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Abstract

In this paper we propose a globally stationary augmentation of
the Exponential Smooth Transition Autoregressive (ESTAR) model
that allows for multiple �xed points in the transition function. An
F-type test statistic for the null of nonstationarity against such
globally stationary nonlinear alternative is developed. The test
statistic is based on the standard approximation of the nonlinear
function under the null hypothesis by a Taylor series expansion.
The model is applied to the U.S real interest rate data for which
we �nd evidence of the new ESTAR process.
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1 Introduction

The exponential smooth transition autoregressive (ESTAR) process devel-
oped by Haggan and Ozaki (1981) has become a popular method for mod-
elling a variety of relationships in macroeconomics and �nance. Real ex-
change rates and purchasing power parity (PPP) deviations have been thro-
roughly analysed using the ESTAR model (see e.g., Michael et al., 1997;
Taylor et al., 2001; and Paya et al., 2003).2 Empirical analysis of devia-
tions from optimal money holdings have also been estimated using nonlin-
ear ESTAR models (see Terasvirta and Eliasson, 2001; Sarno et al., 2003).
Monetary policy rules where the central bank would follow the oportunistic
approach to disin�ation prposed by Orphanides and Wilcox (1996) have also
been found to follow similar process than the ESTAR (see Bec et al., 2000).
This type of model has also been used in �nance. Symmetric deviations from
arbitrage processes such as stock index futures have been reported to follow
the process described by the ESTAR model (Monoyios and Sarno, 2002).
The standard ESTARmodel is such that the transition function is bounded

between zero and one depending on how far away the transition variable is
away from a determined value, usually called �equilibrium�.3 For instance, in
the case of the PPP, the further away the real exchange rate is from one (�xed
equilibrium) the faster the real exchange rate would revert to such equilib-
rium.4 However, many economic theories support the existence of multiple
equilibria. For example, in the case of in�ation, attempts by governments
to �nance substantial proportion of expenditure by seigniorage can lead to
multiple in�ationary equilibria (Cagan, 1956; Sargent and Wallace, 1973;
Evans et al., 1996). Theoretical models suggest that, in these circumstances,
in�ation follows a non-linear process and that the stability characteristics
depend on expectations formation. In the case of unemployment, shocks
causing sharp cyclical swings in unemployment generate political reactions
from public producing not merely �scal and monetary (demand policy) re-
sponses but also changes in supply-side policy (a¤ecting the equilibrium val-
ues of real variables or �natural rates�) (see Diamond, 1982; and Layard et al.,
1991). With regard to monetary policy rules, some models suggest that once
you take into account the zero bound on nominal interest rates, real interest
rates might follow a number of equilibria (see Benhabib, Schmitt-Grohe, and

2The ESTAR functional form is even suggested explicitly in some economic models of
real exchange rates (see Dumas, 1992; Sercu et al. 1995).

3The standard ESTAR model could also exhibit up until three equilibria. However, for
this to be the case, you would need an explosive autoregressive process.

4See Paya and Peel (2006) for the case where the real exchange rate would follow an
ESTAR model with time-vaying equilibrium.
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Uribe, 1999).
In this paper we propose a new ESTAR type model that allows for mul-

tiple �xed points in the transition function. The purpose of this model is
threefold: (i) it allows for multiple �xed points in a way that is parsimonious
(stationary), (ii) it introduces up to �k�points at which dynamics of the sys-
tem might be similar in neighbourhood, and (iii) it allows data to determine
if such possibilities exist and therefore generalises existing model.
The rest of the paper is organised as follows. Section 2 describes the

k-ESTAR model. Section 3 presents the power of the Kapetanios, Shin and
Snell (KSS) (2003) unit root test in the case where the alternative is generated
by a k-ESTAR model. Section 4 develops a testing procedure to detect
the presence of the k-ESTAR form when the null is a unit root. Section
5 examines the small sample properties of the test developed in section 4.
Section 6 presents an empirical application using the US real interest rate,
and Section 7 concludes.

2 The k-ESTAR model

The ESTAR model was introduced by Haggan and Ozaki (1981) and pop-
ularized by Granger and Terasvirta (1993) and Terasvirta (1994).5 In this
section we develop an extended version of the ESTAR model. In particular,
we consider a nonlinear model of the form

yt = �0 +
pP
j=1

�jyt�j +

"

0 +

pP
j=1


jyt�j

#
G(�k; r; yt�d) + ut (1)

with

G(�k; r; yt�d) =
�
1� exp

�
�f 2(�k; r; yt�d)

	�
f(�k; r; yt�d) = ak (yt�d � r1) (yt�d � r2) ::: (yt�d � rk) (2)

where ut is a stationary and ergodic martingale di¤erence sequence with vari-
ance �2; � =

�
�0; �1; �2; � � � ; �p

�0
; 
 =

�

0; 
1; 
2; � � � ; 
p

�0
; r = (r1; r2; � � � ; rk)0,

�k are unknown parameters and we make an implicit assumption that the
location parameters satisfy r1 < r2 < ::: < rk. The variable yt�d for
d 2 1; 2; :::; dmax in function G(�k; r; yt�d) is the transition variable. De-

�ne the polynomials �(L) = 1 �
pP
j=1

�j and 
(L) = 1 �
pP
j=1


j as the �linear

5A survey of recent developments in ESTAR modelling can be found in van Dijk et al.
(2002).
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and nonlinear autoregressive polynomials�. We are interested in the special
case of a unit root �(L) = 0 in the linear polynomial thus all our subsequent
analysis is based on the restriction

pP
j=1

�j = 1 (3)

This is a generalized version of the ESTARmodel employed by KSS which
is nested in (1) for k = 1; and our notation conforms as much as possible
with the notation in KSS. We refer to the ESTAR model (1) with transition
function (2) as the \k � ESTAR� model. Please note that the transition
function G(:) no longer admits the familiar U-shape of the 1�ESTAR model
although it is bounded between 0 and 1. The smoothness or transition speed
parameter �k is one of the factors that determine the speed of transition
between regimes G(:) = 0 and G(:) = 1 along with the distance of yt�d
from a speci�ed location ri (as in the typical ESTAR model).6 However,
notice that the k�ESTAR model supports a much wider dynamic behavior
since adjustment speed need not be symmetric around any location point
depending on the number of the location points as well as their relative
distance.
Similar geometric ergodicity and associated global stationarity conditions

as those explained by KSS hold for model (1). Following Bhattacharya and

Lee (1995, theorem 1) we assume

����� pPj=1 ��j + 
j�
����� < 1: Very general but dif-

�cult to verify conditions for geometric ergodicity and mixing properties of
nonlinear autoregressive models are given in Liebscher (2005).
The novelty with representation (1) is that it allows for multiple endoge-

nously determined �equilibria�where an equilibrium is considered to be any
real valued �xed point y� that solves

0 = �0 +

"

0 + y

pP
j=1


j

#
�G(�k; r; y) (4)

When yt�d = r1 _ r2 _ � � � _ rk, the k � ESTAR model allows for multiple
�inner�regimes with G(:) = 0 and (1) reduces to

�yt = �0 + ut (5)

behaving as a random walk process (with drift if �0 6= 0). For 1 � ESTAR
models this case is consistent with the existence of an attractor (or �equi-
librium�) around which the series behaves as a random walk. For certain

6See Figure 1 for two transition functions G(:) with di¤erent speeds of adjustment and
same two ��xed�points.
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parameter restrictions, the k � ESTAR has one attractor that is a stable
�xed point but allows for more than one �random walk points�.

For example, we are interested in the cases where �0 = 0 and
pP
j=1

�j = 1:
7

Then y�0 = �

0
pP
j=1


j

is a stable �xed point while y�i = ri i = 1; :::; k represent

positively neutral �xed points.8 The same results hold if 
0 is replaced with
an ri point in order to reduce the number of �xed points considered. For
example if 
0 = r1 then r1 is stable and the previous analysis hold true for
all remaining ri points i 6= 1:
In the �outer�regimes [(yt�d � r1)! �1 and (yt�d � rk)! +1]; func-

tion G(:)! 1 and model (1) reduces to


(L)yt = (�0 + 
0) + ut (6)

Depending on the magnitude of �k and r it is possible to obtain (6) for values
of yt�d between the location points ri as well.
In recent years new testing procedures have been developed in order

to test the null of a unit root against nonlinear ESTAR alternatives (see
Kapetanios et al., 2003). A natural step is then to �nd out whether those
tests have power against the new k � ESTAR model.

3 Small sample power of KSS t-test against
k-ESTAR alternatives

An initial consideration is the small sample power of the t-test devised by
KSS against the more elaborate k � ESTAR model. The KSS t � test is
based on a �nite Taylor approximation method of the nonlinear function
and as such its power depends on the adequacy of the approximation under
the alternative. The test is based on the t � ratio of � from the auxiliary
regression

�yt = �y
3
t�1 + error (7)

7Note also that when the latter hold the restriction �2 <
pP
j=1


j < 0 ensures ergodicity

of the process.
8Following Bair and Haesbroeck (1997) further di¤erentiation reveals that r�i are

monotonously semistable from below as long as r�i > � 
0
pP

j=1


j

and monotonously semi-

stable from above when r�i < �

0
pP

j=1


j

:
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If the data is generated by a k � ESTAR process then we expect the small
sample power of the KSS t � test to decrease. In a small scale experiment,
we create series yt based on the following DGP,

�yt = 
1yt�1
�
1� expf�a2k [(yt�1 � r1) ::: (yt�1 � rk)]

2g
�
+ �t (8)

y0 = 0; t = 1; :::; T �t � N:I:D(0; 1)

Di¤erent persistence pro�les were examined using 
1 = f�1:5;�1;�0:5;�0:1g:
For example, when 
1 = �1 and the process at t � 1 is located far towards
the outer regimes, it becomes i:i:d and mean reverts to the full extend of
yt�1; that is E(�ytj yt�1) = �yt�1; within one period, while for 
1 = �1:5
the series �overreacts�with E(�ytj yt�1) = �1:5yt�1: As 
1 approaches zero
the series becomes progressively more persistent.
We consider a small sample size of T = 100 where the �rst 150 obser-

vations are dropped to avoid initial condition e¤ects and 50,000 replications
are employed. An issue regarding the choice of parameter ak (or a2k) in the
simulation experiment arise. In general, the transition speed parameter ak
which a¤ects the transition speed between �xed points is not scale free. In
addition the parameter a¤ects the persistence of the series with higher speeds
implying less persistence. In the 1 � ESTAR model employed by KSS this
is resolved by setting a21(= �) = f0:01; 0:05; 0:1; 1g after the observation that
given 
; �2� (KSS, p.367) �... the term e��y

2
t�1 measures the size of the largest

root of the series at time t�. For comparison purposes we proceed in a similar
way. In order to generate series of comparable persistence than in KSS but
in a k�ESTAR model, we use samples of T = 2; 000 and 2; 000 replications
to generate yt according to (8) with 
 = �1; �2� = 1; r1 = 0; r2 = 3; r3 = 6
and we search for a2k values such that ��

� � f0:95; 0:80; 0:5; 0:25g where

�t = expf�a23 [(yt�1 � r1) (yt�1 � r2) (yt�1 � r3)]
2g

and ��� denotes the average of the sample mean of �t across replications. The
corresponding values of � were

� � = f0:01; 0:18; 1:425; 7:45g for r1 = 0;

� � =
�
0:01
5:2
; 0:18
4:35
; 1:425
5:9
; 7:45
7:855

	
for r1 = 0; r2 = 3 and

� � =
�
0:01
80
; 0:18
87:5
; 1:425
154
; 7:45
238

	
for r1 = 0; r2 = 3; r3 = 6

For each replication, we estimate � in (7) using OLS and we compare its
t � ratio value with the �2:22 critical value given in Table 1 of KSS. The
rejection probabilities of the null hypothesis H0 : � = 0 appear in table 1.
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Not surprisingly, the table results con�rm severe loss of power, especially
for k = 3: In general the results show sensitivity of power to both transition
speed and nonlinearity. As the transition speed magnitude decreases and
the number of �xed points increase the loss of power increases rapidly. For
example, when k = 3 and ��� � 0:95 with 
 = �1 or 
 = �0:5 the power
of the test is 54:5% and 43% respectively. For values of 
 that imply larger
persistence, for example 
 = �0:1; even with ��� � 0:25 the power is as low
as 42:4%. Another �nding is that the loss of power is not monotonic across
persistence pro�les. For moderate 
 values the loss is smaller for k = 1 to
k = 2 and then deteriorates signi�cantly for k = 3:These �ndings conform
with the orientation of the KSS test towards alternatives generated by the
1� ESTAR model.

4 F-type testing procedure

In this section we develop an F-type test for the null hypothesis of unit
root, H0 : ak = 0 in (1). Testing H0 in (1) cannot be performed directly
due to a well known identi�cation problem (see Luukkonen et al. (1988),
and Terasvirta (1994) for details). Following Luukkonen et al. (1988), the
identi�cation problem is circumvented by using a Taylor approximation of
the nonlinear function G(�k; :; :) around the null hypothesis.

Proposition 1 In (1) let p � 1; k � 1; d � 1 and zt = yt�d: Also let
pP
j=1

�j =

1: Then, using a second order Taylor series approximation to the G(ak; :; :)
function around ak = 0; we obtain an auxiliary regression

�yt = �0+
p�1P
j=1

���j �yt�j +
pP
j=1

�1;jyt�j +
2kP
j=1

�2;jz
j
t +

pP
j=1

2kP
s=1

�3;jsyt�jz
s
t + error

(9)
If ri 6= 0 for all i then testing the null hypothesis of a unit root against
the alternative of a �globally stationary�k-ESTAR process is equivalent with
testing

H0 : �1;j = �2;j = �3;js = 0 for all s; j

in (9). Constant �0 is given by �0 = �0 + a
2
k
0�0 with �0 =

kQ
i=1

r2i while

�1;j = a
2
k
j�0:

If ri = 0 for a certain i; then testing the null hypothesis of a unit root against
the alternative of a �globally stationary�k-ESTAR process is equivalent with
testing

H0 : �2;j = �3;js = 0 for all s; j = 2; :::; 2k
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in the auxiliary regression

�yt = �0 +
p�1P
j=1

���j �yt�j +
2kP
j=2

�2;jz
j
t +

pP
j=1

2kP
s=2

�3;jsyt�jz
s
t + error (10)

Proposition 1 is based on a second order Taylor series approximation of
G(�k; r; :) around �k = 0:9 If we di¤erentiate with respect to a2k then the
usual �rst order approximation is enough and it yields identical results.
Equation (9) is heavily parameterized making the testing procedure cum-

bersome. If we only set p = 1, k = 1 a compact presentation of the auxiliary
testing regression admits the form

�yt = �0 + �1zt + �2z
2
t + �3yt�1 + �4yt�1zt + �5yt�1z

2
t + et

and the hypothesis of interest is translated into

H0 : �1 = �2 = �3 = �4 = �5 = 0

However, we show in the appendix that not all regressors in (9) are necessary
under the null hypothesis since they are asymptotically collinear leading to
singular sample covariance matrices. Given Proposition 1, we identify the
following testing procedure.

Proposition 2 In (1) let p � 1; k � 1; d � 1 and zt = yt�d: Also let �0 =

0;
pP
j=1

�j = 1: In order to test the null hypothesis of a unit root without drift

against the alternative of a �globally stationary� k-ESTAR process estimate
by least squares the following auxiliary regression

�yt = �0 +
p�1P
j=1

���j �yt�j + b
�
1yt�1 +

2kP
j=2

b�2;jy
j
t�d + b

�
3yt�1y

2k
t�d + vt (11)

and compute the F-type statistic

Fk =
b̂�02 (X

�0
2 M1X

�
2 ) b̂

�
2

�̂2v
(12)

where b̂�2 = (�0; b
�
1,b

�
2;2; :::b

�
2;2k; b

�
3)
0 and �̂2v the maximum likelihood estimator

of the error variance. Under the null hypothesis H0 : ak = 0;

Fk
d! G01�(W )G

�1
2� (W )G1�(W )

9When we di¤erentiate with respect to ak we obtain @G
@�k

���
ak=0

= 0
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where W denotes standard Brownian motion and G1�; G2� are functionals
de�ned in the appendix. Under the alternative H1 : ak > 0 the Fk statistic is
consistent since Fk = Op(T ):
If ri = 0 for a certain i; then we drop �0 and b�1 from the auxiliray regression
and the F statistic converges in distribution to the functional omitting the
�rst two elements of G1�(W ) and the �rst two rows and columns of G2�(W ):

Asymptotic critical values for the Fk statistic regarding cases k = 1; :::; 5
computed via stochastic simulations are tabulated in Tables 2a and 2b.
For computational purposes the Fk statistic based on (11) can be easily

calculated as follows: (a) estimate the unrestricted model (11) and keep the
sum of squared residuals SSRU =

P
t

v̂2U;t (b) estimate (11) under the restric-

tions implied by the null hypothesis and keep the sum of squared residuals
SSRR =

P
t

v̂2R;t (c) calculate the ratio Fk = T
SSRR�SSRU

SSRU
where T denotes

the number of observations in the restricted regression and compare with
the critical values reported in Tables 2a or 2b. This procedure facilitates
comparison with the �2 version of the LM type statistics used in the case of
stationary regressors (see van Dijk et al, 2002).

5 Small sample properties of the F test

5.1 Size simulations

We begin the analysis of the small sample properties of the F test developed
above by reporting the results of Monte Carlo experiments investigating the
size of the proposed test. The following random walk model was employed
as a DGP:

yt = yt�1 + ut; y0 = 0; t = 1; :::; T (13)

ut = �ut�1 + �t; �t � N:I:D(0; 1)

We simulated series from this DGP with di¤erent parameter values � = f0:0;
0:5g; and computed the size of the Fk test for di¤erent values of k = 1; 2; 3; 4.
The results are given in Tables 3a,3b for sample sizes T = f50; 100; 200g with
50; 000 replications, and the three cases of the KSS test have been included
for comparison purposes.
The Fk test resembles the familiar �2 test when under the null hypothesis

the process is stationary. For this reason it may su¤er from size problems
when the number of restrictions is large and the time series is short. Indeed,
from Table 3a we observe that the test is oversized for large values of k and as

9



the sample size increases from T = 50 to T = 200 the Fk statistic turns to be
conservative. Apparently, the size problems seem to reduce when the errors
are autocorrelated as Table 3b shows. Still for k = 4 the test is oversized but
in general the test size remains close to the nominal level.10

The small sample power simulation experiment is more demanding in
its design. A similar procedure to the one reported in section 3 will be
followed. Results are summarized in Tables 4a and 4b. In addition to the Fk
tests for k = 1; 2; 3; 4 we compute rejection probabilities for the KSS t-test
using raw, de-meaned and de-trended data (denoted by KSS1; KSS2; KSS3
respectively).
The tests show some nontrivial power in all cases except for very small

sample of T = 50 and highly persistent alternatives with 
1 = �0:5: As
expected, the KSS t-test is more powerful than the Fk test when k = 1
since it deals explicitly with one sided alternatives of stationarity and it
involves estimation of a single parameter. To take a speci�c example, using
T = 100; 
1 = �0:5; r1 = 0 and � = 0:01 (table 4b) the null of a unit root
was correctly rejected in 69:7% of the trials by the KSS1 test and in 24:5%
of the trials by the F1 test. However the performance of the F1 test increases
with both the sample size and the absolute value of �:
Inspection of Tables 4a, and 4b reveals that the Fk tests have power

irrespective of the number of �xed points present in the model. Thus, we
cannot rely on the tests to distinguish the number of �xed points a priori.
This is a consequence of the inadequacy of the Taylor approximation that
o¤ers a common polynomial structure under the alternative to be tested.
Notice that for simplicity the auxiliary regression is derived from a second
order Taylor approximation. If, for example k = 2 and we increase the Taylor
expansion order then auxiliray regressions similar to the ones employed in
cases k = 3 or k = 4 arise.
In general, as the number of �xed points increases the Fk tests perfom

better with respect to KSS1: For example, when k = 3 (r1 = 0; r2 = 3; r3 =
6), T = 100; 
1 = �1 and � = 0:01

80
(table 4b) the null of a unit root is rejected

in 80.3% of the trials by F3 and in 58.2% of the trials by KSS1:
In addition, we observe that theKSS2 t-ratio has increased power relative

to both KSS1 and KSS3 as the number of �xed points increases from one
to three. This is so because series created by (8) will not spend enough
time around r1 = 0 as the number of �xed points increases and will give the
�impression�of a non-zero mean11.

10When the errors in (13) are autocorrelated the lagged �rst di¤erences �yt�1 have
been included in the right hand side of all auxiliary regressions.
11The exact moments of yt generated by (8) are not known.
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6 Empirical application: U.S. ex post real in-
terest rate.

6.1 Linear and nonlinear unit root tests

We use the monthly ex-post U.S. real interest rate (yt) for the period 1973-
2005. Data for the nominal interest rate and CPI series are obtained from the
IMF International Financial Statistics. We construct the ex-post real interest
rate series (yt) by subtracting the three month ahead in�ation rate from the
3-month nominal bill rate (yt = rt� (pt+3� pt)400):We subject the series to
the ADF test and the KSS test for a unir root against linear and 1-ESTAR
globally stationary alternatives, respectively. Preliminary investigation based
on the Ljung-Box statistic suggests that a unit root AR(10) model captures
all autocorrelation producing residuals that are approximately white noise.
Thus the maximum number of lags in the auxiliary regression

�yt =
p�1P
i=1

���i �yt�i + �
�
yt�1 � y2t�d

�
+ error (14)

was set to be p�1 = 9: The tests are based on the t-ratio of the OLS estimate
of � from the auxiliary regressions for delay lags d = 1; 2; :::; 12: The ADF test
uses yt�1 instead of yt�1 � y2t�d in the right hand side. The �nal estimated
auxiliary regression excludes insigni�cant augmentation terms �yt�i. The
results appear in table 5. The KSS test has been calculated using the raw
data (case 1), the demeaned data (case 2) and the detrended data (case 3).
Asymptotic critical values are given by Kapetanios et al. (2003). In all cases
the null hypothesis is not rejected for d = 1 but the KSS test rejects for
higher values of d and in particular for d = 6: The qualitative decision of the
KSS test was not altered in any of the three cases using 3, 12 or 24 lags in
the auxiliary regression.
Subsequently, we apply the Fk-statistic (12) on the data. Theoreti-

cally any value of k can be employed but it seems reasonable to consider
k = 1; 2; 3; 4: Larger powers induce near singular regressor matrices and are
economically implausible. The auxiliary regression takes the form

�yt = �0 +
p�1P
j=1

���j �yt�j + b
�
1yt�1 +

2kP
j=2

b�2;jy
j
t�d + b

�
3yt�1y

2k
t�d + vt (15)

or

�yt =
p�1P
j=1

���j �yt�j +
2kP
j=2

b�2;jy
j
t�d + b

�
3yt�1y

2k
t�d + vt (16)

if one of the �xed points is assumed to be zero. Results appear in Tables 6a
and 6b.
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The tests reject the null of a unit root against k�ESTAR alternatives for
certain delay lag values, centered around d = 6. In fact most of the highest
Fk values are obtained for d = 6: Hence in all subsequent models the delay
parameter is chosen as to maximizee the value of the unit root tests and we
set zt = yt�6:

6.2 Estimation and empirical results.

Once the transition variable zt = yt�6 have been selected, the next modelling
stage is estimation of parameters in the k �ESTAR model using NLS. The
hypothesis of no ARCH in the disturbances was rejected by the standard
residuals based LM tests and for this reason we tentatively assumed that the
conditional variance follows a low order standard GARCH process.

yt =
10P
j=1

�jyt�j+

"
r1 +

10P
j=1


jyt�j

# �
1� exp

�
�a22 ((yt�6 � r1) (yt�6 � r2))

2	�+ut
(17)

The following restrictions have been imposed in the estimation
10P
j=1

�j = 1

and
10P
j=1


j = �
10P
j=1

�j since they could not be rejected at the 5% signi�cance

level by the LR statistic. Estimation of (19) yielded two �equilibria�at levels
r1 = 0; and r2 = 5:75.12 Figure 2 displays the estimated transition function
G(:) against the transition variable yt�6: Note that the series behaves very
close to a random walk when its values are between the two ��xed�points
r1 and r2: However, when the series is outside that �band� the speed of
adjustment depends on the size of the deviation.

7 Conclusions

In this paper we have extended the popular nonlinear ESTAR model in a
way that allows for multiple ��xed�points in the transition function, and we
have named it the k-ESTAR model. This new feature has the potential to

12Please note that the p-values of the �xed point r2 has been obtained through Monte
Carlo. The �xed point r1 = 0 also acts as an atractor whereas r2 = 5:75 is semistable
from below.
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generate richer dynamics in the series than previously allowed in this type
of models. In particular, it can be useful to model series that might exhibit
multiple equilibria or multiple points where dynamics in their neighbourhood
are complex. We develop an F-type test of the null of a unit root against
a k-ESTAR alternative. Size and power of the test are analysed through
simulations and it seems to outperform current nonlinear tests. We have
estimated the new model for the US real interest rate data �nding support
for two equilibria in the series.
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Table 1.
Small sample (T = 100) power of the KSS test against k � ESTAR
alternatives
���= 0:95 0:80 0:50 0:25

 = �1:5
r1= 0 0:971 1 1 1
r1= 0; r2= 3 0:933 0:992 0:999 1
r1= 0; r2= 3; r3= 6 0:586 0:706 0:988 0:999

 = �1
r1= 0 0:903 1 1 1
r1= 0; r2= 3 0:890 0:986 0:997 0:999
r1= 0; r2= 3; r3= 6 0:545 0:608 0:942 0:998

 = �0:5
r1= 0 0:634 0:999 1 1
r1= 0; r2= 3 0:772 0:965 0:974 0:990
r1= 0; r2= 3; r3= 6 0:430 0:525 0:803 0:960

 = �0:1
r1= 0 0:127 0:519 0:515 0:508
r1= 0; r2= 3 0:282 0:465 0:484 0:487
r1= 0; r2= 3; r3= 6 0:164 0:218 0:311 0:424
Notes: To compute the rejection probabilities, the data under the al-
ternative is generated by (8).

Table 2a.
Asymptotic critical values of Fk statistic
Fractile(%) 10 5 1
k = 1 11:87 13:84 18:10
k = 2 15:44 17:63 22:12
k = 3 18:61 20:97 25:92
k = 4 20:37 22:77 27:69
k = 5 21:35 23:73 28:56
Note: Simulation was based on samples with size T = 5; 000
and 50; 000 replications.
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Table 2b.
Asymptotic critical values of Fk statistic when ri = 0 for a
certain i
Fractile(%) 10 5 1
k = 1 8:09 9:79 13:48
k = 2 12:19 14:14 18:44
k = 3 15:70 17:92 22:44
k = 4 17:94 20:19 25:02
k = 5 19:32 21:61 26:44
Note: Simulation was based on samples with size T = 5; 000
and 50; 000 replications.

Table 3a. The size of alternative tests
T = 50; � = 0:0 k = 1 k = 2 k = 3 k = 4

Fk 0:043 0:057 0:067 0:085
KSS case 1 0:042 0:042 0:041 0:039
KSS case 2 0:053 0:055 0:052 0:053
KSS case 3 0:058 0:058 0:057 0:059

T = 100; � = 0:0 k = 1 k = 2 k = 3 k = 4
Fk 0:036 0:038 0:040 0:048

KSS case 1 0:040 0:043 0:041 0:041
KSS case 2 0:052 0:050 0:053 0:050
KSS case 3 0:052 0:050 0:051 0:050

T = 200; � = 0:0 k = 1 k = 2 k = 3 k = 4
Fk 0:036 0:036 0:032 0:034

KSS case 1 0:043 0:044 0:042 0:044
KSS case 2 0:051 0:052 0:050 0:050
KSS case 3 0:050 0:051 0:051 0:053

Notes. Data generated by (13)
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Table 3b. The size of alternative tests
T = 50; � = 0:5 k = 1 k = 2 k = 3 k = 4

Fk 0:063 0:093 0:098 0:111
KSS case 1 0:047 0:049 0:048 0:048
KSS case 2 0:078 0:077 0:077 0:077
KSS case 3 0:097 0:101 0:100 0:098

T = 100; � = 0:5 k = 1 k = 2 k = 3 k = 4
Fk 0:045 0:057 0:063 0:082

KSS case 1 0:044 0:044 0:043 0:045
KSS case 2 0:061 0:061 0:062 0:062
KSS case 3 0:072 0:072 0:073 0:072

T = 200; � = 0:5 k = 1 k = 2 k = 3 k = 4
Fk 0:040 0:046 0:061 0:068

KSS case 1 0:045 0:044 0:045 0:044
KSS case 2 0:057 0:057 0:056 0:056
KSS case 3 0:062 0:062 0:063 0:061

Notes. Data generated by (13)
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Table 4a. Power of alternative tests

T = 50; 
1= �0:5
F1 F2 F3 F4 KSS1 KSS2 KSS3

r1= 0; � = 0:01 0:095 0:086 0:098 0:154 0:251 0:119 0:092
r1= 0; r2= 3; � =

0:01
5:2

0:312 0:255 0:254 0:316 0:429 0:265 0:201
r1= 0; r2= 3; r3= 6; � =

0:01
80

0:034 0:035 0:034 0:040 0:027 0:029 0:024
T = 50; 
1 = �1

F1 F2 F3 F4 KSS1 KSS2 KSS3
r1= 0; � = 0:01 0:171 0:139 0:147 0:208 0:476 0:187 0:131
r1= 0; r2= 3; � =

0:01
5:2

0:541 0:460 0:444 0:494 0:579 0:450 0:349
r1= 0; r2= 3; r3= 6; � =

0:01
80

0:047 0:053 0:052 0:056 0:034 0:045 0:039
T = 50; 
1 = �0:5

F1 F2 F3 F4 KSS1 KSS2 KSS3
r1= 0; � = 0:18 0:650 0:498 0:450 0:514 0:939 0:641 0:436
r1= 0; r2= 3; � =

0:18
4:35

0:589 0:495 0:501 0:557 0:708 0:595 0:416
r1= 0; r2= 3; r3= 6; � =

0:18
87:5

0:281 0:302 0:311 0:387 0:321 0:333 0:232
T = 50; 
1 = �1

F1 F2 F3 F4 KSS1 KSS2 KSS3
r1= 0; � = 0:18 0:965 0:935 0:879 0:905 0:998 0:958 0:875
r1= 0; r2= 3; � =

0:18
4:35

0:838 0:856 0:864 0:879 0:823 0:885 0:790
r1= 0; r2= 3; r3= 6; � =

0:18
87:5

0:435 0:572 0:621 0:676 0:362 0:615 0:479
Notes: To compute the rejection probabilities, the data under the alternative is

generated by (8).
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Table 4b. Power of alternative tests

T = 100; 
1 = �0:5
F1 F2 F3 F4 KSS1 KSS2 KSS3

r1= 0; � = 0:01 0:245 0:149 0:126 0:161 0:697 0:246 0:147
r1= 0; r2= 3; � =

0:01
5:2

0:732 0:563 0:485 0:508 0:817 0:601 0:390
r1= 0; r2= 3; r3= 6; � =

0:01
80

0:609 0:645 0:589 0:608 0:477 0:554 0:405
T = 100; 
1 = �1

F1 F2 F3 F4 KSS1 KSS2 KSS3
r1= 0; � = 0:01 0:540 0:316 0:255 0:295 0:930 0:495 0:286
r1= 0; r2= 3; � =

0:01
5:2

0:906 0:834 0:776 0:779 0:916 0:847 0:687
r1= 0; r2= 3; r3= 6; � =

0:01
80

0:709 0:839 0:803 0:809 0:582 0:779 0:651
T = 100; 
1 = �0:5

F1 F2 F3 F4 KSS1 KSS2 KSS3
r1= 0; � = 0:18 0:987 0:967 0:924 0:915 0:999 0:979 0:910
r1= 0; r2= 3; � =

0:18
4:35

0:949 0:903 0:894 0:904 0:974 0:959 0:866
r1= 0; r2= 3; r3= 6; � =

0:18
87:5

0:534 0:598 0:585 0:644 0:573 0:718 0:521
T = 100; 
1 = �1

F1 F2 F3 F4 KSS1 KSS2 KSS3
r1= 0; � = 0:18 1 1 0:999 0:999 1 0:999 0:999
r1= 0; r2= 3; � =

0:18
4:35

0:990 0:996 0:998 0:998 0:991 0:997 0:990
r1= 0; r2= 3; r3= 6; � =

0:18
87:5

0:671 0:896 0:920 0:944 0:661 0:902 0:819
Notes: To compute the rejection probabilities, the data under the alternative is

generated by (8).
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Table 5
Unit root test results for the U.S ex post real interest rate

ADF KSS1 KSS2 KSS3
d = 1 �2:214 �1:475 �2:149 �2:117
d = 2 �1:325 �2:059 �2:130
d = 3 �1:186 �1:780 �1:728
d = 4 �1:918 �2:257 �2:149
d = 5 �2:466�� �2:907� �2:796
d = 6 �2:776�� �3:952��� �3:875��
d = 7 �1:918 �3:231�� �3:268�
d = 8 �0:516 �1:698 �1:677
d = 9 �0:628 �0:908 �0:889
d = 10 �1:101 �1:362 �1:260
d = 11 �0:818 �0:630 �0:609
d = 12 �1:269 �1:105 �1:106
Notes. The KSS1;KSS2;KSS3 statistics are computed using the raw, de-
meaned and de-trended data in a regression model (14) with a maximum of
nine augmentations, where the insigni�cant augmentation terms in a com-
panion AR(9) model for �yt were excluded. The ADF statistic is based on
demeaned data. d denotes delay lag. In all cases � , �� and � � � denote
signi�cance at 10% , 5% and 1% level.
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Table 6a. Fk statistic results
k = 1 k = 2 k = 3 k = 4

d = 1 6:710 14:304 17:116 18:866
d = 2 7:309 8:883 12:689 14:310
d = 3 5:177 10:380 11:385 33:201���

d = 4 5:936 7:150 22:429�� 25:688��

d = 5 7:717 22:029�� 22:315�� 24:440��

d = 6 12:607� 25:911��� 26:884��� 31:998���

d = 7 9:954 11:679 24:670�� 28:685���

d = 8 6:430 9:135 18:382 19:774
d = 9 6:457 9:189 10:613 11:141
d = 10 6:507 7:069 9:351 18:547
d = 11 8:838 10:682 10:144 12:069
d = 12 6:644 9:725 10:796 16:751

Notes. Results of the Fk TEST statistic applied to model (15) using U.S ex
post real interest rates. d denotes delay lag and k the number of �xed points
in the k � ESTAR model. In all cases � , �� and � � � denote signi�cance
at 10% , 5% and 1% level.
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Table 6b. Fk statistic results
k = 1 k = 2 k = 3 k = 4

d = 1 4:741 12:198� 16:337� 17:882
d = 2 4:752 5:228 5:850 11:982
d = 3 1:841 8:828 10:862 14:451
d = 4 3:735 5:021 7:119 9:666
d = 5 6:395 9:562 10:691 14:226
d = 6 12:405�� 14:709�� 15:128 20:361��

d = 7 8:880� 9:615 10:606 18:365�

d = 8 1:241 6:343 6:861 7:616
d = 9 0:561 2:138 6:652 8:002
d = 10 1:546 4:159 5:276 6:181
d = 11 2:159 4:148 6:729 7:468
d = 12 1:878 7:268 9:022 12:927

Notes. Results of the Fk TEST statistic applied to model (16) using U.S ex
post real interest rates. d denotes delay lag and k the number of �xed points
in the k � ESTAR model. In all cases � and �� denote signi�cance at 10%
and 5% level.
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APPENDIX
A) Proof of proposition 1.
Given a polynomial �(z) of order p there exists an equivalent represen-

tation �(z) = �(1)z + ���(z)(1 � z) where ���(z) = ��(z) + �(1) is a poly-
nomial of order p � 1 and the coe¢ cients of polynomial ��(z) are given
from ��j = �

pP
k=j+1

�k; j = 0; :::; p � 1. Using this representation, model (1)

is re-written as

�yt = �0 � �(1)yt�1 +
p�1P
j=1

���j �yt�j

+

"

0 +

pP
j=1


jyt�j

#
G(�k; r; yt�d) + ut (18)

The second order Taylor series approximation of G(�k) = G(�k; :; :) around
�k = 0 is

G(�k) = G(0) +
@G

@�k

����
ak=0

�k +
1

2

@2G

@�2k

����
ak=0

�2k +R,

G(�k) = �
2
k

kQ
i=1

(yt�d � ri)2 +R

since G(0) = 0 and @G
@�k

���
ak=0

= 0 (with R the remainder). Under the unit

root assumption, �(1) = 0; we obtain

�yt = �0 +
p�1P
j=1

���j �yt�j

+a2k

"

0 +

pP
j=1


jyt�j

#
kQ
i=1

(yt�d � ri)2 + et (19)

where et =

"

0 +

pP
j=1


jyt�j

#
R + ut:

Thus the null hypothesis of a unit root process against the globally sta-
tionary process generated by (1) is equivalent to testing

H0 : �
2
k = 0 (20)

in (19). Under the null hypothesis et = ut an F -type test can be constructed.
However, it is clear that the approach results in over�tting even for moderate
autoregressive polynomial orders p (assuming a reasonable value of k). The
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general auxiliary regression through which (20) will be tested can be written
as

�yt = �0 +
p�1P
j=1

���j �yt�j

+a2k �
"

0�0 + �0

pP
j=1


jyt�j

+ 
0
2kP
j=1

�jy
j
t�d +

pP
j=1

2kP
s=1


j�syt�jy
s
t�d

#
+et

where we have set
kQ
i=1

(yt�d � ri)2 = �0 +
2kP
s=1

�sy
s
t�d with parameters �s being

functions of the location parameters ri: In particular, �0 =
kQ
i=1

r2i and �2k = 1.

In addition �s = 0 for s = 0; :::; 2k � 1 if r = 0. Finally, if some ri = 0 then
�0 = 0 and the auxiliary regression becomes

�yt = �0 +
p�1P
j=1

���j �yt�j (21)

+a2k

"

0

2kP
j=2

�jy
j
t�d +

pP
j=1

2kP
s=2


j�syt�jy
s
t�d

#
+ et

Note, that if we set

p = 1; k = 1; d = 1; �0 = 0; 
0 = 0; r1 = 0

as in the 1-ESTAR model of KSSa, then we obtain

�yt = a
2
1
1y

3
t�1 + et

and the asymptotic stationarity conditions imply a test of a21
1 = 0 versus
a21
1 < 0:
B) Simplifying auxiliary regression.
In subsequent analysis we always set zt = yt�d where d � p or d > p: In

addition we set �0 = 0 assuming random walk behavior without drift when
yt�d = ri: We write (9) as a partitioned regression model,

�Y = X1b1 +X2b2 + error (22)

with X1 the data matrix including the �rst p�1 regressors on the right hand
side of (9),

(�yt�1;�yt�2; :::;�yt�p+1)
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that are stationary under the null hypothesis, while X2 includes the (p +
1)(2k + 1) (if d > p) or p(2k + 1) + 1 (if d � p) remaining regressors

(1; yt�1; yt�2; :::; yt�p;

zt; z
2
t ; :::; z

2k
t ;

yt�1zt; yt�1z
2
t ; :::; yt�1z

2k
t ;

...

yt�pzt; yt�pz
2
t ; :::; yt�pz

2k
t

�
The set is modi�ed accoringly by adding a column of ones if there is a constant
in the auxiliary regression. Let M1 = I � X1 (X

0
1X1)

�1X 0
1 be the orthogo-

nal to X1 projection matrix. The above presentation aims to conveniently
expose the X1 and X2 data matrices structure. The proof of the following
proposition shown in the appendix suggests that not all regressors in matrix
X2 are neccessary for the testing procedure. For example, under the null of
non-stationarity and for �nite orders p the regressors yt�1; yt�2; :::; yt�p are
collinear asymptotically. The same conclusion is reached for regressors involv-
ing powers of the transition variable when zt = yt�d and the cross-products
yt�jz

s
t :
Thus, we re-specify the auxiliary regression model into

�Y = X1b1 +X
�
2b
�
2 + v (23)

where X�
2 includes regressors 1; yt�1; y

2
t�d; :::; y

2k
t�d; yt�1y

2k
t�d while v = u under

the null hypothesis.

C) Proof of proposition 2.
Under the null hypothesis,

yt = yt�1 + �t (24)

where the initial condition is set to y0 = 0 although it may be any Op(1)

random variable. The errors satisfy �t = '(L)ut =
+1P
j=0

'jut�j where '(L) =

���
�1
(L) with '(1) 6= 0 and

+1P
j=0

j
��'j�� < +1 while ut is a stationary and

ergodic martingale di¤erence sequence with variance �2u: Then the following
invariance principle holds

1p
T

[Tr]P
t=1

�t
d) B(r) = �W (r)
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where d) denotes weak convergence, W (r) is standard Brownian motion r 2

[0; 1] and �2 =
+1P
j=�1

E(�0�j) = �2� + 2�� is the long run variance of �t

with �� =
+1P
j=1

E(�0�j). Also let �� = �2� + �� denote the �one-sided� long

run covariance of �t. For brevity we will write
Z 1

0

Bk(r)dr as
Z 1

0

Bk andZ 1

0

Bk(r)dB(r) as
Z 1

0

BkdB:

Using Hong and Phillips (2005) results, for k a positive integer, we have

1

T

TP
t=1

�
ytp
T

�k
=
1

T

TP
t=1

�
yt�1p
T

�k
+ op(1)!d

Z 1

0

Bk (25)

TP
t=1

�
ytp
T

�k
utp
T

! d�u

Z 1

0

BkdW + k�2u

Z 1

0

Bk�1 (26)

= �k+1u 'k(1)

Z 1

0

W kdW + k�2k�2u 'k�1(1)

Z 1

0

W k�1

and
TP
t=1

�
yt�1p
T

�k
utp
T
!d �u

Z 1

0

BkdW = �k+1u 'k(1)

Z 1

0

W kdW (27)

In addition, for k1; k2 integers, we can substitute yt�p = yt�d+
d�p�1P
j=0

�yt�p�j

for d > p and use the binomial expansion and results (25), (26) to show that

1

T

TP
t=d+1

�
yt�pp
T

�k1 �yt�dp
T

�k2
=

1

T 1+
k1
2
+
k2
2

TP
t=d+1

 
yt�d +

d�p�1P
j=0

�yt�p�j

!k1
yk2t�d

=
1

T

TP
t=d+1

�
yt�dp
T

�k1+k2
+

1

T 1+
k1
2
+
k2
2

TP
t=d+1

(
k1P
s=1

�
k1
s

�
yk1+k2�st�d

 
d�p�1P
j=0

�yt�p�j

!s)

=
1

T

TP
t=d+1

�
yt�dp
T

�k1+k2
+ op(1) (28)

thus
1

T

TP
t=d+1

�
yt�pp
T

�k1 �yt�dp
T

�k2
!d

Z 1

0

Bk1+k2 (29)
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The above generalizes to sample moments with more than two product terms.
In addition the cross product terms satisfy,
TP

t=p+1

�
yt�pp
T

�k
utp
T
=

1

T (k+1)=2

TP
t=p+1

ykt�put

=
1

T (k+1)=2

TP
t=p+1

ykt�1ut

+
1

T (k+1)=2

TP
t=p+1

(
kP
s=1

(�1)s
�
k
s

�
yk�st�1

 
p�2P
j=0

�yt�j�1

!s
ut

)

=
1

T (k+1)=2

TP
t=p+1

ykt�1ut + op(1)

!d �u

Z 1

0

BkdW

Hence we can consider the asymptotic behavior of the F-type statistic

F =
1

�̂2u

�
b̂2 � b2

�0
(X 0

2M1X2)
�
b̂2 � b2

�
testing the null hypothesis H0 : Rb = c in (22) where R =

�
0 I

�
, c = 0

and b =
�
b1 b2

�0
. The sampling error of b̂2 is given by the known formula,�

b̂2 � b2
�
= (X 0

2M1X2)
�1
X 0
2M1u

where
X 0
2M1X2 = X

0
2X2 �X 0

2X1 (X
0
1X1)

�1
X 0
1X2

and
X 0
2M1u = X

0
2u�X 0

2X1 (X
0
1X1)

�1
X 0
1u

Matrices X 0
1X1 and X 0

1u involve sums of ergodic and stationary series thus
1
T
X 0
1X1 = Op(1) and 1

T
X 0
1u = op(1):

Given the results in F1-F5, de�ne the p(2k+1)+1�p(2k+1)+1 (case13
d � p) normalization matrix DT as

DT = diag

0@T�1=2; T�1; :::; T�1| {z }
p times

;

h
T�3=2; T�2; :::; T�(k+

1
2
); T�(k+1)

i
; :::;

h
T�3=2; T�2; :::; T�(k+

1
2
); T�(k+1)

i
| {z }

p times

1CCA
13We chose the case d � p for simpli�cation purposes. When d > p the normalization

matrix DT is de�ned accordingly with dimensions (2k + 1)(p+ 1)� (2k + 1)(p+ 1)
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Then, under the null hypothesis,
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where functionals G1(B) and G2(B) are given by
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Clearly, G2(B) is singular, hence asymptotically, under the null hypothesis
of non-stationarity, some of the regressors are collinear carrying the same
information.
In order to overcome this di¢ culty, we re-specify the auxiliary regression

model (22) into
�Y = X1b1 +X

�
2b
�
2 + v (30)
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where X�
2 includes regressors 1; yt�1; y

2
t�d; :::; y

2k
t�d; yt�1y

2k
t�d while v = u under

the null hypothesis. Under the alternative, (30) is a mispeci�ed regression
with v = X��

2 b
��
2 + u and X

��
2 a data matrix including regressors other than

1; yt�1; y
2
t�d; :::; y

2k
t�d; yt�1y

2k
t�d:

Based on our previous analysis it is seen that under the null, the F � type
statistic
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Under the alternative, yt is asymptotically stationary, hence�

b̂�2 � b�2
�
= (X�0

2 M1X
�
2 )
�1
X�0
2 M1X

��
2 b

��
2 + (X

�0
2 M1X

�
2 )
�1
X�0
2 M1u

= Op(1) +Op(T
�1=2) = Op(1)

and
(X�0

2 M1X
�
2 ) = Op(T )

As a result, Fk = Op(T ) and the test statistic is consistent.
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