deemed
to be behavioural when calibrated against all the calibration
data with (κmin, κmax) = (−10,0.98). The lines correspond to
the limits when on the informative calibration data is used and
(κmin, κmax) = (−5, 0.93).Points represent the observed data.

be well predicted by the set of behavioural models identified
in calibration. We should also not expect that such periods
would be covered by any statistical representation of the cal-
ibration errors, since the epistemic uncertainties of inconsis-
tent periods in prediction might be quite different to those in
calibration. The only response to this would appear to be to
moderate our expectations of what a model, or set of models,
can do in prediction.

Once new observations are available, and they have been
checked for consistency, they can be used in further testing
of the set of behavioural models. As noted earlier, new ob-
servations might reduce the potential for Type I errors by re-
jecting some of the set of behavioural models based on the
new evidence. New observations then contribute to the type
of learning process suggested inBeven et al.(2007) andBuy-
taert and Beven(2009).
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We might expect the uncertainty in the driving variables
for hydrological and hydraulic models to be reduced by the
application of new or more pervasive measurement tech-
niques into the future. The next generation of radar estimates
of rainfalls or satellite estimates of surface soil moisture will,
we are assured, provide greater accuracy and finer resolu-
tion. It might still be expected, however, that some significant
epistemic uncertainties in model inputs and model structures
will remain for the foreseeable future.

We think we have a pretty good perceptual model of how
catchment systems work such that many of the epistemic un-
certainties discussed above arise, not from unperceived un-
knowns, but from the limitations of current measurement
techniques, spatial and temporal sampling, estimating ef-
fective parameter values etc. But, of course, this is true
for every generation, and then some unexpected information
comes along to change that impression. For the early com-
puter modelling generation, one of the most important unex-
pected pieces of information was the introduction of tracer
data that allowed the residence times in catchments to be
addressed in ways not previously possible (e.g.Sklash and
Farvolden, 1979). Suddenly, subsurface flows could not be
ignored (see also the history of the R5 modelling exercise
reported inLoague and Vanderkwaak, 2002and modelling
the Plynlimon chloride data inKirchner et al., 2001andPage
et al., 2007).

What we can be sure of is that the next generation of hy-
drological modellers will also have access to new and bet-
ter geophysical and geochemical information, and that their
perceptions of how hydrological systems work will change.
There remain some epistemological uncertainties of which,
as yet, we have only the vaguest intimation but which we
should expect to be reduced in achieving better hydrological
simulations and improved integrated catchment management
in the future.

8 Conclusions

Disinformation as a result of epistemic error is an issue in
hydrological modelling. In particular the way in which the
colour in model residuals resulting from epistemic errors
should be expected to be non-stationary means that it is dif-
ficult to justify the spin that the structure of residuals can be
properly represented by statistical likelihood functions. To
do so would be to greatly overestimate the information con-
tent in a set of calibration data and increase the possibility
of both Type I and Type II errors. This has been recognised
in the past in the bias to be expected in posterior parame-
ter distributions when too simplistic a likelihood function is
used, but it has been suggested here that the problem is much
more significant. Some techniques have been suggested for
identifying periods of disinformative data prior to evaluation
of a model structure of interest, and the effect on the esti-
mated parameter values of a hydrological model has been
demonstrated.
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