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Abstract 
Significant advances have been made in recent years in tackling the problem of heterogeneity in 
distributed systems with ISOl ITU-T standards for a Reference Model for Open Distributed 
Processing (RM-ODP) now approaching international agreement. It is important, however, that 
such standards and related technologies are responsive to new developments in computer and 
communications technologies. This paper reports on experiences of using the RM-ODP based 
platform ANSAware in the development of mobile applications to support field workers in the 
electricity industry. A number of extensions to ANSAware are described including QoS- 
managed bindings, an enhanced trading service and a new communications protocol. These 
extensions are evaluated against the requirements of mobile applications. 
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1 INTRODUCTION 
Significant advances have been made in recent years in tackling the problem of heterogeneity in 
distributed systems with IS01 ITU-T standards for a Reference Model for Open Distributed 
Processing (RM-ODP) now approaching intemational agreement [IS095a, IS095b, 1S095cl. 
Similarly, specific technologies such as APM’s ANSAware, OMG’s CORBA and OSF’s DCE 
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are commercially available. However, it is important that such standards and technologies 
remain responsive to new developments in computer and communications technologies. This 
paper reports on experiences of applying ODP standards, and more specifically the ANSAware 
distributed systems platform, in the new area of mobile computing [Duchamp92, Katz941. 

The paper is structured as follows. Section 2 summarises the main body of research carried 
out in the MOST Project (Mobile Open Systems Technology for the Utilities Industries) at 
Lancaster, which has looked at the potential of RM-ODP technology and wireless 
communications to support mobile utilities workers [Davies95a]. In particular, this section 
describes a prototype application developed over GSM technology which is designed to support 
field engineers in the power distribution network. Section 3 then describes the underlying 
distributed systems platform developed in MOST. This platform is based on ANSAware but 
with extensions to support operation over mobile environments. These extensions include the 
new functionality of QoS-managed bindings and peer-to-peer linking of traders and a new 
underlying communications protocol, QEX. Section 4 evaluates the extensions to ANSAware 
and includes some performance figures for QEX. Finally, section 5 presents our concluding 
remarks. 

2 AN EXPERIMENT IN DEVELOPING ADVANCED MOBILE 
APPLICATIONS 

2.1 The applications scenario 

Supporting field engineers 
All work within a regional electricity company is traditionally co-ordinated by a single control 
centre. The engineer supervising a particular repair job files a schedule with the centre some 
days in advance. This schedule describes in detail the stages involved in carrying out the work 
and, in particular, the sequence of switching which must be carried out to ensure that the work 
can be conducted safely (i.e. the section of network being operated on is isolated and earthed) 
and with the minimum of disruption to users. The control centre checks the switching schedule 
against its central diagram of the network state (this may be held on its computer system) and 
approves or rejects the schedule accordingly. Expert systems may be used by both the control 
centre and the field worker in the development of the switching schedule [Cross931 although at 
present these systems are not integrated with the centre's representation of the global network 
state. 

Once the schedule has been approved, the work may be carried out. On the day of the work, 
field engineers are dispatched to the appropriate switching points. The control centre then uses a 
voice-oriented private mobile radio system to instruct the staff as to which switches to operate. 
The use of a central co-ordinator helps to ensure the work is carried out in the correct order and 
allows the centre to maintain an up-to-date picture of the network's state. Once the work has 
been carried out the engineer must wait until returning to the office before completing the 
associated paper work. 

Introducing mbi l e  communications 
There am clearly a number of disadvantages with the approach described above, in particular the 
lack of availability of global network state for the engineers in the field and the reduction in 
efficiency caused by the bottle-neck of a central point of control. The latter of these points 
becomes particularly important when faults occur requiring multiple unscheduled work items to 
be carried out. These disadvantages could be overcome by providing field engineers with a 
shared up-to-date picture of the network state. Providing such a picture would, of course, 
require a high degree of real-time synchronisation between field engineers operating on the 
network to ensure consistency between views of the network state. 
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Our aim is to exploit the capabilities of emerging mobile networks such as GSM to provide 
the means for field engineers to have at hand the information they require in the field and to 
enable them to collaborate with one another to discuss relevant aspects of this information. For 
example, we aim to allow field engineers who are not physically co-located to view and 
manipulate shared diagrams and information and to communicate using voice. This would ease 
congestion at the control centre which, in addition to supplying individual engineers with 
information, is also responsible for coordinating collaboration between engineers. Hence, the 
application is novel since much of the communications involved is of a time critical, peer-to- 
peer nature (i.e. mobile field engineer to mobile field engineer) rather than conforming to the 
client-server architecture more commonly found in mobile applications. 

2.2 The prototype application 

Overall jknctionality 
The prototype application we have developed allows field engineers to view geographical 
information (e.g. network diagrams) using a public-domain Geographical Information System 
(GIs) called GRASS [Westervelt91]. Support for collaboration with other field engineers is 
provided in two ways. Firstly, field engineers are able to synchronise the operations of their 
GIs with those of one or more remote engineers. In this way a common shared view of a 
particular piece of information can be maintained. Once a shared view has been established the 
application allows engineers to annotate the display with highlight marks which are 
subsequently propagated to all relevant remote engineers. Secondly, the application supports 
communication between field engineers via audio communications. 

An example screen shot of the application's user interface is shown in figure 1. The 
conference manager or group co-ordinator component of the application is shown in the top left 
of the diagram. This component makes extensive use of icons to represent users and their 
applications. On the left hand side of the group co-ordinator component are icons representing 
the sub-applications or modules which are available to the user (for example, the globe 
represents the GIs services) and on the right hand side are icons representing users that can 
participate in conferences. In the centre is a list of the current conference participants. Under the 
icon of each participant, a column of additional icons represent which modules that user is 
currently running. By selecting icons from the rows of module icons the user is able to easily 
direct messages to a subset of the conference members. The user is able to select (by clicking on 
a single button) whether or not an operation (for example drawing a line in the GIs module) is 
propagated to those group members whose module icons have been selected. 

Figure 1 The user interface with the GIs module active during a three-party conference. 
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Considerable emphasis has been placed on reporting to the user the state of the 
communications links between local modules and remote users' modules. In our prototype this 
is achieved by colouring the module icons under each user in the central portion of the display 
to reflect connectivity (using a spectrum of green representing full connectivity through to red 
representing no connectivity). Figure 1 has been simplified in the interest of clarity to show 
only the group coordinator and a single GIs module. 

Design philosophy 
Our key design philosophy is one of extensibility. From the users point of view this manifests 
itself in the tool-box feel to the interface. In particular, the list of modules supported can be 
expanded at any time and we anticipate field engineers configuring their applications to use sub- 
sets of the available modules. For example, the current implementation supports modules 
providing remote database access (to look up customer records), a job dispatch application and 
an e-mail facility as well as the GIs and audio conferencing modules discussed above. We rely 
on the host's windowing system to provide features to allow users to make best use of their 
display (e.g. facilities to iconise and re-size windows or virtual desktops to optimise the use of 
a small screen). 

In terms of implementation, the application is structured as a number of RM-ODP compatible 
service providers (objects) with all communication carried out via object invocation. Hence, we 
prohibit, for example, applications using the X protocol or X multiplexors (as used for example 
in XTV [Abdel-Wahab91]) to implement collaborative interfaces. This approach has a number 
of benefits. Firstly, we are able to support operation in a truly heterogeneous environment: 
since objects only communicate using invocations, new implementations of our application need 
only support the basic invocation mechanism and the prescribed service interfaces in order to 
inter-work with all existing implementations. In addition, since all communication is explicit we 
avoid building in dependencies on windowing systems (e.g. X or Microsoft Windows) and the 
risk of incurring hidden overheads which are often associated with windowing system 
protocols. For example, the difficulties associated with using the X protocol for communication 
to mobile hosts is reported by Kantarjiev [Kantarjiev93]. 

The drawback with our approach is that we require customised applications. However, since 
there has been little positive experience with using conventional applications in a collaborative 
context [Lauwers9O], we believe that the benefits of our approach outweigh this drawback, 
particularly given the specific nature of our application domain. In order to simplify the 
development of collaborative applications for use in our environment we have implemented 
support for conference management within a single service, the group co-ordinator. This 
ensures that all applications share a common view of the participants in a conference and 
reduces the complexity of the applications. Further details of the design of the prototype 
application and the associated RM-ODP services can be found in [Davies95c]. 

3 THE UNDERLYING PLATFORM 

3.1 Background on RM-ODP 

Motivation ana' goals of RM-ODP 
We have developed a distributed systems platform to support the trial application described 

above. This platform is based on the emerging RM-ODP to enable operation in a heterogeneous 
environment. 

The RM-ODP is designed to be a generic, technology and application independent 
framework for developing open distributed systems. It is important to stress that the Reference 
Model provides a general framework for developing open distributed systems; this Reference 
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Model can, in turn, lead to specific instantiations in a given application domain (e.g. TINA in 
the telecommunications sector). 

The Reference Model provides a set of general concepts (a vocabulary) and an object- 
oriented modelling approach to support distributed systems development. The Reference Model 
also provides a methodology based on the division of a specification into a set of 5 viewpoints: 
enterprise, information, computational, engineering and technology (representing the full range 
of perspectives on a distributed system development from business objectives to detailed 
implementation choices). The focus of our work in the MOST project is on the computational 
viewpoint, and this aspect of the RM-ODP is described below. The important concepts of 
distribution transparency and trading are also described. Note that a more complete discussion 
of the features offered by the RM-ODP can be found in the literature [Raymond93]. 

The ODP computational viewpoint 
The ODP computational viewpoint is based on a location independent object-based model of 
distributed systems. In this model, interacting entities are treated uniformly as objects, i.e. 
encapsulations of state and behaviour. Objects are accessed through interfaces which can be of 
two types: signal interfaces and stream interfaces. Signal interfaces define named signals 
together with constraints on their occumnce. Stream interfaces define named data flows that 
constitute abstractions of sets of interactions which are not visible from the outside. 
Communication between objects using signals or flows is only possible through explicit or 
implicit bindings between interfaces. 

Operational interfaces are special cases of signal interfaces. Operational interfaces define 
named operations together with constraints on their invocations. Operations can be either an 
interrogation (a two-way operation, comprising an invocation, later followed by a termination 
carrying results or exceptions), or an announcement (a one-way operation, comprising an 
invocation only). Implicit binding is only available for operational interfaces. Activity takes 
place in the model when objects communicate via signals or flows supported by explicit or 
implicit binding objects. 

Objects offering services are made available for access by exporting interfaces to a database 
of service interfaces known as a trader. An object wishing to interact with a service interface 
must import the interface by specifying a set of requirements in terms of an interface type and 
attribute values. This will be matched against the available services and a suitable candidate 
selected. Any number of traders can exist and these may be linked or federated to allow access 
to services in different administrative domains. 

Also central to the ODP computational model is the notion of transparency whereby selected 
aspects of systems can be made invisible to applications. This is achieved by means of notional 
transparency functions interposed between the application and the support layers (it should be 
noted that the application of transparency functions is under user control and hence 
transparencies are selective). An important example of a transparency is group transparency 
which allows multiple services to be invoked via a single interface. Other transparencies 
identified in ODP include location, access, concurrency, replication, migration and failure 
transparencies. 

3.2 The ANSAware distributed system 

The ANSAware computational model 
The ANSAware computational model is a subset of the corresponding computational model 
defined in RM-ODP. In ANSAware, interacting entities are treated uniformly as objects. 
Objects are accessed through operational interfaces which define named operations together 
with constraints on their invocations. Operations are accessed through a binding; at present in 
ANSAware, such bindings are established implicitly before first access. ANSAware also 
supports the following transparency functions: location, access and group. RM-ODP features 
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not supported by ANSAware include: signals, flows, explicit bindings, environmental contracts 
including QoS annotations, and more general transparency functions. 

ANSAware provides an implementation of the trading function. Again, the ANSAware 
trader is a subset of trading as defined in RM-ODP. The ANSAware trader organises offers 
according to service type and service properties. Offers are also organised into (hierarchical) 
contexts. Traders can also be links; the current implementation, however, limits the resultant 
graph to a one-level hierarchy. One trader is nominated as the master trader with all other traders 
binding a local/ master context to this trader. The ANSAware implementation of linking also 
prescribes the policy for searching the resultant namespace; the local trader is always searched 
first and, if a match is not found, the master trader is then contacted. The ANSAware trader also 
supports the concept of proxy offers. If a client attempts to import a proxy offer, then the 
import request is forwarded to another trader which should return the appropriate service. 

Implementation of ANSAware 
To provide a platform conformant with the object model, the ANSAware suite augments a 
general purpose programming language with two additional languages. The first of these is IDL 
(Interface Definition Language), which allows interfaces to be precisely defined in terms of 
operations as required by the computational model. The second language, DPL (Distributed 
Processing Language) is embedded in a host language, such as C, and allows interactions to be 
specified between programs which implement the behaviour defined by these interfaces. 
Specifically, DPL statements allow the programmer to import and export interfaces, and to 
invoke operations in those interfaces. A number of system services are supplied which include a 
trader service and a factory service for creating new objects. 

In the engineering infrastructure, the binding necessary for invocations is provided by a 
remote procedure call protocol known as REX (Remote Execution protocol) or a group 
execution protocol known as GEX (Group Execution Protocol). REX is a remote procedure 
call package which has been designed with two basic styles of interaction: the first, rapid 
interaction with small amounts of data, and the second, bulk data transfer. REX uses the bulk 
transfer mechanism when packets exceed the fragmentation threshold. In addition, either style 
of interaction may be synchronous or asynchronous. REX is then layered on top of a generic 
transport layer interface known as a message passing service (MPS). A number of additional 
protocols may be included at both the MPS and the execution protocol levels and these may be 
combined in a number of different configurations. The infrastructure also supports lightweight 
threads within objects allowing multiple concurrent invocations. 

All the above engineering functionality is collected into a single library, and an instance of 
this library is linked with application code to form a capsule. Each capsule may implement one 
or more computational objects. In the UNIX operating system, a capsule corresponds to a 
single UNIX process. Computational objects always communicate via invocation at the 
conceptual level but, as may be expected, invocation between objects in the same capsule is 
actually implemented by straightforward procedure calls rather than by execution protocols. 
ANSAware currently runs on a variety of operating systems platforms including various 
flavours of UNIX, VMS and MS-DOS/ Windows. 

3.3 Required extensions to support the prototype application 

We have extended the basic ANSAware platform to support the transmission of continuous 
media and also to operate more efficiently in a mobile environment. The key changes are 
discussed below. 

Enhanced functionali 
Explicit QoS-Managed indings The first major change we have made to ANSAware has 
been to extend the support for bindings. A useful side-effect of this work is that our version of 
the ANSAware platform is now aligned closer to the current RM-ODP standard. To meet the 
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requirement for an abstraction of real-time data flow over time, we have added the concept of 
explicit stream bindings (as described in the RM-ODP) to our ANSAware based platform. 
Stream bindings provide an end-to-end abstraction over continuous media communication and 
support arbitrary m:n connections, i.e. they allow m sources to be connected to n sinks. 

Within our platform stream bindings are established using an explicit bind operation which 
takes as parameters the source and sink interfaces to be bound and a further set of desired QoS 
parameters. These parameters can include a specification of the desired throughput, latency and 
jitter associated with the binding (more details of the specification of QoS parameters for 
continuous media bindings can be found in [Coulson95]). Clients are retumed a binding control 
interface as a result of an explicit bind operation. To control the QoS of the flow once the 
binding has been established the control interface includes a pair of operations setQoS() and 
getQoS(). These operations take as arguments a set of QoS parameters which can then be 
passed by the stream binding to the underlying transport protocol. A call-back mechanism is 
also provided to inform client objects of QoS degradations reported by the underlying transport 
service. 

We have also added a new class of explicit binding for use with operational interfaces. These 
bindings are established using the binder$Bind operation as above but take as arguments 
operational interfaces. The resulting binder control interface is identical to that used for stream 
bindings except that clients are allowed to specify and monitor a different set of QoS parameters 
associated with the binding. This enables, for example, a client to ask to be informed when the 
QoS service supplied by the binding falls below a specified threshold. Of particular relevance to 
mobile applications is the ability to monitor the possibility of sending or receiving messages via 
a specified binding without having to explicitly send application level test messages, i.e. 
applications can delegate responsibility for guaranteeing QoS assertions to the system. This is 
of significance since it allows mobile applications to be structured in an event based fashion 
(c.f. polling). For example, through the use of our bindings it is possible to assert that the 
absence of messages on a given interface is a result of their being no traffic intended for the 
specified interface rather than a result of communications failure. In addition, QoS driven 
bindings allow the system to optimise the use of test messages which might otherwise be 
duplicated if left to individual applications, e.g. if multiple applications wished to test QoS 
assertions between the same pair of objects. Further details of the structural changes in 
applications and system services possible as the result of the introduction of QoS driven 
bindings can be found in [Davies94]). 

Enhanced Trader Finally, as described above, the implementation of the trading function 
in ANSAware assumes a hierarchical pattern of linking. This hierarchical arrangement while 
possibly adequate for fixed networks is inappropriate for mobile systems where each portable 
computer is likely to have its own trader in order that it can continue operation during periods of 
disconnection. Moreover, given the nature of the communications network a link scheme which 
requires traversal up and down a hierarchy (possibly requiring multiple dial-up connections to 
be established) is clearly unsuitable. 

We have addressed this issue by introducing a mechanism to enable peer-to-peer linking of 
traders. Links can also have associated constraints ensuring that they are traversed only when 
there is a strong likelihood of the remote trader being able to satisfy the request. For example, 
we can specify that services owned by a particular user are always found on a specified machine 
and traverse the link to that machine only when looking for that user’s services. Again, this 
change means that our implementation of trading is more closely aligned to the RM-ODP 
standard. 

Underlying protocols 
Introducing QEX The current execution protocols in ANSAware are not well suited to 
operation over mobile networks. In our work, we have introduced a new protocol called QEX 
(Quality-of-service driven remote Execution) to replace the REX protocol. We are also 
planning to replace GEX with a protocol G-QEX although this is still at the design stage. We 
describe the implementation of QEX below. 



36 Part Two Mobile Coinputing 

Currently, the REX protocol takes no account of the characteristics of the underlying 
network. More specifically, parameters such as the number of retry attempts and the interval 
between these attempts are fixed at installation time. Thus, when a system configured to operate 
over an Ethernet is run over a low-speed network the absence of congestion control within REX 
means that almost no data is actually communicated between user processes. Instead, the 
network becomes overloaded with REX control messages. In addition, if the parameters of the 
REX protocol are modified to operate over a low speed link, it no longer performs optimally 
over Ethemet. To overcome these difficulties, QEX analyses the characteristics of the 
communications medium for each interaction and adjusts itself to make the best use of the link. 
QEX maintains backward compatibility with REX to allow us to interact with existing 
ANSAware services. 

Estimating Characteristics of the Channel The general approach in QEX is to 
estimate the underlying characteristics of the channel based on information obtained from 
round-trip times and sizes of messages. As a single object may be communicating with remote 
objects via links with potentially different network QoS, channel information is recorded for 
each active session at both ends of the interaction. The memory overhead of the channel 
analysis grows approximately linearly with the number of concurrent interactions at any given 
time. 

Round-trip time calculations can not take into account asymmetric connections which may 
occur in mobile environments. However, estimating end-to-end channel delay would require a 
time stamping scheme using synchronised clocks. This option was avoided due to the overhead 
of running clock synchronisation algorithms over low bandwidth connections. 

Figure 2(b) Simplified QEX RPC. 

Figure 2(a) shows a REX RPC interaction (slightly simplified for clarity: for a full 
explanation see the ANSAware reference manual [APM93]). A call is sent to the server process. 
Providing it arrives, the server processes the request and responds with its reply. In case the 
call was lost, the client will send a retry after a fixed interval until either an acknowledgement or 
the reply is received. When the server detects a duplicate call it sends an acknowledgement to 
the client to inform it that it is still processing the request. 

From this figure, we can see that the only pair of messages we can use to calculate round-trip 
times is the call/ ack or reply/ ack interactions since we have no method to determine the 
application delay introduced into other message pairings (which could change arbitrarily each 
time, particularly where user interaction is possible). These messages, although we believe 
them to occur frequently in most real application scenarios, cannot be relied upon to keep us up 
to date on the current characteristics of the communications medium. To solve this problem, we 
chose to make our protocol respond immediately with acknowledgements on receipt of a call or 
reply message. Application delay is therefore kept to a minimum and a reasonable 
approximation of round-trip time for a particular message size is obtained (note that this extra 
acknowledgement is not a significant overhead as in practice REX often retries at least once 
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before returning results). The round-trip statistics are smoothed using a moving average 
calculation and fed back into the protocol to load the retry interval timers. The approach adopted 
in QEX is illustrated in figure 2(b). 

Backoff Strategy While establishing the rate over a particular channel, backoffs play an 
important role. Over Ethemet it is customary to use exponential backoffs as the assumption is 
that dropped packets are caused by congestion. Over low bandwidth networks it is far more 
likely that dropped packets are caused by the relatively high error rates experienced by wireless 
networks. In QEX we choose different backoff strategies depending on the stability of our 
measurements. While working out the rate it is important not to flood a low bandwidth 
network. At this stage, we therefore employ exponential backoffs. When the round-trip 
calculations stabilise, if a low bandwidth network is indicated, we switch to a linear backoff 
strategy, the assumption being that packet loss is now more likely due to errors. Setting the 
threshold at which linear backoffs are used is critical, high speed mobile networks (such as 
WaveLAN) although offering almost wired LAN throughputs exhibit far higher error rates 
[C6ceres94] and thus require linear backoffs. 

Dealing with Fragmentation When the message size is greater than the fragmentation 
threshold (which is dependent on the transport service), REX fragments the message and sends 
groups of fragments periodically to the server. The server then informs the client after a fixed 
interval which fragments it hasn’t seen (a negative acknowledgement). This style of interaction 
is depicted in figure 3(a). In this approach there is no scope for calculating round-trip times as 
negative acknowledgements are not sent in direct response to client messages. 

P I 

Figure 3(b) QEX fragmented interaction. 

To overcome this problem we abandoned the negative acknowledgement time-out interval 
and explicitly send negative acknowledgements on the receipt of fragments (the negative 
acknowledgements indicate which fragments are still to be received). This approach is depicted 
in figure 3(b). To avoid the strict synchronisation this imposes on what is intended to be a bulk 
transfer mechanism, we only acknowledge packets that are tagged for acknowledgement. The 
proportion of tagged to untagged fragments is then calculated based on our confidence the 
system has in the throughput approximation. The number of fragments sent is worked out 
based on the current estimate of the underlying network characteristics. 

Identifying Retries In REX any retry of a packet is identical to the original transmission; 
there is therefore no way to tell a transmission and a retry apart. This is catastrophic for round- 
trip calculations as it is not clear which call an acknowledgement matches (particularly under 
failure where original messages may be lost). In QEX the sending process tags packets with an 
identifier which the receiver then includes in its response, allowing the sender to match 
messages to responses. The identifier is hidden in the REX message header in a field which 
REX ignores. It can therefore serve a dual purpose: in addition to identifying the packet, it also 
identifies whether the partner is running the original REX or QEX protocol. 
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3.4 Implementation status 

The application and associated platform has been fully implemented and demonstrated running 
in a heterogeneous environment consisting of SUN workstations, desktop PCs and portable 
PCs. Mobile communications is provided by either analogue cellular phones, operating at 
2.4Kbits/sec, or GSM at 9.6Kbitskec. Altematively, a network emulator can be used allowing 
us to simulate the varying degrees of connectivity likely to be experienced by field engineers 
during a typical operational cycle [Davies95b]. The QEX protocol has been implemented to run 
over a UDP like protocol (which we call Serial-UDP) which handles serial and Hayes 
compatible dialup connections. 

4 EVALUATION OF THE EXTENDED PLATFORM 

4.1 Functional aspects 

QoS-Managed bindings and adaptive services 
The concept of QoS-managed bindings has proved to be particularly important in supporting the 
MOST application. Firstly, this feature enables the application to specify the required quality of 
service (QoS) from a particular binding. This information can then be used by the infrastructure 
to guide resource management and scheduling. 

Example: Introducing deadlines 
The MOST application features a number of different styles of invocations ranging from 
those supporting real-time interaction to those carrying asynchronous mail messages. In a 
low bandwidth environment, however, trade-offs must be made between the different styles 
of traffic. In the current implementation, deadlines on messages enables invocations for real- 
time interaction to take priority over e-mail messages. 

Secondly, applications can obtain feedback on the QoS provided by the underlying network. 
This is particularly important as we anticipate end-systems which will either be disconnected, 
weakly inter-connected by low speed wireless networks such as GSM, or fully inter-connected 
by high speed networks ranging from Ethernet to ATM with this level of connectivity varying 
over time as a consequence of the mobility of the modern computer user. It is therefore crucial 
that applications can be informed of the current QoS to enable them to adapt their behaviour. 

Example: Remote database access 
The service providing remote database access can adapt its behaviour by varying the 
information returned depending on the available QoS. For example, while connected to a 
high speed network, this service can return full details of the results of a query. If, however, 
bandwidth is limited, the database service can return the number of hits together with name 
fields of the records. Individual records can then be pulled over on request. 

Quality of service information can also have a fundamental impact on the structuring of 
distributed applications as illustrated by the following example. 

Example: Weather report bulletins 
Consider a simple ANSAware application designed to inform field engineers of approaching 
bad weather (for example, to provide warnings of impending lightning storms for engineers 
working on pylons). The application consists of a single, central service which has access to 
national weather information and a number of client objects (one for each field engineer) 
which can query the service. Engineers need to be warned when bad weather is recorded in 
areas adjoining the one in which they are working. Hence, there are two ways of structuring 
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this application: either the client applications register an interest in the weather in particular 
areas and the server notifies them of any subsequent changes in condition, or, the client 
applications poll the server at regular intervals for the weather reports of the relevant areas. In 
a wired environment the former solution would almost certainly be adopted to avoid the 
communications and processing overheads incurred by polling. However, in a wireless 
environment there are additional factors to consider. Specifically, a call-back based approach 
assumes that communications are reliable. If communications are unreliable, a lack of 
information can either mean that messages are getting lost or that there are no reports of bad 
weather. This ambiguity is clearly undesirable. 

The provision of both stream and operational bindings also proved to be helpful in 
constructing the MOST application. In particular, the complexities of dealing with audio 
communications are largely encapsulated behind stream bindings. This also enables different 
implementations of stream bindings to be provided. For example, the application could readily 
be ported from GSM to a PMR system. 

The authors have considerable experience in the use of stream bindings for the support of 
multimedia applications; these experiences are discussed in detail in [Davies92]. 

Flexible model of trading 
From our experiences, care must be taken in designing a trader service to ensure the 
implementation is flexible enough for a mobile environment. This is particularly important when 
traders are linked. As reported in section 3.2, the particular policies for linking in the 
ANSAware trader proved to be too presceptive for such an environment. As a minimum 
requirement, we believe that traders should be flexible enough to allow peer-to-peer linking. 
Our experiences with the implementation of such a strategy in ANSAware have been positive. 

4.2 Performance aspects 
This section analyses the performance of the QEX protocol. The results are based on the use of 
the network emulator mentioned in section 3.3. 

Experiment I: Comparing REX and QEX (No Fragmentation) 
The aim of the first experiment is to carry out an investigation of the performance of QEX 
against REX for a variety of network bandwidths. The packet size is kept constant and below 
the level of fragmentation. More specifically, requests are 215 bytes and replies 140 bytes 
(including header size in both cases). 
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Figure 4(a) Comparison of throughput Figure 4(b) Comparison of attempts against 
against data rates. data rates. 
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Figure 4(a) plots the number of invocations achieved per second against varying 
bandwidths. This figure shows that QEX works slightly better at low bandwidth (i.e. up to 
approximately 4.8 Kbits/s). At higher data rates however REX performs better. The reason for 
QEX performing better at low bandwidths is illustrated in figure 4(b). This shows the number 
of attempts to send a packet against data rates. The large number of attempts for REX at low 
bandwidth can be explained by the inappropriate retry interval. The better performance of REX 
at higher bandwidths is explained by the optimised behaviour of the protocol when message 
transmission time is small (small packet size or fast network) and application delay is very low. 
In this case, the reply is received by the client before the retry time-out and so the retry/ack 
interaction is unnecessary. If the next call to the server is ready to go immediately on receipt of 
the reply then the next call informs the server that its reply was received and the reply retry/ack 
interaction doesn’t occur. Therefore, in experiment 1, with repeated invocations of small 
message sizes, REX uses less messages than QEX. 

Note that this experiment highlights a worst case scenario for QEX, a single client repeatedly 
sends small packets to a single server that replies as quickly as possible. In real scenarios object 
interactions are more complex; typically messages are more sporadic and experience more 
pronounced application delays. In these scenarios REX will behave as shown in figure 2(a), 
sending more messages than QEX. 

Experiment 2: Comparing REX and QEX (With Fragmentation) 
The aim of the second experiment is to examine the performance of QEX against REX as 
before, though with an invocation payload that causes the fragmentation mechanism to be used. 
The amount of data transferred each time was 2wbytes. 
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Figure 5(a) Comparison of throughput Figure 5(b) Fragments sent by REX for 
against data rates. different data rates. 

Figure 5(a) plots the number of invocations achieved per minute against varying bandwidths. 
This figure shows that QEX works consistently better than REX. The reason for this is 
illustrated in figure 5(b). This shows the number of attempts made by REX to send a two 
fragment invocation against a range of data rates. After one invocation at 2.4Kbps, REX has 
sent and queued over 590 fragments, a second invocation would not be possible. Below this 
rate, the invocation times-out before a single requestheply can get through (over 6,000 
fragments waiting to be sent). This is because the REX fragmentation mechanism does not 
operate any form of congestion control once invocations become fragmented. In contrast, QEX 
maintains a consistent rate of two fragments (i.e. the minimum possible) over all the data rates 
tested once adaptation is completed. 

Experiment 3: Adaptation of QEX 
The third experiment shows how quickly QEX adapts to sudden changes in channel bandwidth. 
To do this we measure the number of unnecessary retries before the protocol adapts to the new 
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bandwidth. This is measured against different fractional rate changes. A fractional change of 1/2 
implies the bandwidth is dropped to a half of its original value. The figure is calculated by 
averaging over different ranges (i.e. 9.6-4.8 Kbits/s, 4.8-2.4 Kbits/s, etc). The highest figure 
is simply adopting the default tunings of REX; the lowest figure is 300 bits/s. 
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Figure 6(a) Extra tries Per invocation Figure 6(b) Extra fragments per invocation 
until adaptation completed. 

Figure 6(a) illustrates adaptation for non-fragmented invocations (identical size to those used 
in experiment 1). As the change in rate is instantaneous, the protocol continues transmitting at 
the cumnt rate until a change in round-trip time is detected. Once the protocol realises the rate 
has changed it begins adapting to the new rate, so less extra packets are transmitted for the next 
invocation, and so on. The figure shows the number of unnecessary reties for the fwst and then 
the second message after the change. In practice no more than two invocations are needed 
before the protocol has fully adapted to the new rate. From this figure we can also see that 
where bandwidth halves, no unnecessary retries occur in adapting to the new rate. When 
bandwidth drops to an eighth of the former rate, on average one unnecessary retry is sent. Over 
the maximum drop in bandwidth less than 8 unnecessary retries are sent. 

Figure 6(b) illustrates adaptation for fragmented invocations (with a payload size of 2Khytes 
as used in experiment 2). As for non-fragmented adaptation, the protocol continues transmitting 
at the current rate until a change in round-trip time is detected. Again, once the protocol realises 
the rate has changed, it begins adapting to the new rate, requesting explicit negative 
acknowledgements after every fragment until it has sufficient round-trip times to transmit no 
redundant fragments. Once the rate becomes stable the tight fragmenthack coupling is relaxed 
more and more over time. Although extra fragments are transmitted while the protocol is 
adapting, these are only redundant if they are unnecessary retransmissions of fragments that the 
partner has already received. If the change in bandwidth occurs during a long invocation (with 
many fragments) then these fragments would have to be transmitted anyway and can be treated 
as congestion with the usual backoff strategy. In this case the protocol needs no more than two 
invocations before full rate adaptation is complete. Less than two additional fragments are 
transmitted when the bandwidth halves. 

until adaptation completed. 

5 CONCLUDING REMARKS 

This paper has reported on experiences with developing mobile applications using the 
ANSAware distributed systems platform. From our experiences, ANSAware provides the 
necessary infrastructure to enable services to be accessed in a heterogeneous environment 
spanning multiple organisational domains. However, changes were required to both the binding 
and trading functions to enable operation in a mobile environment. In particular, explicit QoS- 
managed (stream and operational) bindings were added and changes were made to the linking 
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policy in trading. These changes mean that our modified platform is more closely aligned to the 
emerging RM-ODP standard. In addition, the REX protocol has been replaced by QEX, a 
protocol which adapts to the underlying network bandwidth and provides feedback to the 
application on the quality-of-service obtained. The paper concluded with an evaluation of the 
extended platform and the results of a number of performance tests on QEX. Although 
theoretically the QEX protocol can lead to more messages being transmitted than with REX, we 
believe the additional overhead is justified because QEX’s congestion control and rate 
adaptation enable operation over a variety of bearer services. In addition, in practice we have 
found it rare that REX can optimise to the simple call/ reply case and once the rate settles QEX’s 
fragmentation mechanism uses less messages than REX’S since the number of negative 
acknowledgements required are tuned by QEX. 
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