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A generalization of Born-Infeld non-linear vacuum electrodynamics involving axion and dilaton fields is
constructed with couplings dictated by electromagnetic duality and SL(2, R) symmetries in the weak field
limit. Besides the Newtonian gravitational constant the model contains a single fundamental coupling
parameter bg. In the absence of axion and dilaton interactions it reduces in the limit by +> oo to

Maxwell’s linear vacuum theory while for finite by it reduces to the original Born-Infeld model. The
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spherically symmetric static sector of the theory is explored in a flat background spacetime in the
Jordan frame where numerical evidence suggests the existence of axion-dilaton bound states possessing

© 2011 Published by Elsevier B.V.

1. Introduction

The existence of new forms of matter that interact only with
gravitation has been recently advocated in order to account for
a number of puzzles in modern cosmology. However the exper-
imental detection of such states remains elusive. Unified models
of the basic interactions also predict a large class of undetected
states that may induce experimental signatures predicted by low
energy effective string models. Phenomenological models of the
strong interactions (QCD) also demand “axionic” states to amelio-
rate anomalies in the presence of the observed lepton families and
account for the observed imbalance of matter over anti-matter [1-
3]. Furthermore the simplest generalization of Einsteinean grav-
itation involves a gravitational scalar field that modifies certain
predictions of Einstein’s theory [4,5]. Perhaps the coupling of hy-
pothetical axions and dilaton scalar fields to the electromagnetic
field offers the most promising mechanism leading to their exper-
imental detection [6]. It is therefore worth analyzing new effective
field theories involving such interactions [7]. Although a number of
traditional searches for axion particles are based on natural mod-
ifications to the linear Maxwell theory in vacuo, this may be a
weak-field approximation to a more general non-linear vacuum
electrodynamics. Indeed, in the absence of axions and dilatons,
such a theory was first formulated by Born and Infeld [8] in 1934.

* Corresponding author at: Physics Department, Lancaster University, Lancaster,
UK.
E-mail addresses: d.burton@lancaster.ac.uk (D.A. Burton), tdereli@ku.edu.tr
(T. Dereli), r.tucker@lancaster.ac.uk (R.W. Tucker).

0370-2693/$ - see front matter © 2011 Published by Elsevier B.V.
doi:10.1016/j.physletb.2011.08.039

This theory has acquired a modern impetus from the observa-
tion that it emerges naturally in certain string-inspired quantum
field theories [9] and it is perhaps unique among a large class of
non-linear electrodynamic models in its causal properties in back-
ground spacetimes [10,11]. String theories also naturally include
candidates for axion and dilaton states that at the Planck scale
have prescribed couplings among themselves and the Maxwell
field. In low-energy effective string models these couplings give
rise to particular symmetries in the weak-field limit. Such mod-
els have been extensively studied by Gibbons et al. [12-14] with
particular reference to the preservation of linear realizations of
SL(2,R) symmetry [13] and non-linear realizations of electromag-
netic duality in the context of Born-Infeld electrodynamics with a
dilaton [14]. In this Letter we report on a new model that natu-
rally incorporates both axion and dilaton fields in the context of
Born-Infeld vacuum non-linear electrodynamics.

2. Axion-dilaton Born-Infeld electrodynamics

If {R%)} denotes the curvature 2-forms of the Levi-Civita
connection, g = nge® ® e? the spacetime metric with 7g =
diag{—1,1,1,1} and {e”} a local g-orthonormal co-frame, F the
Maxwell 2-form, ¢ the dilaton scalar and A the axion scalar, the
model that arises from string theory in a weak-field limit [13] fol-
lows by a variation of the action S[g, A, ¢, Al = fM Ag where the
4-form Ag on spacetime M is

Ag=Dp1Rgpp A *(e" /\eb) + p2de A xde 4 p3 exp(—2¢)
x dAAxdA+ paAF A F 4 psexp(p)F A xF (1)
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with F =dA and = is the Hodge map associated with g. In (1) the
constants are
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in terms of the Planck length

8mhGy

L= 3
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the Newtonian gravitational constant Gy and the permittivity of
free space €g.! The term involving p4 in (1) denotes the traditional
coupling of the axion field to the electromagnetic field while the
term involving ps is a natural dilaton coupling. One of the original
aims given by Born and Infeld in generalizing the vacuum Maxwell
theory was to construct a theory possessing bounded spherically
symmetric static electric fields. Their theory invoked a new fun-
damental constant bg with the physical dimensions of an electric
field strength. They demonstrated that their field equations admit-
ted such solutions. Furthermore, by assuming that the finite mass
of such an electromagnetic field configuration could be identified
with the electron Born and Infeld were able to estimate the mag-
nitude of bg. While such an argument is suspect in the context of
subsequent developments, the idea of ameliorating the Coulomb
singularity in the electric field using a non-linear electromagnetic
self-coupling remains attractive.

The generalization considered here also reduces to the model
defined by (1) in a weak-field limit. Furthermore in the absence
of axion and dilaton contributions it reduces in the limit by — oo
to Maxwell’s linear vacuum theory while for finite by it reduces
to the original Born-Infeld model. It involves the Newtonian grav-
itational coupling constant Gy in addition to by and a parameter
T = +1 and is obtained by varying the action:

Sclg, A, ¢, Al :/Ar (6)
M

where

Ar =piRap A #(e* A eb) + p2[de A *dg + exp(—2¢) dA A dA]

+ e (X, Y, 0, A) %1, (7)
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X=x(FAxF)and Y =x(F A F).
The structure of the argument of the square root in (8) follows
from the (non-trivial) identity

1 All tensor fields in this Letter have dimensions constructed from the SI dimen-
sions [M], [L], [T],[Q] where [Q] has the unit of the Coulomb in the MKS system.
We adopt [g] = [L?], [p] = [A]=1,[G]=[Q], [F1=[Q]/[€0] where the permittiv-

ity of free space €g has the dimensions [Q2T2M~'L—3] and c = aljuo denotes the

speed of light in vacuo. Note that, with [g] = [L?], for r-forms « in 4 dimensions
one has [xa] = [a][L*2].
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where exp(p) = a? — 82, A= —2a8, F = 1Fpe® Aeb and xF =
TFape® neb.

The 4-form A; in (7) is expressed in the so-called Einstein
“frame”. However, it turns out that the importance of the dilaton
and axion in our model is more readily exposed by moving to the
Jordan “frame” by making the Weyl transformation g+ g =y —2g
where = exp(¢). After the field equations have been obtained
in the following by varying A;, we will choose g to be a flat
background metric thereby endowing the metric g in the Einstein
frame with non-zero curvature where the dilaton is non-constant.

Introducing e® = vy ~1e? where {e?} is a g-ortho-normal co-
frame, it follows that

Ar = p1Y?Rap A +(e% A €%) + (6p1 + p2) dY A xdyr
+ p3dAAxdA+£ (XY, ¥, A) x 1 (10)

with » the Hodge map associated with g, {R%,} the curvature 2-
forms of the Levi-Civita connection of g, X =*(F A xF), Y=x(F A
F) and

f: XY, ¢, A)

b2 — X2
T BT e )
c 2y3 b2y b3y

(11)

In the following attention is restricted to the case where 7 =1.
The non-linear vacuum Maxwell equations follow as dF =0
(since F =dA) and (by varying A)

d«G=0 (12)
where
*G = 2cfx » F + 2cfyF (13)

and fx = dxf, etc. From A variations one has

—2p3d* dA+f4%1=0 (14)

and from v variations

—2(6p1+ p2)d * dY +2p1YRey A (e A€?) + £, x1=0. (15)

Using g-ortho-normal co-frame variations one obtains the gravita-
tional field equations in the Jordan frame

P1Y2RY A x(eq Aep Aee) =To[F, ¥, A, g] (16)

where

TalF, ¥, A, g1 = (6p1 + p2)(ix, dY A xdy +dyr Aix, * dy)
+ p3(ix, dA A *dA+dA Aix, * dA)
— (F— Xfx — Yfy) x e
— fx(ix, F A*F — F A ix, * F). (17)

Solving the full field systems in the Einstein and Jordan frames
should lead to the same conclusions (up to identification of the
spacetime metric) but finding exact solutions to such systems is
non-trivial. A natural approximation is to neglect the couplings of
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dynamic gravitation to the other fields by neglecting the gravita-
tional field equations. However the neglect of these equations in
the Einstein frame will, in general, lead to solutions for the axion,
dilaton and electromagnetic fields in a g-flat background with dif-
ferent behaviors from those calculated in a g-flat background in
the Jordan frame.

To probe the consequences of adopting a g-flat background
metric in the presence of the explicit coupling of the dilaton v to
the curvature R?, in (15) we develop two approximation schemes
in the Jordan frame. The first approach neglects (16) from the out-
set with g set to a background g-flat metric. The second approach
employs (16) to express the Ricci scalar in terms of the dilaton
field. The result is used to eliminate Ry, A x(e? A e?) from (15),
yielding

padx dy? +2p3dA A xdA
— ) x 1+ 4(f — Xfx — Yfy) x 1=0. (18)

We then set g to the background g-flat metric (thereby ignoring
the gravitational field equation (16) for the remainder of the anal-
ysis). In the following, we refer to the field system (12), (13), (14),
(15) as System 1 and the field system (12), (13), (14), (18) as Sys-
tem 2.

In the static spherically symmetric sector an ortho-normal co-
frame field for a background metric g is e = cdt, el =dr, e? =
rd9, e =rsinfd¢ in spherical polar coordinates. In terms of the
dimensionless radial coordinate p =r/L we write:

F =boA(p)dr Acdt (19)
with ¥ =¥ (p), A= A(p). Egs. (14), (12) reduce to

2442y g _h__AAt
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for some integration constant /. The dimensionless constant A is
defined by

N 8mhGy 2601)(2)
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The ODE for ¢ in System 1 follows directly from adopting a
g-flat metric in (15),
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as the ODE for ¢ in System 2.

If S2 is any 2-sphere of radius pL centered at p = 0 the
electric flux of any state crossing the surface of this sphere is
4mq = fsz *G. The value of g will be interpreted as the total elec-
tric charge within this sphere. Hence for the above spherically
symmetric static field configuration determined by any constant
I such charge is q = 2€gbo L% Ip.

Clearly, analytic solutions to Systems 1 and 2 are unlikely; both
are however amenable to numerical analysis. The simplest ap-
proach is to differentiate (21) with respect to p and treat each
coupled system as an initial value problem specified by a choice of
¥ (p0), A(po), ¥'(00), A’ (po), A(po) with

I ( 29° (o) A(po) + A3(00)A2(p0)>
4 VAW (po). A(po). Alpo)) )

The initial field conditions should be consistent with a real Ip.
Starting from p = pg each system can be readily integrated numer-
ically to the regions p > pg and p < po and the solution monitored
to check that Iy remains constant.

Solutions possessing the elementary charge q = e were inves-
tigated and the constant A = 10789 was chosen, which yields a
value for by commensurate with Born and Infeld’s model of the
electron.? The quartic equation (26) for .A(0p) was used to fix the
electric charge q of the solution. In particular, the choice ¢ =e
was implemented by algebraically solving (26) for A(pp) and us-
ing the prescribed values of v/ (o), A(pp) and I'y = e/(2egboL?).
This procedure yielded .A(pp) = 0 to within numerical precision.
A consistent picture that emerges from extensive numerical analy-
sis of both systems of ODEs is the existence of confined solutions,
i.e. fields that are zero for p greater than some real positive non-
zero constant.

For the same initial data ¥ (p0), A(p0), ¢'(00), A’ (00), A(Po)
the electric field of solutions to Systems 1 and 2 appears to be
regular throughout all space (see Figs. 1b and 2; the subscript
“max” indicates the maximum value of a field over the range of
p shown). Other solutions diverge at the origin but terminate at
finite p (see Figs. 3-5). Finally, some solutions to System 2 are fi-
nite, non-zero and continuous on a subset p; < o < pp for positive
non-zero pq, Pp and zero elsewhere (see Figs. 1a and 6); however,
we were unable to replicate this behavior using System 1. This im-
plies that the gravitational field equation (16) plays a significant
role in determining the dilaton interaction with the electromag-
netic field and axion despite the neglect of curvature in favor of a
g-flat metric in the Jordan frame.

The existence of states where electric, axion and dilaton fields
have finite support in space is interesting and unexpected. The role
of the axion and dilaton is critical since no such configurations
can occur in the spherical symmetric static sector of the origi-
nal Born-Infeld theory. The field cut-offs arise when the trajec-
tory {¥(p), A(p), A(p)} approaches the boundary of the domain
VAW, A, A) >0 in field space.

o=

(26)

3. Conclusion

An extension of the original Born-Infeld model has been devel-
oped to include axion and dilaton fields. Motivated by low-energy
effective string actions and their symmetries the model reduces
in weak field or weak coupling limits to the original Born-Infeld
model, SL(2, R) covariant axion-dilaton models or linear Maxwell
electrodynamics. In the absence of axion and dilaton couplings
it contains only one dimensionless coupling constant i and is
thereby analogous to the original Born-Infeld model regarding its
spherically symmetric static gravity-free sector. Two approxima-
tion schemes have been developed to explore the significance of
dilaton couplings to curvature in the Jordan frame. Both entail
working with a g-flat metric although the treatment of the gravi-
tational field equations differ in the two schemes. Clearly it would
be valuable to find an exact static spherically symmetric solution
with non-zero curvature for the model in either the Einstein or

2 % ~1 yields a value for €gb2L> commensurate with the Planck energy.
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(b) Electric axion-dilaton bound state with
un-confined fields.

(a) Electric axion-dilaton bound state with
confined fields.

Fig. 1. Examples of the electric field lines arising from numerical analyses of Systems 1 and 2. (a) illustrates a state where the electric field lines emanate and terminate
on spheres of finite radius in space. The state in (b) with unconfined electric flux generalizes the static spherically symmetric solution in the original Born-Infeld electron
model.
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Fig. 2. A solution to System 1 for which the axion and dilaton are constant and the electric field is bounded. The initial conditions are (y(0.1) = 0.47, ¥/(0.1) =0, A2(0.1) =
0.1, A’(0.1) =0) and a schematic diagram of the electric field is shown in Fig. 1b. The solution to System 2 with the same initial conditions is visually indistinguishable
from the above.
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the dashed curve is A/Amax.

Fig. 3. A solution to System 1 for which the axion, dilaton and electric fields exhibit singular behavior for small p and the solution terminates at p = 1.61 where A =0. The
initial conditions are (¥(0.1) =0.47, ¥/(0.1) = =5, A%(0.1)=0.1, A’(0.1) =0).
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Fig. 4. A solution to System 2 for which the axion, dilaton and electric fields exhibit singular behavior for small p and the solution terminates at p = 0.189 where A = 0.

The initial conditions are the same as in Fig. 3.
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Fig. 5. A solution to System 1 for which the axion, dilaton and electric fields exhibit singular behavior for small p and the solution terminates at p = 1.65 where A = 0. The

initial conditions are (¥ (0.1) =0.47,v’(0.1) = —5, A%(0.1) = 0.1, A’(0.1) = 5).
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Fig. 6. A solution to System 2 for which the axion, dilaton and electric fields terminate at p, = 0.031 and p, = 0.164 where A = 0. The initial conditions are the same as
in Fig. 5, and a schematic diagram of the normalized A? determining the electric field is shown in Fig. 1a. The axion field A is mostly negative over the range in p shown
above and the plot shows .A normalized with its sign reversed for convenience.
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Jordan frame in order to assess the validity of these schemes. If
such a solution (generalizing the Reissner-Nordstrom solution to
the Einstein-Maxwell system) exists that substantiates the approx-
imations leading to System 2 then numerical evidence suggests
the existence of both finite mass electrically charged and neutral
states in this sector. The latter are novel and are composed of
mutually coupled electric, axionic and dilatonic fields that exist
in a bounded region of space. Some states are bound by a sin-
gle sphere; others are bound by two concentric spheres, much as a
static electric field is confined in a spherical capacitor in Maxwell
theory. The electric charge sources for such states reside in induced
surface charge densities on the bounding spheres.

The model would then provide a mechanism for confined static
abelian fields via their mutual interaction. Since U(1) C SU(2) C
SU(3) it would be of interest to explore whether such a mecha-
nism arises in a non-abelian generalization. At the abelian level it
suggests the possibility of new types of electrically neutral axion-
dilaton bound states with no direct interaction with external elec-
tromagnetic fields.
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