
Toxic Concepts in Systems Analysis and Design: The
Systems Development Lifecycle

Paul Ralph
Lancaster University
paul@paulralph.name

ABSTRACT

This position paper argues that the the Systems
Development Lifecycle is a Toxic Concept, i.e., an idea
that is both false and harmful. SDLC is defined and its
criticisms are summarized. A process theory, the SCI
Framework, is suggested as an alternative.
Keywords

Systems Development Lifecycle, process theory, toxic
concepts, design science
INTRODUCTION

This paper is motivated by the many dichotomous
discussions I have had with academics and practitioners
concerning The Systems Development Lifecycle (SDLC).
Anecdotally speaking, for every person I have met who
believes that SDLC is an absurdity no one takes seriously,
I have met another who believes that SDLC is the
fundamental basis of all systems development. Many
people in each group appear unaware that the other group
even exists. This necessitates an open discussion of the
role of SDLC in design research, practice and education. I
open this discussion by asserting the following.

Position: The Systems Development Lifecycle is a toxic
concept.

SDLC (Figure 1) is a somewhat nebulous concept that
may refer to:

1. A process theory (Van de Ven et al. 1995) that
describes systems development in terms of a discrete
number of sequential phases, including planning,
analysis, design and coding, or variants thereof.

2. A systems development method (SDM) (Wynekoop
et al. 1997) resembling one or more variants of the
Waterfall Model (Royce 1970)

3. Any set of steps for creating a technological artifact

For the purposes of this paper, toxic concepts are ideas
that are both false and harmful (defined formally below).
For example, in educational psychology, the blank slate
hypothesis (the view that the mind lacks innate traits) is a
toxic concept as it has been refuted by neurobiological
studies and deleteriously affects educational methods
(Pinker 2002).

Toxic Concept: a theory, construct, argument,
technology, or other idea that 1) is untrue, inaccurate or

refuted and 2) causes confusion, practical hardship or
deleterious action.

System
Requirements

Software
Requirements

Analysis

Program Design

Coding

Testing

Operations

Observation

Induction

Deduction

Testing

Problem

Facts

Hypotheses

Predictions

Veracity of Hypotheses

Evaluation

New Knowledge

Waterfall Model Scientific Method

Figure 1. SDLC (left) and Cycle of Scientific Inquiry
(Roozenburg et al. 1995) (right)

SDLC AS A THEORY

A process theory is an explanation of how and why an
entity changes and develops (Van de Ven et al. 1995).
Coupling a model of SDLC (as in Figure 1) with a claim
that it either describes all systems development or
(equivalently) that its elements or structure are inherent to
development is commensurate with claiming that SDLC is
a process theory.

Though rarely stated, implicit claims that SDLC is a
veracious process theory pervade research, teaching and
practice. For example, in a well-cited paper in MIS
Quarterly, Fitzgerald (2006) states that “in conventional
software development, the development lifecycle in its
most generic form comprises four broad phases: planning,
analysis, design, and implementation” (p. 3) and then

Ralph Toxic Concepts in SA&D: The Systems Development Lifecycle

Proceedings of the 9th AIS SIGSAND Symposium, St. John’s Newfoundland, Canada, May 29-30, 2010

mailto:paul@paulralph.name
mailto:paul@paulralph.name

describes the presence of these phases in open-source
software development. In a popular introductory MIS
textbook, Laudon et al. (2009) state that “systems
development … consist[s] of systems analysis, systems
design, programming, testing, conversion and production
and maintenance … which usually take place in
sequential order.” Similarly, at the time of writing, the
SDLC Wikipedia article states that “SDLC adheres to
important phases that are essential for developers, such as
planning, analysis, design, and implementation.”
Moreover, the traditional SDLC phases are explicitly
adopted in the official IEEE Guide to the Software
Engineering Body of Knowledge (Bourque et al. 2004). In
summary, implicit and explicit claims of SDLC
universality remain prevalent in research, teaching and
practice.

The claim that SDLC describes all systems development
has been unequivocally refuted by empirical research.
This finding is independent of the precise phases
employed or their sequence. For example, in field studies
of expert designers, Schön found evidence indicating that
designers do “not keep means and ends separate” or
“separate thinking from doing” (1983, p. 69). Meanwhile,
Bansler & Bødker (1993) found that developers may
claim to follow a method while practically ignoring it.
Additionally, in a study of “a large scale system
development effort”, Zheng et al. (2007) found that
“home-gown methods and ad hoc activities appear to
dominate the day-to-day practices of systems
development” (p. 1). Furthermore, Ralph (2010a) found
that the a generalized model of SDLC does not accurately
represent software design practice. Moreover, the XP and
Agile Development Conferences feature multitudinous
experience reports irreconcilable with SDLC-thinking.
More generally, “any form of life cycle is a project
management structure imposed on system development.
To contend that a life cycle scheme, even with variations,
can be applied to all system development is either to fly in
the face of reality or to assume a life cycle so rudimentary
as to be vacuous” (McCracken et al. 1982, p. 30).
SDLC AS A METHOD

Some argue that a waterfall-like SDLC is a SDM, i.e., it is
one way to build software. This view is common in MIS
research (e.g., Lee et al. 2010; Sircar et al. 2001).
Furthermore, Royce originally proposed SDLC as “a
more grandiose approach to software development” than a
method comprised only of analysis and coding (1970, p.
328). This view was elaborated by Boehm (1988). SDLC
is often contrasted with various Agile methods
(Abrahamsson et al. 2002), and a case is made that each is
effective in different circumstances. This is the approach
taken by several introductory MIS textbooks (e.g.,
Baltzan et al. 2008; Kroenke et al. 2010). Moreover,
proponents of agile methods often position them as more
effective alternatives to SDLC (e.g., Beck 2005;
Schwaber et al. 2001).

Positioning SDLC as a method involves two claims: 1)
that SDLC is in some way effective; 2) that it is possible,
in principle, to develop systems using it.

The claim that SDLC is an effective method lacks
empirical support. I have never encountered an
experimental study comparing SDLC to alternative
methods. I have found no multiple-case studies
contrasting teams using SDLC with teams employing
other methods. I have identified no analyses of secondary
data evaluating the effect of SDLC on outcome variables
such as project success or software success. I did find one
survey evaluating SDLC against a prototyping
methodology (Palvia et al. 1990); however, it explicitly
assumed that SDLC describes all software development,
thus its support for SDLC as a method is circular. In
summary, I found no credible evidence that SDLC is
effective in any sense. While this does not refute the
claim, we have several reasons to believe SDLC is
ineffective. The author generally credited with proposing
SDLC affirmed that its simplest version “has never
worked on large software development efforts” (Royce
1970, p. 335). Furthermore, SDLC ignores end-user
development and end-user involvement outside of
requirements specification and “rigidifies thinking”,
increasing developers’ resistance to change (McCracken
et al. 1982, p. 31). Moreover, the tightly-coupled nature of
the life cycle stages exacerbates problems by making it
difficult to modify either requirements or the software
without setting off complex downstream or upstream
revisions (Gladden 1982, p. 36). Additionally, SDLC is
“risky and invites failure” because testing occurs at the
end and many of the phenomena of interest are “not
precisely analyzable” (Royce 1970, p. 329). Also, SDLC
justifies intensive upfront analysis by citing a steep cost-
of-change curve, but the steepness of the curve is not a
feature of software projects but a feature of waterfall-like
processes (Ambler 2002; Beck 2002). Finally, SDLC
assumes that human developers are capable of correctly
getting the requirements, design and tests correct on the
first try. As the burden of proof (of effectiveness) for any
method lies with its proponents, no proof has been
provided, and we have many strong reasons to question
SDLC’s potential effectiveness, on the balance of
evidence, this claim is unsupported.

The claim that SDLC describes any systems development
practice can be challenged on several grounds. First, “the
development process itself changes the user's perceptions
of what is possible, increases his or her insights into the
applications environment, and indeed often changes that
environment itself;” therefore, “systems requirements
cannot ever be stated fully in advance, not even in
principle” (McCracken et al. 1982, p. 31). Second, the
descriptions of the stages of SDLC are “imprecise,
ambiguous, incomprehensible” (Curtis et al. 1992, p. 75).
Third, SDLC separates analysis from design, where the
former generates an understanding of the problem and the
latter generates a solution, without providing any
guidance as to how the solution is generated. Since
software problems are unbounded (unlike arithmetic
problems), even a deep understanding of the problem does
not necessarily make the solution evident. Fourth, a
waterfall-like SDLC confuses “phases” with activities; for
example, analysis is not a phase, it is an activity that is
necessary not only for requirements modeling but also for

Ralph Toxic Concepts in SA&D: The Systems Development Lifecycle

Proceedings of the 9th AIS SIGSAND Symposium, St. John’s Newfoundland, Canada, May 29-30, 2010

coding and testing. Therefore, on a balance of evidence,
this claim is also unsupported.
SDLC AS A CLASS OF PHENOMENA

Some suggest that a SDLC simply describes a
development project’s stages (Alexandrou 2010); hence,
different projects have different SDLCs. In this
interpretation, SDLC obviously cannot be false (and
therefore cannot be toxic) as it is not coupled with any
empirical claim. I return to this issue below.
HOW SDLC CAUSES HARM

SDLC causes identifiable harm in many ways. First, as
SDLC is presented as either a valid description or an
effective method of software design in many SA&D
courses and texts, it confuses students regarding the true
nature of software development and encourages
unjustified faith in a deeply flawed approach. Second, it
creates conflicts between managers (who try to drive
projects through phases, schedules and costs) and
developers (who do not adopt these phases and cannot
accurately estimate costs) (Beck 2005). Third, insofar as
SDLC-thinking underlies design methods, tools and
practices, their practical usefulness is hampered. Fourth,
the prevalence of SDLC-thinking impedes publishing
engineering and behavioral research on design aides
rooted in more realistic design theories. Finally, I suggest
that as “SDLC” has become inextricably confounded with
the stages of the waterfall model, using the same term to
denote any sequence of stages resulting in a technological
artifact only exacerbates the confusion and conflict
described above.
CONCLUSION

In conclusion, if SDLC is considered a theory, substantial
empirical findings refute its veracity. If SDLC is
considered a method, no scientific evidence supports its
effectiveness, and many sound arguments that it is
impossible in principle exist. These arguments hold
regardless of precisely how the stages are divided (e.g.,

five-stage model, seven-stage model) and whether
backtracking or loops are included. Moreover, although
using SDLC to denote any development process is not
wrong, when combined with its historical usage, this too
exacerbates confusion. Furthermore, as software
development literature is replete with unreferenced,
unsupported empirical claims regarding the centrality of
SDLC concepts, SDLC causes significant harm and
confusion among practitioners, managers and students
alike. Therefore, the Software Development Lifecycle is a
toxic concept.
AN ALTERNATIVE TO SDLC

Identifying problems with SDLC is of limited usefulness
without suggesting alternatives. Fortunately, better
alternatives are available. SDLC may be replaced by an
alternative software design process theory, specifically the
Sensemaking-Coevolution-Implementation (SCI)
Framework (Ralph 2010a; Ralph 2010b). Whereas SDLC
is a lifecycle process theory (Van de Ven et al. 1995), SCI
(Figure 2, Table 1) is a teleological process theory, i.e.,
an explanation of how and why an entity changes wherein
change is manifested by a goal-seeking agent that engages
in activities in a self-determined sequence (Churchman
1971; Singer 1959; Van de Ven et al. 1995). The core
claim of SCI is that developers engage in three activities
to produce software – making sense of the project context,
iterating between ideas about the context and artifact, and
implementing the artifact in code. Using a questionnaire
study, Ralph (2010a) found that SCI describes software
development practice more accurately than SDLC.
BIBLIOGRAPHY

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J.
Agile software development methods: Review and analysis
VTT Publications, Espoo, 2002.
Alexandrou, M. "Systems development life cycle
(SDLC),"[online]: http://www.mariosalexandrou.com/
methodologies/systems-development-life-cycle.asp, 2010.

Mental
Picture of
Context

Sensemaking

Goals

Design
Agent's

Environment

Design Agent

Mental Picture
of Design

Object

Implementation

Design Object

Primitives

Coevolution

Design
Object's

Environment

Constraints

Input
Output
Composition
Executes
Unbounded Entity

Object

Mental Entity

Activity

Key

Figure 2. The Sensemaking-Coevolution-Implementation Framework

Ralph Toxic Concepts in SA&D: The Systems Development Lifecycle

Proceedings of the 9th AIS SIGSAND Symposium, St. John’s Newfoundland, Canada, May 29-30, 2010

http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp
http://www.mariosalexandrou.com/methodologies/systems-development-life-cycle.asp

Concept / Activity Meaning
Constraints a restriction on a structural or behavioral property of the design object
Design Agent an entity or group of entities that is capable of forming intentions and goals and taking actions

to achieve those goals, and that specifies the structural properties of the design object
Design Object’s Environment the totality of the surroundings where the design object exists or is intended to exist
Design Agent’s Environment the totality of the surroundings of the design agent
Design Object a (possibly incomplete) manifestation of the mental picture of design object
Goals optative statements about the effects the design object should have its environment
Mental Picture of Context the collection of all the design agent’s beliefs about its and the design object’s environments
Mental Picture of Design
Object

the collection of all the design agent’s beliefs about the design object

Primitives the set of entities from which the design object may be composed
Sensemaking the process by which the design agent perceives its and the design object’s environments and

organizes these perceptions to create or refine the mental picture of context
Coevolution the process by which the design agent simultaneously refines its mental picture of design

object based on its mental picture of context, and vice versa
Implementation the process by which the design agent generates or updates a design object using its mental

picture of design object
Table 1. Concepts and Activities of the SCI Framework (adapted from Ralph 2010b)

Baltzan, P., and Phillips, A. Business driven information
systems McGraw-Hill Irwin, 2008.
Beck, K. Extreme programming explained: Embrace
change, (2nd ed.) Addison Wesley, Boston, MA, USA,
2005.
Boehm, B. "A spiral model of software development and
enhancement," IEEE Computer (21:5), May 1988, pp
61-72.
Bourque, P., and Dupuis, R. (eds.) Guide to the software
engineering body of knowledge (SWEBOK). IEEE
Computer Society Press, 2004.
Churchman, C.W. The design of inquiring systems: Basic
concepts of systems and organization Basic Books, New
York, 1971.
Curtis, B., Kellner, M.I., and Over, J. "Process modeling,"
Communications of the ACM (35:9) 1992, pp 75-90.
Fitzgerald, B. "The transformation of open source
software," MIS Quarterly (30:3) 2006.
Gladden, G.R. "Stop the life-cycle, I want to get off,"
SIGSOFT Software Engineering Notes (7:2) 1982, pp
35-39.
Kroenke, D., Gemino, A., and Tingling, P. Experiencing
MIS, (Second Canadian ed.) Pearson Prentice Hall,
Toronto, 2010.
Laudon, K., Laudon, J., and Brabston, M. Management
information systems: Managing the digital firm, (Fourth
Canadian ed.) Pearson, Prentice Hall, Toronto, 2009.
Lee, G., and Xia, W. "Toward agile: An integrated
analysis of quantitative and qualitative field data," MIS
Quarterly (34:1) 2010, pp 87-114.
McCracken, D.D., and Jackson, M.A. "Life cycle concept
considered harmful," SIGSOFT Software Engineering
Notes (7:2) 1982, pp 29-32.

Palvia, P., and Nosek, J. "An empirical evaluation of
system development methodologies," Information
Resource Management Journal (3:3) 1990, pp 23-32.
Pinker, S. The blank slate: The modern denial of human
nature Penguin, 2002.
Ralph, P. "Comparing two software design process
theories," International Conference on Design Science
Research in Information Systems and Technology
(DESRIST 2010), Springer, St. Gallen, Switzerland,
2010a.
Ralph, P. "The sensemaking-coevolution-implementation
framework of software design," MIS Quarterly ((under
review)) 2010b, p 76 pages.
Roozenburg, N., and Eekels, J. Product design:
Fundamentals and methods Wiley, Chichester, UK, 1995.
Royce, W.W. "Managing the development of large
software systems: Concepts and techniques," Proceedings
of Wescon, 1970.
Schwaber, K., and Beedle, M. Agile software development
with scrum Prentice Hall, 2001.
Singer, E.A. Experience and reflection University of
Pennsylvania Press, 1959.
Sircar, S., Nerur, S.P., and Mahapatra, R. "Revolution or
evolution? A comparison of object-oriented and structured
systems development methods.," MIS Quarterly (25:4),
December 2001, pp 457-471.
Van de Ven, A.H., and Poole, M.S. "Explaining
development and change in organizations," The Academy
of Management Review (20:3), July 1995, pp 510-540.
Wynekoop, J., and Russo, N. "Studying system
development methodologies: An examination of research
methods," Information Systems Journal (7), January 1997,
pp 47-65.

Ralph Toxic Concepts in SA&D: The Systems Development Lifecycle

Proceedings of the 9th AIS SIGSAND Symposium, St. John’s Newfoundland, Canada, May 29-30, 2010

