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In this paper we continue our study of the Frattini p-subalgebra of a Lie />-algebra L. We show first that if L
is solvable then its Frattini p-subalgebra is an ideal of L. We then consider Lie p-algebras L in which X.2 is
nilpotent and find necessary and sufficient conditions for the Frattini p-subalgebra to be trivial. From this we
deduce, in particular, that in such an algebra every ideal also has trivial Frattini p-subalgebra, and if the
underlying field is algebraically closed then so does every subalgebra. Finally we consider Lie p-algebras L in
which the Frattini p-subalgebra of every subalgebra of L is contained in the Frattini p-subalgebra of L itself.

1991 AMS subject classification: 17B50, 17B30.

1. Introduction

In this paper we continue our study of the Frattini /?-subalgebra of a Lie p-algebra
which was started in [3]. Recall that a Lie algebra L over a field K of characteristic
p > 0 is called a Lie p-algebra if, in addition to the usual compositions, there is a
"p-map" at-> ap such that

(jxa)p = oc"ap for all a e K, a e L,

a(adbp) = a(adb)p for all a,beL, and

p-\

(a + b)p = ap + bp + Y/ sfa b) for all a, b € L,

where iSj(a,b) is the coefficient of X'"1 in the expansion of a(ad(Xa + b))p~x.
Throughout, unless stated otherwise, L will denote a finite-dimensional Lie /7-algebra
over a field K.

A subalgebra (respectively, ideal) of L is a p-subalgebra (respectively, p-ideat) of L
if it is closed under the />-map. A proper /?-subalgebra M of L is a maximal p-
subalgebra of L if there are no proper /7-subalgebras of L strictly containing M. The
Frattini p-subalgebra, Fp(L), of L is the intersection of the maximal /?-subalgebras of L,
and the Frattini p-ideal, #P(L), is the largest p-ideal of L inside Fp{L). We shall denote
by F(L), $(L) the usual Frattini subalgebra and ideal of L (see, for example, [6]).

In Section 2 we shall show that FP(L) = <j>p{L) when L is solvable. In Sections 3, 4
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we seek analogues for </>p(L) of the results of Stitzinger on $(L) when the derived
algebra L(" is nilpotent, which were obtained in [5], The following notation will be
used:

[x, y] the product of x, y in L
L(l) the derived algebra of L
L(n)=(L("-")(l) for all « > 2
(H) the subalgebra generated by the subset H of L

{H\= {{xp" : x 6 (//), n e N}) where x"" = (x'""')'
Ap= ({xp : x e A)), where A is a subalgebra of L
' '"1

Lo= {x e L : xp —0 for some n}
Z(L) the centre of L

© algebra direct sum
+ vector space direct sum
c is a subset of
C is a proper subset of

2. Normality of FP(L)

We show here that Fp{L) — <j)p(L) when L is solvable. The proof is modelled on that
of Theorem 3.27 of [1]. First we need a lemma.

Lemma 2.1. Let A be an abelian ideal of L. Then Ap c Z(L).

Proof. Let t e L, a € A. Then

[I, a"] = e(ada)p = [t, a^ada)"^ e A0) = 0.

D

Corollary 2.2. If L is solvable and A is a minimal p-ideal of L, then A is abelian.

Proof. Let B be a minimal ideal of L contained in A. Then B + Z(L) is /^-closed
(by Lemma 2.1 and the fact that Z(L) is ^-closed), and so

AH(B + Z(L)) = B + An Z(L) = A.

Thus, Aw c Bw = 0. D

Theorem 2.3. If L is solvable then Fp(L) is an ideal ofL; that is; Fp(L) = (f>p(L).
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Proof. Let L be a minimal counter-example, and suppose that A is a /?-ideal of L.
Put

FP(L : A) = n[M : A c M, M is a maximal p-subalgebra of L}.

Then Fp(L : A)/A = Fp{L/A), which is an ideal of L/A if A ^ 0. We consider two
cases.

Case (i): For each maximal p-subalgebra M of L there is a non-zero p-ideal /< of L
contained in M. Then

Fp(L) = C\{Fp(L : A) : A is a minimal p-ideal of L},

which is an ideal of L.

Case (ii): Suppose now that there is a maximal p-subalgebra M of L which contains
no non-zero p-ideals of L. Let A be a minimal p-ideal of L. Then L = A 4- M. But
Am = 0, by Corollary 2.2, and so A c CL(A) = {x € L : [x, A] = 0}. Also, CL(A) n M is
a p-ideal of L, since it is p-closed, [A, CL(A) n M] = 0 and CL(A) n M is an ideal of M.
As M contains no proper p-ideals of L, we have CL(A) n M = 0. It follows that
CL04) = A and hence that Z(L) c A. But Z(L) is a p-ideal of L and so Z(L) = A or
Z(L) = 0. The former implies that L = A is abelian and the result is clear, so assume
the latter holds. Then ap = 0 for all a e A, by Lemma 2.1, and so A is a minimal ideal
of L. Thus [M, /I] = 4 or [M, /4] = 0. The latter implies that A = CL(A) = L is abelian,
a contradiction. Hence /I = [M, /I] c L(l) and L(1) = A-i-M(1).

Let O ^ m e M. Then there is an a e A such that [m, a] ^ 0. Define 6 : L —>• L by
putting 0 = 1 + ada. Then it is easily checked that 0 is an automorphism of L.

Suppose that M is not a maximal subalgebra of L. Then there is a maximal
subalgebra K of L properly containing M, and £ is an ideal of L, by Lemma 3.9 of [3].
But this implies that L(l) c K and thus that L = M + A c K, a contradiction. Hence
M is maximal in L, and so 0(M) is maximal in L.

Suppose that A c 0(M). Then, if b e A, there exists an n e M such that
b = « + [n, a], and s o n e M D / 4 = 0, a contradiction. Thus, /I g 9(M). It follows that
L(" g 0(M) and hence that 6(M) is not an ideal of L. We conclude from Lemma 3.9 of
[3] that 0(M) is a p-subalgebra of L.

Finally suppose that m e 0(M). Then there is an m' e M such that m — m' + [m, a]
and so [m, a] = [m, a] + [[m, a], a] = [rri, a] — 0, a contradiction. Hence m g 6(M), and
so m £ FP{L). It follows that F,(L) = 0. •

3. 4>p-free algebras

We aim first to prove an analogue of Proposition 1 of [5]. This is Theorem 3.2
below.
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Lemma 3.1. (L(l))p n Z(L) c 0p(L).

Proof. Note first that Z(L) is clearly /?-closed. Let M be a maximal /?-subalgebra
of L and suppose that Z(L) g M. Then L = M + Z(L), so L(l) = M(1) c M and hence
(L(1))p c (M)p CM. •

By the abelian socle (respectively, abelian p-socle) of L, denoted by AsocL
(respectively, ApsocL), we shall mean the sum of the minimal abelian ideals
(respectively, /?-ideals) of L. We shall say that L splits (respectively, p-splits) over an
ideal (respectively, /7-ideal) / if there is a subalgebra (respectively, /7-subalgebra) B of L
such that L = I+B; in these circumstances we call B a complement (respectively,
/^-complement) of A.

Theorem 3.2. Suppose that Lm ^ 0 and that L(l) is nilpotent. Then the following are
equivalent:

(i) 4>p{L) = 0;
(ii) ApsocL — N(L), the nilradical of L, and L p-splits over N(L);

(iii) L(l) is abelian, (L*0)" = 0, L p-splits over L(l) © Z(L), and ApsocL = Lm @ Z(L).
Under these circumstances, the Cartan subalgebras of L are exactly those subalgebras
which p-complement L(l). If K is perfect then the maximal toral subalgebras are precisely
those subalgebras which p-complement L(1) © Z(L)0.

Proof, (i) <=>• (ii): These implications are immediate from Theorems 4.1, 4.2 of [3].
(iii) => (i): This also follows from Theorem 4.1 of [3].
(i) => (iii): Suppose that <f)p(L) — 0. Then <j>(L) = 0 by Theorem 3.5 of [3], and so L(1)

is abelian, by Proposition 1 of [5]. Now (LmY c Z{L) by Lemma 2.1, and so

(L(1))p c (L(l))p n Z(L) c (L">)p n Z(L) c 4>p{L) = 0

by Lemma 3.1. Clearly L(l) © Z(L) c N(L) = ApsocL. Now let A be a minimal (and
hence abelian) /7-ideal of L. Then [L, A] = A is an ideal of L and

[L, /!]" c (L{[))" n yl" c (L(1))p n Z(L) by Lemma 2.1
= 0 by Lemma 3.1.

Hence [L, A] is /^-closed, and so [L, /4] = A or [L, /I] = 0. The former implies that
A c L(1), and the latter that A c Z(L), whence ApsocL = L(1) © Z(L) and (iii) follows.

The assertion that the Cartan subalgebras are exactly those subalgebras which
/^-complement L(l) follows from Proposition 1 of [5], or from Theorem 4.4.1.1 of [7],
and the fact that Cartan subalgebras are /?-closed.

So assume now that K is perfect. Write L = (L(1) © Z(L)) + B where B(l) = 0 and B
is /^-closed, and let B = Bo © Bx be the Fitting decomposition of B relative to the p-
map. (See, for example, Theorem 4.5.8 of [7]). Then L(l) © Z(L) = ApsocL = N(L) from
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(ii), (iii). But L(1) © Z(L) + Bo is a nilpotent ideal of L, and so Bo c N(L) n B = 0. Hence
B = Bt is toral. It is clear then that B, + Z(L){ is a maximal toral subalgebra of L.
Finally, let T be any maximal torus of L, and let C = CL(T). Then C is a Cartan
subalgebra of L, by Theorem 4.5.17 of [7], and so L = L(l)-i-C as above. Clearly we
can write C = CQ®T. But now L(1) + Co is a nilpotent ideal of L, and so
Co Q N(L) f\C = Z{L), making T a p-complement of L(l) © Z(L)0. •

The condition 'ApsocL = Lm © Z(L)' in (iii) above cannot be weakened to
'Z(L) c ApsocL', as is shown by the following example.

Example 3.1. Consider L = B+V where B = Ka + Kb, V = Kv{ + Kv2, tfl=rf2 =
bp = Q,a"= a, [V, K] = 0, [a, b] = 0, [a, i>,] = u,, [a, u2] = u2> [b, i>,] = v2, [b, v2] = 0. Then
L(" = K is abelian, (L(1))p = 0, Z(L) = 0. Now N(L) = Kb + Kv{ + Kv2. Also /CD2

is a minimal /7-ideal. Let / be a minimal /7-ideal contained in N(L). Since
[N(L), N(L)] = Kv2, either J = Kv2 or [N(L), J] = 0. Suppose that J ^ Kv2. Then
[ft, J] = 0 so JCKb + Kv2, and [u,,J] = 0 so J c Kvx + Ky2. Thus J ^ Kv2, a
contradiction. Hence N(L) ^ ApsocL.

In [5] it was shown that for any Lie algebra L, over any field K, such that L(1) is
nilpotent, L is $-free (that is, </>(L) = 0) if and only if every subalgebra of L is 0-free
([5, Theorem 1]). The complete analogue of this result does not hold when <f>(L) is
replaced by (pp(L) throughout, as the following example shows.

Example 3.2. Let L = Ka + Kb + Kvx + Kv2 where K = Z2, a2 - a, b2 = a + b,
[a, D,] = y,, [a, v2] = v2, [b, u,] = v2, [b, v2] = u, + v2, [a, b] = [vlt v2] = 0, v\ — v\ = 0. Put
B = Ka + Kb. Then </>p(L) = 0 whereas <pp(B) = Ka.

Nevertheless partial results in this direction can be obtained. We will deduce these
from the following result.

Theorem 3.3. The following are equivalent:
(i) L(1) is nilpotent and <pp(L) = 0;

(ii) L — A + B where B is an abelian subalgebra, A is an abelian p-ideal, the (adjoint)
action of B on A is faithful and completely reducible, Z(L) is completely reducible under
the p-map, and the p-map is trivial on [B, A].

Proof, (i) => (ii): By Theorem 3.2, L=A + B where A = ApsocL = At ®...®An

with At a minimal abelian /?-ideal of L for i — 1 , . . . , n, and B is />-subalgebra of L.
Now CB(A) -{xe B:[x,A] = 0) is an ideal in the solvable Lie algebra L. If CB(A) # 0
it follows that

0 ^ CB(A) n ApsocL c B n A = 0,

which is a contradiction. Hence CB(/1) = 0 and the action of B on A is faithful.
Now suppose that A, % Z(L). Then Ax n Z(L) c /I, and so, as Ax n Z(L) is a /7-ideal,

,4, n Z(L) = 0. If a 6 A, then (ada)2 = 0, and so ada" = 0; that is, a" e Z(L). Thus,
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ap e A,, n Z(L) = 0, and the minimality of A, implies that At is an irreducible 5-module.
But, of course, if At c Z(L) then At is a completely reducible fi-module, so
A = Ax © . . . © An is a completely reducible 5-module.

Now L(l) is nilpotent, so arfx is nilpotent for every x e B(l). It follows from Engel's
Theorem that [B(1), A,] C A-, for every i = l n. If /1< g Z(L) this implies that
[Bm, Aj] = 0, since A{ is an irreducible 5-module. If A{ c Z{L) then, clearly,
[B(1), /I,.] = 0 also. Thus [B°\ A] = 0, and so Bm = 0, as CB(A) = 0. Moreover,
Z(L) c /I, since CB(A) = 0. If a e Z(L) and a = a, + . . . + an, with a, e Ait then
0 = [x, a,] + . . . + [x, an] for all x e L, so each a, 6 Z(L). Hence Z(L) = £ 4 , where the
sum is over all At contained in Z(L). Since each A{ c Z{L) is a minimal p-ideal, Z(L)
must be irreducible under the p-map.

(ii) => (i): In view of Theorem 4.1 of [3] it suffices to show that A = ApsocL. Now
we have that A = [B, A] ® Z(L), [B, A] is a direct sum of irreducible fi-modules (each of
which is a minimal />-ideal) and Z(L) is a direct sum of irreducible subspaces for the
p-map (each of which is a minimal p-idea\). Thus, A c ApsocL. But, as B acts faithfully
on L, A is a maximal abelian ideal. Hence /I = ApsocL, as required. •

Corollary 3.4. Suppose that L(1) w nilpotent and that <j)p(L) = 0. Let S be a
p-subalgebra of L with ApsocL c S. Then <f>p{S) — 0.

Proof. Write L = A + B as in Theorem 3.3 (ii). Then S = A + (BnS) since
A — ApsocL c S. Now B acts completely reducibly on [B, A], and hence so does BHS.
It follows that BC\S acts completely reducibly on [B n S, /!]. Moreover,
Z(S) = Z(L) © C(Bi/4](B n S) and the />-map is trivial on [B, A], so Z(S) is completely
reducible under the p-map. The result now follows from Theorem 3.3. •

Corollary 3.5. Suppose that L(1) is nilpotent and 4>P{L) = 0. If I is an ideal of L, then
4>P(i) = o.

Proof. If suffices to show this for maximal ideals. By Corollary 3.4 we may
a s s u m e t h a t Ax % I, w h e r e ApsocL = A , 0 ...®An wi th A{ An minimal abelian
p-ideals. Then L = I + At, since / is maximal, and / D ^ , = 0 . Thus L = /©/!, ,
/ s L/Ax ^ B + (A2 © . . . © A n ) , a n d A, c Z(L). H e n c e C S (A 2 ®...®An) = CB(A) = 0,
and it is clear that all of the conditions of Theorem 3.3 (ii) hold. •

Corollary 3.6. If L is abelian then 4>p(L) = 0 if and only if L is completely reducible
under the p-map.

Proof. Simply apply Theorem 3.3, noting that B = 0 and L = Z(L).

Corollary 3.7. Suppose that L = ApsocL + B and that the conditions of Theorem 3.3
(ii) are satisfied. Assume in addition that B is completely reducible under the p-map; that
is, ApsocB = B. Then if S is any p-subalgebra of L, S = ApsocS + B', the conditions of
Theorem 3.3 (ii) are satisfied and B' is completely reducible under the p-map.
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Proof. If ApsocL c S, then ApsocS = ApsocL, and taking B1 = Bt~\S gives the
result.

It suffices to prove the corollary for maximal p-subalgebras. So assume that 5 is
maximal and that At £ S, where ApsocL = Ax © . . . © / ! „ with Au...,An minimal
abelian p-ideals. Then L = Ax + S with S n At = 0 . Hence

As B is completely reducible under the p-map we have B = B1 © CB(/42 © . . . © An).
Then

ApsocS — CB(A2 © . . . © ,4n) © A2 © . . . © An,

S — ApsocS + B1, the conditions of Theorem 3.3. (ii) are satisfied and B" is completely
reducible under the p-map. •

We shall call L p-elementary if <j)p(S) = 0 for every p-subalgebra S of L.

Corollary 3.8. Suppose that Lm is nilpotent and that <pp(L) = 0. Let L = ApsocL+B
as in Theorem 3.3 (ii). Then L is p-elementary if and only if B = ApsocB.

Proof. (=•) Corollary 3.7.
(<=) Corollary 3.6. •

Corollary 3.9. Let L be a Lie p-algebra over an algebraically closed field K of
characteristic p > 0, and suppose that L(l) is nilpotent. Then (j)p(L) — 0 if and only if L is
p-elementary.

Proof. Suppose that (j)p(L) — 0 and write L = ApsocL + B as in Theorem 3.3 (ii).
Then B has a faithful completely reducible representation on ApsocL. This is equivalent
to the fact that B has no non-zero nil ideals (see, for example, [4, Section 1.5, p. 27]).
As B is abelian this is equivalent to the injectivity of the />-map. Since K is algebraically
closed, this is equivalent to ApsocB = B (see [2, Theorem 13, p. 192]). It follows from
Corollary 3.8 that L is p-elementary.

The converse is immediate. •

The above result cannot be extended to the case where K is a. perfect field (as
perhaps we might have hoped) as is shown by the following examples.

Example 3.3. Let B be any abelian Lie p-algebra for which the /?-map is injective
but B is not completely reducible under the p-map. Then B has a faithful completely
reducible module A. Make A into an abelian Lie p-algebra with trivial p-map. Then
4>P{A 4- B) — 0 but 0P(B) / 0. Examples of such B can be produced as follows.

If K is not perfect, let ;. e K\K" and take B = Ka + Kb with a" = a, b" = la. If



38 MARK LINCOLN AND DAVID TOWERS

A e K and / / - /i + A = 0 has no solution in K, take B = Ka + Kb with
ap = a, bp = b + Xa. Here we can take A to be /^-dimensional with a represented by the
identity matrix and b represented by the matrix

(the companion matrix of nP —
gives Example 3.2.)

0
0

0
-A

1
0

0
1

0
1

0
0

... 0^

... 0

... 1

... 0)

4- A). If F = Zp we may take A = — 1. (Putting p = 2

4. Zs-/>-algebras

We say that L is an E-algebra (respectively, E-p-algebra) if, for every subalgebra
(respectively, /?-subalgebra) S of L we have <p(S) c (/>(L) (respectively, (AP(S) c $p(L)).

The following result is the restricted version of Proposition 2 of [5].

Theorem 4.1. L is an E-p-algebra if and only if L/(pp(L) is p-elementary.

Proof. Suppose first that L is an £-/?-algebra, and let S/(j>p{L) be a subalgebra
of L/(f>p(L). Choose a p-subalgebra U of L which is minimal with respect to
4>P(L) + U — S (so U could be equal to S). Let T be a />-ideal of S such that
770p(L) = (f>p(S/<t>p(L)), and suppose that T ? <j>p(L).

Then

= r n (<frp(L) +u) = <pp(L)

and T CMJ <£ <f>p{L). It follows that T n U g <£„([/) since L is an £-/?-algebra. But
Tn 1/ is a p-ideal of C/, so Tfl [/ g Fp(U). Hence there is a maximal p-subalgebra A/
of U such that T D U % M, and 1/ = T n 1/ + M.

By the minimality of U we must have $P(L) + M ^ S. We claim that $P(L) + M is
a maximal /7-subalgebra of 5. Suppose that 4>P(L) + M c J C S. Then M c J n [/ c (7
and so, by the maximality of M, either j n t / = M o r J n t / = C / . The former implies
that

4>P(L) = J n s =

a contradiction. The latter gives U C.J and hence J 2 1/ +
contradiction. Hence the maximality of 4>P(L) + M in S. Thus

= S, also a

M)/d>p(L) 2 <t>P(S/<t>P(Q) = T/4>P(L),
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and so T c 4>p(L) + M. But now T n U c T c <£p(L) + M and so

S = <f>p{L) + U = 4>p(L) + TnU + M = 4>p(L) + M,

contradicting the minimality of U. We conclude that T = (f>p{L), whence
4>p{S/(f)p{L)) = 0 and L/<pp(L) is /^-elementary.

Conversely, suppose that L/<f>p(L) is /^-elementary and let S be a /?-subalgebra of L.
Then

(4>P{S) + 4>p(L))/<j>p(L) c <pp((S + <Pp(L))/4>p(L)) = 0,

and so <PP(S) c «/,p(L). D

Corollary 4.2. Le/ L be a Lie p-algebra over an algebraically closed field K of
characteristic p > 0, and suppose that Lm is nilpotent. Then L is an E-p-algebra.

Proof. This is immediate from Corollary 3.9 and Theorem 4.1. •

We finish by noting the relationship between elementary and p-elementary Lie
/7-algebras (respectively is-algebras and £-/?-algebras) given by Corollary 4.4 below.

Theorem 4.3. Let S be a subalgebra (not necessarily p-closed) of the Lie p-algebra L.
Then
(i) 4>(S) C 4>((S)p), and

(ii) <KS) C <f>p(L) =• <KS) C 0(L).

Proof, (i) Let M be a maximal subalgebra of (S)p, and suppose that <f>(S) g M.
Then (S)p = M + 0(S), and so S = M n S + (p(S) = MnS (Lemma 2.1 of [6]). Hence
S c M and so <£(S) c M, contrary to our assumption. Thus <f>(S) c F((S)p), whence
0(S) c 0((S)p).

(ii) Suppose that </>(S) c <$>p(L), and let M be a maximal subalgebra of L such that
4>(S) g M. Then L = M + <p(S) = M + 4>p(L). Thus

L(D = Md) + L 0 p ( L ) c M( 1 ) + <KL) by Corollary 3.11 of [3]

CM.

But now (/)(S) c S(l) c L(1) c M, a contradiction. •

Corollary 4.4. (i) If L is p-elementary, then L is elementary.
(ii) If L is an E-p-algebra, then L is an E-algebra.

Proof, (i) Let L be /^-elementary and let 5 be a subalgebra of L. Then
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c 0((S),) c 0,((S),) = 0,

so L is elementary.
(ii) Let L be an £-/>-algebra and let S be a subalgebra of L. Then

and so <£(S) c <f>{L). D
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