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Reformulating Mixed-Integer Quadratically

Constrained Quadratic Programs

Laura Galli∗ Adam N. Letchford†

January 2011

Abstract

It is well known that semidefinite programming (SDP) can be used
to derive useful relaxations for a variety of optimisation problems.
Moreover, in the particular case of mixed-integer quadratic programs,
SDP has been used to reformulate problems, rather than merely relax
them. The purpose of reformulation is to strengthen the continuous re-
laxation of the problem, while leaving the optimal solution unchanged.
In this paper, we explore the possibility of extending the reformulation
approach to the (much) more general case of mixed-integer quadrati-
cally constrained quadratic programs.

Keywords: mixed-integer nonlinear programming, semidefinite pro-
gramming, quadratically constrained quadratic programming

1 Introduction

It has been known for some time that semidefinite programming (SDP) can
be used to derive strong tractable convex relaxations of hard optimisation
problems. Examples of problems to which this idea has been successfully ap-
plied include (in order of increasing generality) zero-one linear programming
(0-1 LP) [15], zero-one quadratic programming (0-1 QP) [7, 9, 17], non-
convex quadratically constrained quadratic programming (QCQP) [6, 20, 23]
and general polynomial programming [13, 19].

In a recent paper, Billionnet et al. [3] applied SDP to equality-constrained
0-1 QP, but in an unconventional way. They proposed to use SDP to refor-
mulate such 0-1 QP instances, rather than merely relax them. Their method,
which they called Quadratic Convex Reformulation (QCR), has two effects.

∗DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy. E-mail:
l.galli@unibo.it
†Department of Management Science, Lancaster University, Lancaster LA1 4YW,
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First, it converts non-convex instances into convex ones. Second, when ap-
plied to instances that are already convex, it improves the bound obtained
by solving the continuous relaxation of the instance.

The motivation behind the QCR method is that there now exist quite
effective software packages for convex mixed-integer quadratic programming
(MIQP). Once QCR has been applied to the 0-1 QP instance, the reformu-
lated instance can simply be passed to such a software package, which is
then treated as a ‘black box’. In particular, if the software package solves
the problem by branch-and-bound with convex QP relaxations, the improved
bounds obtained by reformulation can be expected to lead to a reduction in
the number of branch-and-bound nodes.

In a recent follow-up paper, Billionnet et al. [2] show that, under certain
conditions, the QCR method can be extended from equality-constrained 0-1
QP to general MIQP. The purpose of the present paper is to show that, again
under certain conditions, it can be extended to the even more general case of
mixed-integer quadratically constrained quadratic programming (MIQCQP).
Interestingly, handling quadratic constraints adequately turns out to be a
non-trivial exercise.

We remark that software is now emerging for convex MIQCQP (see, e.g.,
Drewes [4]). Therefore, our extension of QCR is likely to be of practical use.

The structure of the paper is as follows. In Section 2, we review the rele-
vant literature. In Section 3, we show that the QCR method can be adapted
easily to deal with 0-1 QCQP instances in which all quadratic constraints are
equations. In Section 4, we consider the case in which quadratic inequalities
are also present. In Sections 5 and 6, we consider the further complications
posed by integer and continuous variables, respectively. Finally, concluding
remarks are made in Section 7.

2 Literature Review

We now review the relevant literature. In Subsection 2.1, we review certain
semidefinite and Lagrangian relaxations for non-convex QCQP, which will
be useful later. In Subsection 2.2, we recall some of the stronger relaxations
that have been proposed for the special case of 0-1 QP. In Subsection 2.3,
we briefly review the two papers on the QCR method [2, 3].

2.1 Relaxations of non-convex QCQP

A general instance of QCQP can be written in the following form:

inf xTQ0x+ c0 · x
s.t. xTQjx+ cj · x ≤ hj (j = 1, . . . ,m) (1)

x ∈ Rn,
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where the Qj are symmetric matrices of order n, the cj are n-vectors and
the hj are scalars. (We write ‘inf’ rather than ‘min’ because it is possible
that the infimum is not attainable.)

Now suppose that at least one of the Qj is not positive semidefinite (psd),
so that the problem is not convex. We can derive a semidefinite relaxation
as follows [6, 20, 23]. We define the n× n matrix X = xxT , along with the
augmented matrix

Y =

(
1

x

)(
1

x

)T
=

(
1 xT

x X

)
.

Note that Y is symmetric and psd. The following SDP is therefore a relax-
ation of non-convex QCQP:

inf Q0 •X + c0 · x
s.t. Qj •X + cj · x ≤ hj (j = 1, . . . ,m)

Y � 0.

Here, Qj •X denotes
∑n

i=1

∑n
k=1Q

j
ikXik, and Y � 0 means that Y is sym-

metric and psd.
There is a connection between semidefinite and Lagrangian relaxations

of non-convex QCQP [5, 6, 14, 17]. Suppose we relax the constraints (1) in
Lagrangian fashion, using a vector λ ∈ Rm+ of Lagrangian multipliers. The
Lagrangian is

f(x, λ) = xT

Q0 +
m∑
j=1

λjQ
j

x+

c0 +
m∑
j=1

λjc
j

 · x− m∑
j=1

λjhj .

The relaxed problem is:

inf {f(x, λ) : x ∈ Rn} ,

which is an unconstrained quadratic minimisation problem. The Lagrangian
dual is:

sup
λ∈Rm

+

inf
x∈Rn

f(x, λ).

As explained in [6, 14, 17], if the supremum is attainable by some multiplier
vector λ∗, then λ∗ must be an optimal dual solution to the SDP. If in addition
the SDP or its dual satisfy the Slater condition, then the semidefinite and
Lagrangian bounds will be equal. An analogous result holds when quadratic
equations, rather than inequalities, are present.
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2.2 Relaxations of 0-1 QP

An instance of 0-1 QP can be written in the following form:

min xTQx+ cTx

s.t. Ax = b (2)

Dx ≤ f (3)

x ∈ {0, 1}n,

where Q is again a symmetric square matrix, A and D are matrices of
appropriate dimension, and c, b and f are vectors of appropriate dimension.

As observed by many authors (e.g., [8, 12, 14, 15, 17]), the condition
that x be binary is equivalent to the non-convex quadratic constraints

x2i − xi = 0 (i = 1, . . . , n). (4)

That is, 0-1 QP can be regarded as a special case of non-convex QCQP. This
observation suggests immediately the following semidefinite relaxation:

inf
{
Q •X + cTx : (2), (3), x = diag(X), Y � 0

}
.

The SDP can be strengthened using some ideas presented in [15, 22].
Given a linear equation in the system (2), say aj · x = bj , and any variable,
say xk, the quadratic equation (aj · x)xk = bjxk is satisfied by all feasible
solutions. This implies that the equation

n∑
i=1

ajiXik − bjxk = 0 (5)

can be added to the SDP. In a similar way, any linear inequality in the
system (3) can be multiplied by either xk or 1− xk to yield valid quadratic
inequalities, which can also be converted into valid inequalities for the SDP.
Moreover, pairs of linear inequalities can be multiplied together to yield even
more valid quadratic inequalities.

In [14, 17], it is suggested to add to the SDP the single additional equa-
tion

ATA •X = bT b (6)

instead of the equations (5). Remarkably, whether we add all of the equa-
tions (5), or just the single equation (6), the feasible region of the strength-
ened SDP is the same (Faye & Roupin [5]). A similar idea, but for the case
of inequalities, appears in Roupin [21].

The SDP can be strengthened even further, by adding generic valid in-
equalities for quadratic 0-1 problems, such as triangle or hypermetric in-
equalities [9, 16]. Details are omitted for the sake of brevity.

It follows from the result mentioned in the previous subsection that, for
any semidefinite relaxation of 0-1 QP, there is a corresponding Lagrangian
relaxation. Examples of such relaxations appear, for example, in [6, 11, 12,
14, 17]. Again, details are omitted for brevity.
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2.3 The QCR method

We now move from relaxation to reformulation, starting with the special
case of 0-1 QP. For our purposes, reformulating a 0-1 QP instance means
perturbing the objective function in such a way that the cost of each feasible
solution is unchanged.

An early paper on this topic was Hammer & Rubin [8]. They proposed
to convert non-convex 0-1 QP instances into convex ones simply by adding∑

1≤i≤nM(x2i −xi) to the objective, where M > 0 is large enough to ensure
that the matrix Q + MI of quadratic coefficients is psd. (A suitable value
for M is the minimum eigenvalue of Q, multiplied by minus one.)

Billionnet et al. [3] develop this idea further, though only for equality-
constrained 0-1 QP. They perturb the objective by adding terms of the
form λi(x

2
i − xi), where λ ∈ Rn, along with terms of the form µjk(a

j · x −
bj)xk, where µ is a real matrix of the same dimension as A. They then
propose to select values for λ and µ that (i) render the resulting 0-1 QP
instance convex, and (ii) maximise the lower bound obtained by solving the
continuous relaxation of the instance.

To do this, Billionnet et al. [3] propose to solve the SDP mentioned in the
previous subsection, strengthened with the constraints of the form (5), and
then set λ and µ to the optimal dual values for the constraints diag(X) = x
and (5), respectively. (We remark that this assumes that such optimal dual
values exist — see Subsection 3.2.) This is the original QCR method.

In the subsequent paper [2], Billionnet et al. extend the QCR method to
the case of MIQP. The basic ideas are as follows:

• Each general-integer variable is replaced with a small number of binary
variables, using the standard bit representation.

• The objective function is perturbed using the equations, but not the
inequalities.

• Continuous variables can be handled simply by omitting the corre-
sponding equations (4).

It has to be assumed, however, that the principal submatrix of Q correspond-
ing to the continuous variables is psd, since otherwise no convexification is
possible. For the sake of brevity, we do not go into further details here.

3 On 0-1 QCQP with Quadratic Equations

In this section and the following three, we show how the QCR method can
be extended to handle quadratic constraints. In this section, we deal with
a relatively easy special case: that in which all variables are binary, and all
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quadratic constraints are equations. Throughout, we assume that the 0-1
QCQP instance has been written in the following form:

min xTQ0x+ c0 · x (7)

s.t. Ax = b (8)

Dx ≤ f (9)

xTQjx+ cj · x = hj (j = 1, . . . ,m) (10)

x2i − xi = 0 (i = 1, . . . , n). (11)

Any additional valid quadratic equations, such as (5) or (6), are assumed to
have already been included in the system (10).

3.1 Semidefinite and Lagrangian relaxations

If we mechanically follow the scheme outlined in Section 2, we obtain the
following semidefinite relaxation:

inf Q0 •X + c0 · x
s.t. (8), (9)

Qj •X + cj · x = hj (j = 1, . . . ,m)

diag(X) = x

Y � 0.

The corresponding Lagrangian relaxation is formed by relaxing all of the
constraints (8)–(11), each with their own set of multipliers. We will denote
these multipliers by λ, µ, ν and φ, respectively. The Lagrangian then takes
the form:

f(x, λ, µ, ν, φ) = xT Q̄x+ c̄Tx+ h̄,

where:

Q̄ = Q0 +

m∑
j=1

νjQ
j + Diag(φ)

c̄ = c0 +ATλ+DTµ+

m∑
j=1

νjc
j − φ

h̄ = −λT b− µT f −
m∑
j=1

νjhj .

The components of Q̄ and c̄ can be thought of as ‘reduced costs’ with respect
to the given multipliers.

The Lagrangian dual is simply:

sup
λ,µ,ν,φ

inf
x∈Rn

f(x, λ, µ, ν, φ).
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3.2 Some remarks on the relaxations

Before presenting our reformulation scheme, we present some results con-
cerning the relaxations presented in the previous subsection. We will find it
helpful to write the dual of the SDP explicitly, as:

sup t

s.t.

(
h̄− t c̄T /2
c̄/2 Q̄

)
� 0

λ, ν, φ, t free

µ ≥ 0.

Here, t is the dual variable for the constraint Y00 = 1 (which is implicit in
the definition of Y ), and Q̄, c̄ and h̄ are as in the previous subsection.

From the result mentioned in Subsection 2.1, solving the Lagrangian dual
is equivalent to solving the above dual SDP. The following two propositions
show that the primal and dual SDPs behave quite differently:

Proposition 1 The primal SDP has a bounded feasible region, but it does
not necessarily satisfy the Slater condition.

Proof. For all 1 ≤ i ≤ n, the matrix Y contains the 2 × 2 principle

submatrix

(
1 xi
xi Xii

)
. Since Y is psd, we have Xii ≥ x2i . Together with

xi = Xii, this implies xi ∈ [0, 1] and Xii ∈ [0, 1] for all i. Moreover, since Y is
psd, it satisfies bTY b ≥ 0 for all b ∈ Rn+1. Setting b = (−1/2, 1, 1, 0, . . . , 0)T

we get
X11 +X22 + 2X12 − x1 − x2 + 1/4 ≥ 0.

Together with x1 = X11 and x2 = X22, this implies X12 ≥ −1/8. On the
other hand, setting b = (0, 1,−1, 0, . . . , 0)T , we get X11 + X22 − 2X12 ≥ 0.
Since, as we have already seen, X11 ≤ 1 and X22 ≤ 1, we have X12 ≤ 1. By
symmetry, we then have −1/8 ≤ Xij ≤ 1 for all pairs (i, j). Therefore the
feasible region is bounded.

To see that the primal SDP need not satisfy the Slater condition, just
consider a 0-1 QCQP instance that contains the quadratic equation x2k = 0
for some k. The corresponding constraint in the SDP, of the form Xkk = 0,
prevents the matrix Y from being positive definite. Therefore the primal
SDP is not strictly feasible. �

Proposition 2 The dual SDP satisfies the Slater condition, but its feasible
region is unbounded.

Proof. Given any values for λ, µ and ν, we can obtain a feasible solution
to the dual SDP by setting both t and the components of φ to arbitrary
large negative values. This shows that the feasible region is unbounded.
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Moreover, if we set t and the components of φ to large enough negative

values, the matrix

(
h̄− t c̄T /2
c̄/2 Q̄

)
will be positive definite, making the dual

solution strictly feasible. �

Proposition 1 implies that we can write ‘min’ instead of ‘inf’ in the primal
SDP. More importantly, the two propositions imply the following result:

Corollary 1 The Lagrangian dual has the same value as the primal SDP,
but there may not exist feasible Lagrangian multipliers that actually attain
that value.

The following instance, adapted from [5], illustrates this corollary:

min
{

2x1x2 − x22 − 2x1 : x22 = 1, x ∈ {0, 1}2
}
.

One can easily show that the primal SDP gives a lower bound of −1, which
is optimal, but that there is no dual solution (semidefinite or Lagrangian)
that gives that lower bound.

Our next result indicates that including the equations (5) or (6) in the
SDP could potentially cause problems:

Proposition 3 Suppose that a 0-1 QP or 0-1 QCQP instance contains lin-
ear equations of the form (8), and suppose that the SDP relaxation has been
strengthened by including the equations (5) or (6). Then the primal SDP
will not satisfy the Slater condition.

Proof. We have already seen that the equation (6), together with Y � 0,
implies the equations (5). They in turn imply that(

−bj
aj

)T
Y

(
−bj
aj

)
= 0

for all j. This implies that Y is not positive definite, which means that the
primal SDP is not strictly feasible. �

Fortunately, we have found that, despite the theoretical issues raised in
this subsection, the supremum in the Lagrangian and semidefinite duals is
almost always attainable in practice.

3.3 Reformulation

We now come to reformulation. By analogy with the original QCR method,
we seek to transform a 0-1 QCQP instance into another 0-1 QCQP instance,
that has the following five properties:

• The objective function is convex.
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• The feasible region of the continuous relaxation is convex.

• The set of feasible solutions is identical to that of the original instance.

• The cost of each feasible solution is the same as it was in the original
instance.

• The lower bound obtained by solving the continuous relaxation is equal
to the lower bound obtained by applying semidefinite or Lagrangian
relaxation to the original instance.

Note that the continuous relaxation of a 0-1 QCQP instance is obtained
simply by replacing the constraints (11) with the constraint x ∈ [0, 1]n.

A first observation is that, when perturbing the objective function, we
can exploit the equations (8), (10) and (11). Specifically, we are free to add
terms of the form:

• (λTA)x− λT b for some real vector λ of appropriate dimension,

• νj(xTQjx+ cj · x− hj) for some ν ∈ Rm

• xTDiag(φ)x− φTx for some φ ∈ Rn.

Note that, with this notation, the perturbed objective function will have the
form of the Lagrangian f(x, λ, µ, ν, φ) defined in Subsection 3.1, except that
µ will be zero. We will see that, in fact, we can fix λ to zero as well, without
affecting the quality of the reformulation.

A second observation is that, since the quadratic equations (10) are
inherently non-convex, we will need to somehow convexify them, in such a
way that the set of feasible solutions is unchanged. One simple way to do this
is to replace each such equation with two quadratic inequalities, and then
convexify each of the two inequalities independently, using the ‘minimum
eigenvalue’ method of Hammer & Rubin [8], described in Subsection 2.3.

The following theorem shows that, using these two ideas, the desired
reformulation can be obtained:

Theorem 1 Let a 0-1 QCQP instance of the form (7)-(11) be given. Sup-
pose that the primal SDP described in Subsection 3.1 satisfies the Slater
condition (and therefore that the supremum in the dual SDP is attainable).
Then, suppose we perform the following four operations:

• solve the SDP and compute the optimal dual solution (λ∗, µ∗, ν∗, φ∗);

• perturb the objective function of the 0-1 QCQP instance by adding
terms of the form xTDiag(φ∗)x− (φ∗)Tx and ν∗j (xTQjx+ cj · x− hj)
for j = 1, . . . ,m;

• replace each quadratic equation with two quadratic inequalities;
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• convexify the quadratic inequalities using the minimum eigenvalue method.

Then the reformulated instance will be convex, and the lower bound from its
continuous relaxation will be equal to the lower bound from the SDP.

Proof. The objective function of the reformulated instance is

xTQ∗x+ c∗ · x+ h∗,

where:

Q∗ = Q0 +
m∑
j=1

ν∗jQ
j + Diag(φ∗)

c∗ = c0 +
m∑
j=1

ν∗j c
j − φ∗

h∗ = −
m∑
j=1

ν∗j hj .

Note that Q∗ has the same form as the matrix Q̄ described in Subsection 3.1.
Since ν∗ and φ∗ belong to a feasible dual solution, we have Q∗ � 0. Therefore
the objective function of the reformulated instance is convex. Moreover, the
constraints in the reformulated instance are convex by assumption.

Now, from the equivalence of semidefinite and Lagrangian relaxation,
the lower bound from the semidefinite relaxation is equal to:

min
{
xT Q̄∗x+ c̄∗ · x+ h̄∗ : x ∈ Rn

}
. (12)

From the fact that this is a convex optimisation problem, and the fact that
λ∗ and µ∗ form part of an optimal dual solution, this bound is equal to:

min
{
xTQ∗x+ c∗ · x+ h∗ : (8), (9), x ∈ Rn

}
.

The continuous relaxation of the reformulated instance is identical to this,
except that it has some additional constraints; namely, the convexified
quadratic inequalities and the constraint x ∈ [0, 1]n. The lower bound from
the continuous relaxation is therefore at least as large as (12). Moreover,
it cannot be larger, since the additional constraints are convex and are im-
plied by constraints that have already been incorporated into the objective
function of (12) with optimal multipliers. �

4 Handling Quadratic Inequalities

Now we consider how to extend the QCR method to general 0-1 QCQP,
in which quadratic inequalities may be present. We assume that the 0-1
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QCQP instance is of the form (7)-(11), but also has r additional quadratic
inequalities of the form:

xTQjx+ cj · x ≤ hj (j = m+ 1, . . . ,m+ r). (13)

We assume that the system (13) includes any valid quadratic inequalities
that have been derived from linear inequalities using the methods mentioned
in Subsection 2.2.

We will see that quadratic inequalities cause no problems when it comes
to relaxations, but cause big difficulties when it comes to reformulation.

4.1 Semidefinite and Lagrangian relaxations

The semidefinite and Lagrangian relaxations are straightforward. To form
the semidefinite relaxation, we simply add the following inequalities to the
SDP described in Subsection 3.1:

Qj •X + cj · x ≤ hj (j = m+ 1, . . . ,m+ r). (14)

To form the Lagrangian relaxation, we simply relax the quadratic inequali-
ties (13), using a vector of Lagrangian multipliers that we will call π. (Note
that π ∈ Rr+.)

One can easily show that all of the results given in Subsection 3.2, i.e.,
Propositions 1 to 3, remain valid. Since the proofs carry through virtually
unchanged, we omit the details.

4.2 Reformulation: Two difficulties

When it comes to reformulation, however, quadratic inequalities cause two
serious difficulties.

The first is that we cannot always reformulate the 0-1 QCQP instance in
such a way that the lower bound from the continuous relaxation is equal to
the SDP bound. In fact, the best possible lower bound can be much worse
than the SDP bound. This is illustrated by the following example:

Example 1: Consider the following 0-1 QCQP instance:

min −
∑n

i=1 xi

s.t. xixj ≤ 0 (1 ≤ i < j ≤ n) (15)

x2i − xi = 0 (i = 1, . . . , n). (16)

The optimal profit is −1, and the lower bounds from the primal and dual
SDPs are easily shown to be −1 as well. Suppose, then, that we try to re-
formulate the instance. There is no point perturbing the objective function
using the equations (16), since negative values for the multipliers φi would
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destroy convexity and positive values would weaken the lower bound. On
the other hand, the quadratic inequalities (15) are non-convex, and therefore
must be convexified using the equations (16). By symmetry, there exists an
optimal reformulation in which the inequalities (15) are replaced by inequal-
ities of the form:

α(x2i − xi) + α(x2j − xj) + xixj ≤ 0 (1 ≤ i < j ≤ n),

for some real α. For convexity, we require α ≥ 1/2. The best lower bound
is obtained when α = 1/2. Then, the optimal solution x∗ to the continuous
relaxation is (1/2, . . . , 1/2)T , yielding a lower bound of −n/2. �

The second difficulty is that finding an optimal reformulation is itself a
rather complex optimisation problem. In principle, one could perturb each
quadratic inequality in the same way as the objective function was perturbed
in the previous section. That is, one could add terms of the following two
kinds to the kth such inequality:

• νjk(xTQjx+ cj · x− hj) for j = 1, . . . ,m, where νjk ∈ R;

• xTDiag(φk)x− (φk)Tx, where φk ∈ Rn.

To find the best reformulation of this type, one would have to determine
simultaneously the optimal values of the scalars νjk for j = 1, . . . ,m and
k = 1, . . . , r, the vectors φk for k = 1, . . . , r, and the original vectors ν and
φ associated with the objective function. This would have to be done in
such a way that the perturbed objective and constraint functions were all
convex.

It is possible to formulate the problem of finding the best such reformu-
lation as one huge SDP. Unfortunately, the size and complexity of this SDP
grows rapidly as r increases. We do not go into further details, since we do
not recommend such an approach.

4.3 Reformulation: Possible remedies

We now show that, if one is willing to convert a 0-1 QCQP instance into a
mixed 0-1 QCQP instance (i.e., an instance in which continuous variables
are present), then a strong reformulation can always be obtained:

Proposition 4 Let a 0-1 QCQP instance of the form (7)-(11), (13) be
given. Suppose that the primal SDP described in Subsections 3.1 and 4.1
satisfies the Slater condition. Then, suppose we perform the following five
operations:

• solve the SDP and compute the optimal dual solution (λ∗, µ∗, ν∗, φ∗, π∗);
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• take the 0-1 QCQP instance and replace the quadratic inequalities (13)
with the following constraints:

xTQjx+ cj · x+ sj = hj (j = m+ 1, . . . ,m+ r) (17)

sj ≥ 0 (j = m+ 1, . . . ,m+ r), (18)

where the sj are new continuous slack variables;

• perturb the objective function of the mixed 0-1 QCQP instance by
adding terms of the form ν∗j (xTQjx + cj · x − hj) for j = 1, . . . ,m,

xTDiag(φ∗)x − (φ∗)Tx, and π∗j (x
TQjx + cj · x + sj − hj) for j =

m+ 1, . . . ,m+ r;

• replace each quadratic equation with two quadratic inequalities;

• convexify the quadratic inequalities using the minimum eigenvalue method.

Then the reformulated mixed 0-1 QCQP instance will be convex, and the
lower bound from its continuous relaxation will be equal to the SDP bound.

Proof. The proof is similar to that of Theorem 1. The only significant
difference is that the reformulated instance will contain an additional term
of the form π∗ · s in the objective function, along with the additional non-
negativity constraint s ≥ 0. Now, since π ∈ Rr+, the optimal solution to
the continuous relaxation will always satisfy s∗ = 0, so the presence of the
s variables has no effect on the quality of the lower bound. �

We illustrate Proposition 4 on the example given in Subsection 4.2:

Example 1 (cont.): Introducing slack variables, we obtain the following
mixed 0-1 QCQP instance:

min −
∑n

i=1 xi

s.t. xixj + sij = 0 (1 ≤ i < j ≤ n)

x2i − xi = 0 (i = 1, . . . , n)

sij ≥ 0 (1 ≤ i < j ≤ n).

One can show that the optimal dual solution satisfies φ∗i = 1 for i = 1, . . . , n
and π∗ij = 2 for 1 ≤ i < j ≤ n. We therefore perturb the objective function
by adding

n∑
i=1

(x2i − xi) + 2
∑

1≤i<j≤n
(xixj + sij).

We then replace each quadratic equation of the form xixj + sij = 0 with
two quadratic inequalities, of the form xixj + sij ≤ 0 and −xixj − sij ≤ 0.
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Convexifying these inequalities using the minimum eigenvalue heuristic, we
arrive (after some simplification) at the following reformulated instance:

min −2
∑n

i=1 xi + (
∑n

i=1 xi)
2 + 2

∑
1≤i<j≤n sij

s.t. 1
2(x2i − xi) + 1

2(x2j − xj) + xixj + sij ≤ 0 (1 ≤ i < j ≤ n)

1
2(x2i − xi) + 1

2(x2j − xj)− xixj − sij ≤ 0 (1 ≤ i < j ≤ n)

x2i − xi = 0 (i = 1, . . . , n)

sij ≥ 0 (1 ≤ i < j ≤ n).

Due to the form of the objective function of this instance, all optimal so-
lutions to the continuous relaxation satisfy

∑n
i=1 xi = 1 and s = 0. This

yields a lower bound of −1, which is both optimal and equal to the SDP
bound. �

The following proposition shows that, in fact, only one continuous slack
variable needs to be added to the instance to obtain a strong reformulation:

Proposition 5 Let a 0-1 QCQP instance of the form (7)-(11), (13) be
given, and suppose as before that the primal SDP satisfies the Slater condi-
tion. Then, suppose we perform the following five operations:

• solve the SDP and compute the optimal dual solution (λ∗, µ∗, ν∗, φ∗, π∗);

• add the following two constraints to the 0-1 QCQP instance:∑m+r
j=m+1 π

∗
j (x

TQjx+ cj · x) + s̃ =
∑m+r

j=m+1 π
∗
jhj (19)

s̃ ≥ 0, (20)

where s̃ is a new continuous slack variable;

• perturb the objective function of the mixed 0-1 QCQP instance by
adding terms of the form ν∗j (xTQjx + cj · x − hj) for j = 1, . . . ,m,

xTDiag(φ∗)x−(φ∗)Tx, π∗j (x
TQjx+cj ·x−hj) for j = m+1, . . . ,m+r,

and s̃;

• replace each quadratic equation with two quadratic inequalities;

• convexify all quadratic inequalities using the minimum eigenvalue method.

Then the reformulated mixed 0-1 QCQP instance will be convex, and the
lower bound from its continuous relaxation will be equal to the SDP bound.

Proof. The proof is similar to that of Theorem 1. The only significant
difference is that the reformulated instance will contain the additional term s̃
in the objective function, along with the additional non-negativity constraint
s̃ ≥ 0. Clearly, the optimal solution to the continuous relaxation will always
satisfy s̃ = 0, so the presence of s̃ has no effect on the quality of the lower
bound. �
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We illustrate Proposition 5 on the same example:

Example 1 (cont.): We add the constraint

2
∑

1≤i<j≤n
xixj + s̃ = 0 (21)

to the problem, along with the non-negativity constraint s̃ ≥ 0. We then
perturb the objective function by adding

n∑
i=1

(x2i − xi) + 2
∑

1≤i<j≤n
xixj + s̃.

We then replace the quadratic equation (21) with two quadratic inequalities.
Convexifying these inequalities using the minimum eigenvalue heuristic, we
arrive (after some simplification) at the following reformulated mixed 0-1
QCQP instance:

min −2
∑n

i=1 xi + (
∑n

i=1 xi)
2 + s̃

s.t. 1
2(xi + xj)

2 − 1
2(xi + xj) ≤ 0 (1 ≤ i < j ≤ n)∑n

i=1(x
2
i − xi) + 2

∑
1≤i<j≤n xixj + s̃ ≤ 0

(n− 1)
∑n

i=1(x
2
i − xi)− 2

∑
1≤i<j≤n xixj − s̃ ≤ 0

x2i − xi = 0 (i = 1, . . . , n)

s̃ ≥ 0.

Due to the form of the objective function of this instance, all optimal so-
lutions to the continuous relaxation satisfy

∑n
i=1 xi = 1 and s̃ = 0. This

yields a lower bound of −1, as before. �

5 Integer Variables

Next, we consider how to deal with variables that are constrained to take
integer values. We assume without loss of generality that such variables
must be non-negative.

A first observation is that integer variables present no problem for the
semidefinite and Lagrangian approaches. Indeed, an integer variable xi can
be handled in the semidefinite relaxation simply by appending the inequality
xi ≥ 0 to the relaxation, instead of the equation xi = Xii. Similarly, it
can be handled in the Lagrangian relaxation simply by relaxing the linear
inequality xi ≥ 0 (with a non-negative Lagrangian multiplier), rather than
the quadratic equation x2i − xi = 0.

As for reformulation, note that we cannot use terms of the form x2i − xi
to perturb the objective or constraint coefficient of integer variables. This
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can prevent the existence of a convex reformulation. As a trivial example,
consider the problem:

min
{
x1x2 − x21 − x22 : x1 + x2 = 2, x ∈ Z2

+

}
.

The fact that the objective function cannot be convexified is seen by con-
sidering the feasible solutions (0, 2), (1, 1) and (2, 0), with costs −4, −1 and
−4, respectively.

To get around this, we use the same approach as in [2], i.e., binary
expansion. Let xi be an integer variable and suppose that we are given an
associated upper bound, say ui ∈ Z+, on the value taken by xi in any feasible
solution. Let ri denote the number of binary bits needed to represent ui,
namely dlog2 uie. Then, one can easily replace xi with a family of binary
variables x̃1i , . . . , x̃

ri
i , using the substitution

xi =

ri∑
t=1

2t−1x̃ti.

In this way, problems with integer variables can be converted into 0-1 QCQP
instances, to which the methods already explained above can be applied.

The following proposition states that binary expansion never causes the
primal SDP bound to get any worse:

Proposition 6 Consider an SDP of the form:

inf Q0 •X + c0 · x
s.t. Qj •X + cj · x = hj (j = 1, . . . ,m)

Qj •X + cj · x ≤ hj (j = m+ 1, . . . ,m+ r)

0 ≤ xi ≤ ui (i = 1, . . . , q)

Xii = xi (i = q + 1, . . . , n)

Y =

(
1 xT

x X

)
� 0,

and suppose that it is a relaxation of an optimisation problem in which the
first q variables are integer and the remaining variables are binary. Suppose
that we apply binary expansion to the SDP. That is, we replace:

• xi with
∑ri

t=1 2t−1x̃ti for i = 1, . . . , q,

• Xik with
∑ri

t=1 2t−1X̃t
ik for i = 1, . . . , q and k = q + 1, . . . , n,

• Xki with
∑ri

t=1 2t−1X̃t
ki for i = 1, . . . , q and k = q + 1, . . . , n,

• Xii with
∑ri

t=1

∑ri
s=1 2t−12s−1X̃t,s

ii for i = 1, . . . , q;
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we add the constraints

X̃t,t
ii = x̃ti (i = 1, . . . , q; t = 1, . . . , ri);

and, instead of imposing psd-ness on the matrix Y , we impose it on the
expanded matrix

Ỹ =

(
1 x̃T

x̃ X̃

)
,

where
x̃ = (x̃11, . . . , x̃

r1
1 , . . . , x̃

1
q , . . . , x̃

rq
q , xq+1, . . . , xn)T ,

and X̃ is the corresponding matrix. Then, the lower bound from the second
SDP is no smaller than the one from the original SDP.

Proof. It suffices to show that, given any feasible solution of the second
SDP, there exists a feasible solution of the original SDP of the same value.
To this end, let (x̃∗, X̃∗) be a feasible solution to the second SDP, let Ỹ ∗ be

the corresponding matrix, let (x∗, X∗) ∈ Rn+n2
be the corresponding pair

defined by the mapping above, and let Y ∗ be the corresponding matrix. By
construction, (x∗, X∗) satisfies all of the constraints in the original SDP,
and has the same cost as (x̃∗, X̃∗). It therefore only remains to be shown
that Y ∗ is psd. This is equivalent to showing that bTY ∗b ≥ 0 for all real
vectors b of dimension n+ 1. So, let b = (b0, . . . , bn)T be such a vector and
construct an expanded vector b̃ as follows. For i = 1, . . . , q, we replace the
single component bi with the following ri components:

bi, 2bi, . . . , 2
ri−1bi.

Now, since Ỹ ∗ is psd by assumption, we have b̃T Ỹ ∗b̃ ≥ 0. From the way in
which Y ∗ was constructed from Ỹ ∗, this implies that bTY ∗b ≥ 0. �

The following example shows that, perhaps surprisingly, binary expan-
sion can lead to an improvement in the lower bound:

Example 2: Consider the following instance with just one integer variable:

min
{
x21 − 3x1 : x1 ≤ 3, x1 ∈ Z+

}
.

There are two optimal solutions of cost −2, obtained by setting x1 to either
1 or 2. The basic SDP relaxation is:

min {X11 − 3x1 : 0 ≤ x1 ≤ 3, Y � 0} .

The optimal solution to this relaxation is to set x1 to 1.5 and X11 to 2.25,
giving a lower bound of −2.25. Now, applying binary expansion to this
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instance, we use the substitution x1 = x̃11 + 2x̃21, where x̃11 and x̃21 are new
binary variables. The SDP relaxation for the transformed instance is:

min X̃1,1
11 + 4X̃2,2

11 + 4X̃1,2
11 − 3x̃11 − 6x̃21

s.t. x̃11 = X̃1,1
11

x̃21 = X̃2,2
11

Ỹ � 0.

One can check with an SDP solver that all optimal solutions to this SDP
have cost −2. So, the transformed SDP yields an improved lower bound. �

Together with the results of the previous two sections, we have the fol-
lowing corollary:

Corollary 2 Given any integer quadratically constrained quadratic program,
along with explicit upper bounds for each variable, we can construct in poly-
nomial time an equivalent convex mixed 0-1 QCQP instance, such that the
lower bound obtained by solving its continuous relaxation is no worse than
the lower bound obtained by solving the SDP relaxation of the original in-
stance.

Now suppose, however, that the upper bounds ui are not given in ad-
vance. In this case, we run into a technical difficulty:

Proposition 7 Given an arbitrary MIQCQP instance, it is impossible to
compute finite upper bounds on the values taken by the integer variables in
finite time.

Proof. It was shown by Jeroslow [10] that testing feasibility of an integer
program with quadratic constraints is undecidable. This means that no
finite algorithm for the problem exists. Now, if upper bounds on the values
of integer variables could be computed in finite time, a finite algorithm for
the feasibility problem could be obtained by simply enumerating all integer
vectors whose values lie within the computed bounds, and checking them
for feasibility. This is a contradiction. �

Fortunately, in practical applications, such upper bounds are likely to
be readily available, since integer-constrained decision variables typically
represent production quantities or the like.

6 Continuous Variables

In Subsection 4.3, we considered the use of continuous slack variables as
a device to obtain strong reformulations. In this section, we consider how
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to deal with continuous variables in general. That is, we are concerned
with general mixed integer quadratically constrained quadratic programming
(MIQCQP). As in the previous section, we assume without loss of generality
that all continuous variables must be non-negative.

In the context of the semidefinite and Lagrangian approaches, continuous
variables can be handled in exactly the same way as integer variables, and
therefore they present no problems. When it comes to reformulation, on the
other hand, continuous variables cause serious difficulties. Indeed, a convex
reformulation may not exist in general, and we cannot get around this issue
by ‘binarisation’, as we did for integer variables.

It turns out to be helpful to distinguish several cases, which are dealt
with in the following three propositions.

Proposition 8 Suppose an MIQCQP instance has explicit upper bounds
for all integer variables, and that, for all continuous variables, all quadratic
objective and constraint coefficients are zero. Then we can compute in poly-
nomial time an equivalent mixed 0-1 QCQP instance that is convex, and
whose continuous relaxation yields a lower bound that is at least as good as
the SDP bound.

Proof. From the results of the previous section, we can replace all integer
variables with binary variables, without causing any worsening of the SDP
bound. The proof is then similar to that of Theorem 1 and Propositions 4
and 5. The only significant difference is that for a continuous variable xi,
there is no constraint x2i − xi = 0, and therefore there is no associated dual
variable φi. Instead, there is the constraint xi ≥ 0, which can be retained
in the reformulated instance. �

Proposition 9 Suppose an MIQCQP instance has explicit upper bounds
for all integer variables, let m and r denote the number of quadratic equa-
tions and quadratic inequalities, respectively, and let Q0, . . . , Qm+r denote
the objective and constraint matrices, as in the previous sections. Let Q̂j, for
j = 0, . . . ,m+ r, denote the principal submatrix of Qj corresponding to the
continuous variables. If Q̂j contains a non-zero entry, for some 1 ≤ j ≤ m,
or Q̂j is not psd, for some j ∈ {0} ∪ {m + 1, . . . ,m + r}, then a convex
reformulation may not exist.

Proof. Suppose that Q̂j contains a non-zero entry for some 1 ≤ j ≤ m, but
that Q̂k is the zero matrix for all k 6= j. Then, regardless of how we perturb
the jth quadratic equation, the submatrix Q̂j will remain unchanged and
the equation will remain non-convex. Moreover, even if we replace it with
two quadratic inequalities, at least one of the inequalities will be non-convex,
since it is impossible for both Q̂j and −Q̂j to be psd simultaneously when
Q̂j is non-zero.
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Similarly, suppose that Q̂j is not psd for some m + 1 ≤ j ≤ m + r,
but that Q̂k is the zero matrix for all k 6= j. Then, regardless of how
we perturb the corresponding quadratic inequality, the submatrix Q̂j will
remain unchanged and the inequality will remain non-convex. A similar
argument applies when Q̂0 is not psd. �

Proposition 10 Suppose an MIQCQP instance has explicit upper bounds
for all integer variables, and let m, r, Q0, . . . , Qm+r and Q̂0, . . . , Q̂m+r be as
defined in the previous proposition. If Q̂j is the zero matrix for j = 1, . . . ,m,
and Q̂j is psd for j ∈ {0} ∪ {m + 1, . . . ,m + r}, then we can compute in
polynomial time an equivalent convex mixed 0-1 QCQP instance, but there
may not exist a reformulated instance whose continuous relaxation yields a
lower bound that is as strong as the SDP bound.

Proof. In this case, we can convexify the instance by replacing each
quadratic equation with two quadratic inequalities, and then convexifying
all objective and constraint functions by adding large multiples of the terms
x2i − xi for all 0-1 variables.

On the other hand, we cannot convert quadratic inequalities into equa-
tions by introducing slack variables, as done in Subsection 4.3 for the pure
0-1 case, since this would take us into the situation described in the previ-
ous proposition. This means that quadratic inequalities cannot be used to
perturb the objective function, and therefore we may not be able to obtain
a strong reformulation. �

As an illustration of Proposition 9, it suffices to take the trivial instance

min
{
x1 + x2 : x21 + x22 = 1, x ∈ R2

+

}
.

The following, more complex, example illustrates Proposition 10:

Example: Consider the following mixed 0-1 QCQP instance:

min −
∑n

i=1 xi

s.t. xixj + x2n+1 ≤ 0 (1 ≤ i < j ≤ n)

x2i − xi = 0 (i = 1, . . . , n),

xn+1 ≥ 0.

Note that it is identical to the instance given in Subsection 4.2, apart from
the extra terms involving the continuous variable xn+1. The optimal profit
is again −1, and the lower bounds from the primal and dual SDPs are easily
shown to be −1 as well.

We cannot add slack variables to the quadratic inequalities, since this
would yield quadratic equations involving the term x2n+1, which could not be
convexified. On the other hand, if we keep the original variables, exactly the
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same argument as before shows that the optimal reformulation is obtained
by replacing the quadratic inequalities with inequalities of the form:

1

2
(x2i − xi) +

1

2
(x2j − xj) + xixj + x2n+1 ≤ 0.

The optimal solution x∗ to the continuous relaxation is (1/2, . . . , 1/2, 0)T ,
yielding a lower bound of −n/2 as before. �

Remark: It should not be surprising that continuous variables can pre-
vent the existence of a convex reformulation. Indeed, non-convex QCQP,
a purely continuous problem, is an NP-hard global optimisation problem.
If non-convex QCQP instances could be converted into convex QCQP in-
stances in polynomial time, then P would equal NP.

7 Conclusion

Although Lagrangian and semidefinite relaxations of QCQP are well known,
their use as a tool for reformulation is less widely known. In this paper, we
have shown that the Quadratic Convex Reformulation (QCR) technique of
Billionnet et al. [2, 3] can be extended, under certain conditions, from the
case of MIQP to the much more general case of MIQCQP. In most cases,
we are able to obtain convex reformulations whose associated lower bounds
are at least as good as the SDP bound, and sometimes better. A serious
problem is however posed by continuous variables that have quadratic terms
in one or more constraints. Such variables can cause convex reformulations
to be weak, or even prevent them from existing at all. This is not surprising,
however, given that QCQP is already NP-hard in the strong sense.

An interesting potential topic for future research is the extension of the
QCR method to optimisation problems involving higher-order polynomi-
als. Another is whether one could obtain better reformulations by using
second-order conic constraints [1, 4], rather than convex quadratic con-
straints (which are less general).
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[14] C. Lemaréchal & F. Oustry (2001) SDP relaxations in combinatorial
optimization from a Lagrangian viewpoint. In N. Hadjisawas & P.M.
Pardalos (eds.), Advances in Convex Analysis and Global Optimization.
Dortrecht: Kluwer.

[15] L. Lovász & A.J. Schrijver (1991) Cones of matrices and set-functions
and 0-1 optimization. SIAM J. Optimization, 1, 166–190.

22



[16] M.W. Padberg (1989) The boolean quadric polytope: some character-
istics, facets and relatives. Math. Program., 45, 139–172.

[17] S. Poljak, F. Rendl & H. Wolkowicz (1995) A recipe for semidefinite
relaxation for (0,1)-quadratic programming. J. Global Opt., 7, 51–73.

[18] S. Poljak & H. Wolkowicz (1995) Convex relaxations of (0, 1)-quadratic
programming. Math. Oper. Res., 20, 550–561.

[19] P.A. Parrilo (2003) Semidefinite programming relaxations for semialge-
braic problems. Math. Program., 96, 293–320.

[20] M. Ramana (1993) An Algorithmic Analysis of Multiquadratic and
Semidefinite Programming Problems. PhD thesis, Johns Hopkins Uni-
versity, Baltimore, MD.

[21] F. Roupin (2004) From linear to semidefinite programming: an algo-
rithm to obtain semidefinite relaxations for bivalent quadratic prob-
lems. J. Comb. Opt., 8, 469–493.

[22] H.D. Sherali & W.P. Adams (1998) A Reformulation-Linearization
Technique for Solving Discrete and Continuous Nonconvex Problems.
Dordrecht: Kluwer.

[23] N. Shor (1987) Quadratic optimization problems. Sov. J. Comput. Syst.
Sci., 25, 111.

23


