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Abstract

Demand forecasting is a crucial aspect of the planning process in supply-chain companies. The most
common approach to forecasting demand in these companies involves the use of a simple univariate
statistical method to produce a forecast and the subsequent judgmental adjustment of this by
the company's demand planners to take into account market intelligence relating to any exceptional
circumstances expected over the planning horizon. Based on four company case studies, which included
collecting more than 12,000 forecasts and outcomes, this paper examines: i) the extent to which the
judgmental adjustments led to improvements in accuracy, ii) the extent to which the adjustments were
biased and inefficient, iii) the circumstances where adjustments were detrimental or beneficial, and iv)
methods that could lead to greater levels of accuracy. It was found that the judgmentally adjusted
forecasts were both biased and inefficient. In particular, market intelligence that was expected to have a
positive impact on demand was used far less effectively than intelligence suggesting a negative impact.
The paper goes on to propose a set of improvements that could be applied to the forecasting processes in

the companies and to the forecasting software that is used in these processes.
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1. Introduction

Supply chain planning is usually reliant on demand forecasts at stock keeping unit (SKU) level. The
accuracy achieved for these forecasts has consequences for companies at all levels of the supply chain from
retailer to raw materials supplier, and even for companies whose final product is ‘make-to-order’ (Yelland,
2006) . Errors at each stage are potentially amplified, resulting in poor service or excess inventory levels.
The forecasting problem is difficult due to the inter-related nature of the data series with outliers, level and
trend shifts (Fildes and Beard, 1992) and impacted by the complexities of the market and general
economic environment. These data difficulties are compounded by the huge number of SKUs that often
need to be forecast each period.

Because of the size and complexity of the forecasting task, it is generally impossible for all SKUs to be
given individual attention by demand planners. The most common approach to forecasting demand in
support of supply chain planning involves the use of a forecasting support system (FSS) which incorporates
a simple univariate statistical method to produce an initial forecast. For key products, these initial statistical
forecasts (hereafter called the ‘system’ forecasts) are reviewed and may be adjusted by the company's
demand planners to take into account exceptional circumstances expected over the planning horizon (also
referred to as ‘market intelligence’ or MI) or possibly to correct perceived inadequacies in the system
forecast. This process is usually carried out in a committee setting where representatives from marketing,
sales, production and logistics agree the ‘final forecast’: a combination of a statistical forecast and
managerial judgement.

Improved demand forecasting accuracy can lead to significant monetary savings, greater
competitiveness, enhanced channel relationships and customer satisfaction (Fildes and Beard, 1992, Moon
et al., 2003) . Management clearly appreciates the importance of the forecasting function and allocates
significant computing and management resources to the activity (Moon et al., 2003) . Despite the
allocation of these resources, there is evidence that in many organisations it is carried out poorly
(Lawrence et al., 2000, Moon et al., 2003) with forecast accuracy often not significantly better than from
the naive (no change) forecast. In addition, forecasters are often untrained in forecasting methods (Klassen
and Flores, 2001) , ignorant of (or even denied) relevant market information and their performance is poorly

measured (Moon et al., 2003) . In particular, there is apparently an over-reliance on the use of informal
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judgement at the expense of statistical methods (Fildes and Beard, 1992, Moon et al., 2003) . For example,
judgement was the preferred method of forecasting in Sanders and Manrodt’s (1994) survey of US
forecasters . Even where quantitative forecasts were produced, they were usually adjusted. The
respondents gave as their primary reason for adjustment, concern for accuracy and the need to incorporate
knowledge of the environment. Although the statistical forecast has to be adjusted when abnormal ‘one-off
events are known to be about to take place (e.g. a promotion) it appears that adjustments to the forecasts are
much more frequent, reflecting the forecaster’s concern for accuracy and the belief that the statistical model
‘has not got it right’.

Blattberg and Hoch (1990) in their examination of five companies where forecasts were combined
(rather than adjusted), identified this adjustment process as an important issue to study. Perhaps more
tellingly, ad hoc surveys of practitioners and software companies regularly identify the adjustment process
as a key element in attempting to ensure accurate SKU forecasts (Worthen, 2003) . However, the topic has
generated little organisationally-based research and little is known about the effect of the types of
adjustment (e.g. large or small, positive or negative) on accuracy or the extent to which the resulting
forecasts are unbiased and efficient (i.e. make optimal use of available information).

This paper uses extensive data gathered from four supply-chain companies to address these questions
and to consider how the process of adjustment can be made more effective. The next section considers the
literature on adjustment and proposes hypotheses to extend our knowledge of the adjustment process.
Section 3 describes the forecasting processes in the four companies and gives details of the frequency and
nature of the judgmental interventions. Section 4 examines the detailed hypotheses developed in the
literature review, while Section 5 evaluates some potential solutions to the problems that have been
identified. The final section offers our recommendations for improvements in both forecasting software and

in organisational forecasting processes.

2. Literature Review and Hypotheses

There is substantial evidence from the economic forecasting literature that statistical forecasts can be made
more accurate when experts judgmentally adjust them to take into account the effects of special events and
changes that were not incorporated into the statistical model (Donihue, 1993, McNees, 1990, Turner,

1990) . However, few studies have investigated judgmental adjustment in the context of company forecasts
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of the demand for SKUs. The exceptions were four studies all based in the same company by Mathews and
Diamantopoulos (Mathews and Diamantopoulos, 1986, Mathews and Diamantopoulos, 1989, Mathews and
Diamantopoulos, 1990, Mathews and Diamantopoulos, 1992) . These showed that judgmental ‘revision’
tends to improves accuracy even though sometimes only marginally, but also tends to introduce bias.

Experimental evidence generally suggests that forecasters often make unnecessary judgmental
adjustments to statistical forecasts (Lawrence et al., 2006) . In particular, they make adjustments even
when they do not possess extra information about special events. There is some evidence that this occurs
because the forecasters see false patterns in the noise associated with time series (O'Connor et al., 1993)
and, as a result, their interventions reduce accuracy. Lim and O’Connor (1995) found that this tendency
persisted, despite a system display showing that the adjustments were reducing accuracy and costing them
money. However, experimental evidence also suggests that, when an adjustment is made on the basis of
events not reflected in the statistical forecast (e.g. a forthcoming sales promotion), it is likely to improve
accuracy as long as the information about the event is reliable and its effect is not disguised by noise
(Goodwin and Fildes, 1999, Lim and O'Connor, 1996)  Forecast adjustments, by experts in a company
environment with access to reliable market intelligence, are likely to yield greater benefits than those
obtained in experiments by the student subjects. Thus, we hypothesize:

H;: Judgemental forecast adjustments improve forecast accuracy.

Hi1: Judgemental forecast adjustments improve forecast accuracy more under conditions of high
reliability information (compared to low reliability information).

Hi,: Judgemental forecast adjustments improve forecast accuracy more under low noise than high
noise conditions.

While accuracy is a most important property for a forecast, two further properties are also important:
bias and efficiency. Bias, itself, can be decomposed into two components. Mean bias is a systematic
tendency for the forecast to be less than or greater than the actual. Regression bias is the extent to which
the forecasts systematically fail to track the actual observations. For example, forecasts may tend to be too
high when outcomes are low and too low when outcomes are high (Theil, 1971) . Efficiency is the property
that forecasts optimally incorporate relevant new information as it becomes available. While adjustments
might improve accuracy they may not be unbiased or efficient. Lawrence et al. (2000) found that

judgemental forecasts made by 13 large manufacturing organisations were generally neither unbiased nor
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efficient. They found many forecasters faced a situation of asymmetric management incentives (depending
on the sign of the forecast error) which resulted in a biased forecast. In addition, over-stocking costs and
under-stocking costs are not generally equal and this may lead to forecast bias. Sanders and Manrodt
(1994) found 70.4% of US respondents to a survey on forecasting practices preferred to ‘under-forecast’
while Stewart in Fildes et al. (2003) citing evidence from a UK survey, found an equal predisposition for
over and under forecasting. Fildes (1994) in a study of product managers across business units of a major
multinational found that 92% of forecasters thought their forecasts were influenced by organisational
politics, although the direction of influence was not explored. What seems to be clear is that political
pressures may undermine accuracy (Deschamps, 2004) . Thus, although bias may be intentionally
introduced, since inventory restocking processes assume that the forecast is unbiased, a biased forecast
inevitably increases costs in supply chain management. Apart from Mathews and Diamantopoulos (1990) ,
who found evidence that adjustments introduced bias, few studies of unbiasedness and efficiency have been
carried out on forecast adjustments to SKU data. However, based on the limited evidence available to date
we hypothesise:

H,:: The adjusted forecasts are biased.

Hy,: The adjusted forecasts are inefficient.

Evidence has also accumulated on additional factors beyond the strength of the external information
and the noise that may influence the effectiveness of judgemental adjustments. Optimism bias has been one
of the most researched biases (see: for example: Flyvbjerg et al. (2003) ). In optimism bias, values viewed
as positive are over-forecasted and values viewed as negative are under-forecasted. For example, in
forecasting associated with a new investment, the cost of the project will be under-forecasted while its
benefits will be over-forecasted. This bias has been shown to impact a wide variety of forecasts including
security analysts forecasts (Helbok and Walker, 2004) , project time prediction (Buehler and Griffin,
2003) and capital budgeting (Flyvbjerg et al., 2003) . It is believed so prevalent that, for example, the
UK Treasury has issued guidelines aimed at minimising its budgetary impact'. Based on this evidence we
anticipate that product managers planning a major promotion would be likely to over forecast the sales of

the promoted product while under forecasting any possible negative impacts on other products. Thus, both

" See: www.dh.gov.uk/.../ChangesTreasuryGreenBookArticle).
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positive are negative adjustments are hypothesised to be biased upward (in the case of negative adjustments
this implies that. the forecasts will be insufficiently reduced). This suggests the following hypotheses:
Hs: The improvement resulting from judgemental forecast adjustments will depend on the direction of
the adjustments.
Hs;: Positive adjustments will typically be too large (i.e. the forecast will be greater than the actual).

Hs,: Negative adjustments will typically be too little (i.e. the forecast will be greater than the actual).

A consistent finding in judgemental extrapolation of time series, is that subjects tend to damp both up
and down trends with down-trends damped more than up-trends (Eggleton, 1982, Lawrence and
Makridakis, 1989, O'Connor et al., 1997) observed that subjects seemed less sure of down trends as they
both widened their confidence bounds and damped their most likely estimates more than for up trends.
O’Connor et al. (1997) confirmed the difficulty presented by down trends and that the forecasters’
behaviour suggests an anticipation of a reversal in slope. Accordingly we hypothesise:

H;: Adjustments to down trending series tend to be either damped or to reverse the trend more so

than for upward trending series.

3. The Study

Data have been collected at SKU level from four companies, three in manufacturing with monthly data
(pharmaceuticals (A), food (B), and household products (C)), and one retailer (D) forecasting weekly
(where data on two separate product groups were available). For companies A-C all SKUs in the company
were examined. For the retailer, data on two product groups each supplied by an individual manufacturer
were made available (D1 and D2). The data included one-step ahead final forecasts, the corresponding
actual outcomes, as well as the statistical system forecast. Those without the required continuous forecast
history were excluded. Low volume SKUs, defined as those with actual outcomes or system forecasts less
than 10 units, were eliminated from this analysis (and are examined in a separate paper). In addition,
observations where the final or system forecast is zero have been eliminated as these were thought to result
from special circumstances like the particular SKUs being withdrawn from the market.

In all four organisations the forecasting process was observed and discussions held with the

principal forecasters. Each organisation used a broadly similar process to estimate their final forecasts. At
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the start of each forecasting period, the statistical ‘system’ forecasts are produced through the forecasting
support system (FSS), based on variants of exponential smoothing or Focus forecasting (Gardner and
Andersen , 1997) . A forecasting meeting generally comprising forecasting, marketing, production and
sales personnel, examined the resulting system forecast in the light of various pieces of marketing and other
information and agreed the final forecast. Also, particular aspects of recent forecasting performance such as
a large error might be drawn to the group’s attention and highlighted in a summary screen in the FSS. The
information used in these meetings included promotional plans, weather forecasts, stock information,
customer information and company plans as well as evidence of recent forecasting performance. Such
information might be available through the internet, printed report, phone or a scheduled meeting. All
company forecasters interviewed affirmed that an objective of the forecasting process was producing
accurate forecasts. and said that their final forecasts were not subsequently changed by more senior
management (Fildes and Hastings, 1994) . For all companies, we only consider in this paper one period
ahead forecasts.

Table 1 summarises the data base, showing the number of observations containing i) the statistical
forecast, ii) the final forecast and iii) the actual value (the ‘triple’). Table 1 also shows the percentage of
forecasts adjusted and the number of SKUs contained in the data set. Companies A-C, all manufacturers
making monthly forecasts (identified in this study as the G1 organisations), adjust a substantially greater
percentage of forecasts than Company D1 and D2, the retailer making weekly forecasts (identified as the
G2 organisations). We have grouped the organisational data in this way as analysis shows that data values
have common characteristics but any substantive individual company differences will also be noted. When
modelling the data we have broken each company’s data into an estimation set used in model development

and a test set for model validation.
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Total complete % No. of

Companies Data Available data triples adjusted skus

A Monthly  Years 2003-2005, 5165 63% 213
Months 1-12

B 2004, Months 5-12, 2360 92% 296
2005, Months 1-12

C 2004, Months 3-11, 2803 61% 244
2005, Months 1-12

D1 Weekly 2004, Weeks 1-52, 12400 14% 191
2005, Weeks 1-52

D2 2004, Weeks 1-52, 43340 8% 592
2005, Weeks 1-52

Total 66068 19% 1536

Table 1 Data base of forecasts by company (certain periods are missing)

We take it as given that positive and negative adjustments are made when information is available
which causes the forecaster to think that the system forecast will either under or overestimate demand
respectively (when there are multiple sources of information giving indications in different directions we
assume that the forecaster makes a judgment based on the relative strengths of the indications). We will
therefore refer to information as being either positive or negative. Nevertheless, the organisational and
psychological factors motivating a positive or a negative adjustment (or indeed, no adjustment) may differ
markedly. In addition, negative adjustments are bounded below by zero. We have therefore split the sample
into three sub-samples: no adjustment, positive adjustment and negative adjustment. Table 2 shows the
mean and median sizes of the relative adjustments for each of these sub-samples where the relative
adjustment is defined as 100 x (Final forecast —System forecast)/System forecast. In addition, we separate
the results for the G1 and G2 organisations as the typical size of the adjustments is evidently different. The
table shows that positive adjustments for both groups of organisations are very much larger than the

negative adjustments and that the mean size of these adjustments ranges from 20 to 60 percent.
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Relative Adjustment

Org Group Direction of Mean Median
Adjustment

Gl Positive adjustment 57.5% 20.2%
Negative adjustment 21.7% 13.8%

G2 Positive adjustment 60.7% 32.6%
Negative adjustment 40.3% 26.6%

Table 2 Mean and Median Relative Adjustment by Organisational Group and Direction of Adjustment.

Figure 1 presents the histogram of the relative adjustments for the G1 and G2 organisations. Both
distributions are right skewed, however the distribution for the G2 organisations is far more platykurtic
than the G1, that is the relative adjustments in the G2 data see more large adjustments whereas in the G1

data the vast majority fall in the small-size adjustments category.

Figure 1. Histogram of Relative Adjustments split by Organisational Group (12467 cases)
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Figure 2 Histogram of Relative Adjustments by Company
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Figure 2 presents histograms of relative adjustment for the individual organisations. In group Gl,
Company B and C look quite similar while Company A differs as it is more leptokurtic (peaked). From the

G2 data, company D2 is rather leptokurtic and skewed.

4. Accuracy, Unbiasedness and Efficiency in the Adjusted Forecasts

Accuracy

Although the measurement of forecasting accuracy is controversial (Armstrong and Fildes, 1995, Clements
and Hendry, 1995) within company settings the use of absolute percentage error measures is now general
(Fildes and Goodwin, 2006) . However, the disadvantages of such measures are well known. In particular,
they suffer from a lack of robustness to extremes (Armstrong and Collopy, 1992) despite our large number
of observations. In evaluating the accuracy and bias of the statistical forecast (SFC) and the final forecast
(FFC) we therefore report two more robust variants, the trimmed mean absolute percentage error (MAPE)
and the median absolute percentage error (MdAPE). We have trimmed outlying values using a 2% trim.
Other accuracy measures such as the relative absolute error of FFC compared to SFC have been calculate

but tell the same tale and are therefore not reported.
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A summary of accuracy for the G1 and G2 organisations is given in Table 3 where the errors of the
system forecast, the final forecasts and a naive (random walk) forecast are compared. It can be seen that for
negative information adjustments the final forecast MAPE is significantly lower (more accurate) than the
statistical forecast (paired t-test, for both G1 and G2, t > 15, p<0.001). However, for positive information
the opposite is true (paired t-test, for both G1 and G2,t <-11, p<0.001). Thus there is strong support for H,
only for negative adjustments. Various other accuracy measures, such as the MdAPE, provide support for

H, for both positive and negative adjustments, but only for the G1 companies. Hence we conclude there is

conditional support for H;.

MEAN
No. System Final
Observations, N Naive % System fcast Final fcast  Naive fcast fcast
(N naive) error % error % error Mape Mape Mape
G1 No adjust. 3174 (3068) -9.7% -44.3% -44.3% 37.5% 60.5% 60.5%
Positive info 4013 (3735) -9.0% 5.7% -29.6% 39.8% 29.1% 39.6%
Negative info 3392 (3136) -15.5% -38.1% -4.5% 41.4% 46.9% 26.6%
G2 No adjust. 50427 (49794) 3.2% -4.6% -4.6% 17.5% 19.3% 19.3%
Positive info 3049 10.1% -7.4% -57.5% 27.6% 32.1% 64.9%
Negative info 2409 -1.8% -35.5% -3.5% 24.5% 40.9% 28.5%
Median
No. System Final
Observations, N Naive % System fcast Final fcast Naive fcast fcast
(N naive) error % error % error Mdape Mdape Mdape
G1 No adjust. 3174 (3068) 2.9% -1.4% -1.4% 22.2% 13.6% 13.6%
Positive info 4013 (3735) 2.5% 9.8% -9.4% 25.8% 20.2% 17.6%
Negative info 3392 (3136) 1.0% -14.0% 2.2% 25.2% 20.7% 15.7%
G2 No adjust. 50427 (49794) -0.1% -1.4% -1.4% 12.7% 13.5% 13.5%
Positive info 3049 12.1% 0.0% -39.2% 20.9% 21.2% 43.2%
Negative info 2409 4.8% -22.3% 3.6% 14.7% 25.0% 20.9%

Table 3 Forecast Error by Organisational Group and information class (no adjustment, positive

and negative information)

The naive forecast for G2 is more accurate for all sub samples than either the system forecast or the final

forecast as Lawrence, et al. (2000) also found. The poor showing of the system forecast compared to the
naive could suggest that forecast adjustment may be a response to perceived inadequacies of the system
forecast rather than a response to market information. For Gl data, where the forecasts have been left

unadjusted, the MAPE (but not the MdAPE) of the Naive forecast is considerably better than that of the
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system forecasts. This suggests that in a limited number of cases the forecasters may be failing to adjust
when there is considerable information in the most recent actual so that adjustment is needed (i.e. the naive
forecast).

We now investigate how the accuracy of judgemental adjustments is affected by the reliability of the
market information (H;;) and the noise in the data (H;,). It seems reasonable to assume that a forecast
adjustment is made when a forecaster has market information that suggests the actual will be either greater
or smaller than the system forecast value. A simple test of the worth of this market information is to
investigate how frequently the forecaster has successfully picked the right direction to adjust the forecast.
That is, for example, when the forecaster makes an upward adjustment, how often does the actual indeed
exceed the system forecast? As hypothesised, the reliability of the market information will significantly
impact the success of picking the right direction for the adjustment. We take as a surrogate variable for
reliability, the relative size of the adjustment defined as the ratio of the adjustment size divided by the
system forecast. The justification of this choice is that a large adjustment will only be undertaken when it
is believed that the market information is highly reliable. When information is perceived to be less reliable
the adjustment may be expected to be less because forecasters may ‘hedge their bets’ (O'Connor et al.,
2001) .

Table 4 shows the percentage of times that the chosen direction for the adjustment is correct (a ‘right
sided adjustment’). The table also displays results for the low reliability and high reliability groups. The
low (high) reliability group is comprised of those forecast adjustments where the relative adjustment is less
than (greater than) the median value for each adjustment direction within each organisation. The results
show a great difference in the percent of right sided adjustments with a range from a low of 36% to a high
of 82%. For both G1 and G2 organisations the percentage of adjustments downward that prove to be
correct is higher than upward adjustments. This suggests the forecasters are better at interpreting negative
market information. As anticipated, the high reliability group has uniformly higher values of right sided
adjustments suggesting that with more reliable market information the adjustment direction is more
accurate. Overall, the values suggest the reason for the failure to improve accuracy when adjusting
forecasts upward is due to misreading the market information about half the time when the information is of
low reliability and about a third to a quarter the time when the information is high reliability. Further, the

results suggest a very considerable scope for improving forecast adjustments by (i) not adjusting the
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forecast when the market information is of low reliability and (ii) enhancing the quality of interpretation of

what forecasters see to be high reliability market information.

Percent right sided

Adjust Direction Reliability G1 Companies G2 Companies
Information Low 55% 36%
positive High 74% 61%
Information Low 63% 77%
negative High 79% 82%

Table 4 Percentage of Correct Direction Adjustments by Adjustment Direction and Reliability.

It is clearly not possible to determine the true level of noise in company time series (studies that have
investigated the effect of noise on judgmental forecasts have usually relied on artificially generated series).
We have therefore used the coefficient of variation of a series as a proxy measure for its noise level Each
series has been categorised as belonging to either a high or low noise group depending on whether the value
of its coefficient of variation is less than or greater than the median value for that organisation. We define
our measure of forecast improvement FCIMP as:

FCIMP = 100%*( | FFC - Actual | - | SFC- actual | )/ actual

This variable is positive when the final forecast is less accurate than the system forecast (i.e. the
adjustment has degraded the system forecast) and negative when the final forecast is more accurate (i.e. the
adjustment has improved the forecast accuracy). The scaling by the actual makes the measure comparable
to the percentage error measure. An ANOVA with noise and reliability as explanatory variables and firm as
covariate run for the G1 organisations showed company (F; 7064 = 1.5, p= 0.22) not significant, noise (F; 7064
=5.3,p <0.02) as significant and reliability as highly significant (F 7062 = 67.9, p < 0.001). For the G2
organisations the ANOVA results showed firm not significant (F, 55733 = 1.9, p< 0.17) while noise (Fy 55733 =
24.6, p< 0.001) and reliability (F;ss733 = 269.8, p < 0.001) were both highly significant. Thus H;; and Hj,

are both supported for all organisations.

Unbiasedness
We use two alternative measures of bias. The percentage error (100 x (forecast — actual)/ actual) measures
mean bias and is presented in Table 3. If the forecasts do not suffer from mean bias then the median (or

mean) percentage error is close to zero. The median percentage errors for G1 and G2 for the no adjustment
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sub-sample at -1.4% demonstrates, in effect, no bias. For the G1 group, the system forecast is biased for
both the positive and negative information sub-samples with the bias in the direction that we would expect
given the fact that these sub-samples are conditioned on the expectation that the actual will be higher or
lower than the system forecast. Thus these biases show that on average the managers have correctly
identified the two groups for adjustment. However, after adjustment the median percentage error shows
that the bias has been reversed in the case of positive information while for negative information the bias is
almost zero. It is clear that the adjustment is going too far in the case of positive information. For G2 the
identification of the series for positive adjustment appears to have been poorly performed as the system
forecast bias is effectively zero, resulting after adjustment in a highly biased final forecast. The negative
information group for G2 is well selected: the large negative system forecast bias is changed, after
adjustment, to an almost unbiased final forecast. Thus in summary for both G1 and G2 the no adjustment
and negative information groups have very low final forecast bias while the positive information group
demonstrates a highly biased final forecast. Hence there is mixed support for Hy,.

The second measure of unbiasedness is based on regression analysis and provides a joint test of mean
and regression bias. Initially we test hypothesis H,;, that the adjusted forecasts are in aggregate unbiased,

by estimating the following regression model:

Yie ~Fio D =a; + BiF; (D) +vy (M1)

it
where Yjj; represents the actual sales in the ith company for the jth SKU in period t, and F;j«(1) is the one
period ahead final forecast made at period t. If the company forecasts are unbiased in aggregate, a=/4=0 for
each company i. The normal regression assumptions cannot be expected to hold in that the data have very
different levels and the errors can therefore be assumed to depend on the level of Yjj; as well as the noise (as
a starting assumption to be tested). The variables have therefore been normalised using the standard
deviation of sales for each SKU. In addition, the data have been grouped by size of adjustment (in
percentage terms) and models have been estimated for each sub-group.

The sub-sample of forecasts that have been adjusted contain many extreme observations. For example,
3.1% of observations have final forecast errors greater than 250%. We have initially removed all

observations with such large errors from the analysis. In addition, when estimating model (M1) we have

removed outliers (with absolute studentized residuals greater than 2.5) and high leverage points (using
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DFIT statistics greater than 2,/ % , the recommended cut-off value)’. Sensitivity testing was carried out

on these data filtering decisions and the results we present appeared robust. After the adjustment procedure
had been applied the residuals proved well-behaved (with normality and homoscedasticity accepted for
most models), demonstrating the effectiveness of the normalisation process.

Initially the model was estimated jointly with the parameters (and error distribution) assumed
constant across companies. Using a general linear model, with the companies as factors, and F;; as
covariate, together with an interaction between them, leads to a rejection of the hypothesis that the biases
are independent of company. The two separate sets of forecasts available for Company D were also tested
for equality, while the other three companies were examined in a pairwise fashion, again leading to a formal
rejection of statistical equivalence despite face similarities. From Table 3 the direction of the adjustment
influences the bias of the adjustments. We have therefore estimated models separately.

Table 5 shows the results of estimating the separate equations (t-statistics are shown in parentheses). The
common feature is the consistent overestimate of the actual outcomes for all companies. However the R*
and  values are so small for companies A and B that the effect size is almost negligible. For all companies
whatever the direction of the adjustment, unbiasedness is rejected. The table shows that in general the
constant term is positive but all the B coefficients of the final forecasts are negative. At the mean level of
the final forecasts this leads to an upwards bias. Thus on average, the adjusted forecasts are typically over-
estimates for all the companies, sometimes very substantial (as shown in Table 3). The weekly retail (D1
and D2) forecasts are particularly biased while company A shows the least bias. Bias is more marked where
the forecaster perceives there to be positive information about the market. In addition, if we analyse the
biases by the size of the adjustment made (as a percentage of the actual) the biases tend to increase with the
size of the adjustment, that is to say the forecaster increasingly over-weights the market information, the

more important it is perceived to be.

? Leverage points are those that exert an ‘undue’ influence on the regression coefficients. An extreme leverage point
would effectively determine the regression equation at the expense of describing the hundreds of other data points. The
exact cut off value proved unimportant in reaching the final model specification.
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Producing more efficient demand forecasts

Company N (no. Constant B R’

dropped) Coefficient
A 1616 -0.120 -0.063 2.5%
+ve info (79) (-3.09) (-7.33)

1534 0.242 -0.041 1.2%
-ve info (85) (7.46) (-4.93)
B 880 0.174 -0.132 6.7%
+ve info (56) (3.54) (-8.86)

1095 0.239 -0.058 2.4%
-ve info (63) (7.37) (-5.74)
C 1063 0.524 -0.246 16.5%
+ve info (58) (8.46) (-14.76)

486 0.446 -0.137 9.0%
-ve info (30) (6.33) (-7.63)
D1 880 0.145 -0.287 29.6%
+ve info (62) (4.55) (-22.15)

775 0.747 -0.191 10.0%
-ve info (58) (17.67) (-10.87)
D2 1880 0.325 -0.399 44.9%
+ve info (148) (9.42) (-39.15)

1474 0.328 -0.166 9.0%
-ve info (102) (10.57) (-12.43)

Table 5 Forecast Bias by Company and Information Direction

Efficiency

With bias established the next question to examine is that of efficiency. The most immediate data the
forecaster can bring to bear in making the adjustment is the time series history and the recent forecast
errors. For all the companies, the latest observation is only known provisionally at the time of making the

forecast. A suitable test of efficiency with this information set is the following model:

Define ¢;, =Y, — F;,,(1)
= o SECy (D) + B Yy + B2 780 72852 Ve (M2)

The constant term has been suppressed as the model’s objective is to re-weight and combine the available

information to explain the observed error. In the model, a significant coefficient for an independent variable
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Producing more efficient demand forecasts

is indicative that the forecaster has not used the information represented by that variable efficiently. Before
the final estimated equation can be established the outliers must again be removed, and the errors rendered
homoscedastic via normalisation (where as before the standard deviation of the actuals has been used). We
also attempted to pool estimates using a general linear model but this again leads to rejection of the
hypothesis that the error model is constant across companies. There is some limited evidence of seasonality
in the errors but its removal through the inclusion of dummy variables affects the results only slightly.

All companies show signs of inefficiency in that their forecast error can be improved by better
weighting the available information on the past observations and forecast errors (see table 6). Typically the
current forecast assigns too little weight to the latest observed error: possibly due to the fact that it is not
always known exactly when the forecast is made. There is no evidence that the most recent observation or
the error are mis-weighted, but over (under) estimates from previous periods are not successfully taken into
account. In addition, the system forecast is over-weighted. Interestingly, this result differs from that of
Goodwin and Fildes (1999) who found in a laboratory study that forecasters ignored the statistical
forecast when making judgmental interventions to take into account promotion effects. Overall, the results
confirm those derived from examining bias — there is more inefficiency shown by the forecasters where
positive market information has been perceived.

No uniform pattern of response is observed across the companies and this was confirmed through a
generalised linear model. For example, company B fails to take into account both most recent sales and its
previous forecast error. Company C shows the least signs of significant inefficiencies. The retailer D shows
major inefficiencies particularly with regard to the most recent errors. The final column comments on how
much extra explanatory power is gained by including the two period lags in the model. Due to
autocorrelation in only one of the estimated models is the gain substantial. In summary, the final adjusted

forecasts have been shown to be biased and inefficient overall: H,; and H,; are supported.

The direction of forecast adjustment
Market intelligence whether positive or negative, has been shown to improve forecasts for G1 organisations
but not for G2. However, as indicated earlier, these benefits were affected by the direction of the

intelligence. Table 7 provides an explanation of this.
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Company N (no. Model Coefficients R’
droppe
d) System Lag 1 Lag2 Lag 1 Lag?2
forecast Actual Actual Error Error

A Positive 1314 -.083 n.s. .052 123 n.s 17.8
info (238) (-4.25) (2.65) (5.24)
Negative 1240 -.047 n.s ns. n.s. .085 10.4
info (255) (-2.69) (4.05)

B Positive 706 -220 153 o .186 113 24.5
info (89) (-6.98) (4.91) (4.74) (2.75)
Negative 812 -.191 206 n.s n.s. n.s. 16.7
info (128) (-10.2) (8.97)

C Positive 799 -.084 n.s. n.s n.s 118 16.3
info (141) (-2.75) (4.22)
Negative 379 -.074 124 -.067 -.132 n.s. 7.6
info (64) (-3.11) (4.10) (-2.05) (-3.62)

D1 Positive 791 n.s. n.s. .-.257 571 .106 74.3
info (151) (-5.77) (14.6) (3.12)
Negative 699 168 n.s n.s. 708 -.099 59.6
info (134) (4.94) (18.2) (-3.46)

D2 Positive 1747 n.s. -.071 (- -0.72 (- .573 -.050 76.9
info (281) 2.02) 2.38) (27.0) (-2.54)
Negative 1386 -.125 n.s 156 262 .052 40.6
info (190) (-6.50) (8.03) (11.92) (3.72)

Table 6 The Efficiency of the Final Forecasts by Company and Information Direction

(t statistics are in parentheses).
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Table 7 a Reaction to Information
Percentage of forecasts which:-

Adjust In % of over

wrong optimistic

Company Information direction Under-adjust Over-adjust direction forecasts
Gl Positive (4013) 33.6 32.0 34.4 66.4
Negative (3392) 46.5 25.2 28.3 45.8
Total (7405) 39.5 28.9 31.6 57.0
G2 Positive (3049) 17.0 324 50.6 82.9
Negative (2409) 46.3 33.2 20.5 54.4
Total (5458) 30.0 32.7 37.3 66.4

Mean and Median change in accuracy (FFC error —SFC

Table 7b error: a negative value represents an improvement)
Adjust In
Information wrong Over
Company direction Measure Under-adjust Over adjust direction optimism
G1 Positive (4013) Mean -16% 8% 44% 26%
Median -15% -1% 22% 7%
Negative (3392) Mean -47% -15% 11% -46%
Median -21% -3% 11% -21%
Total (7405) Mean -30% -1% 29% -14%
Median -17% -3% 14% -2%
G2 Positive (2409) Mean -17% 29% 54% 44%
Median -17% 16% 43% 34%
Negative (3049) Mean -36% -1% 18% -36%
Median -29% 0% 19% -29%
Total (5458) Mean -29% 15% 44% -7%
Median -24% 7% 32% 15%

Table 7 Over-adjustment, Under-adjustment and Forecaster Optimism (Nos. of observations

are in brackets)

Table 7a shows the percentage of forecasts which are under and over-adjustments, but in the correct
direction, the percentage in the wrong direction and the percentage suffering from over-optimism. Table
7b shows the improvements deriving from the adjustment, measured as average (mean and median) final
forecast error (FFC) compared to the system forecast error (SFC). The percentage of forecasts in the
correct direction is lower for positive info (because the company forecasters are optimistic and wrongly
expecting increases in demand). Moreover positive adjustments are more likely to be too large, worsening
the system forecasts. Under-adjustment is consistently successful. The table highlights the damaging
adjustments that occur (i) when they are in the wrong direction (particularly if positive), since some 35%
of adjustments are in the wrong direction, (ii) for positive over-adjustments (but in the right direction)
when again there are damaging large adjustments made all too frequently. Thus, for positive adjustments

there is evidence of an optimism bias and support for Hs;. Similarly, where the information is perceived
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as negative, the forecasts (consistent across companies except for D1), also tend to be too optimistic. Thus
Ha, is also supported

With such a large percentage of forecast adjustments turning out to have been in the wrong direction,
the table also illustrates the forecasters’ propensity to misunderstand the impact of perceived MI. One
consequential question is whether a wrong-sided adjustment is simply a timing error in that the forecaster
anticipates an effect which actually occurs a period later than expected? If this is the case there should be
very few wrong sided adjustments in the following period. Our data suggests that this is not the case. For
example, for the G1 companies 33.0% of adjustments made in the period following a wrong-side
adjustment were also wrong sided. This pattern was particularly marked for upwards adjustments that

were made following a wrong side adjustment: 43.3% of these were also wrong sided.

The effect of trend

Was there any evidence that the company forecasters made adjustments in order to damp trends
particularly for downward trended series, as suggested by H4? Evidence from observing forecasters in the
companies suggested that most attention was paid to the most recent movement in sales and often the
change between the two most recent periods was regarded as the trend. We therefore examined the pattern
of adjustments in relation to the slope of the last segment in the sales graphs. While the forecasters did
tend to apply damping slightly more often when the last segment slope was down, this only represents
weak support for Hy and could derive from optimism bias.. Interestingly, adjustments which were in the
same direction as the last segment slope tended to lead to the greatest gains in accuracy. The adjustments
which ‘went with the flow’ reduced the MdAPE by 6.1 and 12.1 percentage points following up and
down trends, respectively. Adjustments, which went ‘against the flow’, (i.e. which represented damping)
made little difference to accuracy in either case. We conjecture that this was due to the special event, for

which the adjustment was being made, already impacting the slope and continuing into the next period.
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5. Reaping the benefits from expert adjustment

The previous sections have shown that, despite the generally improved accuracy deriving from forecast
adjustments, the final forecasts are inefficient and biased with over-optimism prevalent in response to
positive market intelligence. In this section we evaluate four possible methods for improving the
accuracy of the adjustments. The first two methods use a statistical procedure to correct the adjustments.
The others would require either training for forecasters, better market information or restrictiveness

within the forecasting software.

i) The Blattberg-Hoch approach

The ‘50% model, 50% manager heuristic’ proposed by Blattberg and Hoch (1990) involves taking the
mean of independent management judgmental and statistical forecasts. In our case, application of the
heuristic will involve taking a mean of the system and final forecasts. However, because the managers
saw the system forecasts (indeed they typically over-weight them) before making their adjustments the
system and final forecasts are not independent. In this case the heuristic will simply act as a damper on
the adjustments, restricting them to 50% of the change indicated by the managers. If there is a propensity
to over-adjust forecasts (e.g. as a result of an optimism bias) then this damping might improve accuracy.
However, if the forecasters are anchoring on the statistical forecast and conforming to the anchor and
adjustment heuristic (Tversky and Kahneman, 1974) they will be under-adjusting from the statistical

forecast and the damping is likely to be too severe.

ii) Bootstrap rules

When consistent mis-weightings of information are observed, it is possible to devise bootstrap rules
which model the relationship between the judgemental forecast error and the available cue variables. Such
rules have typically outperformed the unadjusted raw judgements in many studies (Dawes et al., 1989)
though the evidence is primarily based on cross-sectional forecasting problems where the cues are not
autocorrelated as in time series data. The time series evidence is much more limited (Lawrence et al.,

2000, Lawrence and O'Connor, 1996) though Fildes (1991) showed how the mis-weighting of both a
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causal driver (GDP) and past actuals could be used to improve accuracy. The lack of time series
evidence, despite inefficiencies being common, seems to arise from the lack of stability (over time) in the
data which in turn implies that while ex post there are weights that would lead to improved accuracy, such
weights cannot be estimated ex ante.

We have developed various models in order to examine whether the observed inefficiencies can be
used to improve accuracy. Although lags of two periods were shown to be significant in the earlier
efficiency analysis shown in table 6, the longer lags typically have a low impact on the models’ standard
errors, once the most recent data is forced into the model, and the additional complexity of such rules
seemed likely to limit their operational impact. The model estimated here combines the various raw
information sources using only one period lags - the most recent data available to the forecasters.

Model Y;
= 4,SFC ij t-1 1)+ A4,MI it T ﬂi,lYij,t—l + 71811 T Vijs (M3)

where SFC;jr.1(1) is the one-period ahead system forecast for the ith product, the jth company, made in
period t-1, Ml is the market intelligence available to the forecaster, and e the last period’s error. Once M3
is estimated it can be used to produce forecasts of demand.

To ensure a rigorous evaluation of the proposed models, the database was split into an estimation set
of approximately 80% of the total data set for each company and a test set of the remainder. For example,
for company A the last 7 months constituted the test data. This design of a hold-out sample is more
demanding of the model than the alternative of selecting 80% of the data at random as hold-out. Model
performance has been evaluated again using a trimmed mean (trimmed removing 1% of those extreme
final forecast errors). The test of equality for positive information and negative information was highly
significant and therefore the two classes of data have been modelled separately.

Various models were estimated based on the size of the adjustments made since preliminary analysis
had shown that the size of adjustment affected the model coefficients (e.g., set MI=0 for small values).
However, the default model where all data (apart from outliers) were used in model estimation proved
most successful in terms of improved accuracy. The two models we analyse here are (1) the full model,
incorporating the system forecasts, market intelligence and past cues, and (2) the optimal adjust model

using just the system forecast and market intelligence . Two typical bootstrap models (outlier adjusted)
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are shown in Appendix 1 for company A when positive and negative information was available. Full
details of all the models are available from the corresponding author. They show that the companies
differ, often quite substantially, in their ability to use information in their environment to achieve
optimally accurate forecasts. However, a number of traits were common to all companies, in particular
for the G1 group of companies the past actuals and errors (whilst significant) were unimportant in contrast

to the G2 group. Second, MI was almost optimally incorporated for negative information for G1

iii) Avoiding small adjustments

The results displayed in table 4 showed that small adjustments had a higher probability of being made in
the wrong direction thus damaging forecast accuracy. We argued that this was because small adjustments
tended to be the product of relatively unreliable market intelligence leading forecasters to be hesitant to
commit themselves to bigger changes. This suggests that a strategy which stops forecasters from making
these smaller adjustments would improve accuracy. There are a number of ways in which such a strategy
could be implemented including training of forecasters and the use of software that prohibits adjustments
below a pre-set percentage. Alternatively, efforts to improve the reliability of market intelligence would
reduce the need for such adjustments. We examined the potential accuracy gains that could be achieved

through a strategy of avoiding the smallest 50% of adjustments to see if it would be worth implementing.

iv) Avoiding wrong-sided adjustments

Our earlier analysis showed that wrong-sided adjustments are particularly damaging to forecast accuracy.
We examined the potential gains that could be achieved if improvements in market intelligence could be
used to eliminate half of these wrong sided adjustments. We did this by randomly allocating each wrong
sided adjustment to either a no change group or a change group. Each member of the change group had

its adjustment set to zero so that its forecast became the system forecast.

A comparison of the methods

We compared the accuracy of methods on both the in-sample and hold-out data using both the MAPE

and MdAPE. We also ranked the results for each company (1 being most accurate) and summed the
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ranks.

companies. The in-sample results are included to demonstrate the robustness of the methods.

Tables 8a and 8b summarise the in-sample and hold-out sample results for the G1 and G2

Accuracy  System Final Blattberg- Full Optimal MI
Companies Information measures forecast forecast Hoch model model
Gl Positive MAPE 30.6% 39.2% 30.3% 28.9% 29.5%
(n=3096) MdAPE 20.4% 15.2% 16.9% 15.9% 15.7%
Sum of ranks 25 24 16 8 16
Negative MAPE 21.1% 20.0% 17.6% 18.5% 18.2%
(n=2416) MdAPE 32.4% 26.9% 33.0% 27.7% 27.5%
Sum of ranks 27 17 17 14 14
G2 Positive MAPE 36.1% 79.1% 52.4% 23.3% 31.9%
(n=2422) MdAPE 20.5% 44.2% 28.3% 15.7% 20.6%
Sum of ranks 11 20 16 4 9
Negative MAPE 36.8% 33.7% 35.5% 23.9% 31.3%
(n=1797) MdAPE 23.9% 23.5% 19.9% 15.1% 18.6%
| Sum of ranks 17 16 14 4 9
n = number of observations
Table 8a In-sample accuracy of models and system and final forecasts
Optimal Avoid 50%  Remove 50%
Accuracy System Final Blattberg- adjust smallest of wrong side
Companies Information measures forecast forecast Hoch model adjustments adjustments
Gl Positive MAPE 32.3% 42.5% 38.1% 32.9% 45.1% 35.0%
(n=639) MdJAPE 21.0% 21.7% 18.1% 18.9% 20.0% 18.0%
Sum of ranks 20 30 19 12 31 14
Negative MAPE 52.6% 29.8% 49.3% 28.6% 36.0% 28.6%
(n=720) MdAPE 19.2% 18.3% 16.9% 18.4% 18.4% 17.0%
Sum of ranks 34 16 27 15 25 8
G2 Positive MAPE 30.3% 47.7% 38.5% 27.4% 47.3% 40.0%
(n=627) MdAPE 26.1% 41.8% 31.1% 21.1% 35.6% 32.9%
Sum of ranks 8 23 14 4 21 14
Negative MAPE 35.2% 23.6% 27.8% 18.9% 27.0% 21.7%
(n=612) MdAPE 28.0% 19.4% 23.2% 11.8% 21.3% 18.0%
Sum of ranks 18 16 14 5 20 11

n = number of observations

Table 8b Hold-out sample accuracy

It can be seen from the hold-out results that there are clear differences in the accuracy of the

methods depending on whether the information is positive or negative. When information is positive the

MAPEs show that, for all companies, the final forecasts tend to be less accurate than the forecasts

obtained from the system so the judgmental interventions are, on average, only serving to reduce
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accuracy. However, comparisons with the MdAPEs indicate that much of this reduced accuracy is caused
by a few extremely damaging adjustments (particularly for the G1 companies). These will be either over-
large adjustments in the correct direction or wrong-sided adjustments, which as table 7 shows, are
relatively more frequent for positive information.

How do the possible improvement methods fare when information is positive? Preventing
forecasters from making the 50% smallest adjustments is ineffective. Because large inaccurate
adjustments are a common problem when positive information is available, preventing small adjustments
offers little improvement.

However, the other methods are effective when information is positive. Rather than removing the
small adjustments the Blattberg-Hoch method, as applied here, acts by damping all adjustments by 50%.
This method therefore improves accuracy by reduces the damaging impact of the large adjustments.
Wrong-sided adjustments are also frequently associated with positive information (especially for the G2
companies —see Table 7). Not surprisingly, developing measures to prevent half of these adjustments also
leads to substantial improvements over the final forecasts. However, the final improvement method, the
optimal adjust model, performs best, reflecting the serious mis-weighting of market intelligence that
occurs when this information is positive. For the G2 companies the improvements it yields over the final
forecasts are substantial.

When information is negative a contrasting set of results is obtained. Table 8 shows that, the
judgmental adjustments tend, on average, to improve accuracy —the direct opposite of the situation with
positive information. In this case, comparison between the MAPEs and MdAPEs suggests that the
judgmental adjustments are particularly effective because they are reducing many of the extreme errors in
the system forecasts. Table 7 shows that reactions to negative information frequently take the form of
under-adjustments in the correct direction. When the system forecast errors are extreme, these under-
adjustments improve accuracy, though they do not, of course, completely eliminate the errors.

How effective are the improvement methods when information is negative? Table 8 shows that two
of the methods are at best ineffective. Indeed, if measures are taken to remove the 50% smallest
adjustments, accuracy will actually be reduced (especially for the G2 companies). This is because the

measure would eliminate the small under-adjustments which are nevertheless in the correct direction.
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Clearly, this can have no value unless the effort that these adjustments entail is not warranted by the
improvements in accuracy that they yield. Similarly, by damping the size of the adjustments, the
Blattberg-Hoch method only exacerbates the tendency to under-adjust.’

Preventing half of the wrong-sided adjustments is bound, by definition, to lead to improved
accuracy. However, when information is negative there tend to be fewer wrong-sided adjustments (see
table 7) so the benefits derived from measures designed to eliminate half of them are less than those
obtained with positive information. The optimal adjust model does not yield improvements for the G1
companies, reflecting the fact that forecasters in these companies attached virtually optimum weights to
market intelligence when this information was negative, but it does lead to improved accuracy for the G2
companies where market intelligence was mis-weighted.

In summary, preventing small adjustments is not likely to lead to improvements in accuracy,
whatever the information direction. The other methods are effective when information is positive. When it
is negative they lead to smaller improvements in accuracy or none at all. As a strategy, the optimal
adjustment procedure works well overall; it generally leads to improved accuracy, sometimes substantial,
and with no damaging effects for either positive or negative information or for both

groups of companies.

6. Discussion

Our analysis has revealed major differences in the forecasting accuracy obtained by the companies. It also
showed the potential for improvement that could be achieved by focusing on the more effective use of
market intelligence and the removal of consistent biases. However, the four improvement methods we
examined would all face possible obstacles if an attempt was made to implement them in many
organisations. Because the Blattberg-Hoch and bootstrap approaches are automatic correction procedures
their use may lead to the demotivation of forecasters, with less effort being applied to the original

judgments (Goodwin, 1996) . Alternatively, the nature of the biases may change over time, possibly as a

? For the G1 companies the Blattberg-Hoch methods yields a slightly lower MAAPE (16.9%) than the final forecast
(18.3%), but the result derives from the better performance one just one of the three companies as the rank
comparison demonstrates.
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result of training, or the company forecasters may seek to pre-empt the corrections by distorting their
judgmental inputs into the process. Improvements in forecasting through training and better use of market
intelligence, which are required by the other two improvement methods we examined, are also not
straightforward to achieve and there are many barriers to adopting new forecasting procedures (see for
example Schultz (1984) In this section we use our experience of extensive meetings with the companies
concerned and observation of their forecasting processes to provide explanations for the results and to

identify how improvements might be achieved.

The Forecasters

Fildes and Hastings (1994) and Moon et al. (2003) identified motivation and training as potentially
important in attaining accurate forecasts. With the wrong incentives forecasters may be motivated to
produce forecast that are biased. For example, in their survey of US sales forecasting practice Sanders
and Manrodt (1994) found a preference for under forecasting. Similar results were found in a recent
survey by Fildes and Goodwin (2006) . In our research, despite all company forecasters explicitly stating
that accuracy was an important goal (for them and the company) company A preferred to over-forecast
while the retailer was found, in many periods, to be confusing the demand forecasts with decisions on
inventory levels. Thus the forecasts were not a genuine expectation of the next period’s demand, but a
decision on how much of the product to stock. This probably accounts for much of the bias associated
with these ‘forecasts’.

In none of the companies were the forecasters expert in the statistical aspects of forecasting such
as error measurement or alternative forecasting methods. Nor were they aware of the many biases
associated with judgmental interventions in forecasting. All the senior forecasters were, however,
immersed in process and management issues relating to forecasting with one acting as a regular presenter
at professional forecasting events. It therefore appears that training and the use of appropriately targeted

incentives would be likely to lead to improvements in accuracy.
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The Forecasting Support System

All four company systems were professionally developed, but they had inflexible interfaces and poor (or
in one case non-existent) graphics. Yet the format of the interface can be important in improving accuracy
(Tashman and Hoover, 2001) . The system forecasts were produced using models far removed from best
practice (see, for example,Gardner and Andersen (1997) ), nor had the chosen methods been tuned to
produce the best possible results from the software. Standard exponential smoothing models are now
known to require just such tuning in the choice of smoothing parameters so this might explain the
inadequacies (Gardner, 2006) . This was underlined in the strong performance of the naive forecast
compared to the system forecast for companies B and D. Perceived inadequacies in the system forecasts
lead to a complex adjustment process (see Goodwin et al. (2006) for a case study of company A) and,
typically, worse forecasts (Goodwin et al. 2007) . Analysis of screen displays show that the forecasters
do not have clear guidance on the previous actuals and previous errors. Summary error measures are not
easily available and those that are provided are subject to outlier and intermittent demand effects. Thus a
reliable assessment of the gains or losses in accuracy resulting from judgmental adjustments could not be
made and there was therefore little opportunity to learn from experience about the appropriateness of
judgmental intervention in different circumstances. Improved statistical forecasting systems to provide
better base line forecasts and accuracy monitoring systems using well-designed error measures are
therefore needed.

Although three of the systems had a ‘notes’ facility, whereby the forecaster could explain the
reasons for the adjustments they make, they had none of the features that might make it easy to use and
effective. Use was spasmodic and incoherent in that forecasters could not explain the past adjustments
they had made to us by referring to their ‘notes’ system. Clearly, requiring forecasters to record reasons
for their adjustments in a standard format (e.g. by selecting a reason from a list) might serve to reduce the
number of relatively small, but damaging adjustments that may be based on unreliable market intelligence
or other untrustworthy information (Goodwin, 2000) . This would also allow forecasters to understand

why and how market intelligence is so often misinterpreted. In addition, it would permit the
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decomposition of market intelligence into key drivers, thereby lessening the likelihood of double
counting.

While enhancements in forecasting support systems in recent years have reflected advances in
statistical forecasting methods, the development of facilities to support managers’ judgmental inputs has
been almost non-existent (Fildes et al., 2006) . Experimental evidence suggests that the incorporation of
guidance systems, such as those which allow the formal use of analogies (e.g., past promotions and their
effects (Lee et al., 2006) would improve the quality of judgments based on market intelligence. In
addition, the evidence from the retailer (company D) suggests the need for a de-coupled system which
clearly distinguishes between forecasting and the associated supply chain decisions. A system which
allows the two to be compounded is difficult to improve since there is not clear view of forecast error or
optimal inventories. Such a system might help to mitigate the pressures towards bias, both personal and

organisational, that exist in many companies.

Market Intelligence
The company forecasters identified promotions as the most important driver of their judgemental
adjustment (though not for company A, the pharmaceutical company). Other important aspects include
price changes (Companies C & D), weather (B, D), inventories (Company A, D). Where market
intelligence is strong and its direction clear, there are major improvements in accuracy as seen in Table 4.
However, the process by which such intelligence is gained is, as Moon et al. (2003) point out in an
examination of 16 case studies, often very flawed, primarily through the lack of coordination and
communication between the different organisational units involved in supply chain operations, sales and
marketing. Here, while all companies apparently consult widely on important drivers, the evidence that is
collected is not compiled in a manner, which through, for example, a notes system, leads to learning by
analogy from earlier exemplars. Each event is instead treated as unique.

In addition, different sources of intelligence are not identified and quantified separately using a
recommended decomposition approach. This can lead to double counting or omission (MacGregor, 2001)
. None of the companies attempted to review the reasons for wrongly interpreting the direction of an

adjustment, a cause of major forecast error.
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7. Conclusions

Judgemental adjustments to statistical forecasts is very common with up to 80% of forecasts adjusted in.
some companies. In the context of forecasting SKU data to support supply chain operations and planning,
the accuracy of such forecasts and the judgemental adjustments is important, impacting on profit and
service levels. However, the effectiveness of these judgements is moot with very limited empirical
evidence available. In this paper we have shown conclusively that the value of these adjustments depends
on the company context, but where the forecasters’ principal motivation is towards improved accuracy,
there is substantial added value in the adjustments made.

However, the company forecasts we observed proved to be biased and inefficient. Optimism bias
was prevalent. The forecasters tended to over-weight the statistical systems forecast, which for some of
the companies was itself flawed in comparison to a naive forecast. We therefore developed various
models for capitalising on the biases and inefficiencies, showing that the most appropriate model depends
on the circumstances, in particular the nature of perceived intelligence, positive or negative. For example,
the effectiveness of the Blattberg-Hoch heuristic of 50% model+50% man, as we applied it, is itself
limited to positive adjustments. Based on over 12000 judgementally adjusted forecasts and 1536 SKUs
we can therefore conclude that, at least for the companies analysed here, they could improve their
forecasts substantially by more effective incorporation of market intelligence. In particular, they should
put into place processes to avoid the ‘optimism’ bias, either as part of the FSS or in the motivation and
monitoring aspects of the organisational process. Avoiding small adjustments, perhaps through a
constraining FSS, would free time to focus on what is undoubtedly the most important issue, identifying
the direction of market intelligence.

Forecast adjustment is the only practical way for most organisations to improve their
incorporation of key drivers into their disaggregated sales forecasts. While the evidence we present shows
the benefits of adjustment, there remains plenty of opportunity for both companies and researchers to

understand how such factors are best included. The result should be major improvements in accuracy.
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Appendix 1

Table Al Incorporating Market Intelligence: Predictive Models of Sales and their forecasting
Accuracy (by company group).

System Past Past MI Rsq. Insample Holdout
forecast  Actual error adjust MAPE MAPE
(MdAPE) (MdAPE)
Gl  Positive M3: all .842 .169 n.s. 424 97 .368 391
info info (62.5) (13.5) (22.6) (.155) (.176)
1367; Optimal ~ .987 * * 450 97 373 383
estimation  Adjust (211) (25.2) (.165) (.175)
set 50-50 1 * * 5 * 384 393
holdout (.160) (.174)
639
Negative M3: all .827 181 n.s. .804 .97 420 337
info 1087 info (59.30) (13.2) 32.0) (.152) (.159)
(446) Optimal ~ .995 * * 989 .96 415 321
Adjust (197) (43.1) (.152) (.156)
50-50 1 * * 5 * 564 448
(.173) (.162)
G2 Positive M3: all 392 .590 n.s. 203 97 278 357
info info (17.2) (24.1) (8.90) (.164) (.195)
2063 Optimal  .864 * * 272 .94 381 303
Holdout Adjust (122) (17.9) (.121H)1 (.203)
627 50-50 1 * * 5 * .565 373
(.294) (.256)
Negative M3: all 465 573 .089 371 97 256 216
info info (17.4) (18.7) (414 (13.8) (.147) (.118)
1797 )
Holdout Optimal 913 * * 622 .94 320 244
612 Adjust (104) (21.4) (.195) (.204)
50-50 1 * * 5 * 371 292
(.202) (.206)

The table shows the estimated cue models based on M3 which use the system forecast, the past cues

and market intelligence to estimate actual demand. If the final forecast were the best achievable the

coefficients of SFC (the system forecast) and MI (market intelligence) would both be 1, with zero

weight assigned to past actuals and past errors. The data have been grouped into the manufacturing

companies (forecasting monthly) and the retailer (forecasting weekly). For the monthly data the

drivers of the past actual and past error have limited or no predictive power. However the forecasters

over-respond to market intelligence, particularly in the case where information is positive, and

therefore damping the adjustment improves accuracy.
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