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Future linear colliders plan to collide polarised beams and the planned physics
reach requires knowledge of the state of polarisation as precisely as possible.
The polarised beams can undergo depolarisation due to various mechanisms. In
order to quantify the uncertainty due to depolarisation, spin tracking simula-
tions in the International Linear Collider (ILC) Beam Delivery System (BDS)
and at the Interaction Point (IP) have been performed. Spin tracking in the
BDS was achieved using the BMAD subroutine library, and the CAIN pro-
gram was used to do spin tracking through the beam-beam collision. Assum-
ing initially aligned beamline elements in the BDS, a ground motion model
was applied to obtain realistic random misalignments over various time scales.
Depolarisation at the level of 0.1% occurs within a day of ground motion at
a noisy site. Depolarisation at the IP also exceeds 0.1% for the nominal pa-
rameter sets for both the ILC and for the Compact Linear Collider (CLIC).
Theoretical work is underway to include radiative corrections in the depolarisa-
tion processes and simulation of the depolarisation through the entire collider
is envisaged.
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1. Introduction

The precision physics program of the ILC requires precise knowledge of

the state of beam polarization. To that end, the Compton polarimeters

intended for the ILC (one upstream and one downstream of the IP) will

have to measure the polarisation with error a factor of 2 smaller than that

previous best measurement at the SLAC SLD experiment.1 A prototype of

a high precision Cherenkov detector to record compton scattered electrons

from the interaction of a longitudinal laser and the charged beams has been

http://arxiv.org/abs/1108.6275v1
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developed and tested at the ELSA testbeam in Bonn.2 Further sources of

uncertainty in the beam polarisation come from depolarisation processes

in the accelerator. The depolarisation is due to misaligned elements along

beamlines and from beam-beam processes at the interaction point (IP) of

the collider. It is crucial to understand these uncertainties as a limiting

factor in the overall precision of the polarisation measurement.

In general, two effects influence the spin motion in electric and mag-

netic fields: a) spin precession governed by the Thomas–Bargmann-Michel-

Telegdi (T-BMT) equation and b) the spin-flip Sokolov-Ternov (S-T) effect

via synchrotron radiation emission. Usually the spin precession effect is

dominant in the beam-beam interaction at the interaction point of a col-

lider unless the magnetic fields of the bunches are an appreciable fraction

of the Schwinger critical field (4.4 × 1013 Gauss). However for beam pa-

rameters of planned future linear colliders, the magnetic fields at collision

are significant, and quantum spin-flip effects lead to depolarisation. The

precision requirements for physics processes with polarized beams require

then a review of the simulation of beam-beam effects at collision which is

achieved by the program CAIN.3

For passage of polarised beams through beamlines, the field strengths

of the beamline magnetic elements are much lower and the S-T effect can

be neglected entirely. It is only required to simulate the spin precession and

such a simulation is implemented as part of the BMAD library of beam

dynamics subroutines.4 One aim of this paper is to apply BMAD to sim-

ulations of the International Linear Collider’s (ILC) beam delivery system

(BDS) as described in the machine’s Reference Design Report.5

Since depolarisation is a cumulative effect it is necessary to link up the

simulation of the various parts of the accelerator. Assuming an intial dis-

tribution of polarisation vectors of individual charges within a bunch, the

bunch can be tracked through the linac, BDS (which includes the upstream

polarimeter to measure its state), through the IP collision, and in the ex-

traction line to the downstream polarimeter. In this paper, the program

PLACET6 is used to track the bunch through the linac. Since PLACET

has no polarisation implementation, no depolarisation is assumed to occur

in the linac. BMAD is employed for the BDS and planned orbit correction

feedbacks at the end of the linac and at the IP are implemented as PID

controllers within OCTAVE.7 A block diagram representing the general
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Fig. 1. Software block diagram of the spin tracking in a linear collider.

program flow is shown in Figure 1

2. BDS spin precession and time dependent depolarisation

The BDS of the ILC as described in the Reference Design Report is 2226

metres long and consists of a skew correction/diagnostics section (including

the upstream polarimeter), a betatron collimation section, and energy col-

limation section and final focus. With a single particle on the design orbit

of the optical lattice of the BDS, particle spin at the IP matches with the

upstream polarimeter location, and significant precession takes place in the

latter half of the lattice (Figure 2).
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Fig. 2. Beta functions and spin precession in the Beam Delivery System of the ILC.
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Fig. 3. Depolarisation in a bunch due to random misalignment of BDS beamline ele-
ments.

The real orbit of the beam will not be ideal and consequently the spin

precession will not exactly match at the polarimeters and IP. If the orbit

randomly varies within some distribution, the spin precession will likewise

vary and depolarisation will result. Orbit variation (from the ideal) can oc-

cur because of random misalignments of magnetic elements in the beamline.

The misalignments are both static in the less than perfect intial alignment,

and dynamic due to natural ground motion and environment noise.

Assuming that the initial beamline survey and results in micron level

alignment, BMAD can be employed to investigate depolarisation in a bunch

of 50,000 macroparticles. Defining 0.1% depolarisation as significant within

the total required precision of the ILC polarisation measurment of 0.5%,

a random misalignment of magnetic elements of up to 5 microns rms is

significant (Figure 3).

In order to know the extent of beamline misalignment between sur-

veys, ground motion studies have been performed at potential facility sites
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Fig. 4. Depolarisation growth due to ground motion induced misalignment.

around the world . Using broadband Streckeisen STS-2 seismometers and

piezosensors, rms amplitudes of vibration in different frequency bands and

power spectra can be obtained.8 In this study, ground motion data for a

”noisy” site - the so called ground motion model C was used.9

In order to apply ground motion power spectra to a beamline, correlated

displacement in beamline elements over longitudinal distance and time was

required. Such a correlation is obtained by convoluting random offsets in

the frequency domain with the measured power spectra and transforming

back to the time domain. A coherency function is then used to correlate

vertical motion with longitudinally separated beamline elements.10

Using these methods, time dependent sets of y-offsets were applied to

beamline elements within the BMAD simulation of the ILC BDS. The off-

sets were applied only in the y direction since the beam profile is narrower

in y, and consequently the orbit is more sensitive to misalignment in this

direction. The net effect of the time dependent vertical displacements is a

random offset in beam orbit and a corresponding increasing depolarisation

over time. Within a day of ground motion induced misalignment, depolar-
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isation becomes significant and means to recover the polarisation will need

to be investigated (Figure 4).

3. Depolarisation at the IP

The CAIN program models both classical and quantum depolarization ef-

fects in beam-beam collisions and is used here to simulate the IP depolarisa-

tion for two linear collider models, the ILC and CLIC. CAIN has been mod-

ified slightly to include full polarisation of all pair producing processes in

the beam-beam interaction, however the overwhelming contribution to the

depolarisation is from the classical precession and from the beamstrahlung

spin-flip process. The depolarisation is more significant for the aggressive

set of CLIC parameters for which the magnetic field associated with the

charge bunch is so high (of order of the Schwinger critical field) that the

quantum effects dominate (Table 1).11

Table 1. Comparison of the luminosity-weighted depolar-
izing effects in beam-beam interactions for the ILC and
CLIC.

Parameter set Depolarization ∆Plw

ILC 100/100 ILC 80/30 CLIC-G

T-BMT 0.17% 0.14% 0.10%
S-T 0.05% 0.03% 3.4%
incoherent 0.00% 0.00% 0.06%
coherent 0.00% 0.00% 1.3%
total 0.22% 0.17 % 4.8%

Since depolarisation at the IP is a significant fraction of the overall

budget (i.e. it again exceeds 0.1%) then, in the interests of precision, any

variaion obtained by including radiative corrections is of concern. Even

classical spin precession, as described by the T-BMT equation,

d~S

dt
= −

e

mγ
[(γa+ 1) ~BT + (a+ 1) ~BL − γ(a+

1

γ + 1
)β~ev ×

~E

c
]× ~S, (1)

is subject to radiative corrections by the symbol a which describes the

anomalous magnetic moment of the electron in the bunch magnetic fields.

The anomalous magnetic moment is only included to first order, in the

approximation of ultra-relativistic electrons, and on the mass shell. The
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Sokolov-Ternov equation is also subject to higher order radiative correc-

tions. The theoretical, experimental and simulation aspects of just such

studies was the topic of a recent workshop12 and is the subject of ongoing

work.

4. Conclusion

The precision requirements of physics with polarised beams requires a de-

tailed understanding of the spin transport in all parts of a planned future

linear collider. Details have been provided here of the spin transport in the

Beam Delivery System and during the bunch collisions at the IP, both of

which contribute significant depolarisation.

The studies need be extended to further parts of the machine in order to

obtain a full understanding of the spin transport. For the polarised sources,

an extension of Geant is available that includes polarised particle trans-

port.13 The various feedbacks for orbit correction are implemented and can

add to the understanding of the time evolution of the depolarisation. Spin

transport in the linac can be modelled using either BMAD or Merlin14 and

the spin transport in damping rings is comprehensively studied using the

SLICKTRACK program.15

Once all components of the simulation process are linked together, an

overall understanding of the luminosity weighted polarisation at physics

collision can be developed. Further work is then required to understand the

value of the polarisation measurement at the upstream and downstream

polarimeters.
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