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Abstract

We develop a sequential Monte Carlo approach for Bayesian analysis of the experimen-
tal design for binary response data. Our work is motivated by surface electromyographic
(SEMG) experiments, which can be used to provide information about the functionality of
subjects' motor units. These experiments involve a series of stimuli being applied to a motor
unit, with whether or not the motor unit �res for each stimulus being recorded. The aim is
to learn about how the probability of �ring depends on the applied stimulus (the so-called
stimulus response curve); One such excitability parameter is an estimate of the stimulus level
for which the motor unit has a 50% chance of �ring. Within such an experiment we are able
to choose the next stimulus level based on the past observations. We show how sequential
Monte Carlo can be used to analyse such data in an online manner. We then use the current
estimate of the posterior distribution in order to choose the next stimulus level. The aim is
to select a stimulus level that mimimises the expected loss. We will apply this loss function
to the estimates of target quantiles from the stimulus-response curve. Through simulation
we show that this approach is more e�cient than existing sequential design methods for
choosing the stimulus values. If applied in practice, it could more than halve the length of
SEMG experiments.

KEYWORDS: Bayesian design, sequential design, motor unit, particle �ltering, generalized
linear model, binary response

∗This work was supported �nancially by Kurdistan University of Medical Sciences of Iran

1



1 Introduction

We present an algorithm for adaptive design where e�cient online estimation of parameters

of a model is required for a given experiment. In classical experimental design, an optimality

criterion is minimised to select optimal design points. For GLMs, this results in design points

which depend on the parameters that we wish to estimate (Khuri and Mukhopadhyay, 2006).

The classical approach to deal with this problem is to use a current estimate of the parameter to

construct the design points. As a consequence, the design is only optimal for the given values of

parameters ('local optimal' design), and is referred to as the design dependence problem (Khuri

et al., 2006).

Bayesian experimental design (Chaloner and Verdinelli, 1995) deals with this problem through

the de�nition of a loss or utility function which is carefully chosen to match the statistical prob-

lem in hand. The design points are selected by minimising the expectation of this loss function

over a prior distribution. This prior information expresses the uncertainty in the parameters for

the data that has been collected so far. In the case of GLMs this expectation is intractable and

therefore a good approximation is called for. In this paper we explore the strength of the particle

approximation for this purpose.

Particle �lters are able to carry out on line estimation from systems which can be both non-linear

and non-Gaussian. They have been used extensively in a variety of �elds such as engineering,

�nance and genetics (see Doucet et al., 2001, for examples). Most of this research, however, has

been in the development of methods of estimation. Applications that use the particle �lter for

on-line decision making are much rarer. The primary purpose of this paper is to illustrate how

the particle �lter can be used for real-time decision making. We believe that the particle �lter

is particularly suited for such problems of online decision making.

Our motivation for this problem comes from the �eld of clinical neurophysiology. In this �eld,

electromyographic (EMG) methods are used to obtain diagnostic information about motor units,

the physiological units that constitute our motor system. A motor unit (MU) consists of a single

motor neuron cell body in the spinal cord, its long protruding axon, and the tens to thousands

of muscle �bers that this neuron innervates. A full characterization of a MU would require an

assessment of its morphology and of its excitability, contractile and conduction properties. In

current clinical practice, only MU morphology is assessed routinely with needle EMG.

Studies using the so-called threshold tracking technique (Bostock et al., 1998; Burke et al., 2001)

have indicated that data on axonal excitability yield valuable clinical information that cannot be

obtained otherwise. Because MUs are the building blocks of the motor system, gaining knowl-

edge about single MU characteristics will increase our insight in the fundamental properties of

this system and into pathological processes. It is, therefore, desirable to develop an approach by

which excitability information on single MUs can be e�ciently added to conventional EMG data.

The excitability of an axon is re�ected in the intensity of the electrical stimulus (applied to the

surface of the skin above the nerve) that is necessary to evoke an action potential in this axon.

Each MU has a mean threshold for such stimulation as well as a range of values over which it

displays stochastic behavior: it �res if the stimulus exceeds a random threshold, which at a very

basic physiological level is determined by chaotic properties of the ion channels in the axon's

membrane. Whether a response is present can be determined through monitoring of the mus-

cle connected to the stimulated nerve using a surface electrode over the skin above this muscle
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(surface EMG or SEMG). If the axon of a MU is activated, so are all of the muscle �bers of this

MU. The resulting motor unit action potential (MUAP) has a characteristic shape on SEMG,

which is identical from �ring to �ring.

Excitability testing of a single MU requires the tracking of its threshold (usually de�ned as the

stimulus intensity that elicits a response to 50% of the stimuli). This threshold can be deter-

mined by means of a stimulus-response curve. The stimuli are most e�ectively delivered by an

automated system, where the magnitude of each stimulus is governed by a computer program.

At present this program merely sweeps over the complete range with a large �xed number of

stimuli (roughly 400). Thus, one important question is how many and what stimuli are needed.

This issue can be addressed by means of experimental design.

We describe a method which is able to employ iteratively the information made available by the

incoming observations to select subsequent stimulus intensities (design points) using the princi-

ples of Bayesian experimental design. The advantages of such a sequential design are obvious.

As observations are made, information gained from the data can be used to construct better and

more e�cient designs. This will reduce the number of applied stimuli and hence the discomfort

for the subject and the examination time. Furthermore, Bayesian methods have the advantage

that prior information can be used if it is available. In neurological experiments this information

can be collected from historical studies.

In this paper we focus our attention on �nding an arbitrary quantile of interest of a single MU.

Then through simulation studies we compare the performance of our method with several exist-

ing non-Bayesian methods taken from the statistical design literature.

In Section 2 we describe existing methods for sequential design and discuss their limitations and

advantages. In Section 3 we describe the nature and context of our dataset and use it both to

illustrate our model and to elicit priors for the model. We also describe our Bayesian model

in this section and discuss our method for updating the posterior and present an algorithm for

choosing the appropriate control values (optimal stimulus intensities). We present the results of

a comparative simulation study in Section 4. Finally in Section 5 we �nish with an evaluation

and a discussion.

2 Existing methods for sequential design

Sequential design for binary data can be traced back to the work of Dixon and Mood (1948) who

introduced the so-called up-and-down procedure for estimating the dropping height at which an

explosive specimen was equally likely to explode as to not. Using an initial guess of this dropping

height, the successive specimen was tested at a lower height if the previous outcome was explo-

sive or at an greater height otherwise. The sequential procedure was continued until convergence.

In order to estimate the pth quantile Robbins and Monro (1951) introduced a non-parametric

sequential procedure for binary observations (known as RM procedure) which received much at-

tention. A simulation study by Wetherill (1963) showed that while the RM procedure performed

well when estimating the median, it performs poorly for extreme quantiles due to a large bias. In

order to improve upon the e�ciency of the RM procedure, Wu (1985) implemented this procedure

within a parametric framework that we refer to as logit-MLE. Wu's method chooses the next

design point as the estimate of xp from �tting a logistic regression model to the data. A known

issue with this approach is the uncertainty about choosing the optimal initial design points. In
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practice the author suggests a set of 10 to 14 points symmetrically distributed around a guess of

the mean, but this is di�cult to accomplish when little or no information on the mean is available.

Other approaches to sequential design for binary data are based on calculating the optimal design

points under some de�nition of optimality. For example with the D-optimality criterion (Chaud-

huri and Mykland, 1993) the aim is to minimise the determinant of the expected information

matrix. The optimal design points can then be calculated in terms of the unknown parameters.

Often the current MLEs for these parameters are used to give estimates of the optimal design

points. As with the method of Wu (1985), implementing these procedures requires a good choice

of the initial design points.

Partly in an attempt to resolve the issue of �nding the best initial design there has been recent

interest in Bayesian methods for sequential design. Dror and Steinberg (2008) proposed a sequen-

tial two-stage Bayesian strategy. At the �rst stage an optimal initial design point is de�ned and

then in the second stage the next design point is chosen as the one that gives the best outcome

to a D-optimality criterion. Careful consideration is needed to avoid the non-singularity problem

of the design in the early stages of their algorithm. Dror and Steinberg (2008) established a

systematic procedure to �nd the optimal initial design point.

In this paper, we present a sequential Monte Carlo (SMC) technique that successfully eliminates

the need for a feasible initial design. In this approach, the initial design points depend on the

prior which describes the uncertainty in the parameter estimates in choosing design points. The

prior is also useful for incorporating external information (from previous experiments on motor

units from other subjects). Sequential Monte Carlo is used to recursively calculate the posterior

distribution of the parameters as each new observation is made. Using the current posterior dis-

tribution, we can then choose the next stimulus value so as to minimise an appropriate expected

loss function. This loss function is related to the purpose of the statistical analysis. In this paper

we focus on the squared loss function (about a quantile of interest) but this approach can be

easily modi�ed to accommodate other loss functions.

3 Our proposed method

In this section we �rst give a description of our application, followed by a description of our

Bayesian model. The section continues with a discussion of the principles of Bayesian experi-

mental design and introduces the notation and mechanism by which sequential MCMC is carried

out. Finally the section ends with a description of the algorithm which de�nes our optimal data

collection mechanism.

3.1 SEMG experiment

As described above, SEMG is a noninvasive technique which records the nerve's response to a

stimulus using a surface electrode placed directly on the skin overlaying the muscle. Figure (1)

shows an example data set. This data presents the amplitude of the signals recorded from the

thenar (thumb) muscles in response to around 400 stimuli, which were applied to the median

nerve. The intensity of the stimuli was low enough to ensure that the recoding was of just a

single MU, as evidenced by the all-or-nothing (binary) character of the response. The stimulus-

response behaviour of a MU can be described by parameters which are henceforth referred to as

MU excitability properties (Ridall et al., 2006).
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In this experiment, the minimum and maximum stimulus intensity are chosen to include the

stimulus values over which the MU's response is stochastic. Electrical stimulation to the nerve

is then gradually increased from this minimum to the maximum stimulus intensity. The left

hand panel of Figure 1 shows 400 actually observed amplitudes recorded at 82 distinct stimulus

intensities. The stimuli were applied at a rate of 2 Hz. The horizontal scale represents the

stimulus intensity values, which vary from smin = 8.6 mA to smax = 9.4 mA and the vertical

scale represents the signal amplitude in µV. To describe the all-or-none state of the MU, in the

right hand panel the same data are presented after conversion to binary responses by choosing

an appropriate threshold.
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Figure 1: Stimulus-response plots. The left panel is a scatter plot showing the amplitude of

the measured signal against stimulus intensity, recorded using surface electromyography. The

low-level amplitudes around 10 µV represent background noise (no response), and the values

around 80µV denote the amplitude of the action potential of the motor unit for activation. The

right hand panel shows the all or nothing state of the motor unit response after thresholding has

been applied.

3.2 Model speci�cation

Our approach can be used with any parameterisation of the stimulus response curve. For our

SEMG experiment previous data has suggested that a logistic curve is appropriate (Azadi, 2011),

and we focus on such a curve in the following.

Let s = s1:n = (s1, . . . , sn) denote the vector of �xed and known stimulus levels and y = y1:n =
(y1, y2, . . . , yn) denote the corresponding binary observed responses. Given the stimulus values

we assume the observations are realizations of independent Bernoulli distributions with success
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probabilities depending on stimulus values via the logistic function:

Pr(Yi = 1|si,m, b) =
1

1 + exp{−b(si −m)}
i = 1, 2, . . . , n (1)

Herem denotes the mean threshold (the stimulus for which a MU has a 50% chance of responding)

for the MU. This is known by some as the location parameter of the logistic-response curve. The

slope parameter b of the logistic curve is a measure of the range of stimulus values for which the

�ring MU shows stochastic behaviour (the unit �res some of the time).

3.3 Bayesian Analysis

To perform inference for the parameters θ = (m, b), we introduce a prior p(θ). If the likelihood
of the �rst t SEMG observations is given by p(y1:t|θ, s1:t), then the posterior density can be

expressed as

p(θ|y1:t, s1:t) ∝ p(y1:t|θ, s1:t)p(θ). (2)

In our simulations we use a prior for p(θ) that is mildly informative. Prior information is used

from the results of the analysis of earlier SEMG experiments, see Section 4.1. The posterior

density (2) is updated as observations arrive in real time. The relationship between the posterior

after t+ 1 observations and that after t observations can be expressed as:

p(θ|y1:t+1, s1:t+1) ∝ p(yt+1|θ, st+1)p(θ|y1:t, s1:t). (3)

That is the new posterior density at time t + 1 is the likelihood of the new observation, yt+1,

multiplied by the old posterior at time t. The likelihood for the new observation is obtained from

(1) which represents the response of the MU after having being exposed to the current stimulus

intensity st+1.

3.4 The particle approximation to the posterior

Due to the non-linearity of the logistic transformation, the posterior (3) becomes di�cult to sam-

ple from directly and an approximation is called for. Sequential Monte Carlo (SMC) methods

are a set of on-line techniques that provide a �exible framework for the updating of posterior

distributions in real time. The idea of SMC is to make an approximation of the posterior using

a set of weighted particles, {θ(i)
t , w

(i)
t }, i = 1, 2, . . . , N . The approximation is a discrete distribu-

tion whose support points are the set of particles, with the probability assigned to a particular

support point, θ
(i)
t , being proportional to the weight associated with the corresponding particle,

w
(i)
t . SMC algorithms then determine how to generate the set of weighted particles at time t+ 1

from those at time t.

Given a set of weighted particles at time t, by using (3) we get the following approximation to

the posterior at time t+ 1

p(θ|y1:t+1, s1:t+1) ≈

∑N
i=1w

(i)
t p(yt+1|θ(i)

t , st+1)δ
θ
(i)
t

(θ)∑N
i=1w

(i)
t p(yt+1|θ(i)

t , st+1)
, (4)

where δ
θ
(i)
t

(θ) is a point-mass at θ = θ
(i)
t . This gives a simple recursion where the particles are

�xed, θ
(i)
t+1 = θ

(i)
t for i = 1, . . . , N , and the change in the posterior distribution is captured by

the update of the weights. The approximation is initialised by generating N draws from prior

densities of parameters θ. The initial weight 1/N is considered for each draw and then following
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a new observation, the weights are renewed according to the likelihood of the new observation.

At time t+ 1 the weights are updated as w
(i)
t+1 ∝ w

(i)
t p(yt+1|θ(i)

t , st+1). Algorithm 1 outlines this

approach. It should be noted that rather than using a random sample from the prior, we can get

more accurate results using a strati�ed sample or with a quasi-Monte Carlo sample (Fearnhead,

2005).

Algorithm 1 Bayesian updating using the particle approximation

Input: A set of stimuli values (s1, s2, . . . , sn) where si ∈ s.

A set of observations (y1, y2, . . . , yn) where yi is the response of MU at stimulus si

A prior, p(θ), for θ = (m, b).
The number of particles N.

Initialise: Generate N particles , θ
(1)
0 , . . . , θ

(N)
0 , from prior p(θ).

Assign each particle the initial weight w
(i)
0 = 1/N for i = 1, . . . , N.

Iterate For t = 1, 2, . . . , n:

1. Given the st generate the new observation yt from a Bernoulli distribution

yt ∼ Bernoulli(1, p)

where p is given by

p(yt = 1|st, θ
(i)
0 ) =

1

1 + exp{−b0(st −m0)}
2. For the new observation yt, update the weights using

w
(i)
t ∝ w

(i)
t−1 × p

3. Normalize the new weights W
(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

.

Output A set of weighted particles that approximate p(θ|y1:n, s1:n).

The problem with Algorithm 1 is that after a number of iterations a large number of updated

weights become negligible (Petris et al., 2009). This makes the algorithm ine�cient and reduces

the accuracy of the particle approximation. We use two strategies to address this problem.

Firstly, to speed up the algorithm and save unnecessary computations, we remove particles with

negligible weights at the end of each iteration. A weight is considered as negligible if it drops

below a pre-speci�ed discrimination factor ε0. The threshold ε0 is arbitrarily chosen so that it

discards the weights that are too small. Secondly, we monitor the e�ective sample size (ESS)

(Liu and Chen, 2008) which is de�ned as

NESS =
1∑N

i=1(w(i)
t )2

.

If the e�ective sample size drops below a pre-de�ned threshold N0, say 50% of the initial number

of particles, a resample and refresh step is used to rejuvenate or jitter the particles (Liu and West,

2001). The resampling step on its own, no matter which kind of resampling is used, will only

replace a large number of particles, some with very small weights, by a small number of distinct

particles. This is referred to as the problem of particle depletion. To address the problem of the

lack of particle diversity, Liu and West (2001) suggest transforming and jittering the particles

from a normal kernel density in such a way that the �rst two moments of the posterior distribution
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are preserved. Resampling is performed by drawing particle values from a kernel density estimate

of the posterior. This estimate takes the form of the following multivariate normal:

p(θ|yt, st) ∝
N∑
i=1

w
(i)
t N (θ; M(i)

t ,Σt), (5)

were M(i)
t = aθ

(i)
t + (1 − a)θ̄t, Σt = hVt, and θ̄t and V (t) are the current esimates of, respec-

tively, the mean and variance of the posterior.The parameters a and h are chosen to satisfy the

equation a2 + h2 = 1, so that mean and variance of this kernel approximation is equal to the

current estimate of the mean and variance of the posterior. Liu and West (2001) suggest that

the parameter a should lie in the 0.974 to 0.995 interval for the resampling to be e�cient. The

details of the SMS algorithm with resampling step are given in Algorithm 2.

Algorithm 2 :Sequential Monte Carlo algorithm

Input: A set of stimuli values (s1, s2, . . . , sn) where si ∈ s.
A set of observation (y1, y2, . . . , yn) where yi denotes the response of MU at stimulus si.

A guess value for m0 and b0, the true logit parameter values.

A prior, p(θ), for θ = (m, b) and The number of particles N.

Two arbritary thresholds, N0 and ε0 and a constant 0 < a < 1.

Initialise: Generate N particles from prior p(θ), θ
(1)
0 , . . . , θ

(N)
0 .

Set the initial weights w
(i)
0 = 1/N for i = 1, . . . , N.

Iterate For t = 1, 2, . . . , n:

1. Given the st generate the new observation yt from a Bernoulli distribution

yt ∼ Bernoulli(1, p)

where p is given by

p(yt = 1|st, θ
(i)
t−1) =

1

1 + exp{−b0(st −m0)}
2. For the new observation yt, update the weights using

w
(i)
t ∝ w

(i)
t−1p(yt|st, θ

(i)
t−1)

3. Normalize the new weights W
(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

.

4. Discard those weights that are smaller than ε0.

5. Compute NESS =
(∑N

i=1(W
(i)
t )2

)−1

6. If NESS < N0 do Liu and West resampling

• Calculate the posterior mean and variance from the current set of weighted particles;

denote these θ̄ and Σt−1.

• Draw N new particles, {θ(i)
t }Ni=1, from N (M(i)

t−1,h2Σt−1)
where M (i) = aθ

(i)
t−1 + (1− a)θ̄.

• Assign to each new particles the new and equal weight 1/N.

• Replace θ
(i)
t−1 = θ

(i)
t .

Output A set of weighted particles that approximate p(θ|y1:n, s1:n).
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3.5 Sequential Design Procedure

We now focus on how to choose a new stimulus, st+1, given the observations to date, y1:t and

s1:t. Let φ = φ(θ) denote a function of the parameters that is of interest. To choose the best

new stimulus value we minimise the expected value of a loss function. For the sake of simplicity

we focus on a quadratic loss L(φ̂, φ0) = (φ0 − φ̂)2, which represents our perceived penalty in es-

timating φ0 by φ̂. However our method is not restricted to the squared loss function and can be

easily generalised to other types of loss. It can be easily shown that the estimate that minimises

the quadratic loss function is the posterior mean, with a corresponding expected loss given by

the posterior variance.

To select the optimal stimulus intensities s1, s2, . . . , sT , we want to construct a rule so that if

applied recursively, it minimises the expected posterior variance of φ. The minimisation is with

respect to the rule that given the observations and past stimuli, selects the next stimulus value.

The expectation is with respect to both the parameter (from the prior) and observations we may

observe. Such an approach has been called Bayesian global optimization (Mockus, 1989) or the

expected improvement criterion (Jones et al., 1998).

Obtaining such an optimal rule is intractable. Instead we propose choosing st+1 to minimise the

expected variance of φ after the (t + 1)st observations. That is, given s1:t and y1:t, we want to

choose

st+1 = arg mins{EYt+1 (Var(φ|y1:t, Yt+1, s1:t, s))}. (6)

As observations are binary, for any value of s we can easily evaluate the right-hand side of (6)

in terms of an expectation with-respect to the posterior distribution of θ given s1:t and y1:t. In

particular we obtain

EYt+1 [Var(φ|y1:t, Yt+1, s1:t, s)] = Pr(Yt+1 = 0|s1:t, y1:t, s)Var(φ|s1:t, y1:t, s, Yt+1 = 0)
+ Pr(Yt+1 = 1|s1:t, y1:t, s)Var(φ|s1:t, y1:t, s, Yt+1 = 1),

and the terms on the right-hand side can be estimated using our weighted particles. The details

are given in Algorithm 3 which summarises our strategy in selecting optimal design points for

the SEMG experiment.

4 Simulation studies

Here we describe the details of our simulations which compare the e�ciency of several methods

for �nding percentiles of a stimulus response curve. A brief description of each method is given

below.

N-Opt Non-Optimal: To act as a baseline comparison, stimuli are taken sequentially from

smallest to largest intensity without any optimization being carried out. This is the current

approach used in SEMG experiments.

NEW Our method which uses a quadratic loss function to select optimal stimulus levels. This

method is described in Algorithm 3.
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Algorithm 3 Algorithm for Choice of Stimulus
Input:

• A set of possible stimulus levels, (s1, s2, . . . , sK) where si ∈ S.

• A set of observation (y1, y2, . . . , yn) where yi denotes the response of MU at stimulus si.

• A guess value for m0 and b0, the true logit parameter values.

• Prior distribution, p(θ), for θ = (m, b).

• A sample size, n, a constant 0 < a < 1, the number of particles N, thresholds N0 and ε0.

• A quantity of interest φ(θ), i.e. median or any quantile.

Initialise:

• Generate N particles {θ(i)
0 }Ni=1 from prior density p(θ).

• Set the initial weight of each particle w
(i)
0 = 1/N for i = 1, . . . , N.

Iterate:

1. Set t = 1

2. For stimulus intensity st,k, k = 1, . . . ,K:

(a) Find from a logistic model

p(yt,k = y|st,k, θ
(i)
t−1) =

1

1 + exp{−b0(st,k −m0)} y = 0, 1

(b) Update the weights with respect to above probabilities w
(i)
t,k,y = w

(i)
t−1p(yt,k = y|θ(i)

t−1, st,k)

(c) Take pt,k,1 =
∑N

i=1 w
(i)
t,k,1 and pt,k,0 = 1 − pt,k,1 as the probability of response and

non-response respectively.

(d) Normalise the weights W
(i)
t,k,y = w

(i)
t,k,y/

∑N
i=1 w

(i)
t,k,y.

(e) Compute the posterior mean of φ(θ):

φ̄t,k,y =

N∑
i=1

W
(i)
t,k,yφt,k,y(θ

(i)
t−1)

and the posterior variances

Σt,k,y =

N∑
i=1

W
(i)
t,k,y(φt,k,y(θ

(i)
t−1)− φ̄t,k,y)2

(f) Estimate the expected variance of φ(θ) by

Σ̄t,k = pt,k,0Σt,k,0 + pt,k,1Σt,k,1

3. The optimal stimulus sopt ∈ s1:K, is the stimulus intensity that minimises Σ̄t,k.

4. Simulate the observation yopt for the optimal stimulus sopt.

5. For the yopt, update and normalize the weights using one iteration of Algorithm 2.

Output A set of optimal stimuli (design points).
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2DP 2-point augmentation design (Mathew and Sinha, 2001): In this method, at each iteration,

two stimuli are selected symmetrically around the current estimate of a target quantity

according to the expression si = m̂± c/b̂, i = 1, 2. The authors derive, in closed form, an

expression for the value of c > 0 that maximises the determinant of the joint information

matrix of logistic regression parameters (D-optimality criterion).

L-MLE The Wu method (Wu, 1985): In this method the next stimulus, St+1, is chosen to

satisfy the relationship St+1 = m̂t − b̂−1
t log(p−1 − 1) where m̂t and b̂t are the MLEs of the

logistic parameters at time t and p is the percentile of interest. Instead of using the MLEs,

we use the current estimates of the posterior means.

For each sequential design method, we use sequential Monte Carlo to perform online inference

for the parameters. To compare the di�erent methods we analyse 1000 simulated data sets with

each method. Each simulated data set uses a di�erent pair of parameter values, drawn from our

prior. The e�ciency of the di�erent methods is judged based on the mean squared error of the

estimates of the target quantile.

4.1 Formulation of the prior

As mentioned, we can use results from previous SEMG experiments to construct an appropriate

prior distribution. We have results from the analysis of eight SEMG experiments which we used

to construct a prior for b. The maximum likelihood estimates of b for these experiments ranged
between 9 and 36. For simplicity we chose a prior distribution for log(b) that is uniform on

(log(5), log(200)).

Whilst we could take a similar approach to get a prior for m, in practice there is an initial stage

to SEMG experiments. Most motor units have thresholds that are very close to one another,

too close in fact to be able to be suitable for the SEMG experiment. This initial stage involves

searching for a unit that remains isolated even during manipulation of its threshold (e.g., by

adjusting stimulus duration or applying a superimposed hyperpolarizing current). Because of

this search process there is a good initial guess of m for the motor unit that is found; and this

information can give a relatively informative prior for m. In our simulations we took this prior

to be uniform across (8.6, 9.4), which is an appropriate level of uncertainty in m after this initial

search phase.

4.2 Results of our simulation

Our simulations compare the e�ciencies of our method in �nding the 50th, the 75th, the 85th,
and the 95th percentiles. For each method and each percentile we initialise the Algorithm 3

with N = 4000 particles obtained by taking 100 samples from b's prior and 40 samples from

m's prior distribution. These particles are used to approximate posterior density. They increase

to N = 10000 particles when the number of e�ective sample size falls below 2000 particles

(N0 = 2000). We also use ε0 = 0.00003 and the constant value a = 0.98. At each stage of the

simulation, we calculate the mean squared error of the estimated quantile.

We compare each method based on the mean square error of its estimates, and look at how this

depends on the number of observations made. To make this comparison clearer, we look at the

relative accuracy of each method against the accuracy of our new approach. That is for a given

method, the relative accuracy of the estimator based on n observations is de�ned to be the mean

square error of the estimates using the new method and 200 observations divided by the mean

square error of the estimates for that method after n observations. For example, a value of 0.5
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would mean that the MSE for the method after n observations is twice that of our method using

200 observations.
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Figure 2: The relative gain in the mean squared error of our method over other approaches in the

study for estimating the 50th, 75th, 85th and 95th quantiles. The y−scale represent the relative
accuracy and x−scale the observation arriving over time.

The black solid lines in Figure 2 represent the method of the authors. The plots illustrate the

larger relative accuracy using our method than the others at all quantiles. The accuracy is more

substantial when estimating higher quantiles. The non-optimal procedure, as expected, is the

least e�cient and the lines showing its relative accuracy are consistently lower than those of the

other schemes.

At LD50, the e�ciency of Wu's method is close to that of our method but better than that of the
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2-point design scheme. However the logit-MLE loses its e�ciency dramatically when the target

quantile is not the median. We can illustrate this by noting that for the estimation of, say, LD75,

our method achieves a 50% in relative acuracy after collecting roughly 100 observations whereas

with the 2-point design more than 190 observations are required. For the logit-MLE more than

200 observations require to gain a 50% in the relative accuracy.

5 Conclusions

In this paper we presented an algorithm for carrying out sequential online design of experiments

of binary data when an accurate estimate of a target quantile is sought. Our simulation results

suggest that our approach is more e�cient than any of the alternative methods. Whilst devel-

oped for binary data, it is straightforward to extend this approach to other types of GLM.

This work was motivated by SEMG experiments. The results in Figure 2 show a substantive

improvement in accuracy over the existing procedure for choosing stimulus levels in SEMG ex-

periments. We obtain the same accuracy for estimating the median of the response curve with

about 60 to 70 observations as the existing approach obtains using 200 observations. Thus using

our sequential procedure for choosing stimulus levels could reduce the length of SEMG experi-

ments to about one third their current length. This would have signi�cant bene�ts for both the

cost of such experiments, and the level of discomfort of the patients involved.

Our algorithm is close to that of Dror and Steinberg (2008) idea but is more general in applica-

bility. The authors method is limited to the D-optimality criterion. Although it makes use of the

particle approximation, it fails to address the problem of particle depletion (Doucet et al., 2000)

which can reduce its accuracy. In contrast to the Dror and Steinberg (2008) method, we allow

our particles to be rejuvenated in the presence of particle depletion. Furthermore our algorithm

is straightforward and easy to implement. In addition, it does not required initial points and

works well at small sample sizes.
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