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Midinfrared GalnSb/AlGalnSb quantum well laser diodes grown on GaAs
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The realization of midinfrared GalnSb/AlGalnSb type I quantum well diode lasers grown on GaAs
is reported. Lasing was observed up to 95 K, at an emission wavelength of ~3.5 um, threshold
current density of 115 A/cm?, and with a characteristic temperature Ty~ 51 K. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2793821]

Midinfrared semiconductor lasers that can operate at or
near room temperature would have a wide range of potential
applications in health care, environmental monitoring, manu-
facturing, security, and defense. For example, the favorable
atmospheric transmission characteristics at these wave-
lengths, including low atmospheric scattering and
absorptionl relative to shorter wavelengths, would make
them attractive for secure free-space communications in a
range of security and military applications, in particular, for
communication via low orbit satellites or unmanned aerial
vehicles. However, for most of the important 3—4 um spec-
tral band, there are currently no practical high-temperature
semiconductor lasers. Although much progress has been
made in the development of “short wavelength” quantum
cascade lasers (QCLs), with room temperature pulsed laser
emission at a wavelength of 4.1 um in InGaAs/AlAsSb/InP
strain compensated devices,2 240 K pulsed laser emission at
A~3.2 um from InAs/AlISb devices,3 and low temperature
pulsed laser operation at A~3.1 um for both InP based
strain compensated InGaAs/InAlAs/AlAs (Ref. 4) and lat-
tice matched InGaAs/AlAsSb,’ only one QCL operating
continuous wave (cw) at room temperature and at wave-
lengths below 4.0 wm has been reported.6 The longest wave-
length for room temperature cw operation for a type I inter-
band diode is ~3.1 um,” whereas maximum cw operating
temperatures of 264,8 257,9 and finally 269 K,10 at emission
wavelengths of 3.3, 3.7, and 4.05 um, respectively, have
been achieved recently by interband cascade lasers (ICLs),
which“have also achieved cw power outputs above 1 W at
78 K.
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The aluminum-indium-gallium-antimonide
(Al,GayIn;_,_,Sb) material system offers great promise for
efficient diode laser operation across the 3-5 um wave-
length range. It offers an excellent compromise between the
requirements for good electronic and optical confinement
and those for low series resistance, and the use of an active
region comprising compressively strained type I quantum
wells is predicted to lead to increased gain, which leads to
lower threshold current densities and hence reduced nonra-
diative Auger recombination.'>"? Although there has been a
previous report of optically pumped GalnSb/AlGalnSb mul-
tiple quantum well lasers grown onto GaSb substrates,'* in
this paper, we report the growth of GalnSb/AlGalnSb quan-
tum well (QW) diode lasers onto GaAs substrates. Growth
onto these substrates not only offers potential benefits in
terms of cost and availability but also opens the possibility of
the integration of midinfrared diode lasers with GaAs based
optoelectronic components, such as electro-optic modulators,
for beam steering and beam shaping. In the future, similar
growth techniques may enable the growth of these layers
onto Si substrates (which have the additional advantage of
relatively high thermal conductivity) as, for example, in the
recent demonstration of superluminescent emission at room
temperature GaSb quantum-well-based light emitting
diodes."

GalnSb/AlGalnSb diode lasers were grown by molecu-
lar beam epitaxy at QinetiQ Malvern onto on-axis semi-
insulating (001) GaAs substrates. The structure of the diodes
and associated energy band diagram under zero bias are
shown schematically in Fig. 1. The structure consists of a
high Al content Al In,_.Sb interfacial layer grown directly
onto the GaAs, Aly,sIny;5Sb cladding regions,
Al 1,Gay 12Ing 76Sb barriers, and two Gay 4Ing g4Sb QW ac-
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FIG. 1. Schematic cross section (a) showing the structure of the QW laser
and (b) the calculated energy band diagram of the diode under zero applied
bias.

tive regions. The Al In;_.Sb layer and bottom Al ,sInj;5Sb
cladding region together accommodate the lattice mismatch
between the GaAs substrate and the GalnSb quantum wells.
Although no measurements of dislocation densities were
made on the wafers described here, from atomic force mi-
croscopy measurements on similar structures it is expected
that the dislocation density will be ~10% cm™2. Further work
is underway to investigate both the mechanisms of disloca-
tion propagation and the effect of the dislocations on the
laser properties. Beryllium was used to dope the top cladding
layers p type (to nominal levels of 3X10® and
2x10'7 cm™3, as shown in Fig. 1), whereas tellurium was
used to dope the bottom n type to a nominal level of
2% 10'"® cm™. The composition of the cladding, barrier, and
quantum well layers was determined by x-ray diffraction
(XRD) measurements on both the full laser structure and also
on two calibration layers. The first calibration layer consisted
of the bottom buffer (AllnSb) and barrier (AlGalnSb) layers
only (i.e., growth up to the bottom of the first QW). XRD
measurement of the layer lattice parameters showed the bar-
rier to be well matched to the buffer with the strain in the
barrier less than 0.2% (the majority of this strain is due to
residual strain in the buffer layer). The second calibration
layer consisted of the bottom buffer and barrier layers plus
15 periods of the GaInSb QW and AlGalnSb barriers (no top
barrier was present in this layer). XRD analysis showed the

compressive strain in the QWs to be approximately 0.6%.
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FIG. 2. Measured emission spectra as a function of temperature. The inset
shows the predicted emission wavelength as a function of temperature.

Further details of the measurements undertaken on the cali-
bration layers are given in Ref. 16.

Ridges with sloping sidewalls and a width of ~31 um at
the active region were defined using contact photolithogra-
phy and wet chemical etching. Approximately 700 nm of
SiOy was then deposited by plasma enhanced chemical va-
por deposition and a window opened by contact lithography
and dry etching. Sputtered Ti/Au metallic contacts were then
deposited, one on top of the ridge to provide a p-type contact
and one on top of the etched region adjacent to the ridge to
provide a n-type contact. Electroplating was used to increase
the total metal thickness to ~5 um to aid heat dissipation.
The devices were cleaved to cavity lengths of 2 mm and
mounted substrate side down onto uncoated copper blocks
using a nonmetallic epoxy glue (note that this glue provides
a relatively poor thermal path relative to, for example, in-
dium soldering). The facets were neither polished nor coated.

Emission spectra were acquired using a Bentham M300
grating spectrometer, together with a cooled InSb detector,
with a resolution of ~0.1 nm, with the device mounted on
the cold finger of a continuous flow liquid helium cryostat.
The device was driven with a 50 kHz square wave with a 5%
duty cycle (pulse length ~1 us) and with a peak current of
400 mA (equivalent to a current density of ~680 A/cm?). At
temperatures up to 95 K, multimode lasing was observed, as
shown in Fig. 2, whereas electroluminescence was observed
from 95 K up to room temperature. Figure 2 shows the mea-
sured emission spectra taken at 7, 55, and 95 K together with
the predicted spontaneous emission wavelengths (el-hhl),
plotted as a function of temperature, calculated using
8 X 8 k-p theory with strain taken into account.'?

Figure 3 shows a typical plot of the laser emission L
versus current density J as a function of temperature (note
that although characteristics were taken at 5 K intervals,
some plots have been omitted to aid clarity). In this case, the
device was mounted on the cold finger of a closed cycle
cryostat and was driven with a 10 kHz square wave with a
1% duty cycle (pulse length ~1 us). Threshold current den-
sities were extracted from the data shown in Fig. 3 by a
linear fit to the points above threshold and are shown on a
logarithmic scale as a function of temperature in Fig. 4. At
75 K, the threshold current density is 78 A/cm?, which is
comparable to the value of 40 A/cm? we have obtained pre-
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FIG. 3. Typical L-J characteristics measured as a function of temperature.

viously from 2 mm GalnSb/AlGalnSb QW diode lasers with
a similar composition,13 and emitting at comparable wave-
lengths at this temperature, but grown on InSb substrates.
There is an indication that there is a change in the character-
istic temperature 7, at approximately 75 K and the two lines
shown in Fig. 4 are fits to the data from 25 to 75 K and from
75 to 95 K, yielding T, values of 136 and 51 K, respectively.
These values are also comparable to the value of 38 K ob-
tained from the lasers previously grown on InSb."? Extrapo-
lating the fit to the high-temperature data yields an estimated
threshold current density of ~6.5 kA/cm? at room tempera-
ture. Although this is larger than the value of 660 A/cm?
obtained recently from an ICL at 269 K." and emitting at
4.05 wm, Andreev et al.? predicted that the threshold cur-
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FIG. 4. Threshold current densities Jy,, extracted from the data shown in
Fig. 3 by a linear fit to the points above threshold, as a function of tempera-
ture. The two lines are fits to the data from 25 to 75 K and from 75 to 95 K,
yielding 7}, values of 136 and 51 K, respectively.
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rent density will fall by a factor of ~10 at room temperature
as the strain in the QW active region of the
GalnSb/AlGalnSb lasers is increased to approximately
1.5%. Further experiments are therefore underway examin-
ing the effect of strain on the laser performance.

In conclusion, we have investigated the characteristics of
GalnSb/AlGalnSb type I quantum well diode lasers grown
onto GaAs. Multimode lasing was observed up to a tempera-
ture of 95 K, with electroluminescence observed up to room
temperature. Further improvements to the diode mounting,
facet polishing, and coating, coupled with the realization of
quantum wells with higher strain, offer the prospect of rela-
tively low current operation at room temperature.
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