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Abstract 
 

The actions of individual users of an experimental demand forecasting support system were traced 

and analyzed. Users adopted a wide variety of strategies when choosing a statistical forecasting 

method and deciding whether to apply a judgmental adjustment to its forecast. This was the case 

despite the users reporting similar levels of familiarity with statistical methods. However, the 

analysis also revealed that users were very consistent in the strategies that they applied across 

twenty different series.  In general, the study found that users did not emulate mechanical 

forecasting systems in that they often did not choose the forecasting method that provided the best 

fit to past data. They also tended to examine only a small number of methods before making a 

selection, though they were likely to examine more methods when they perceived the series to be 

difficult to forecast  Individuals who were relatively unsuccessful in identifying a well fitting 

statistical method tended to compensate for this by making large judgmental adjustments to the 

statistical forecasts. However, this generally led to forecasts that were less accurate than those 

produced by people who selected well fitting methods in the first place. These results should be of 

particular interest to designers of forecasting support systems who will typically have some 

stylised representation of the way that users employ their system to generate forecasts. 

 

Key words:  Judgmental forecasting, forecasting support system, forecaster behaviour, forecasting 

tasks 
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Introduction 

 

Almost all research into judgmental forecasting has focussed on groups of forecasters, as opposed 

to individuals. For example, typical research questions are "Does the use of method A lead, on 

average, to more accurate judgmental forecasts than method B?” (e.g. Sanders, 1997, Goodwin, 

2000,  Webby et al, 2005) or  "Will judgmental forecasters be on average more accurate if 

condition X applies in the environment rather than  condition Y?” (e.g. Lawrence and Makridakis, 

1989, O’Connor et al., 1993). In addition,, some studies have pooled data on individuals in order to 

develop models of the processes that the average forecaster adopts when making forecasts (e.g. 

Lawrence and O’Connor, 1992, Bolger and Harvey, 1993, Goodwin, 2005), in particular in the 

examination of financial analysts’ forecasts (see for example, Easterwood and Nutt, 1999). While 

many of these studies have produced results which are of great potential value in understanding the 

behaviour of forecasters and improving accuracy (Armstrong, 2001) they have also usually found 

that there are considerable differences between individual forecasters, in the forecasting strategies 

they employ and the resulting accuracy they obtain. Thus, although a particular method may, on 

average, improve judgmental forecasting accuracy in a particular context, there is no guarantee 

that it will work for a given individual. Indeed, Stewart (see: Ayton et al., 1999) has pointed out 

that while much research has assumed that judgment processes are universal and are independent 

of the individual, research should be conducted which makes the opposite assumption and fully 

recognises the importance of the individual. 

 

 

In contrast to the research focussing on ‘typical’ or ‘average’ forecasters, researchers into the 

design of decision support systems (DSSs) have emphasised differences between individuals. For 

example, Sauter (1997, p 30), citing the work of Mintzberg (1990), argues that "first and foremost 

different decision makers operate and decide in very different ways… as a result decision support 

systems must also be designed to allow users to do things their way…(DSSs) must include 

substantial flexibility in their operations". However, Sauter argues that, not only should DSSs 

allow decision makers to act in their own way, they should also provide appropriate support and 

guidance to individuals in the selection of models and data in the choice process. For example, 

novice decision-makers, in particular, might benefit from warning messages and suggestion boxes.  
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This suggests that software designers who are responsible for producing commercial systems that 

support the forecasting task (forecasting support systems (FSSs)) should also consider the ways in 

which individuals use their systems to produce forecasts. A mismatch between the software 

designer’s model of how a system will be used and actual use is likely to impair the system’s 

functionality. However, little is known about the diversity of strategies that users adopt, the effect 

of these strategies on forecast accuracy and the extent to which individuals are consistent in their 

employment of particular strategies.  

 

This paper describes a study that recorded all the keyboard and mouse actions of the users of  a 

forecasting support system in order to address the following research questions: 

 

1) How do individuals carry out the task of selecting a statistical forecasting method and what 

influences their propensity to apply judgmental adjustments to the resulting forecasts? 

2) How much variation is there between individuals’ strategies and is this variation   

    sufficient to justify designing systems that vary in the support that they provide to  

     individuals? 

3) Are particular strategies associated with inaccurate forecasting? 

4) How consistent are individuals in applying a given strategy over time? 

5) Can a broad classification of strategies be identified? 

 
The paper is structured as follows. First other studies which have considered the implications of 

individual differences for decision support are reviewed. Then the forecasting task and the 

computerised system that was designed to  support it are  described.  An analysis of how the 

subjects used the system is then used to answer the research questions. Finally the implications of 

this analysis for FSS design are discussed. 

 
 
Individual differences and decision support 
 
The decision  support literature of the 1970s and early 1980s recognised that individuals differ in 

their approach to decision making and  hence are likely to have different needs when using a 
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decision support system. (e.g.  Driver and Mock, 1975, Dickson et al, 1977, Bariff and Lusk, 1977 

and Benbasat and Taylor, 1978).  Zmud (1979) identified  three main attributes of decision makers 

that impacted on their use of decision support systems: cognitive style, personality and 

demographic/situational variables. A key belief inherent in these papers was that the acceptability 

and subsequent use of a system could be predicted from these attributes. This implied that a system 

could be tailored to provide appropriate facilities that either complemented, reinforced or 

attempted  to correct the user’s decision making process and also improved the likelihood that the 

system would be accepted in the first place.  However, Huber (1983) questioned the value of using 

cognitive style as a basis for system design. He argued that the literature on cognitive style lacked 

both an adequate underpinning theory and reliable and valid instruments to measure cognitive 

style. In the light of this Huber concluded that further research into cognitive style was unlikely to 

lead to improvements in the design of systems. Nevertheless, some researchers have continued to 

investigate the effect of cognitive style on DSS use. For example, Zinkhan et al (1987) considered 

the effect of cognitive differentiation  (together with personality, demographic and other variables) 

on decision makers’ usage of, and satisfaction with, a marketing decision support system. 

 

However, there is another approach to tailoring the response of a support system to an individual. 

This does not involve using precursor variables to anticipate future use. Instead it involves directly 

monitoring the actions of individuals using the system in order to identify patterns that might 

signal either functional or dysfunctional use and the need for particular types of support. Such an 

approach is likely to be particularly relevant for forecasting support systems because the use of 

such systems usually involves carrying out similar tasks many times (thus allowing data to be 

generated on how the task is being approached). In addition, there exists a set of research-based 
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principles that provide guidance how the task should be carried out (Armstrong, 2001). For 

example, the forecasting research literature indicates that forecast accuracy tends to be reduced 

when a forecaster manifests a propensity to adjust statistical forecasts judgmentally, despite not 

being in possession of important new information about exceptional events (Sanders and Ritzman, 

2001). Whether such a pattern of actions is associated with  particular cognitive styles or  

personality or demographic variables is not known. Nevertheless,  support mechanisms designed to 

reduce the propensity (such as provision of guidance (Silver, 1991) or the requirement to record a 

reason for  the adjustment (Goodwin, 2000))  could still be evoked if the pattern is detected.  The 

rest of the paper investigates the extent to which such patterns are detectable and specific to 

individual system users. 

 
 

The experiment 
 

The task and system 

 
 
The experimental task was designed to replicate that found in many supply-chain based companies 

where computer systems are used  to obtain product demand forecasts  from time series data.  In 

performing the task forecasters have an opportunity either to choose a statistical forecasting 

method and its associated parameter values or  to allow  the system to identify the ‘optimum’ 

statistical method automatically. Note that, in many companies, these forecasts may subsequently 

be modified at review meetings of managers, ostensibly to take into account market intelligence 

(Goodwin et al, 2006). We do not consider this aspect of forecasting here. 
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The PC based support system  was identical to the ‘high participation’ system employed by  

Lawrence et al (2002). Subjects running the program first supplied answers  to a questionnaire.  

The subsequent screen displayed a brief explanation of the experimental task before subjects 

engaged in a trial run of the program to familiarise themselves with its facilities. They then used 

the FSS to estimate one-step-ahead forecasts for each of 20 monthly sales time series. Because the 

focus of this study is on individual differences all the forecasters faced the same forecasting task 

under the same conditions, although the time series were presented in a random sequence in order 

to remove order effects.  The instruction sheet told the subjects they were to act as product 

managers responsible for developing a monthly forecast for 20 key products. At the conclusion of 

the experiment another questionnaire was completed by the subjects.   

 

About the subjects  

 

The subjects were 32 management students at Lancaster University, all of whom were taking a 

course in forecasting. As an incentive, monetary rewards were given to the subjects who produced 

the most accurate forecasts. The subjects indicated that they had some familiarity with statistical 

forecasting methods (of the type available in the FSS) and with methods of technique selection. 

Their average rating on a 1 to 3 familiarity scale (1= not at all familiar, 2 = some familiarity, 3 

=very familiar) was 2.2. (There was little individual variation here -only 6 subjects rated their 

familiarity outside the range 2 to 2.5 on the 1 to 3 scale.) This may exceed the levels of familiarity 

of forecasting personnel in many companies (Fildes and Hastings, 1994, Watson, 1996). Only a 

third of the subjects made use of the five help buttons available on the FSS -these gave a brief 

explanation of each forecasting method. Those that used the help facility did so on average just 

over 3 times while operating the FSS (this includes the trial run). 
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Generation of the Time Series   

The 20 time series were artificially generated to simulate non-seasonal demand patterns 

experienced by supply chain based companies.  They included: i) series without a systematic trend, 

ii) series with upward or downward local linear trend, iii) series with damped trends, iv) series 

with a reversal of the trend, v) random walks vi) white noise series- with step changes in the 

underlying mean- and vii) irregular series. The  noise associated with a given series was 

independently sampled from a  normal distribution with a mean of zero and a standard deviation of 

either 15 or 45, yielding nine 'high noise' and eleven 'low noise' series, respectively. Graphs of two 

of these series can be seen in figures 1 and 2. 

 

The Forecasting Support System   

 

Figure 1 shows a typical screen display seen by subjects. The FSS presented a graph of the sales of 

the product in the previous 20 months and the user had several decisions to make in order to obtain 

a provisional forecast for month 21. These decisions related to the statistical forecasting method to 

be used and the parameter value(s) to employ with a given method. Such choices are typically 

available and exercised by company forecasters (Goodwin et al, 2006). 

 
**Please insert figure 1 about here** 

 
.a) Choice of forecasting method. Ten methods were available in the system: exponential 

smoothing, Holt's method, damped Holt's method, Naïve 1 and an average of  any two of these 

methods (Makridakis et al., 1998). A brief explanation of each method, and an indication of the 

circumstances where its application was most appropriate, could be obtained by clicking the 
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mouse. Subjects had the opportunity to ask the system automatically to identify the method which 

gave the closest fit  (i.e. the minimum mean squared error) to the past data and to produce a 

forecast using this method. Alternatively, they could choose their own method from those 

available. 

 

b) How the parameters of each method were obtained. Subjects could choose to use default 

parameter values preset by the FSS, or they could ask the system to identify the parameter values 

that had yielded the most accurate one-month-ahead sales forecasts over the previous 20 months. A 

further choice was available here: the system could be asked to identify either the parameter values 

that minimised the mean absolute error (MAE) of these previous forecasts or the values that 

minimised their mean squared error (MSE). The MSE penalises large forecast errors more 

severely. 

 

When the subject had made these choices, the forecast for month 21 using the selected method was 

superimposed on the sales graph, together with the method's forecasts for the previous 20 months.  

At this point the subject could decide either i) to accept this forecast and move on to the next 

product, ii) to make a judgmental adjustment to the forecast (using the mouse to indicate on the 

graph where the adjusted forecast should be) or iii) to try out an alternative statistical method. In 

the latter case, a record of the month 21 forecasts of all methods previously examined for the 

current product was available at the click of a command button.  

 

When subjects, had finally determined the forecast for a given product, the FSS displayed a 

prediction interval around it (see figure 2).   The upper and lower limits of the interval were set at 
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the forecast plus and minus the noise standard deviation. Subjects were then asked to indicate, on a 

scale from 0 ('no confidence at all') to 10 ('complete confidence'), how confident they were that the 

interval would contain the actual sales value for month 21. 

 

**Please insert figure 2 about here** 

  

The Questionnaires   

A pre-experiment questionnaire measured subjects' familiarity with forecasting techniques and 

concepts. This was  presented on the computer screen and subjects used the mouse to indicate their 

responses.  The post-experiment questionnaire, which was also computer-based, is shown in 

Appendix 1.  The questions in this questionnaire were intended to elicit subjects' perceptions of the 

ease of use, usefulness and trustworthiness of the FSS tool that they had just been using. The 

design of the questionnaire enabled scores for the constructs 'ease of use',  'usefulness' and 

'satisfaction’ using the transformations shown in Appendix 2.  

 

 

The tracing method 

The actions of the individuals using the program were traced by recording every key stroke and 

mouse operation. The advantages of using computerised process tracing in order to develop an 

understanding of how decision makers use decision support systems have been discussed by Cook 

and Swain (1993). These include the unobtrusive nature of the tracing tools. To date, the method 

has not been used to study the processes used by forecasters.  
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How individuals made their forecasts 
 

The process by which individuals used the FSS to arrive at each sales forecast can be characterised 

by four features:  

  

i)    how well  the forecasts of the chosen statistical forecasting method fitted the past 

      sales data; 

ii)  the number of times the individual fitted a statistical method to the past sales series,  

      before choosing the method that they thought was appropriate; 

iii)  whether they decided to apply a judgmental adjustment to the forecast of their chosen  

      method; 

iv)  the size of any judgmental adjustment that was applied. 

 

 

 

 

The fit of the chosen method's forecasts to past sales data 

 

Most purely mechanical forecasting systems choose statistical methods, and their parameter 

values, on the basis of how well their forecasts fit past data. In general, there was little evidence 

that subjects were either able, or willing, to emulate this. An optimise button was available to 

indicate the best fitting method for the past 20 observations, but this was used to obtain only 14.1% 

of the forecasts examined and only 9.7% of the forecasting methods finally chosen  (with just over 

14 % of these 'optimised' forecasts subsequently judgmentally adjusted). There is evidence in the 

literature that the fit of a forecasting methods to past data is often only weakly correlated with the 

ex ante accuracy of these methods (for example Fildes and Makridakis, 1988  indicated a 

correlation of only 0.25 for short forecasting horizons). In practice, this weak correlation might 

result from  noise and the effect of external events (like product promotion campaigns) that were 

not taken into account by the forecasting methods. In this experiment there were no external events 
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to impact on demand. Choosing a method with a close fit to past data would therefore have been an 

appropriate strategy for most of the series. 

 

Several of the statistical forecasts chosen were based on default parameter values (e.g. a smoothing 

constant of 0.1 for simple exponential smoothing), even though the graphical display showed, in 

many cases, that these forecasts provided a very poor fit to the past time series. For a given series, 

the (mean squared error) MSE of the chosen forecasting method can be compared with that of the 

available method offering the lowest MSE on that series. We will define the ratio of the two MSEs 

as the overall fit ratio. 

 

i.e.,   overall fit ratio (OVR) =   
systemon  available methods of MSELowest 

             methodchosen  of MSE   

 
 

Clearly, where a subject chooses the best fitting method that is available on the FSS, for a given 

series, the fit ratio will be 1.0. The mean fit ratio of methods selected by subjects averaged over all 

twenty series was 1.44. 

 

Nevertheless, as table 1 shows, this overall mean obscures the fact that there were considerable 

differences between the mean fit ratios obtained by individual subjects. 

 
 

**Please insert Table 1 about here** 
 

 
When subjects tried several forecasting methods for a given product they did not always select the 

best fitting method of those they had examined. This can be seen by considering the ratio of the fit 

of the chosen method to the best fitting method they saw, i.e., 

 
 fit ratio (over methods seen) = MSE of chosen method 

    lowest MSE of methods examined 
       

The mean ratio here was  1.17. Table 2 shows the variation in this ratio across the subjects 

  

**Please insert table 2 about here** 
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Number of methods examined 

 

On average, the number of statistical methods that subjects examined before selecting a method 

was 2.6 though, as table 3 shows, there were again considerable individual differences1. Perhaps 

because of fatigue or increasing familiarity with the task, subjects tended to try more methods for 

the ten earliest series that they saw (an average of 3.2 methods per series compared to 2.0 for the 

second ten seen, t = 4.43. p <0.001). However, because the product series were presented to 

subjects in random order this did not have any effect on the forecasts of particular series (the 

correlation between the mean position in which the series was displayed (1= first series displayed, 

20 = last) and the number of methods tried was only  -0. 055). 

 
 
 

**Please insert table 3 about here** 
 
 

The number of statistical forecasting methods tried by subjects varied significantly across the 20 

series. The hypothesis that the number of methods tried was uniformly distributed across the series 

was rejected at p <0.001 (Χ2
19 = 55.6). Why did subjects try out more methods on some series than 

others? One possibility is the difficulty of modelling the patterns of particular series -the more 

difficult the pattern, the more methods people will try. The MSE of the 'optimal' available method 

was used as a proxy for the difficulty of modelling the pattern and this was significantly correlated 

with the number of methods tried  (r = 0.46, p<0.05). However, the levels of sales in the different 

series varied considerably so that they appeared on graphs with different vertical scales. As a result 

a forecast error of 10 units in one series might appear to subjects to represent a larger gap than an 

error of 100 units in another series. To take this into account, for each series the MSE of the 

'optimum' available method was divided by length of the graph's vertical axis (maximum sales - 
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minimum) so that the resulting measure reflected the lack of fit of the statistical forecast as it might 

be perceived by the subjects. As hypothesised, this led to a higher correlation with the number of 

methods tried (r= 0.56, p<0.01). Thus, although subjects in general did not tend to choose the best 

fitting methods, the perceived lack of fit of the methods they tried may have spurred them on to try 

further methods2. 

 

Consequences of trying more methods 

 

In general, series which had more statistical methods applied to them were forecasted less 

accurately (the correlation between number of methods tried and the mean absolute percentage 

error (MAPE) of the chosen statistical forecast was 0.46, p<0.05 while the correlation with the 

MAPE of the final -possibly judgmentally adjusted-forecast was 0.47, p<0.05). This is perhaps not 

surprising as the above analysis suggests that more methods were tried on the more difficult-to-

forecast series. 

 

Did people who tried more forecasting methods than their fellow subjects obtain more accurate 

final forecasts? In general, the answer was 'no'  -the correlation between the total number of 

methods subjects tried and the MAPE of their chosen statistical forecasts was -0.005, while the 

correlation between the number of methods and the final (possibly judgmentally adjusted) 

forecasts was 0.192.  Did trying more methods lead to a mean overall fit ratio closer to 1.0? There 

was no evidence for this (r= 0.12). Nor was their any evidence that subjects who tried more 

                                                                                                                                                                 
1 This figure includes times when subjects revisited a method that they had already tried on a given series 
2 Other variables were investigated which might have explained the variation between series in the number of methods 
tried. These included whether the optimum forecast had the same slope as the last segment slope of the series (the 
assumption being that subjects might be searching for a method yielding a forecast that extrapolated the last segment) 
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methods, adjusted fewer forecasts (r = -0.164) or that they were more confident in their final 

forecasts (r = 0.159). However, it is important to note that these correlations also mask some 

interesting differences between subjects which will be explored later. 

 

Adjustment behaviour 

 

Why do subjects decide to apply a judgmental adjustment to particular statistical forecasts, while 

leaving other forecasts unadjusted?  This can be investigated both in terms of the characteristics of 

the different series and also in relation to the behaviour of  the different subjects.  

 

There was no significant difference in the number of adjustments applied to the 20 different series 

(Χ2
19 = 9.89, not significant), suggesting that propensity to adjust could not be explained  by the 

characteristics of particular series. Many judgmental adjustments made by subjects were relatively 

small -half of the absolute percentage adjustments were below 2.26%. However, subjects who 

chose statistical forecasts that provided relatively poor fits to the past observations did tend to 

adjust their forecasts more often and make bigger adjustments. The correlation between the mean 

'overall' fit ratio of the forecasting methods chosen by subjects and the number of adjustments they 

applied was 0.467 (p< 0.01), while the correlation between subjects' mean 'overall' fit ratios and 

their mean absolute percentage adjustments (MAPA) was 0.638 (p<0.001)3. All of this suggests 

that subjects who could only obtain poorly fitting statistical methods recognised the inadequacy of 

their forecasts and tried to compensate by applying judgmental adjustments to them. There is some 

                                                                                                                                                                 
and the complexity of the series measured on a scale using  a score of 1 for a 'flat' underlying pattern, 2 for a trend and 
3 for an erratic underlying pattern. All of these variables yielded correlations that were close to 0. 
3 One outlying observation may have over influenced this correlation coefficient, but after removing it the correlation 
is still significant (r = 0.427, p<0.05) 
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evidence from the literature that judgmental forecasters can recognise forecasts that are in need of 

adjustment, even when they only have access to time series information (Willemain, 1989) 

 

Other factors that might have explained the propensity to adjust forecasts did not yield significant 

associations. For example, before starting the experiment, subjects were asked to indicate (on a 

five-point scale) their strength of agreement with the statement that "statistical forecasts are less 

important than human judgment". The correlation between their strength of agreement with this 

statement and the number of judgmental adjustments they made was only 0.026. 

 

Consequences of adjustments and lack of fit 

 

To investigate the effect of the size of the adjustments and the overall fit ratio on forecast accuracy 

the following multiple regression model was fitted to the data 

 

MAPE =5.21    + 1.29 OVR + 0.714 MAPA - 0.307 (OVR x MAPA) 
              (0.000    (0.066)         (0.009)             (0.036)) 
 
R-squared = 28.1% 
 
where OVR = the overall fit ratio of their selected statistical method compared to the best method 

and MAPA is the mean absolute percentage adjustment. 

p-values for the regression coefficients are shown in  brackets,. 

 
 

Shown below are some predictions of the model for four combinations of overall fit ratios  

MAPAs 
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  Overall Fit ratio MAPA  Predicted MAPE 

 1,0  0%  6.5% 

 1.0  1%  6.9% 

 2.0  0%  7.8% 

 2.0  5%  8.3% 

These predictions indicate that judgmental adjustments tended to reduce accuracy. While this is 

perhaps not surprising when the adjustment were applied to well-fitting methods, the predictions 

also show that making large adjustments to poorly fitting methods also tended to reduce accuracy. 

Thus it appears that subjects who attempted to compensate for poor fitting forecasting methods by 

making relatively large judgmentally adjustments to  their forecasts tended to be less accurate than  

those who obtained well fitting methods, in the first place, and  made no (or very minor) 

adjustments. 

 

Other points 

 

Interestingly, subjects who spent a larger percentage of their total time on the trial run tended to 

achieve more accurate forecasts. The correlation between the % of time on the trial run and the 

MAPE was -0.435 (p<0.02). Similarly, the correlation between the actual time spend on the trial 

run and the MAPE was -0.365 (p<0.05). This may reflect the commitment of the individual 

subjects or it may indicate that time spent exploring and practising using an FSS is beneficial. 

 

Subjects perceptions of the 'ease of use' of the FSS, 'usefulness of the FSS' and their 'assessment of 

their own performance' were elicited in the post-experiment questionnaire and scores constructed 

for each of these three dimensions.  However, the correlations between these scores and the 
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MAPEs achieved by subjects were very small and not significant. Performance was  therefore not 

associated with the extent to which the FSS was regarded as "easy to use" and   "useful". It is  

particularly noteworthy that subjects' perception of their performance bore no relationship with the 

actual forecasting accuracy that they achieved (r = 0.051).  

 

Were the forecasters consistent? 
 

How consistent were subjects in applying particular strategies? As indicated earlier, consistency 

would be necessary for an FSS to recognise particular individual traits so that appropriate guidance 

could be provided. Table 4 shows the correlations between the characteristics of individuals’  

strategies for the first ten and last ten series that they forecast. These correlations indicate high 

levels of consistency, particularly for the mean number of forecasting methods that were examined 

for each series and  for the frequency with which judgmental adjustments were made. The high 

value of the canonical correlation coefficient, which reflects the correlation across all four 

characteristics in table 4,  is also indicative of consistency. 

 
**Please insert Table 4 about here** 

 

An interesting question  relates to how many forecasts an FSS would need to record before the 

characteristics of an individual strategy could be discerned. Table 5 suggests that  reasonable 

predictions of an individual’s strategy can be based  on as few as five forecasts and that even a 

prediction based on only one forecast has some value. 

 

Characterising Forecaster Behaviour: Analysis of subjects by sub-groups 
 

When designing an FSS, the system designer will typically have some stylised representation of 

the (potential) client and the tasks they expect to undertake.  It is therefore valuable to classify the 

types of strategies that subjects used, together with the effectiveness of the different approaches. In 
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particular, this allows the effects of interactions of features of these strategies to be studied. For 

example, in general there may be no relationship between the number of statistical methods tried 

and the accuracy of the resulting forecasts. However, for some subjects trying a large number of 

methods may be an essential part of an effective forecasting strategy in that it used to explore and  

gain insights into the forecasting problem before making a commitment to a forecast. In other 

cases trying a large number of methods be may symptomatic of  'thrashing around' in desperation 

in an attempt to find an acceptable model. Cluster analysis, using Ward’s method followed by k-

means clustering was used to group the subjects according to five variables: the number of 

methods they tried on the series  the mean  'overall' fit ratio of the method they finally chose, the 

number of judgmental adjustments they made, their mean absolute percentage adjustment 

(averaged over occasions when they adjusted) and the total  time they spent on the task, including 

the trial run .The variables were standardized and, as recommended for example by Sharma, 

(1996), several other clustering methods were also used and the results compared. One subject  

would not fit easily into any of the clusters and was removed from the analysis; this demonstrates 

the difficulty of trying to find a categorization of user types that includes all possible users. From 

this cluster analysis,  three  groups were identified and, for ease of reference, names assigned to 

them. These groups are described below and the data relating to them is summarised in table 6. 

 

Group 1: "The Exemplars" 

Fifty-five percent of subjects (excluding the outlier) were assigned to this group who achieved the 

most accurate forecasts. Table 6 shows that they had the ’best’ mean overall’ fit ratio, made the 

fewest adjustments  and, when they adjusted,  they made the smallest absolute  percentage 

adjustments. Interestingly, this group spent the largest percentage of the total time using the FSS 

on the  trial run where they were able to learn about the support system’s facilities. 

 

Group 2:  "The Sceptics"  

Twenty-nine percent of subjects were assigned to this group who had the least engagement with 

the statistical facilities of the forecasting support system suggesting a degree of sceptism. Table 6 

shows that their approach was characterised by spending the  shortest time on the trial run and 

exploring the fewest number of forecasting methods for each series, but making the most 
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judgmental adjustments which were, on average, relatively large. The result of all of this was that  

their ‘final’ forecasts were less accurate than those of Group 1. 

 

Group 3: “The Searchers” 

This relatively small group (16% of subjects) produced the least accurate forecasts. Despite 

exploring the largest number of forecasting methods per series in a search for an appropriate 

method they achieved the ‘poorest’  overall  mean fit ratio and made the largest, judgmental 

adjustments to their statistical forecasts. There was evidence that these forecasters tended to ‘cycle’ 

between forecasting methods –often returning several times to methods that they had already 

investigated. Oddly  this group had a significantly higher level of disagreement (p=0.002) than the 

other groups with the statement: “Statistical forecasts are less important than human judgment” 

 

 
**Please insert Table 5 about here** 

 
 

**Please insert table 6 about here** 
 

Surprisingly, there were no significant differences between the three groups in their saistifaction  

with the FSS or in their ratings of its ease of use and usefulness. 

 

Conclusions 
 

This study has shown that there can be considerable variation in the approaches people adopt when 

using a forecasting support system (FSS). This can occur even where these people indicate that 

they have similar levels of familiarity with the methods available in the system. 

 

Most people do not tend to emulate mechanical forecasting systems by choosing the best fitting 

forecasting method. They also tend to examine only a small number of methods before making a 

selection; however, they are likely to examine more methods when they perceive the series to be 

difficult to model. People who are relatively unsuccessful in identifying a well fitting statistical 

method tend to compensate for this by making large judgmental adjustments to the statistical 

forecasts. However, this combination of poor fitting forecasting method and judgmental 
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adjustment tends to lead to forecasts that are less accurate than those produced by people who 

select well fitting methods in the first place.  

 

A key result of the study is that users were consistent in their approach throughout the twenty 

forecasts they made (subject to a general tendency to try fewer methods as time went on). This 

suggests that adaptive  FSSs could be designed to recognise particular strategies at an early stage, 

enabling the interface to adapt to the particular needs, strengths and weaknesses of these users.  

For example, the system could highlight information  that was being insufficiently taken into 

account (such as the lack of fit of the chosen forecasting method or its inability to deal with a trend 

in the series) and also guide the user towards the selection of more appropriate methods. 

Interestingly, people who devoted a larger percentage of their time familiarising themselves with 

the FSS on a trial set of data, tended to achieve more accurate forecasts.  

 

The study has also provided some evidence that the behaviour of sub-groups of forecasters can be 

identified. This behaviour ranged from people who were able to produce accurate forecasts after 

examining very few methods to those who examined many methods and yet only obtained 

relatively inaccurate forecasts. Analysis by sub-group allowed interaction between elements of 

behaviour to be taken into account. It also permits us to identify good forecasting strategies. For 

example improved accuracy can be obtained by: 

•  spending time familiarising oneself with the system and then examining only a few 

forecasting methods 

 and  

• choosing a method which provided a good fit to past data,  

and then  

• avoiding making substantial judgmental adjustments 

 

Other combinations of behavioural features led to inferior accuracy. However, there are clearly 

limitations to the possibilities of FSSs tailoring their support to sub-groups of forecasters, rather 

than individuals.  Identifying a full range of sub-groups would require studying a  larger sample of 

users than that used in this study  and such a sample would need to be taken from a population that 

embraced a wider range of possible user-types. For example, users in this study had similar levels 
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of familiarity with forecasting processes and an identical level of experience in using the system. 

Moreover, clustering individuals into sub-groups can be sensitive to  the methodological choices 

made during the application of cluster analysis (e.g. Ketchen and Shook, 1996) and, as we found 

here,  there may be some individuals who do not easily  conform to any group. 

 

While the  results of this study should be of value to those designing FSSs the extent to which 

inferences can be drawn from them may be constrained the fact that this was a laboratory study 

involving  management students. Although researchers like Remus (1986) have indicated that 

student subjects can act as good surrogates for  managers in experiments the laboratory 

environment of this study has meant that the acceptability and use of the system under working 

conditions was not assessed. It is planned to address this issue in future research. 
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Appendix 1 Questionnaires 

 Pre-experiment questionnaire 

Please indicate your strength of agreement with the following statements. Indicate your answer to 

each question by using the mouse to click on one of the five numbers which seems to match your 

feelings. 

 

Q1   In developing ROUTINE forecasts the computer can probably be allowed to function with 

little manual intervention. 

 

strongly agree  1………2………3………4………5 strongly disagree 

 

Q2  In developing IMPORTANT forecasts I would expect  that even most good computer-based 

forecasts would need to be modified manually 

 

strongly agree  1………2………3………4………5 strongly disagree 

 

Q3  Statistical forecasts are less important than human judgment 

 

strongly agree  1………2………3………4………5 strongly disagree 

 

Q4  People are generally biased in their judgments 

 

strongly agree  1………2………3………4………5 strongly disagree 

 

Q5 It is important to use statistical forecasts to remove subjectivity 

 

strongly agree  1………2………3………4………5 strongly disagree 
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Please rate your familiarity with the following forecasting techniques and concepts 

     Not at all Some      Very 

     familiar        familiarity familiar 

Exponential Smoothing  1……………….2……………….3 

Holt-Winters    1……………….2……………….3 

Combining Forecasts   1……………….2……………….3 

Forecast Technique Selection  1……………….2……………….3 

 

Post-experiment questionnaire 

 

Please indicate your thoughts about the forecasting system you have just been using. Indicate your 
answer to each question by using the mouse to click on one of the five numbers which seems to 
match your feelings. 
 
A   I consider the system  producing the computer forecast advice to be: 
  1.             accurate  1………2………3………4………5 not accurate 
 
  2.              useless 1………2………3………4………5 useful 
 
  3.       not helpful  1………2………3………4………5 helpful 
 
  4.           in need of little                in need of much  
              manual intervention 1………2………3………4………5 manual intervention 
 
  5.      trustworthy 1………2………3………4………5 untrustworthy 
 
  6.     easy to use 1………2………3………4………5 hard to use 
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    I consider the system producing the computer forecast advice to be: 
  7.   responsive 1………2………3………4………5 unresponsive 
 
  8.        uninformative 1………2………3………4………5 informative 
 
  9.           satisfactory 1………2………3………4………5 unsatisfactory 
 
10.   inflexible 1………2………3………4………5 flexible 
 

             adaptive                not adaptive to 
11.          to requirements 1………2………3………4………5 requirements  
 
I consider the system producing the computer advice to be: 
12.  not amenable to      amenable to 
  easy intervention 1………2………3………4………5 easy    
          intervention 
 
13.    clear and       not clear   
  comprehensible 1………2………3………4………5 and   
          comprehensible 
 
14.  sufficiently under      not sufficiently 
  under my control 1………2………3………4………5  under my control 
 
B  How do you feel about your performance? 
1.           happy 1………2………3………4………5  unhappy 
 
2.   dissatisfied 1………2………3………4………5  satisfied 
 
3.                 did as well as       could have done 
         I could 1………2………3………4………5   better 
  



Page 26 The process of using a Forecasting Support System

 
C  Do you feel that you could have improved your forecast accuracy by:    Click ONE box 
1.   trusting the computer more?     
2.   trusting the computer less?     
3.   I think I got it about right     
 
D Taken as a whole, the overall system led to final forecasts such that I feel 
1           I am comfortable     I am uncom
           with them -they      with them -
           correspond to my     not corresp
           real beliefs 1………2………3………4………5 my real bel
 
2.  they are not credible 1………2………3………4………5  they are cre
 
 
 

fortable 
they do  
ond to 
iefs 

dible 
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Appendix 2.  Transformations 
 
QA1 refers to the subject's response, on the 1 to 5 scale, to question A1: 

 

Ease of use   = (-QA4  - QA6 - QA7 + QA10 - QA11 + QA12 - QA13 - QA14 + 36)/8 

Usefulness    = (-QA1 + QA2 + QA3 - QA5 + QA8 - QA9 + 18)/6 

Satisfaction  =  (- QB1 + QB2 - QB3 - QD1 + QD2 + QC + 18)/6    

where, for question C, the selection of options C1, C2 and C3 generated values of 5, 1 and 3 for 

QC, respectively. 
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Table 1 Mean fit ratio 
 

 Mean fit ratio    Number of subjects 
 1.0 to under   1.1     4 

1.1 to under   1.2     6 
 1.2 to under  1.4   11 
 1.4 to under  2.0     8 
 2.0 to under  4.0     3 
      32 
 

 

Table 2 Mean fit ratio (over methods seen) 
 
 Mean fit ratio (over methods seen)    Number of subjects 
 1.0        4 
 1.01  to under  1.10   10 
 1.10 to under  1.20     8 
 1.20 to under  1.30     3 

1.30 to under   1.70     4 
      29* 
(*3 subjects never considered more than one method) 
 
 

 
        Table 3 Mean number of methods tried per series 

  
Mean no. of methods tried per series    Number of subjects 

 1.0           3 
 1.1  to under  2.0    10 
 2.0  to under  3.0        6 
 3.0  to under   5.0      10 

5.0 or more       3 
       32 
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Table 4   Consistency 
 
First ten forecasts vs last ten 
        Correlation 
 
Mean no. of methods tried per series    0.683*** 
'Overall' fit ratio      0.457** 
No of judgmental adjustments    0.784*** 
Mean absolute % adjustment     0.419*   
 
Canonical correlation =  0.817 (p=0.000)        Redundancy =46.5%  
 
    *   = significant at 5% level  
 **  = significant at 1% level  
***  = significant at 0.01% level 
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Table 5  Predicting an individual’s strategy  from early forecasting behaviour 

 
First five forecasts vs last ten 
        Correlation 
 
Mean no. of methods tried per series    0.606*** 
'Overall' fit ratio      0.421* 
No of judgmental adjustments    0.628*** 
Mean absolute % adjustment     0.263 (ns)  
 
Canonical correlation =  0.758 (p=0.000)       Redundancy = 37.2% 
 
 
   
First forecast vs last ten 
        Correlation 
 
No. of methods tried per series    0.401* 
'Overall' fit ratio      0.384* 
No of judgmental adjustments #    0.531* 
Mean absolute % adjustment     0.395*  
 
(# can only be 0 or 1 for first forecast) 
  
Canonical correlation =  0.689 (p=0.011)  Redundancy = 27.4% 
 
  *   = significant at 5% level 
  **  = significant at 1% level  
***  = significant at 0.01% level  
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Table 6   Characteristic of the three groups of forecasters 
 

Attribute Exemplars Skeptics Searchers
Mean % of time on trial run 33.10% 21.38% 22.38%
Mean no. of methods tried per series 2.8 1.8 3.7
Mean 'overall' fit ratio 1.21 1.38 1.92
Mean no. of adjustments over 20 series 1.4 9.3 6.0
Mean absolute % adjustment* 0.89 5.45 7.86
MAPE 6.71 7.47 8.54

Bold = 'smallest', Italics = 'largest'

*= averaged only over forecasts where an adjustment was made

Note that all differences were significant  at p<0.05 when tested using a Kruskal Wallis ANOVA
but the test  is 'opportunistic' when the variable is used in the cluster analysis
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Figure 1 A typical screen shot from the FSS 
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Figure 2 FSS screen for eliciting user’s confidence in forecast 
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