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Abstract. Disinformation as a result of epistemic error is sophisticated hierarchical treatments of multiple sources of
an issue in hydrological modelling. In particular the way in error exemplified by the BATEAKuczera et a].2006 Thyer
which the colour in model residuals resulting from epistemic et al, 2009 Renard et a).2010 and DREAM {/rugt et al,
errors should be expected to be non-stationary means th&008 2009 methodologies.

it is difficult to justify the spin that the structure of residu-  There are two main advantages of this approach. The
e_lls can be properly represented by statistical_ ”ke“hOOd,funCTirst is that it provides a formal framework underpinned by
tions. To do so would be to greatly overestimate the infor-yecades of development of statistical methods, including for
mation content in a set of calibration data and increase th%xample the use of Monte Carlo Markov Chain techniques
possibility of both Type | and Type Il errors. Some princi- \yithin a Bayesian framework for evaluating the posterior dis-
ples of trying to identify periods of disinformative data prior i tions when new data are added. The second is that it

to evaluation of a model structure of interest, are discussed,ms to provide an estimate of the probability of predicting
An example demonstrates the effect on the estimated paranyy, ghservation conditional on a particular model structure

eter values of a hydrological model. (or structures in Bayesian model averaging) and calibration
data set (though note that Bayes origia@b3 formulation
was not in this form). We will not consider further cases
1 Introduction where only forward uncertainty estimation can be carried
out. Uncertainty estimates then depend entirely on the prior
The starting point for this paper is the belief in certain parts 5ssumptions about different sources of uncertainty. Condi-

of the modeling community that it is necessary to use atoning on some calibration data makes the problem much
statistical framework to evaluate the uncertainty in modelnore interesting.

predictions. This has been the subject of much discussion H ted by the ref . b
in the past, with a range of positions from the pure (even owever (as noted by the referees), it is necessary to be

if Bayesian) probabilistic views of, for exampl€’Hagan very careful about terminology here. “Statistics” can apply to

and Oakley(2004, Goldstein and Rougief2004, Manto- the analysis of any sample of numbers (originally referring to

van and Todin{2006, Stedinger et al(2008 and others, to informatipn about a State). As sugh it can apply to both for_-
the sceptical views oBeven (2006 and Andréassian et al. mal and informal methods of manipulating data, although it

(2007. Statistical treatments of errors have been appliediS now normally rgs_erved for met_hods that are founded in the
quite widely in hydrological modelling, developing from the axioms of probability. The questions we raise here about the

use of likelihoods based on assumptions about model resi application of formal statistical methods to series of hydro-

uals (e.g.Sorooshian and Dracuf980) to the much more ogical model residuals are concerned with whether the as-
el sumptions required for a formal statistical analysis are valid

or appropriate. These assumptions generally imply a rather

Correspondence tdK. Beven simple stationary model of the residuals but a consideration
BY

(k-beven@Ilancs.ac.uk) of the way in which different types of uncertainty affect the
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modelling process would suggest that the assumptions wilmodel structure) the resulting estimates of model uncertainty
be too simplistic. can be rather similar. They will differ more in cases where a
However, the objectivity claimed for formal statistical model structure is, for whatever reason, biased in part or parts
methods, in this type of application, lies in the possibility of of the calibration in the sense that it is impossible for that
testing those assumptions against the summary statistics fanodel structure to match an observation regardless of choice
a particular set of model residuals. It should be good prac-of parameter values. Some simple error structure, such as
tice in any modelling study to carry out such checks (thoughconstant bias or a simple trend, can be easily handled in a
this is not often reported in papers based on formal statististatistical likelihood approach (e.fennedy and O’'Hagan
cal likelihoods). If those assumptions cannot be shown to b&2001) as can constant heteroscedastic variations in the er-
valid then, despite the mathematical formalism of the con-ror variance or a constant autocorrelation function. Time
sequent inference, there is no objectivity. There may alsovariable changes in bias or variance are more difficult (they
be some limitations of this kind of objectivity when a num- suggests that the error series does not have a simple statisti-
ber of different sets of assumptions appear to be acceptableal structure) but can be “handled” in the sense of increas-
such that a subjective choice between different (formal) er-ing the error variance of the identified error model, even in
ror models must be made. In Bayesian statistics there is alsoases when the “best available” (maximum likelihood) model
the subjective choice of prior distributions that, in some ap-might not actually be fit for purpose, or where the source of
plications, have a significant effect on the resulting posteriorthe error comes from the poor specification of inputs for one
distributions. It can also be shown (see for exanfpdeen  or more events (though note that separating these cases might
et al, 2008 that an objective analysis of one data set canoften be difficult).
lead to erroneous forecasts of new data. This paper discussesin doing so, however, the validity of the model structure
one reason why such a situation may arise; the role of episas a hypothesis about how the system is functioning will not
temic uncertainties in determining the nature of a series obe questioned. Since the statistical estimates of uncertainty
model residuals. It is suggested that the assumptions of forare always conditional on the choice of model(s), there is no
mal statistics might be inappropriate in assessing the inforinherent testing of the validity of the model as hypothesis.
mation content in such cases. Consequently this may result iDifferent models can be tested relative to each other (e.g. by
misleading inference about model parameters and forecastdhe use of Bayes ratios) but there is no mechanism for total
The main alternative to the formal statistical approach, atmodel rejection.
least up to now, has been the Generalised Likelihood Uncer- This is different from the GLUE approach which devel-
tainty Estimation (GLUE) methodology, first introduced by oped out of the earlier Hornberger-Spear-Young (HSY) gen-
Beven and Binley(1992. GLUE is consistent with hierar- eralized sensitivity analysidHprnberger and Speat981).
chical Bayesian methods in that if an error model componenifThe HSY method investigates the sensitivity of complex sys-
is added and the associated likelihood based on formal statigems by differentiating between those models considered to
tical assumptions is used, then the results should be the sante “behavioural” and those that can be rejected as “non-
(Beven et al.2007, 2008. However, GLUE also allows in- behavioural”. In that the predictions of model outputs within
formal likelihoods (or fuzzy measures) to be used, can treaGLUE are intended to be useful guides to the future out-
residual errors implicitly in making predictions, and provides puts from the system, there is no point in making predictions
ways of combining likelihoods other than Bayesian multipli- with models that have not proved to be behavioural in cali-
cation, where this seems appropriate. There are some cotration. Thus models not thought to be useful in prediction
ditions under which the resulting posterior likelihoods can are rejected (or given a likelihood of zero; in the statistical
be considered as probability distributions (Sxith et al, approach a very small likelihood would be given to such a
2008, but the meaning will be different. When an informal model, but no model would be rejected).
likelihood is used, the resulting predictions will no longer  However, this introduces a further degree of subjectivity in
formally be conditional estimates of the probability of pre- GLUE. There is commonly a complete range of behaviours
dicting an observation, but rather conditional estimates of then calibration between models that fit the data well (or as well
probability of a model prediction. This has led to significant as might be expected) and those that clearly do not. Thus,
criticism of the GLUE method (e.gMantovan and Todini  deciding on a threshold between what will be considered be-
2006 Stedinger et al.2008; though both of these critical havioural and what will not is necessarily subjective (even
studies are based on hypothetical examples where the mod#lgenerally common sense will prevail in doing so; see the
structure is known to be correct so that there is no epistemidimits of acceptability approach suggestedBaven 2006.
uncertainty (see the extension of one of these cases to an if-he effect of this selection can be mitigated to some extent
correct model structure iBeven et al.2008. by using an informal likelihood measure that reduces to zero
Experience of using the GLUE methodology with a variety at the rejection limit.
of different likelihood measures suggests that for cases where Such subjectivity is, of course, anathema to many scien-
the ensemble of model predictions can cover the availabldists. For example, one referee highlights the difficulty of
observations (e.g. in hypothetical examples with a correctsubjecting informal likelihoods to rigorous testing. The aim
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of science is to be as objective as possible, even if the historgoncerned about the latter since past surprises have probably
of science records very many instances of the subjective antleen incorporated into present models and future surprises
selective use of evidence in many different subject areas: thare difficult to predict. In fact, an ontological uncertainty
history of using the Hortonian model to explain storm runoff will become an epistemic uncertainty as soon as it is recog-
is just such an example in hydrology (d8even 2004. We nised as an issue. We should, however, be directly concerned
like to have formal frameworks for doing things, in which the about the category of epistemic uncertainties, that we can
consequences follow directly and straightforwardly from the surely perceive but do not know enough about.
assumptions. So why should we even consider using infor-
mal likelihoods and subjectively chosen thresholds? In fact, a
somewhat deeper reflection turns that question around. Hov@ Colour and spin in epistemic errors
can we possibly justify the use of statistical error models and
formal likelihoods when many of the errors that affect mod- There are very many epistemic errors of this type (seelfig.
eling uncertainty in hydrology are not “statistical” in nature? from spatial patterns of rainfall inputs that vary from storm to
storm, to the water equivalent of drifting snow, to radar rain-
falls subject to multiple (deterministic) corrections, to rating
2 Aleatory and epistemic errors curve non-stationarities and extrapolations, to evapotranspi-
ration fluxes in hetereogeneous terrain. Some of these may
The application of formal statistical methods requires thatbe due to natural variability (as well as the limitations of
the representation of errors is fundamentally as random oavailable measurement techniques to observe that variability)
aleatory variables. Aleatory errors can be represented ifbut none can be considered as fundamentally aleatory. Such
terms of the odds (or probabilities) of different outcomes. variability will not be “white” but structured or coloured in
The original paper oBayes(1763, for example, was con- a variety of ways and it is a significant spin of our under-
cerned with estimating odds on different potential hypothe-standing to try to suggest to users of model predictions that
ses when there might be some prior (subjective) beliefs abouthey can be treateds if they were aleatory in order to be
the hypotheses. Bayes equation then provides a formdlobjective”.
means for incorporating evidence as represented by a like- The general effect of epistemic uncertainty is to make the
lihood function with the subjective prior beliefs to condition error characteristics of the variable under study (whether in-
a posterior distribution in a way that satisfies the axioms ofput or model residual) to appear structured. If that structure
probability theory. is a well-behaved red noise with stationary characteristics
The issue in the application of Bayes theory to inferencethen a statistical model might be found to represent it (e.g.
about models and their predictions is how to choose a like-Li et al., 2011). The issue with epistemic error is, however,
lihood function to reflect the evidence contained in a set ofthat it is likely to induce colour that ison-stationary A
model residuals when there are multiple sources of uncerelassic example is the way in which an error in an input vari-
tainty in the modelling process. Hierarchical Bayesian meth-able when processed through a nonlinear model, produces
ods do so by providing a representation of all of the impor-a set of residuals that exhibit bias and autocorrelation that
tant sources of uncertainty as aleatory. These representatiomsight vary depending on the model structure. That is a logi-
will then have “hyper-parameters” that are estimated as partal consequence of the nature of the model dynamics. Since
of the inference process, based on the series of model residdhe errors in the inputs are expected to vary from event to
als. It is critical to this process, however, that all the sourcesevent (but not in a random way) that bias and autocorrela-
of error can be treatedak if they are aleatory. tion will be non-stationary, and normally gradually reduc-
This is not, however, the case. Many of the errors thating in effect over time. The colour will change over time.
enter into the modelling process are not the result of randt is known that in simple statistical inference, the neglect
dom natural variation but the result of a lack of knowledge of bias and autocorrelation in error series produces bias in
about processes and boundary conditions. These epistemibe inferred parameters (e Beven et al.2008§. We should
uncertainties are, as pointed out in the 1920s by Frank Knightherefore expect the same in more complex cases involving
and Maynard Keynes, the “real” uncertainties. They includenon-stationarity.
the poor measurements, the processes that we have left outIn extreme cases, the data being used to drive a model or
because they are not deemed to be important (or for whiclevaluate the predictions might even be adding disinforma-
we have no agreed mathematical representation), and the Idion to the inference procesBéven and Westerberg011).
cal catchment characteristics that we cannot know in detailln hydrological modelling this would be the case when a
They also include the “unknown unknowns” that we have notrainfall input is so poorly represented by a set of raingauges
even perceived as being important because of lack of knowlthat there is no way that a model could conceivably provide
edge and which therefore are unexpected (and not predicted) good estimate of the resulting discharge (see the exam-
when they occur (these are also sometimes referred to gsle in Beven 20093. The same could happen if an unver-
ontological or irreducible uncertainties). We cannot be tooified extrapolation of a discharge rating curve resulted in a
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Fig. 1. Potential sources of epistemic error in measuring and modelling catchment responses.

significant overestimation (or underestimation) of discharges It is, of course, rare that model parameters can be identi-
at flood stages (modellers should be wary of simply acceptfied for all the solution elements in the discretisation. It is
ing discharge values provided by monitoring Agencies with-much more common to fix parameters over some part of the
out information about quality control and uncertainties, seedomain. This means that local predictions will be in error
Westerberg et gl.20113. Such errors will not be simply but because of the complex nonlinear interactions in space
statistical (even where a statistical technique such as regredetween elements and process representations, the effect of
sion is used to fit a rating curve to observations). Usingthis on model residuals will be difficult to quantify. The ef-
any variance-based likelihood function or performance meafect should certainly not, however, be expected to be aleatory,
sure that is based on squared residuals (including the Nastecause of the connected, nonlinear, nature of the distributed
Sutcliffe efficiency measure) might mean that the inferencesimulation model. The colour should not, therefore, be ex-
is biased because of just a few periods of such measurementgected to be simple in nature.

In rapidly responding catchments timing discrepancies in ei-

ther the rainfalls or discharges that affect the apparent timing ) ) )

of the rising limb might also have a significant effect on the 4 Colour, spin and information content

apparent residual variance. A timing error in the onset of_l_h hv this is i tant is b |
snow melt can have a persistent effect on the error in model € reason why fnis 1S important IS because any colour re-

simulations that is specific to that period (e.g. see the examduces the information content of the data that are available.

ple in Freer et al.199§. Thus, the inference is likely to be over-conditioned if the

Distributed models are particularly interesting in respectc_oIour IS neglecte_lt_jhor reprlesglr:tsd as if it :/Ivas a S|mplefsta-
of epistemic errors. Distributed models allow for model pa- 'Onary process. The result will be generally poorer perfor-

rameters to vary spatially in every solution element (thoughmance in prediction than in calibration because the character-
this is rarely done, and where it has been done by interpoistics of the sources of uncertainty in prediction will be dif-
lation it has not génerally been very successful, lseggue ferent to the calibration data. Epistemic errors are expected

et al, 2009. Deeper in the subsurface, distributed models© lead to this type of non-stationarity. It is indeed generally

can also allow the geological structure to be reflected in theaccepted in hydrological modelling (and in published results
f hydrological models) that performance will be poorer in

patterns of parameters. There will be epistemic uncertaint)f? SO R . .
in the detail of that structure and it is usually the case that the.V""“d""tIon , EVen after “optimisation . of a model n calibra-
choice of a “conceptual model” of the geology (and the first tion (though '.t is probably doubtfu! i mgny.studles where
estimates of the associated hydrogeological parameters) is performance is very much poorer in validation actually get
subjective interpretation based on limited amounts of malopubhshed; itis more likely that a further model iteration takes
and geophysical survey data. This is a case where the epi?—lacef)' . . o

temic uncertainty is treated in terms of one or more possible This expectation of poorer performance in validation is a

scenarios (see the case studyRefsgaard et 312006. form of |mpI|C|fc recognition of the _effec_ts of epistemic error
on the modelling process. In calibration we have no infor-

mation about how the errors in prediction might be different
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from those in calibration. We can therefore only assume thaSince this was mathematically less tractable, it was largely
the characteristics will be in some sense “similar” in predic- dropped in favour of the Gaussian measure. But neither is a
tion. In the case of statistical inference, this is to assume thatruly objective assessment of information content. They are
the parameters of the error models fitted in calibration will be only objective within the context of the basic assumptions of
constant in prediction (despite the evidence that they mighEqgs. () and @). This applies also to other error norms, or
be difficult to identify in calibration, se®even 2005 and subjective choices of likelihood, that might be chosen.
Beven et al.2008. In GLUE it is to assume that the like- Such measures should therefore be treated more as hy-
lihood weights associated with a model parameter set (withpotheses about future performance to be tested. Statistical er-
its implicit error characteristics) will stay the same in predic- ror models then provide a formal expectation of performance
tion. This does not protect against the unexpected (an exam(in terms of the probability of predicting a future observation)
ple, from the extensively modelled Leaf River data set in thethat can be evaluated in terms of actual performance (e.g. in
paper byVrugt et al, 2008 led to the comment oBeven terms of quantile-quantile plots for new prediction periods).
20093. Models chosen on the basis of subjective likelihood measures
It is therefore a modelling aphorism that a calibration datado not have such a probabilistic expectation (as noted earlier,
set can only be partially informative in the face of epistemic the interpretation of the resulting uncertainty bounds is dif-
errors. There is no theory of information content to cover ferent). There is an assumption, however, that the character-
such cases. Hence the attraction of spinning the nature dktics of the errors in prediction should be “similar” to those
sources of uncertainty to suggest that they can be tregted seen in calibration (see, for exampléuy et al, 2009. Such
if they were aleatory. Statistical inference does provide aan assumption can be tested in a similar way. Departures
theory of information content. Classical Gaussian theory, forfrom the range of model predictions (in both calibration and
example, allows individual residual errors to contribute to theprediction periods) might be useful in identifying consistent

likelihood function as: model structural error or non-stationary epistemic error (see,
2 for example Westerberg et g12011H.
Lo<exp(—,o e) (2) - . .
ro There is no real reason why a more direct recognition of

epistemic errors should not be based on choices about in-

wheree; is the residual error at time amd p,; a scaling ¢ ; . h | tor th .
factor. In the simplest case of an error model that can be agomation content in a way that allows for the expectation
(of future variability in error characteristics. The difficulty

sumed to be zero mean and Gaussian with no autocorrelatiory, '~ ) . . .
this leads to the likelihood function: in doing so is that epistemic errors are those for which, by

definition, we have little or no information about their na-

L 1 e 2 ture in calibration and even less about the potential errors in
[ ex 5 € 2) I
S 2no 20 prediction.

h 2is th idual vari In this f K What we can do, however, is list some desirable qualities
whereo© Is the residual variance. In this framework every o yrincinles for an assessment of information content when

residual is considered to be informative (albeit with contri- . g spect that the modelling process is subject to structural
butions that can be weighted accordingofd. Indeed some g These should then be reflected in any model evalua-

hydrological modellers would require this to be the case (€., and likelihood assessment. In their strongest form these
Mantovan and Todini200§ for the inference to be “co- principles might be expressed as:

herent” (see also the responseBR#ven et al.2008. The i S

smaller the error, the higher the contribution, but the multi- 1. Information should be assessed so as to minimise, as far
plicative effect over a large number of time steps is to pro- s possible, Type | (false positive, or accepting a model
duce a highly peaked likelihood surface, with the danger  that would not provide useful predictions) and Type I
therefore that where the assumptions of the error model on  (false negative, or rejecting a model that would provide
which the likelihood function is based are not correct (£q. useful prediction) errors.

would not be appropriate for the autocorrelated residuals of 5 periods of disinformative inputs or outputs should be

most hydrological models, for example), then the contribu- jqentified as far as possible independently of any model
tion to the information content of individual residuals is be- structure to avoid theeductio ad absurdurof all peri-

ing overestimated. _ ods that do not fit a particular model being rejected as
As Tarantola(2005 for example points out, the assump- disinformative.

tion in Eq. () is subjective (see alsBeven 2002 20090). o o '

It is not the only choice about how far a residual contributes 3. Contributions to model likelihood evaluations should be

information to the conditioning proceskaplace(1774 for afunction of the time varying information content of the
example developed an alternative theory based on the abso- Observations.
lute values of residuals, i.e.: 4. Account should be taken of the potential for input er-

L o exp (—lp; e). (3) rors to have an effect on model outputs over multiple
consequent events.
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These features may be desirable but will be difficult to sat-In addition each of these terms would be subject to estimation
isfy because of the expectation that the epistemic errors willerrors, particularly over short periods of time (such as those
be non-stationary and of complex structure, while principlefor which we might wish to assess the information content
2 precludes the use of model residuals in assessing informasf data). Allowing for such uncertainties in observed val-
tion content in this sense. It is difficult therefore to define a ues of the variables is, in general and even for experimental
strategy for the independent estimation of such errors with-catchments, the only way in which the water balance can be
out additional information being provided (which generally closed. In practice, therefore, inconsistencies can only be as-
is not possible for periods of past calibration data). sessed in the broadest sense of departures from the behaviour
seen in the data series as a whole.
In keeping with principle 2 therefore, is there a way of

5 Avoiding false negatives identifying periods of inconsistent data independent of any

) o o ) model structure being evaluated? Two strategies (at least)
The first principle above is important. It is a fundamental |4 seem feasible. One is to use a non-parametric method
principle for the assessment of information content. It iS¢, explaining relationships in the observations themselves,
worth noting, however, that false negative errors are muchy ,cp as the regression tree methodology usetbigulescu
more important than false positives. The potential for false,p, Bever(2004. Past experience suggests that this can be
positives is the reason underlying principle 2, but false posi-;seful in identifying anomalous periods of data. The sec-
tives will generally be less serious because they can be cor5nq would be to identify a characteristic response function
rected as more information becomes available. Howevers,, 5 catchment (the unit hydrograph) and test for anomalies
once a model that would provide useful predictions in thej, ynoff coefficients for individual storms (allowing for the
future is rejected (a false negative), those useful predictiongnecedent state of the catchment and seasonal effects in the

will not then be available. There is little experience in testing form of accumulated evapotranspiration since the previous
hydrological models as hypotheses within such a frameworlievem)_
(Beven 2010 o There are dangers in both of these approaches, in that “un-
False positive and false negative inferences can be exysyal” periods in the observations, if they were in fact hydro-
pected to result when the driving data for a model are hydr01ogically consistent, would probably be theostinformative
logically inconsistent with the observed variables with which ;, differentiating between model hypotheses. There is there-
model simulated variables will be compared. We might ex-sre 4 need to differentiate between hydrologically consistent
pect such an inconsistency to be expressed in terms of larggng hydrologically inconsistent anomalies (with analogous
model residuals (even for a model that might be useful inpssipilities of being wrong as a result of uncertainty). Re-
prediction) but,.followm.g principle 2, we would ideally wish member, however, that we should expect not to be sure about
to assess consistency independently of the model hyDOIheslaentifying hydrological inconsistencies in all cases. There

being evaluated. . . ~ will always be the potential for making Typeahd Type I
So what does hydrological consistency mean? That the ingrors.

puts and outputs should be consistent with the mass, energy pore generally, principle 3 suggests that it might be possi-
and momentum balances and what is known about the prop|e to rank observations or periods of observations in terms of
cesses in a catchment. But these are difficult to assess. Ageijr contribution to total information content in conditioning
part of the Representative Elementary Watershed conceptg, model. This implies a more continuous scale of information
Reggiani and Schelleker(2003 see alsoReggiani et al.  {han simply excluding certain periods of data considered to
200Q 2003 have shown that the mass, energy and momenye gisinformative. Such a ranking, or weighting, of different
tum balances can be expressed for catchment or subcatcReriods of data might be expected to be context dependent,
ment units but that they are subject to an important closurgyith relevance to the particular type of application of interest
problem. Expressed in terms of the simplest lumped catchypq to the expected observation errors (the classical statisti-
ment water balance for example, we can classically write: 4| weighting as an inverse function of observation variance
O=R+E+AS is an example of this). It is also the case Fhat the same set
of observations might have more information content with
where Q is discharge,P is all types of precipitationE is respect to one model output or component than to another.
evapotranspiration rate ams is the integral change in stor-  There has been some (limited) exploration of this concept al-
age for all points and at all levels in the catchment. In fact,"®ady in hydrological modelling, witGupta et al.(2008;
even this is too simplistic, since there may be unmeasuredVagener et ak2003.
dischargesy/, from a catchment (due to regional groundwa-  Principle 4 is important. Model output uncertainties in hy-
ter fluxes, or unmeasured subsurface fluxes beneath a gaugrology and hydraulics are often dominated by input data un-

ing site). Thus: certainties, due to limited measurement sites in space or time
or both. Thus the information content of accurate output ob-
Q=R+ E+ASH+U servations that are being used to evaluate model performance
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might be compromised by input uncertainties that, in many °
cases, are very difficult to characterise because of hetero- .,
geneities and non-stationarities between events. It was this "
type of uncertainty that was the issue at the heart of the dis-
cussion betweeBeven(20093 andVrugt et al.(2008 2009 05
and that was illustrated geven and Westerbe(g@0117).

Discharge [mm]
L4 =
w =

=
[N}

6 Anexample

a

The above points can be illustrated by considering an exam- o p - - = pres e - T

ple, the calibration of a rainfall-runoff model to observed et

data. The observed data are those readily available in thEig. 2. Plot of the lower part of the master recession curve.

UK, discharges from an Environment Agency stream gauge

and hourly rainfall totals from Met Office rain gauges. The

catchment is the South Tyne station 23006 at Featherstong gischarge that might have been observed if further rainfall
(322kn?). This catchment is predominantly moorland veg- had not occurred.

etation and the land-use is mainly for rough grazing. The The analysis of recession curves has a long history in hy-

geology is mainly Carboniferous limestone. An important drology and extensive reviews have been providecHbyl
consideration for the choice of this catchment was that th 1968 and Tallaksen(1995. In spite of well-known dif-

ﬂOW§ for this ?'te are ngtural .to within 10% at f[he 95 PEI" ficulties with recession variability and partitioning of flow
centile flow. Five recording rain gauges are available Wlthlnsourcesy an analysis of recession curves can often give some

the catchment boundary of the chosen site, with Catchmeni‘hdication of the characteristics of the subsurface discharges

average rainfalls being estimated using a Thiessen IOOInglﬂom a catchment and can be used to develop catchment stor-
method. Comparison with storage gauges in the catchmerﬁge modelslamb and Bever1997

revealed that the recording gauges generally estimated higher
rainfall totals than the storage gauges. There is scope for botpe

the und_er and overestimation of the inputs to the C<r’mhmen?ecession curves. Ideally, only true flow recessions should be
undgr different rainfall patterns.. _selected where there is no rainfall and minimal evapotran-
Discharges are measured using a compound Crump Weigpiration during the flow recession period. In practise this
which contains the flow at all stages and remains modulafgeq) s difficult to achieve and in this study the MRC was
throughout its range. There is some suspicion of truncationyonsiructed by piecing together individual recession curves
of higher peaks, possibly due to stilling well problems, but ot greater than 12 h duration during which less then 0.2 mm
the discharge data are generally considered to be of goog rainfall fell. Figure2 shows the lower part of the MRC.
quality and are included in the UK HiFlows database. Figure3 outlines the calculation of the runoff volume for
Periods of disinformative data were assessed though thgn event. The time period was divided into events. An event
use of event runoff coefficients. Variability in event runoff \yas considered to start at the first rainfall after 12 dry hours
coefficients is to be expected due to inadequacies in obseryhours with rainfall less then 0.2 mm) when the discharge at
ing both the precipitation input and the output discharge aghat time was less then 0.8 mm and so within the range of
well as differing internal states of the system. However, 3 parametric approximation to the MRC. Figdrehows the
events whose runoff coefficients differ substantially from yynoff coefficient for the 1817 events plotted against the to-
similar events (e.g. those with similar rainfall totals falling t5] event rainfall. From this it is clear that the runoff co-
in the same season) should be further investigated. In somegficient for small events is often poorly estimated. While
cases these may be examples of catchment dynamics not ofne approximation of the MRC at low discharges may play
ten observed so should remain in the analysis; in other cases role in this, the misobservation of low catchment rainfall

The approach taken for this study was to develop a master
cession curve (MRC) by piecing together individual shorter

they may be disinformative. totals, which may indicate localised patterns of rainfall over
the catchment, is felt to be the dominant cause. These events
6.1 Selection of disinformative periods are deemed disinformative. A number of rainfall events with

larger totals (Fig4) also show unreasonable runoff coeffi-
To perform the selection of disinformative data periods on ancients (greater than 0.95). For whatever reason, these events
event basis, the observed data needs to be broken into everdge hydrologically inconsistent and are also deemed disinfor-
for which the total runoff and precipitation can be computed. mative as are those with a runoff coefficient of less than 0.05
Calculating the total runoff requires the extrapolation of thein this upland UK catchment. These limits on the runoff co-
falling limb of the event hydrograph to estimate the volume efficients are such that some inconsistent events might still be
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Table 1. Table showing the number of Monte Carlo samples considered behavioural for varying thresholds. Values for the data series with
disinformative periods removed are shown in brackets.

Kmin Kmax

1 0.99 0.98 0.97 0.95 0.93
—100 10152(10192) 5819 (9544) 456 (6082) 145 (2968) 22(1408) 1(789)
—-50 8733 (8754) 4885 (8201) 333(5213) 111 (2561) 16(1175) 1(641)
—-30 7459 (7478) 4095 (7011) 235 (4442) 81 (2181) 12 (977) 1(507)
-10 4192 (4214) 2210 (3920) 86 (2471) 25 (1262) 2(496) 0 (215)
-5 2276 (2308) 980 (2090) 13 (1162) 6 (549) 1(164) 0 (56)
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Fig. 3. Schematic showing the calculation of the runoff volume as- Fig. 4. Scatter plot of runoff coefficient against total rainfall for the

sociated with an event_. The lighter shaqled area repre_sents the runo{%n events identified in the time period. Those in red are consid-
volume associated with the event which starts at time 0 and the . .
red as disinformative.

darker shaded area an underlying baseflow The subsequent even%s
starts after 67 h (solid line) so the lighter shaded area after this time
is extrapolated using the MRC. U = bp y;bl r 4)

B1 B2
T "2t 1 4

accepted (the mean runoff coefficient over the whole periodt: = Ur—2 (5)

in this catchment is 0.8).
o _ o Twelve thousand uniformly distributed random samples were
6.2 Influence of disinformative data on calibration drawn from the parameter ranges outlined above. For each

Consid librati | 4 hvdrological model to the ob parameter set the maximum and minimum values of the
onsider calibrating a lumped hydrological model to the 0b- g5 0 residualy, —x;)/y, were computed for: (a) the first

served flow series. The effects of the disinformative data900 events identified in the time series and (b) those events

on_ the calibration of _a hydrological model c_an b? illustrated in the first 900 that are not excluded as disinformative. Pa-
using the lumped rainfall runoff model outlined in Eg8) ( rameter sets were considered behavioural if

and 6). The model is Hammerstein in form representing

a non-linear transform of the input rainfall series (B). min 2 —* - Kmin

and then routing through two parallel tanks expressed as a’ e

linear transfer function. The linear transfer function is as- and

sumed to be mass conservative so that the parameterisation

(a1, a2, B1, B2) can be simplified tday, a2, p) wherepis  max 2

the split fraction of effective input entering the first path. To ! e

ensure the model is physically meaningfuh, a2, o, #1)  Taple1 shows the number of parameter sets considered be-

lie between 0 and 1, whilg, is greater than O (the range O vioural for various combinations fin andimax. These

to 2 is considered). To ensure identifiability the condition jngicate that by including the disinformative data in the anal-

a2 > oy is imposed. ysis there may be a risk of making a Type Il error for
given values ofcpin andxkmax. Moreover the results show

< Kmax-
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Fig. 5. Cumulative distribution o for behavioural parameter sets Fig. 6. Cumulative distribution of for behavioural parameter sets
of the two situations considered: Analysis using the full data setof the two situations considered: Analysis using the full data set
With (kmin. kmax) = (—10, 0.98) (solid) and with the disinformative With (kmin, kmax = (=10, 0.98) (solid) and with the disinformative
data removed witlikin, kmax) = (—5, 0.93) (dot-dash). data removed witlikmin, kmax) = (=5, 0.93) (dot-dash).

that the model which is not considered behavioural for say
(kmin, kmax) =(—10, 0.98) may be considered behavioural
for stricter conditions (e.9(kmin, kmax) =(—10, 0.9) when
the disinformative data is removed.

Specification of the behavioural threshold can therefore
affect the potential for making Type Il errors, but specify-
ing too generous a bound will also increase the possibility of +
Type | errors. To illustrate how these trade-offs may influ- i
ence the conclusions drawn from analysis of the model two # o
situations are contrasted. Situation 1 relates to considering : :
the full calibration data set and specifying behavioural limits 2 “ e 8 100 120
of (kmin, kmax) =(—10, 0.98). The second situation consid-

ers analysis using only the informative data and behaviouraf9- 7- Simulation results for an event not within the calibra-
thresholds ofkmin, kmaw) = (—5, 0.93) tion period. the shaded area represents the limits (evaluated

. . S on a time step by time step basis) of the simulations deemed
Figures5 and6 show that the resulting distribution of the tg be behavioural when calibrated against all the calibration

behaviourgl parameters sets may change both in location angl:~ with (kmin: kma) =(—10,0.98). The lines correspond to
spread. Figur& shows how the selection of the threshold the jimits when on the informative calibration data is used and
may influence the output of the behavioural model simula- (x,i, kmax) = (-5, 0.93).Points represent the observed data.
tions for several events outside the calibration period. The
simulation results indicate that the very simple model used is
structurally deficient, failing to capture the changes in timing be well predicted by the set of behavioural models identified
in the rising limb of the hydrograph while tending to over- in calibration. We should also not expect that such periods
estimate the peak discharge. would be covered by any statistical representation of the cal-
ibration errors, since the epistemic uncertainties of inconsis-
tent periods in prediction might be quite different to those in
7 Back to the unexpected future calibration. The only response to this would appear to be to
moderate our expectations of what a model, or set of models,
In calibration, therefore, we can attempt to identify periods can do in prediction.
of data that might be disinformative in model inference inde- Once new observations are available, and they have been
pendent of model runs. We should not expect a behaviourathecked for consistency, they can be used in further testing
model to predict such periods of data (while recognising thatof the set of behavioural models. As noted earlier, new ob-
we might still be making Type | errors in accepting some servations might reduce the potential for Type | errors by re-
models as behavioural). There might be similar periods ofjecting some of the set of behavioural models based on the
hydrologically inconsistent data in prediction, that can benew evidence. New observations then contribute to the type
identified in similar ways to those applied in calibration. It of learning process suggestedaven et al(2007) andBuy-
therefore follows that we should not expect such periods tataert and Beve2009.

10~

Discharge [mm]
o
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