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A Fixed Point Approximation (FPA) method has recently been suggested for non-stationary analysis of
loss queues and networks of loss queues with Exponential service times. Deriving exact equations relat-
ing time-dependent mean numbers of busy servers to blocking probabilities, we generalize the FPA
method to loss systems with general service time distributions. These equations are combined with asso-
ciated formulae for stationary analysis of loss systems in steady state through a carried load to offered
load transformation. The accuracy and speed of the generalized methods are illustrated through a wide
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1. Introduction

In this paper, we shall be primarily concerned with time-depen-
dent behavior of non-stationary loss queues denoted by M,/GlI/s/0.
The arrival stream is assumed to be a non-homogeneous Poisson
process (the M,) with deterministic arrival rate function {i(t),t >
0}. Service times are independent and identically distributed
(i.i.d) random variables following a general distribution (the GI)
that are also independent of the arrival process. There is no extra
waiting space (the 0), so customers finding all s parallel identical
servers busy will be cleared from the system without affecting fu-
ture arrivals (no retrials).

Let Q(t) be the number of busy servers in the system at time t.
The blocking probability function, defined by

B(t) = Pr{Q(t) = s|an arrival occurs in (t,t+dt)} = Pr{Q(t) = s},
(1)

is the most important performance indicator of the system (the
equality follows from the independent increments property of the
Poisson process).

The steady-state analysis of the stationary version of the above
system, the M/GI[s/0 queue, with constant arrival rate A(t) =/ and
mean service time 1/u gives rise to the following equation (see,
e.g. Gross and Harris, 1998 Chapter 5)
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where r=A/u is the so-called offered load. The offered load r coin-
cides with the steady-state mean number of busy servers in an
associated M/GI/co model, with the same arrival and service pro-
cesses as the loss system but with infinitely many servers. Substi-
tuting i=s in (2) results in the well-known Erlang Loss Equation
for computing the steady-state blocking probability:

lim Pr{Q(t) = i} = i=0,...s, 2)

B =1imPr{Q(t) = s} :ﬂ (3)
t—00 Z;:OTJ/J!

It then easily follows that

m = lim E[Q(0)] = r(1 - f). (4)

The mean number m of busy servers is referred to as the carried load,
which, in contrast with the offered load, reflects losses in the work-
load due to lack of enough servers.

Loss queues and networks of loss queues have been used for
modeling a wide range of systems from computer and telecommu-
nication networks (e.g. Jagerman, 1975; Jennings and Massey,
1997; Abdalla and Boucherie, 2002; Alnowibet and Perros, 2006)
to hospital wards (e.g. Bekker and Bruin, 2010; Bruin et al,,
2010). The majority of these systems have significant variations
in their arrival rates. This renders loss systems difficult to analyze.
The insensitivity property of the system performance to the service
time distribution beyond its mean, as in (2), is observed to be lost
in this case. For example, Davis et al. (1995) showed that the
performance of time-dependent loss queues is substantially


http://dx.doi.org/10.1016/j.ejor.2011.03.029
mailto:n.izady@soton.ac.uk
mailto:d.worthington@lancaster.ac.uk
http://dx.doi.org/10.1016/j.ejor.2011.03.029
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

N. Izady, D. Worthington /European Journal of Operational Research 213 (2011) 498-508 499

influenced by the second moment and to some extent by the third
moment of the service time distribution. If service time follows a
phase-type distribution, one can always use a numerical ordinary
differential equation (ODE) solver, like a Runge-Kutta (Green
et al., 1991) or Euler method (Davis et al., 1995), or a faster ap-
proach like randomization (Ingolfsson et al., 2007) to compute
Pr{Q(t) =i} over time. Since phase-type distributions are dense in
the class of all distributions defined on non-negative real numbers
(Asmussen, 2003, Theorem 4.2), one can in theory match empirical
service time data sufficiently closely using a sufficiently large num-
ber of phases.

However, the computational effort associated with these
numerical methods grows exponentially with the number of ser-
vice time phases. For example, the size of the state space of a
100-server loss system grows from 101 to 5152 when a two-phase
distribution is considered instead of an Exponential. The curse of
dimensionality is more profound when multiple classes of custom-
ers and networks of loss queues are considered. We therefore need
to resort to approximate approaches.

Most approximate approaches treat the non-stationary M,/Gl/s/
0 model at time ¢ as if it were a stationary M/GI/s/0 model in steady
state with r = r(t), a properly defined time-dependent offered load.
For example, the Pointwise Stationary Approximation (PSA) defines
r(t) as the instantaneous load A(t)/u (Green and Kolesar, 1991;
Whitt, 1991), or the Modified Offered Load (MOL) approximation
defines r(t) as the time-dependent mean number of busy servers
in an M,/GI/co model with the same arrival and service processes
as the original loss model (Jagerman, 1975). PSA clearly does not
capture the effect of service time distributions beyond their means,
and MOL works well only when blocking probabilities are small
(Massey and Whitt, 1994). For a survey on non-stationary loss
queues, see Alnowibet and Perros (2009a).

The Fixed Point Approximation (FPA), proposed by Alnowibet and
Perros (2009b), takes a more dynamic approach to defining r(t) and
produces remarkable accuracy for the whole range of blocking
probabilities in a short time. However, its application is limited
to Exponential service times for which the numerical ODE solvers
also work fast even with large numbers of servers as shown in Iza-
dy (2010). FPA is based upon the following differential equation in
M/M/s/0 loss queues

ELOT_ 01 - poey) - i), )

where p is the Exponential service rate. The FPA method uses Eq. (5)
along with the Erlang loss Eq. (3) in an iterative manner to approx-
imate blocking probabilities and mean busy servers over time. To
make use of the Erlang loss equation, Alnowibet and Perros
(2009b) propose the offered load r(t) to be defined as

E[Q(t)]
r(t) = T A0

This carried load to offered load transformation is motivated by the
similar relation between these two quantities in steady state, as
illustrated in (4).

In this paper, we extend the FPA method to loss queues with
arbitrary service time distributions. This is important because
many real service time distributions are found to be non-Exponen-
tial (see, for example, Brown et al., 2005 and Fackrell, 2009), and, as
discussed earlier, the effect of service time distributions tends to go
substantially beyond their means. Our generalization of the FPA
method is achieved by developing an integral equation relating
the time-dependent mean number of busy servers (the carried
load) to the blocking probabilities in M,/GI/s/0 loss models. This
equation is obtained by applying a decomposition technique to
non-stationary infinite-server queues and it gives rise to an exact
algorithm for computing blocking probabilities in single-server

=01

(6)

loss queues. For multi-server loss queues, it replaces the differen-
tial Eq. (5) in the FPA iterative scheme.

As shown by Alnowibet and Perros (2009b), one can derive dif-
ferential equations similar to (5) for multi-class loss queues and for
networks of loss queues with Exponential service times. Combin-
ing those equations with associated stationary formulae, they ex-
tended the FPA method to multi-class loss queues and networks
of loss queues. We do the same by generalizing our integral equa-
tion to cover multi-class loss queues and networks of loss queues
with general service time distributions.

We start with single-class loss queues in Section 2. The deriva-
tions of an integral equation relating system characteristics, devel-
oping solution algorithms, and numerical experiments are
included in this section. We then extend our method to multi-class
loss queues and networks of loss queues in Sections 3 and 4,
respectively. Conclusions are drawn in Section 5. This paper is
accompanied by three online appendices. Appendix A includes all
the required algorithms, Appendix B provides an accuracy analysis
for blocking probabilities computed for single-class loss queues,
and Appendix C contains a numerical procedure for calculating
aggregate arrival rates in time-dependent loss networks.

2. Single-class loss queues

In this section, we decompose a non-stationary M;/Gl[oc queue
to derive an equation which expresses mean numbers of busy serv-
ers in M;/GI/s/0 loss queues in terms of the arrival rate, service time
distribution, and blocking probability functions. For this purpose,
we first need to review some results concerning non-stationary
infinite-server queues.

Consider an M,/GI/co queue with a non-homogeneous Poisson
arrival process with arrival rate function {i(t),—co <t <oo}. Let S
be a generic service time random variable with cumulative distri-
bution function (cdf) G(x) = Pr (§ < x), x > 0. Let Q..(t) be the num-
ber of busy servers in the system at time t, and let
Moo(t) = E[Q.(t)]. We assume the system starts empty in the dis-
tant past.

Theorem 1. Q_(t) has a Poisson distribution for each value of t with
the following time-dependent mean function

m.(t) = / [‘)V(u)GC(t—u)du. 7)

The departure process is a Poisson process with the following time-
dependent rate function

Su(t) = /Om At — u)dG(u). (8)

Proof. See Theorem 1 of Eick et al. (1993). O

Remark 1. Eq. (7) remains valid even with a general arrival pro-
cess provided that the time-dependent arrival rate function A(t)
is well defined (Massey and Whitt, 1993, Theorem 2.1 and Remark
2.3). The queue length distribution, however, will not be Poisson
any more.

Now consider an M,/GI/s/0 loss system with the same arrival
process and service time distribution as defined above for the infi-
nite-server system. Let Q(t) denote the number of busy servers at
time t, and let m(t) = E[Q(t)]. Let §(t) denote the departure rate at
time t.

Theorem 2. For M,/Gl/s/0 loss system that starts out empty in the
infinite past, we have
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m(t) = / Hu)(1 - Bu))GE(t — wydu, 9)
and
5(¢) = /Om At —u)(1 — B(t — u))dG(u), (10)

where f(t) = Pr{Q(t) =s}.

Proof. Suppose we have an infinite-server system with service
time cdf G(x) whose servers are numbered arbitrarily 1,2,... (see
Fig. 1). Decompose this system into an s-server primary group
(numbered 1,2,...,s) and an infinite-server overflow group (num-
bered s+1,...). For overflow systems associated with stationary
loss systems in steady state, see, for example, Chapter 7 of Wolff
(1988).

Now suppose that arrivals, which follow a non-homogeneous
Poisson process with rate A(t), first refer to the primary group for
service and start their service if an idle server is available there.
Those who find all s servers in the primary group busy are not
turned away, but overflow and are handled by the infinite-server
overflow group. So the arrival stream is split into two substreams,
one goes into the primary group, and the other is served in the
overflow group. Note that the service time of the overflow group is
the same as that of the primary group.

By the above construction, the primary group behaves as an M,/
Gl/s/0 loss system. Now let Q(t), Q,(t), and Q..(t) denote the number
of busy servers in the primary s-server group, the infinite-server
overflow group, and the entire system, respectively. We have

Q. () = Q1) + Q (1), (11)
and by taking expectations
m(t) = my(t) — mo(t), (12)

where m(t) = E[Q(t)], mo(t) = E[Qu(t)], and m_.(t) = E[Q..(t)]. Since the
arrival process to the system is a non-homogeneous Poisson process
with rate A(t), we immediately have m_,(t) from (7). On the other
hand, the arrival process to the overflow group is not Poisson. This
is because overflows only occur when the primary group is full, and
so the arrivals to the overflow group are Poisson only for the inter-
vals during which this is true. However, Remark 1 allows us to con-
tinue to use (7) given a well-defined rate function exists for the

OO

A1 = B(

Fig. 1. Primary group and overflow group.

overflow process. In order to find this rate, we use a simple parti-
tioning argument: Partition the interval (—oo,t) into sub-intervals
of length du and let A(t) denote the total number of overflows in
(—oo,t). It is easy to see that the expected number of overflows in
the interval (u,u + du) is A(u)p(u)du and so

E[A(D)] = [ Aw)pu)du, (13)

which implies that A(t)A(t) is the arrival rate to the overflow group.
Now, we have

m(t) = /_[ G~ uydu - /_[ WG - u)du

_ [ 21— Bu)GE (e — uydu, (14)

which establishes (9).

Now let D(t), Do(t), and D.(t) denote the total number of
departures from the primary s-server group, the overflow group,
and the entire system, respectively, up to time t. We then have

E[D..(6)] = / "y — / " WGt - wdu, (15)
EDy(0) = [ dwptudu— [ iw)p)Gi(t - . (16)

where the first terms on the right hand sides are the expected num-
bers of arrivals up to time t, and the second terms are the mean
numbers of busy servers at time t. Thus,

t
E[D(t)] = E[Dx(t)] — E[Do(t)] = / Au)(1 = p())G(t —u)du,  (17)
which, by taking derivative with respect to t, yields the departure
rate §(t) given in (10). O

The following corollary states the relation between arrival and
departure rates in non-stationary loss queues.

Corollary 1.
M _ 3001 - gy - o10), (18)

Proof. Proof follows easily by differentiating (9) with respect to
t. O

For M;/M/s/0 loss queues with Exponential service times with
mean 1/u, we have from (9) and (10) that §(t) = m(t)u. Replacing
this in Corollary 1 yields the differential Eq. (5) used in the FPA
method for performance evaluation of M;/M/s/0 loss queues.

We now develop algorithms for computing blocking probabili-
ties and mean busy servers by virtue of Eq. (9). We assume that
the loss system starts empty at t = 0, which is equivalent to setting
(t)=0 for t <0 in Theorem 2. We have not been able to analyze
other initial settings, but with an appropriate choice of origin this
covers many practical situations.

2.1. Single-server loss queues

For the M,/GI/1/0 loss system, m(t) = p(t). Hence, (9) becomes
p(t) = /O.ti(u)(1 — B(w))G*(t — u)du, (19)
which is a Volterra integral equation of the second kind. Whilst it
would be possible to produce a closed form solution for (19) for

some sufficiently simple arrival rate functions and service time dis-
tributions, in general we have to use numerical approaches. To do
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Fig. 2. Blocking probability vs. time for loss queues with Hyper-Exponential service times with a = 0.5 and: (a) 200 servers, (b) 150 servers, (¢)100 servers, and (d) 50 servers.

so, we subdivide the interval of integration (0, t) into n equal subin-
tervals with length h = t/n, and employ the trapezoidal rule of inte-
gration to obtain after some rewriting

B(t) = h2(0)(1 — BO)G () + 231 i) (1 — B(ih)G¥(¢

—ih) + A(£)]/(2 + hA(¢)). (20)

Assuming p(0) =0, which is an appropriate assumption when the
system starts empty, we will be able to work out blocking probabil-
ities at desired points of time in a sequential manner. This approach
is outlined in Algorithm 1 in Appendix A of the online supplement.
Apart from inevitable numerical error produced by approximating
the integral with an equivalent summation, Algorithm 1 is exact.

2.2. Multi-server loss queues

Since expression (9) contains two unknown functions, (t) and
m(t), for multi-server loss queues another equation relating these
two functions is needed. The Erlang loss formula seems an appro-
priate complementary equation given a sensible definition of time-
dependent offered load r(t). In line with Alnowibet and Perros
(2009b), we define

r(e) =m(t)/(1 = B(r)),

and use

(21)

_ /st
Sior()! /i

as an approximate complementary equation. In fact, (22) is exact for
single-server loss queues, as can be seen by setting s=1 and
m(t) = p(t). Egs. (9), (21), and (22) can now be solved iteratively as
follows:

B(t) (22)

1. Choose an appropriate tolerance ¢, step size h, and final time T.

2. Start with initial value g%(t)=0.0 forall 0 <t <T.

3. Set the iteration counter k = 0.

4. Calculate m*(t) = [5 A(u)(1 — B*(w))G (¢t —u)du forall 0 < t < T.

5. Calculate r*(t) = m (t)/(1 — gX(t)) forall 0 < t < T.

6. Update the blocking probabilities: g*'(t) = % for all
i=0 .

0<t <T.
7. If maxo<.<r{|B5(t) — BX(t)|} <e, then return g&*1(t) for all 0 <
t < T and stop; otherwise set k =k + 1, and return to Step 4.

Remark 2. It follows upon setting °(t)=0, 0 <t < T, that m(t)
obtained in Step 4 above equals m.(t) defined in (7), and so
r(t) = m_(t). Hence, the first iteration of the above routine produces
the same values for blocking probabilities as the MOL approach.
The structure of this approach is similar to that of the FPA meth-
od; at each iteration, it computes blocking probabilities at all
epochs based on the estimates of blocking probabilities obtained
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Fig. 3. Blocking probability vs. time for loss queues with Erlang-2 service times and: (a) 200 servers, (b) 150 servers, (c) 100 servers, and (d) 50 servers.

in the previous iteration. It turns out to be more efficient, espe-
cially with large numbers of servers, to work out the ‘accurate’ esti-
mate of the blocking probability at each point before proceeding to
the next point. This approach is illustrated in Algorithm 2 in
Appendix A of the online supplement. It uses the trapezoidal inte-
grating method and calculates blocking probabilities by a recursive
formula to make computations numerically stable.

2.3. Numerical results

In this section, we investigate the accuracy and speed of Algo-
rithm 2 across various service time distributions and with different
numbers of servers. Like other papers in this context, we use a
sinusoidal arrival rate function A(t) = A(1 + o sin(27t/C)), where 1
is the average arrival rate, o is the relative amplitude, and C is
the cycle time. We set 2 = 35, a=0.5 and C =24 hours in all test
cases.

We carried out our experiments with Exponential, Hyper-Expo-
nential, and Erlang-2 distributions as phase-type service times, and
with Log-Normal distribution as a non-phase type service time.
Three parameters, mean, SCV (variance divided by mean squared),
and a (a measure reflecting the third moment) are needed for char-
acterizing the Hyper-Exponential distribution as described in Davis
et al. (1995). The Exponential and Erlang-2 distributions are com-
pletely defined by their mean values, and their SCVs equal 1.0 and

0.5, respectively. For the Log-Normal distribution, mean and SCV
are needed.

Mean service times were assumed to be four hours in all cases.
This relatively long service time was deliberately chosen so as to
demonstrate the ability of proposed algorithms in coping with
hard cases; both PSA and MOL tend to work better when service
times are relatively short. Long service times are also common in
healthcare delivery processes. For the Hyper-Exponential distribu-
tion, SCV was set to 4.0 and a to 0.1, 0.5, and 0.9. The SCV of the
Log-Normal distribution was chosen to be 2.0.

We implemented our algorithms in MATLAB. For systems with
phase-type service times, we used the ‘ode45’ function of the MAT-
LAB ODE suit to generate exact results (Shampine and Reichelt,
1997). It numerically solves the Chapman-Kolmogorov differential
equations describing the system dynamics using a Runge-Kutta
method, and is widely used as a benchmark (Ingolfsson et al.,
2007). For the Log-Normal distribution, simulation is the only avail-
able benchmark. We replicate the simulation model 10000 times to
reach a high level of accuracy. We compute blocking probabilities at
five minute intervals over a period of four days (T = 96 hours).

We experimented with 200, 150, 100, and 50 servers to span a
wide range of blocking probabilities and to test computation speed
for large numbers of servers. We also implemented the MOL
approach for calculating loss probabilities and have included its re-
sults for the sake of comparison. Tolerance of Algorithm 2 was set
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Fig. 4. Blocking probability vs. time for loss queues with Log-Normal service times and: (a) 200 servers, (b) 150 servers, (c) 100 servers, and (d) 50 servers.

to 0.001 as accuracy more than three digits is unlikely to be re-
quired in practical situations. Nevertheless, smaller values can be
chosen if needed.

A sample of results are illustrated in Figs. 2-4 for Hyper-
Exponential with a=0.5, Erlang-2, and Log-Normal distributions,
respectively. It is observed in these plots that blocking probabilities
obtained by Algorithm 2 (dashed lines) are always pretty close to
the exact results (solid lines). It is also clear that the algorithm al-
ways performs more accurately than the MOL (dotted line). For 200
servers (part (a) of figures), the blocking probabilities are very
small and the difference between MOL and the algorithm is not sig-
nificant with both very close to exact results. However, as the num-
ber of servers decreases to 150 (part (b) of figures) and blocking
rises up to a peak around 20%, MOL deteriorates, underestimating
the peaks, overestimating the troughs, and lagging behind the ex-
act results. These problems of MOL become more serious for 100
(part (c) of figures) and 50 (part (d) of figures) servers while the
proposed algorithm is working consistently well.

Comparing the corresponding panels of Figs. 2-4 reveals exam-
ples of the impacts of the second and larger moments of the service
time distribution. Whilst in panels (c) and (d) the impact is mini-
mal, in panel (a) we see a 10-fold increase in maximum blocking
probability moving from the Hyper-Exponential distribution to
the Erlang-2 distribution, and in panel (b) we see an increase from
0.24 to 0.30. Furthermore, we note the somewhat counter intuitive

result occasionally noted for time-dependent systems, see for
example Izady (2010), that increasing SCV can reduce congestion.

Relative and absolute accuracy of Algorithm 2 and MOL are
reported in Appendix B of the online supplement for all the test
cases used in this section. Results for the PSA (not included) also
reveal significant errors. In particular, as it does not distinguish
between service times beyond their means, the PSA produces
identical results for Figs. 2-4, and also fails to show the transient
behavior present in those figures.

The mean numbers of busy servers (not plotted) were also
remarkably close to exact results for the proposed algorithm.
Whilst not included here, results for 5-20 servers and 1= 3,4,5
showed that the proposed algorithm also maintains its high accu-
racy levels for much smaller numbers of servers.

The computation time of Algorithm 2 was less than 2 seconds in
all test cases. It is significant that the proposed algorithm produces
highly accurate results in a computation time which is almost inde-
pendent of the number of servers in the system. In fact, the exact
algorithm for phase-type service times took over 3 minutes to pro-
duce results with 50 servers and more than 5 hours with 200 servers.

2.4. Non-stationary Erlang loss equation

As noted by Alnowibet and Perros (2009b) for the special case of
Exponential service times, the high degree of accuracy in the
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Fig. 5. Absolute error vs. time for: (a) Hyper-Exponential with r=0.9 and 200 servers, (b) Hyper-Exponential with r = 0.5 and 150 servers, (c) Exponential with 100 servers,

and (d) Erlang-2 with 50 servers.
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approximate results produced from Eqgs. (9), (21), and (22) suggests
that Eq. (22) with offered load defined in (21) might in fact be true

for multi-server systems as it is for single-server systems. We
therefore investigate this conjecture by comparing the values
obtained from the right hand side and left hand side of the
following equation

m() \* |
o= /2
(i) /1

where both p(t) and m(t) are to be exact values computed by the
Runge-Kutta method. If the values obtained from the two sides
were equal, it would mean that the above equation is exact. Other-
wise, it would be an approximate relation between f(t) and m(t).
We calculated the absolute difference between the right hand
side and left hand side of Eq. (23) at five minute intervals for all
the test cases used in Section 2.3. A sample of results are plotted
alongside associated absolute errors of Algorithm 2 in Fig. 5.
According to these plots, the absolute difference between the right
hand side and left hand side of the above equation (labeled as Er-
lang) becomes as large as 0.01. Since we set a high level of accuracy
for the Runge-Kutta method (six digits accuracy), these differences
are not purely numerical errors. Notice also that the absolute error
of Algorithm 2 (labeled as Algorithm) follows the absolute error of
the above equation pretty closely. These two observations support

(23)



N. Izady, D. Worthington /European Journal of Operational Research 213 (2011) 498-508 505

0.5

———— Algorithm
—— Simulation

0.4

0.3

0.2

0.1

0 24 48 72 96
time

0.5
———— Algorithm
—pimulation
0.4
0.3
=
&
0.2
0.1
0
0 24 48 72 96

time

Fig. 7. Blocking probability vs. time for the non-stationary multi-class example.

our conjecture that errors of Algorithm 2 stem from the approxi-
mate nature of the Erlang loss equation with r(t) = m(t)/(1 — p(t))
in non-stationary settings.

2.5. Queue length distribution

Theorem 2 tells nothing about the distribution of numbers of
busy servers except for the easy case of s=1. But, surprisingly,
the corresponding stationary formula works well in time depen-
dent cases with r(t) defined in (21). Specifically,

Pr{Q(t) = i} m
5o (1) /i

We computed the queue length probability mass functions by
substituting values of m(t) and g(t), obtained by Algorithm 2, into
the above formula for all test cases of Section 2.3. This enabled us
to estimate queue length distribution functions for all the test cases.
To measure the accuracy of the estimated distribution functions, we
used the Kolmogrov-Smirnov statistic defined as

i=01, s (24)

KS(t) = max |F.(i) — Fe(i), 0<t<T,

0<i<s (25)
where I?t(i) and F,(i) are approximate and exact queue length distri-
bution functions at time t obtained by expression (24) and the
Runge-Kutta method, respectively. In most of our test cases, the
time average of KS (t) was less than 2%, and in all cases it was less
than 4%. Fig. 6 shows the mean, 10th percentile, and 90th percentile
for the worst case (the 150-server example with Hyper-Exponential
service times with r=0.1), and nevertheless still shows a good
match between approximate and exact results.

3. Multi-class loss queues

Consider an s-server loss system serving K independent classes
of customers. A class k customer arrives to the system according to
a non-homogeneous Poisson process with arrival rate function
{2k(t),—oo < t < o0} and requests for by servers for k=1,...,K. Given
b, servers are available, the arrival occupies them for a random
amount of time distributed with the cdf function Gi(x), x > 0.
When the service is finished, all b, servers are released simulta-
neously. An arriving customer is lost if the required servers are
not all available. All servers are able to handle all customer classes.

The arrivals and service times of each class of customers are as-
sumed to be independent of each other and of other classes.

Let Qi(t) be the number of servers occupied by class k customers
at time t, and let my(t) = E[Qi(t)] for k=1,...,K. Let Q(t) be the total
number of busy servers at time t. The blocking probability function
for class k customers is defined as

B(t) = Pr{Q(t)
> s — by|a class k arrival occurs in (t,t+dt)}
=Pr{Q(t) > s — b},

for k=1,...,K. The following corollary extends Theorem 2 to multi-
class loss systems.

(26)

Corollary 2.
my(t) = by / L)1 - B —wdu, k=1, K (27)
o(t) = /OOQ Jx(t —u)(1 = B(t —u))dGe(u), k=1,... K. (28)

Proof. Proof easily follows using the same decomposition method
applied for Theorem 2. Since customers do not interact with each
other in infinite-server systems, we can use (7) to find mean busy
servers in the entire system and in the overflow group for each
class of customers independently of other classes. O

In order to approximate gi(t) and my(t) for all customer classes,
in line with Alnowibet and Perros (2009b), we define

re(t) = me(t)/(1 = Bi(t)), k=1,... K, (29)

and set

w;(t) = {Zlk(lrk(t)wjbk(t)v ji=1,. ,S, (30)
0 otherwise

to estimate fi(t) as

ﬁk(t)_M k=1,...,K (31)

a ijowj(t) ’

The above formulas are motivated by the algorithm proposed by
Kaufman (1981) for stationary multi-class loss queues in steady
state. Now solving Eqgs. (27), (29), (30), and (31), iteratively, pro-
duces estimates of blocking probabilities Bi(t) and mean numbers
my(t) of busy servers occupied by class k customers for all k. The
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Fig. 8. Blocking probabilities vs. time for the loss network example.

expected value of the total number of busy servers would therefore
be E[Q(t)] = Sk mi(t). The iterative process is outlined in Algo-
rithm 3 in Appendix A of the online supplement.

As a numerical example, we considered a two-class loss system
with Z;(t)=35(1 + 0.5 sin(2nt/24)) and 1y(t)=20(1+ 0.5 sin(27nt/
12)). The first class customers require one server and their service
time is assumed to follow a Log-Normal distribution with mean va-
lue of 4 hours and SCV of 2. The second class customers require 2

servers and their service time is a Log-Normal distribution with
mean value of 2 hours and SCV of 4.0.

The blocking probability values for both classes of customers
are plotted in Fig. 7 alongside the corresponding values obtained
by simulation experiments. The results show a high level of accu-
racy. The computation time was around 30 seconds with Algorithm
3, while the simulation model took more than 120 minutes to do
10000 replications.
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4. Networks of loss queues

Consider an (M,/Gl/s;/0)//M loss network with I service facilities,
indexed by i =1,...,I, where facility i comprises s; identical servers.
The external arrival process to facility i, independent of other facil-
ities, is a non-homogeneous Poisson process (the M;) with deter-
ministic arrival rate function {/{t),—oo <t < cc}. Service times at
facility i are assumed to be i.i.d random variables with an arbitrary
cdf function G{x) (the GI). The routing process is stationary Mar-
kovian (the M) with matrix P = [p;], where pj; is the probability of
a customer moving to facility j upon service completion in facility
g =1- Z;:] p;; is therefore the probability of a customer leaving
the system after visiting facility i. The arrival, service, and routing
processes are assumed to be mutually independent. An arriving
customer (internal or external) to facility i finding all servers busy
will be lost from the system.

Let Q{t) be the number of busy servers in facility i, and let
mj(t) = E[Q{t)]. The blocking probability function at facility i is de-
fined as

Bi(t) = Pr{Q;(t) = s;Jan arrival(internal or external)occurs in
(t,t4dt)}. (32)

Notice that the blocking probability is no longer the same as the
(unconditional) probability of all servers being busy. This is because
the aggregate arrival process to each facility is not generally Pois-
son. We have the following theorem.

Theorem 3. For the (M,/Gl/s;/0)'/M loss system that starts out empty
in the infinite past, we have

m(t) :/j (WG (t — u)du, (33)

where y(t) is the aggregate arrival rate function to facility i, defined as
the minimal non-negative solution to the following system of input
equations

yit) =

2GRS /oo 7;(W)dG(t — u)du} (1= Ai(0)),
=0

i=1,...L (34)

Proof. We prove the results by showing that mean busy servers in
each facility of the (M,/Gl/s;/0)'/M loss network is the same as mean
busy servers in the corresponding facility of an associated infinite-
server (G,/GI/oo)"1/G, network. Since expressions for mean busy
servers of (G/GI/oco)*1|G, systems are given in Massey and Whitt
(1993), we can readily use them once the desired network charac-
teristics are well defined.

We define an (G;/Gl/0)*/G, network as follows. Suppose there
are I+ 1 infinite-server facilities in the system, where the first I
facilities have the same service processes as the corresponding
facilities in the loss network, and the (I+1)th facility has an
arbitrary service time distribution. The extra infinite-server facility
is designated for customers who are blocked in the loss network.
The external arrival process to facility i is assumed to be a general
arrival process with rate function

HOA - pO), i=1....L,
AO=N S aopn, =141 (35)
i=1

with Bi(t) defined in (32). The routing process is assumed to
be a general process with time-dependent transition matrix
P>(t) = [py (t)], where

py(l_ﬂj(t)) l',j:‘l,‘..,l,
I

pit) = kz:]pikﬂk(t)a i=1,...1
0, i=I+1.

j=1+1, (36)

With the above settings, the aggregate arrival process to facility i of
the infinite-server network is the aggregate arrival process of cus-
tomers admitted to facility i of the loss network for i=1,...,L All
the blocked customers, either internal or external, are placed in
the (I + 1) th facility, from which they leave the system after an arbi-
trary amount of time. The mean number of busy servers in the ith
facility of the loss network is therefore the same as the mean num-
ber of busy servers in the ith facility of the constructed infinite-
server network for i=1,...,I. Now, Egs. (33) and (34) are readily
obtained from (G,/Gl/c)*'/G,; equations given in Theorem 1.2
(combined with Remark 2.3) of Massey and Whitt (1993) with the
system parameters defined in (35) and (36). O

To develop a solution algorithm, suppose that the loss network
starts empty at t=0. To compute mt) and pit), in line with
Alnowibet and Perros (2009b), we define time dependent offered
load at facility i as

ri(t) =my(t)/(1 = Bi(t)), (37)
and use
Ti(t)si/si!
i t = N TR 38
hil® Zj':ori(t)j/]! 8)

as the complementary equation for i=1,...,I. Egs. (33), (34), (37),
and (38) can now be solved iteratively, starting with initial values
for blocking probabilities. The required steps of the iterative routine
are outlined in Algorithm 4 in Appendix A of the online supplement.
Note that in order to obtain m;(t) from (33) in each iteration of the
algorithm, one needs to solve the system of input equations stated
in (34) for y(t),i=1,...,1, at each time t. To do so, we have proposed
a numerical procedure in Appendix C of the online supplement.

As a numerical example, we consider a six-facility (I=6) loss
network with following specifications:

A1(t) = 8+ 65sin(2mt/24), S; ~ Log-Normal(2.0,2), s =20,
J2(t) =10+ 5sin(2nt/12), S, ~ Log-Normal(1.0,2), s, =15,
J3(t) = 25+ 20sin(27wt/24), S; ~ Log-Normal(0.75,2), s; =20,
J4(t) = 15+ 15sin(2nt/48), S4 ~ Log-Normal(1.0,2), s4 =15,
A5(t) =20+ 10sin(27wt/24), Ss ~ Log-Normal(0.5,2), s5 =10,
Z6(t) =0, S~ Log-Normal(1.5,2), ss= 20,

where S; ~ Log-Normal(1/g;, 6?) denotes a Log-Normal service time
in facility i with mean and variance of 1/y; and 6?2, respectively. The
routing matrix is as follows

0 04 040 O0 O

0 0 0 05 04 0
03 0 0 03 03 0
P=10 0 070 0 o3| (39)

0 06 0 0 0 03
050 0 0 030

The results of running Algorithm 4 for the above example for
96 hours have been plotted in Fig. 8. Compared to simulation re-
sults, obtained by 20000 replications, a high level of accuracy is ob-
served. The lowest relative accuracy seem to be for the sixth facility
in which blocking probabilities are small. The computation time
with the simulation model was more than 10 hours, whereas it
was thirty seconds for Algorithm 4. The same degree of accuracy



508 N. Izady, D. Worthington /European Journal of Operational Research 213 (2011) 498-508

and speed was observed for other experiments with other service
time distributions and with different network configurations.

5. Conclusions

By establishing integral equations relating time-dependent
mean busy servers and blocking probabilities for non-stationary
single-class, multi-class, and networks of loss queues with arbi-
trary service time distributions, we have extended the FPA method
of Alnowibet and Perros (2009b) substantially beyond the Expo-
nential service time assumption. This generalized FPA method is
shown to provide highly accurate results for a wide range of cases,
including important cases where previous well-established meth-
ods such as PSA and MOL are known to perform poorly.

In comparison to exact methods such as the Runge-Kutta ODE
solver, the generalized FPA method applies to all service time dis-
tributions, performs much faster, and its speed is almost indepen-
dent of the system size.

Finally we note that throughout the paper we have used infi-
nite-server results to derive exact equations for the time-depen-
dent carried load in the loss systems of interest. These have then
been combined with known results for stationary loss systems to
give high quality approximate results for time-dependent loss sys-
tems. In the case of multi-server loss queues with a single class of
customers, the stationary equation is the Erlang loss formula. In
Section 2.4, we showed that this was not exact, but nevertheless
seemed to encapsulate the essence of the problem. It therefore
seems likely that the same approach of using time-dependent car-
ried load derived from infinite-server systems in combination with
known stationary results may also offer an analytical way forwards
in the analysis of other types of time-dependent loss systems.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejor.2011.03.029.

References

Abdalla, N., Boucherie, R.J., 2002. Blocking probabilities in mobile communications
networks with time-varying rates and redialing subscribers. Annals of
Operations Research 112 (1), 15-34.

Alnowibet, K., Perros, H., 2009a. The non-stationary loss queue: A survey.

Alnowibet, K., Perros, H., 2009b. Nonstationary analysis of the loss queue and of
queueing networks of loss queues. European Journal of Operational Research
196 (3), 1015-1030.

Alnowibet, K.A., Perros, H., 2006. Nonstationary analysis of circuit-switched
communication networks. Performance Evaluation 63 (9-10), 892-909.

Asmussen, S., 2003. Applied Probability and Queues, 2nd ed. Springer, Berlin.

Bekker, R., Bruin, A.M.d., 2010. Time-dependent analysis for refused admissions in
clinical wards. Annals of Operations Research 178 (1), 45-65.

Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Zeltyn, S., Zhao, L., Haipeng, S., 2005.
Statistical analysis of a telephone call center: a queueing-science perspective.
Journal of the American statistical association 100 (1), 36-50.

Bruin, A.M.d., Bekker, R., Zanten, L.v., Koole, G.M., 2010. Dimensioning hospital
wards using Erlang loss model. Annals of Operations Research 178 (1), 23-43.

Davis, Jimmie, L., Massey, W.A., Whitt, W., 1995. Sensitivity to the service-time
distribution in the nonstationary Erlang loss model. Management Science 41
(6), 1107-1116.

Eick, S.G., Massey, W.A,, Whitt, W., 1993. The physics of the M/G/oo queue.
Operations Research 41 (4), 731-742.

Fackrell, M., 2009. Modelling healthcare systems with phase-type distributions.
Health Care Management Science 12 (1), 11-26.

Green, L., Kolesar, P., Svoronos, A., 1991. Some effects of nonstationarity on
multiserver markovian queueing systems. Operations Research 39 (3), 502-
511.

Green, L.V., Kolesar, PJ., 1991. The pointwise stationary approximation for queues
with nonstationary arrivals. Management Science 37 (1), 84-97.

Gross, D., Harris, C.M., 1998. Fundamentals of Queueing Theory, 3rd ed. John Wiley
& Sons, New York.

Ingolfsson, A., Akhmetshina, E., Budge, S., Li, Y., Wu, X,, 2007. A survey and
experimental comparison of service-level-approximation methods for
nonstationary M(t)/M/s(t) queueing systems with exhaustive discipline.
INFORMS Journal On Computing 19 (2), 201-214.

Izady, N., 2010. On queues with time-varying demand. PhD Thesis, Lancaster
University.

Jagerman, D.L., 1975. Nonstationary blocking in telephone traffic. Bell Systems
Technical Journal 54, 625-661.

Jennings, O., Massey, W., 1997. A modified offered load approximation for
nonstationary circuit switched networks. Telecommunication Systems 7 (1),
229-251.

Kaufman, J., 1981. Blocking in a shared resource environment. Communications,
IEEE Transactions on Communications 29 (10), 1474-1481.

Massey, W.A., Whitt, W, 1993. Networks of infinite-server queues with
nonstationary Poisson input. Queueing Systems 13 (1), 183-250.

Massey, W.A.,, Whitt, W., 1994. An analysis of the modified offered-load
approximation for the nonstationary Erlang loss model. The Annals of Applied
Probability 4 (4), 1145-1160.

Shampine, L.F., Reichelt, M.\W., 1997. The MATLAB ODE suite. SIAM Journal on
Scientific Computing 18 (1), 1-22.

Whitt, W., 1991. The pointwise stationary approximation for M,/M,/s queues is
asymptotically correct as the rates increase. Management Science 37 (3), 307-
314.

Wolff, RW., 1988. Stochastic Modeling and the Theory of Queues. Prentice Hall,
New Jersey.


http://dx.doi.org/10.1016/j.ejor.2011.03.029

	Approximate analysis of non-stationary loss queues and networks of loss  queues with general service time distributions
	Introduction
	Single-class loss queues
	Single-server loss queues
	Multi-server loss queues
	Numerical results
	Non-stationary Erlang loss equation
	Queue length distribution

	Multi-class loss queues
	Networks of loss queues
	Conclusions
	Supplementary data
	References


