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The real-world tracking applications meet a number of diff iculties caused by the presence of different kinds of
uncertainty - unknown or not precisely known system model and random processes’ statistics or due to abrupt
changes in the system modes of functioning. These problems are especially complicated in the marine navigation
practice, where the commonly used simple models of rectili near or curvili near target motions do not match to the
highly non-linear dynamics of the manoeuvring ship motion. A solution of these problems is to derive more
adequate descriptions of the real ship dynamics and to design adaptive estimation algorithms. After analysis of
basic hydrodynamic models, new ship models are derived in the paper. They are implemented in two versions of
the recently very popular Interacting Multiple Model (IMM) algorithm. The first one is a standard IMM version
using preliminary defined fixed structure (FS) of models. They represent various modes of ship motion,
distinguished by their rate of turns. The same rate of turn is additionally adjusted in the proposed new augmented
versions of the IMM (AIMM) algorithm by using FS and variable structure (VS) of adaptive models estimating
the current change of the system control parameters. The obtained Monte Carlo simulation results show that the
VS AIMM algorithm outperforms the FS AIMM and FS IMM algorithms with respect to accuracy and
adaptabilit y.
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1. Introduction

Tracking of manoeuvring targets is a problem of a great practical and theoretical interest. The real

applications meet a number of diff iculties caused by the presence of different kinds of uncertainty due

to the unknown or not precisely known system model and random processes’ statistics as well as

because of their abrupt changes (Bar-Shalom, 1992, Bar-Shalom and Li, 1993, 1995, Best and Norton,

1997, Lerro, Bar-Shalom, 1993). These problems are especially complicated in the marine navigation

practice, where the applied trivial models of rectili near or curvili near target motions do not match to

the highly non-linear dynamics of the manoeuvring ship motion. A solution of these problems is to

derive more adequate descriptions of the real ship dynamics and to design adaptive estimation

algorithms. Such a solution is proposed in the paper. New ship models are derived in Section 2 after a

brief analysis of the basic hydrodynamic models (Ermolaev, 1981, Ogawa, et al. 1977, Pershitz, 1973,

Sobolev, 1976). These models are implemented in new versions of the Interacting Multiple Model

(IMM) filter - one of the most cost-effective among the multiple model algorithms used for estimation
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of hybrid systems, i.e. systems with both continuous and discrete uncertainties (Bar-Shalom, 1992,

Blom and Bar-Shalom, 1988, Li, 1996, Mazor et al., 1998). A brief summary of the basic features of

the Bayesian estimation algorithms and especially of the IMM filter is given in Section 3. Section 4

presents the proposed new IMM algorithms. They are based on an appropriate state vector

augmentation, which includes the difference between the unknown control parameters and their

values fixed in the IMM algorithm. Because of this model augmentation the resulting IMM algorithm

is called here augmented (AIMM). Two AIMM algorithm versions are developed and evaluated. The

first is a standard IMM version using a preliminary defined fixed set of models and is called a fixed-

structure (FS) algorithm (Li, 1999). The models represent various modes of ship motion distinguished

by their control parameter  - the ship’s rate of turn. The same rate of turn is additionally adjusted in

the proposed new augmented versions of the IMM (AIMM) filter, respectively with fixed structure

and variable structure (VS) (variable set of models, estimating adaptively the current change of the

system control parameters). The FS and VS AIMM algorithms are given in Section 4, the results from

comparative performance evaluation of the considered algorithms - in Section 5. Finally, inferences

and recommendations are summarized in Section 6.

2.  Model  Identification

Results of the research study, described in (Semerdjiev and Bogdanova, 1995, Semerdjiev et al.,

1998, Semerdjiev and Mihaylova, 1998) are summarised in this section. It should be noted that the

high complexity of the hydrodynamic processes caused by the ship motion in deep and confined water

and the wide variety of ship forms and sizes lead to various non-stochastic ship models. These models

could be divided in two groups: precise models, topical for particular ship forms and sizes (the model

of  Sobolev (1976), the cubic model of Abkowitz  (1964), the quadratic model of Norrbin (1981) and

MMG model (Ogawa and Kayama (1977) ) and models with greater generality but lower accuracy

(Pershitz (1973) and Nomoto (1960) models). Here, the widely used continuous-time (CT) Pershitz

model is chosen as basic model to assure a good trade-off between model complexity and model

accuracy:
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where VU  is the uniform (rectili near) ship velocity. The state vector of the considered model is

[ ]x X Y V= , , , , ,
'ψ ω β . It includes the ship coordinates, heading, rate of turn, drift angle and velocity;

δ  is the control rudder angle deviation. The constant hydrodynamic coeff icients 21q , 21r , 21s , 1h ,

31q , 31r  and 31s  depend on the ship geometry, most of all on the ship length L  (Voitkounski, 1985).

Equations (3) and (6) ill ustrate the main feature of the considered dynamics - the non-linear

dependence between the ship’s rate of turn and velocity. This is the main difference between the

above model and the other well -known simple models (Bar-Shalom, 1992, Best and Norton, 1997,

Lerro, Bar-Shalom, 1993).

Very often (Pershitz, 1973, Voitkunski, 1985) the CT model (1)-(6) is simpli fied by substituting

the factor β  with an off -line computed factor:

311

311
2

0 2

4

rh

srhqq δ
β

++−
= ,

where: 21313121 rqrqq −= , 21313121 srsrs −= . The system of two first-order differential equations

consisting of equation (4) and the modified equation (5), is further transformed in two independent

second-order differential equations, omitting the negligible second-order derivatives:
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where: ( )31215.0 rqp += ∗ , 21313121
* rqrqq −= ∗ , 012121 βhqq +=∗ . The final CT model (1)-(3), (4’) and

(6) is obtained by setting β ≡ 0 .

The respective  discrete-time (DT) model is:

X X TVk k k k+ = +1 sinψ ,                          (7)

Y Y TVk k k k+ = +1 cosψ ,                              (8)

( )[ ]ψ ψ τ τ
k k k k k k U

TVTV T V e k
+ = + + −1 05Ω Ω Ω. ,   (9)
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. Ω ,               (11)

where k = 12, , � ; T  is the sampling interval, and
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− + − ∗05 025 2. .p p q

L
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31
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rad
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The full coincidence between the results obtained by the CT model (1)-(6), and these from the

derived DT model (7)-(11) is demonstrated in (Semerdjiev et al., 1998). That is why the DT model

(7)-(11) is used for true data generation in the further simulations.

The final DT model, suitable for implementation in a Kalman filter, is received on the basis of the

assumptions (Semerdjiev et al., 1998, Semerdjiev and Mihaylova, 1998):

•  The observed ship manoeuvres with constant rate of turn:

 Ω Ωk k+ =1 (i.e. 0≡τ ).

•  The domain of unknown control parameters Ω k  may be “covered” by a set of three control

parameters corresponding to the three basic kinds of ship motions: uniform motion ( ΩU ), left and

right turns ( Ω L  and Ω R ):

 [ ] [ ]Ω Ω Ω Ω= = −U R L U U, , , ,
' '

0 ,
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 where U  denotes a preset constant rate of turn. The vector Ω  covers all ship manoeuvres and system

noises in the band [ ]− U U, . The particular choice of U  is made by taking into account general

considerations from the marine practice and some important international navigation restrictions

(Voitkounski, 1985).

•  The attempt to introduce a vector of possible ship lengths has been recognised in (Semerdjiev et

al., 1998) as unsuccessful because of the bad distinction of the resulting models. The uncertainty,

concerning the ship geometry has been overcome by introducing a common constant average ship

length l const=  (Semerdjiev et al., 1998).

So, the final version of the requested ship model takes the following form:

X X TVi k i k i k i k, , , ,sin+ += +1 1 ψ ,    (12)

Y Y TVi k i k i k i k, , , ,cos+ += +1 1 ψ ,    (13)

ψ ψi k i k i k iTV, , ,+ += +1 1Ω ,    (14)

V K Vi k V i U k, , ,+ =1 .    (15)

The new state vector is [ ]x X Y Vi k i k i k i k U k, , , , ,
'

, , ,= ψ , ( )K lV i i, .= +
−

1 19 2 2 1
Ω , and [ ]Ω Ω Ω Ω= U R L, ,

'

[ ]= −0, ,
'

U U , i = 1 2 3, , .

Another model version, based on the augmented state vector [ ]x X Y Vi k
a

i k i k i k U k i k, , , , , ,
'

, , , ,= ψ ∆Ω  is

suggested in (Semerdjiev and Mihaylova, 1998):

X X TVi k i k i k i k, , , ,sin+ += +1 1 ψ ,  (16)

Y Y TVi k i k i k i k, , , ,cos+ += +1 1 ψ ,   (17)

( )ψ ψi k i k i k i i kTV, , , ,+ += + +1 1 Ω ∆Ω , (18)

V K Vi k V i U k, , ,+ =1 ,   (19)

∆Ω ∆Ωi k i k, ,+ =1 ,  (20)

where i = 1 2 3, , .  This model takes into account possible differences ∆Ω i k,  between the unknown true

ship rate of turn Ω k  and its values Ω i  fixed in the IMM algorithm. The influence of ∆Ω i k,  on the

velocity is not taken into account because of its insignificance.
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It should be noted also that the above models can be used to cover simultaneous heading and

velocity manoeuvres. It is only necessary to introduce velocity noise in the rectili near motion model.

3.  Standard IMM Algorithm

    It is known (Bar-Shalom and Li, 1993, 1995) that to estimate the system state within the framework

of the Bayesian approach, the computational and storage requirements increase exponentially with

time which makes the estimator not implementable in real time. To circumvent this problem,

suboptimal estimators with certain hypotheses management, such as pruning and merging, have been

used, leading to such algorithms as generalized pseudo-Bayesian (GPB) algorithms of f irst order

(GPB1), of second order (GPB2), and in general, of order r  (GPB r ). It has been shown in (Li, 1996,

Bar-Shalom and Li, 1993, 1995) that the IMM algorithm is one of the most cost-effective schemes for

estimation of hybrid systems. It yields the performance of GPB2 with the lower requirements of

GPB1.

    The IMM algorithm is a recursive one (Blom and Bar-Shalom, 1988, Bar-Shalom and Li, 1993,

1995, Li, 1996). Each cycle of the algorithm consists of four major steps: interaction (mixing),

filtering, mode update and combination. In each cycle, the initial condition for the filter matched to a

certain mode is obtained by interacting (mixing) the state estimates of all filters at previous time under

the assumption that this particular mode is in effect at the current time. This is followed by filtering

(prediction and update) step, performed in parallel for each mode.  Then the combination (weighted

sum) of the updated state estimates from all filters yields the state estimate.

The standard IMM filter is used here to develop its versions, suitable for ship tracking, taking into

account the ship models particularities.

4. Augmented IMM Algorithms for Tracking of Manoeuvring Ships

4.1. Fixed-Structure Augmented IMM Algorithm for Ship Tracking

In a general state-space form the ship model and the measurement equation can be written as follows:
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( ) ( )x f x g vk k k k k= +− − − −1 1 1 1,Ω Ω ,     (21)

( )z h x wk k k k= + ,         (22)

where the state vector xk
nx∈ℜ  is estimated based on the measurement vector zk

nz∈ℜ  in the

presence of unknown true control parameter Ω Ω
k

n∈ℜ . The mutually independent additi ve system

and measurement noises vk
nv∈ℜ  and wk

nz∈ℜ  are white and Gaussian: ( )νk kN Q~ ,0 ,

( )w N Rk k~ ,0 . Functions f , g  and h  are known and remain unchanged during the estimation

procedure.

To estimate the difference ∆Ω i k,  between the current true control parameter Ω k  and its value Ω i

fixed in the i -th IMM model, the system state model is augmented by the next equation:

∆ Ω ∆ Ωi k i k, ,= −1 ,           (23)

where

∆Ω Ω Ωi k k i, = − .         (24)

The state and system noise vectors of the i -th augmented model  ( i N= 1, ) can be written in the

form:

[ ]x xi k
a

i k i k
n nx

, ,
'

,
'

'
= ∈ℜ +∆Ω Ω , [ ]ν ν ν ν

i k
a

i k
n n

i k, ,
' '

'

,
= ∈ℜ +

Ω
Ω .

In general, the new augmented model is nonlinear:

( ) ( )x f x g vi k
a a

i k
a

i i k
a

i i k i k
a

, , , , ,,= + + +− − − −1 1 1 1Ω ∆Ω Ω ∆Ω ,  (25)

( )z h x wk
a

i k
a

i i k k= + +, ,,Ω ∆Ω .           (26)

Functions f a (.) , ga (.)  and ha(.)  are known and remain unchanged during the estimation procedure.

The equations of the corresponding Extended Kalman Filter (EKF) are derived by linearization of

models (25) and (26). Functions ( )f xa
i k i i k, ,,− −+1 1Ω ∆Ω  and ( )g xa

i k i i k, ,,− −+1 1Ω ∆Ω  are expanded in

Taylor series up to first-order terms around the filtered estimate 
�

, /xi k k
a

− −1 1 ; the function

( )h xa
i k i i k, ,,Ω ∆Ω+  is expanded up to first-order terms around the predicted estimate 

�
, /xi k k
a

−1(Bar-

Shalom and Li, 1993). So, the i -th EKF equations take the form:
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� �
, / , / , ,x x Ki k k
a

i k k
a

i k
a

i k= +−1 γ ,         (27)

( )� �
,

�

, / , / , /x f xi k k
a a

i k k
a

i i k k− − − − −= +1 1 1 1 1Ω ∆Ω ,          (28)

( )γ i k k
a

i k k
a

i i k kz h x, , / , /

�
,

�
= − +− −1 1Ω ∆Ω ,           (29)

( )P f P f Qi k k
a

i x k
a

i k k
a

x k
a

i k
a

i i, / , , / ,

'

,− − − − − −= +1 1 1 1 1 1φ ,    (29)

( )S h P h Ri k x k
a

i k k
a

x k
a

ki i, , , / ,

'
= +−1 ,                        (30)

( )K P h Si k
a

i k k
a

x k
a

i ki, , / ,

'

,= −
−

1
1 ,                     (31)

( )P P K S Ki k k
a

i k k
a

i k
a

i k i k
a

, / , / , , ,

'
= −−1 ,                     (32)

where Ki k
a
,  is the filter gain matrix, Pi k k

a
, /  and Qi k

a
,  are the estimation error covariance and system

noise covariance matrices, γ i k,  and Si k,  are the filter innovation and its covariance matrix, the system

and the measurement Jacobian are f x k
a
i , − =1 ( )∂ ∂f x xa

i k k
a

i i k k i k k
a�

,
� �

, / , / , /− − − − − −+1 1 1 1 1 1Ω ∆Ω  and hx k
a
i ,

=

( )∂ ∂h x xa
i k k
a

i k k
a� �

, / , /− −1 1 ; φi ≥ 1 is the EKF fudge factor. The restrictions

[ ]Ω ∆Ω Ω Ωi i k k i i+ ∈− −

�
,, / , ,1 1 min max  are imposed to provide minimal models separation.

After the expansion of the ship models (12)-(15) and (16)-(20) in Taylor time-series, three

IMM algorithm versions are derived. The IMM algorithm based on model (12)-(15) is further denoted

as FS IMM, while the proposed AIMM algorithm based on model (16)-(20) is denoted as FS AIMM.

4.2 Variable-Structure Augmented IMM Algorithm for Ship Tracking

The FS AIMM algorithm can be transformed into a new VS AIMM algorithm by substituting the

constant vector of deterministic parameters Ω i  with the random vector of control parameters Ω i k, . At

the beginning of each EKF (before the state prediction step) in the IMM algorithm, the last filtered

displacement ∆Ω
�

, /i k k− −1 1  corrects the old vector of control parameters Ω i k, −1:

Ω Ω ∆Ωi k i k i k k, , , /

�
= +− − −1 1 1      ( Ω Ωi i,0 = ), (33)

The new control parameters must obey the restrictions



9

[ ]Ω Ω Ωi k i i, ,min ,max,∈ , for all i .

After the above operation, the model displacement ∆Ω
�

, /i k k− −1 1  is set to zero:

∆Ω
�

, /i k k− − =1 1 0 . (34)

Otherwise, it will be taken into account twice in the EKF equations.

Finally, it should be noted, that the proposed here VS AIMM algorithm is general and does not

depend on the implemented system and measurement models. It is an adaptive VS IMM algorithm

using minimal number of models, self-adjusting their location in continuous parameter domain.

4.3. AIMM Algorithms Implementation

Considering the AIMM algorithms implementation in sea track-while-scan radars, the particular

features of these sensors are taken into account by using the next measurement equation:

z Hx wk k k= + ,

where H  is the measurement matrix,








=
0010

0001
H ,

and kw  is a white Gaussian measurement noise with covariance matrix Rk . The polar measurements

“ range-bearing” [ ]z rk k k= ,
'β , are transformed, for convenience, in Cartesian ones:

X rk k k= sinβ , Y rk k k= cosβ .

The measurement vector acquires the new form [ ]z X Yk k k= ,
'
. Respectively, the covariance matrix of

the measurement errors becomes (Farina, 1986):

( )
( )R

r r

r r
i k

r k k k r k k k

r k k k r k k k

,

sin cos sin cos

sin cos cos sin
=

+ −

− +













σ β σ β σ σ β β

σ σ β β σ β σ β
β β

β β

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
,

where σ r  and σβ  are respectively the range and bearing standard deviations.

The Jacobi matrix computed based upon the model  (12)-(15) has the form:
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;

the respective one based on model (16)-(20) is:

( )f

TK V TK

TK V TK

TK TK V

K

x k
e

V i U k k i k k V i i k k

V i U k k i k k V i i k k

V i i i k k V i U k k

V i

i ,

, , / , / , , /

, , / , / , , /

, , / , , /

,

�
cos

�
sin

�

�
sin

�
cos

�

� �
=

−
+























1 0 0

0 1 0

0 0 1

0 0 0 0

0 0 0 0 1

ψ ψ
ψ ψ

Ω ∆Ω .

A hard logic is introduced in all IMM algorithms to avoid an undesired combination of the

estimates 
�

, /VU k k , 
�

, /VL k k  and 
�

, /VR k k  (Semerdjiev et al., 1998):

� �

, / , / ,V Vi k k U k k=          ( i = 2 3, );

� �
, ./ , / ,V V ifk k U k k U k= >µ 05,

where ki ,µ  is the probabilit y of the event: “ the i -th model is topical at time k ” , 
�

/Vk k  is the overall

(final) estimate of the ship velocity.

5. Performance Evaluation

5.1 Measures of performance

The performance of the three IMM algorithms is compared by Monte Carlo simulations. The mean

error (ME) and the root mean-square error (RMSE) of each state component have been chosen as

measures of performance (Bar-Shalom and Li, 1993). The ME and the RMSE of both estimated

coordinates have been respectively combined. Results from 100 independent runs, each one lasting

200 scans (600s, T =3 s) are given.

The simulation parameters of the true model (7)-(11) are standard (Voitkounski, 1985, Semerdjiev

et al., 1998): q21 = 0.331, r21 = -0.629, s21 = -0.104, h1 = 3.5,q31 = -4.64, r31 = 3.88, s31 = -1.019,

L=99m, δmin = 3o , δmax = 30
�
. The chosen initial conditions are: X0 = Y0 = 10000m, ψ 0 = 45

�
,

VU = 30m/s.
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 It is assumed that initiall y the ship moves rectili nearly. The true ship trajectory is presented in

Fig.1. The applied pulse-wise rudder angle control law is:

[ ]
[ ]δ

δ
=

∈
∉





max , ,

, ,

k

k

51 67

0 51 67
.

The control parameters of FS IMM and FS AIMM algorithms are fixed as follows:

[ ]Ω = −0, ,
'

U U , where U = 0.0066rad /m (which corresponds to a 360 o min  turn rate). The VS

AIMM uses the same control parameters at its initiali zation. For the VS AIMM algorithm it is
assumed that Ω i ,min .= 00011, Ω i ,max .= 00066 .

The three IMM algorithms use a constant ship length l=69 m. The EKF’s fudge factors are

also set constant for all IMM: φ = 1.03.

In the considered bellow example the measurement error covariance matrix is computed for

σ r = 100m and σ β = 0.3
	

. The initial error covariance matrices Pi ,0 , the initial mode probabilit y

vectors µ   and the transition probabilit y matrices Pr  are  chosen as follows:

{ }P P diagi
FSIMM

i
FS AIMM

X Y V, ,0 0
2 2 2 2= = σ σ σ σψ ,  { }P diagi

VS AIMM
X Y V,0
2 2 2 2 2= σ σ σ σ σψ ∆Ω ,

µ µ µFS IMM FS AIMM VS AIMM= = =

















095

0025

0025

.

.

.

, Pr = Pr

. . .

. .FSIMM FSAIMM =
















06 02 02

05 05 0

05 0 05. .

, PrVSAIMM =
















09 005 005

01 08 01

01 01 08

. . .

. . .

. . .

,

σ σ σX Y r= = , σψ = 0. 1
	

, σV = 10m, σ∆Ω = 0.01rad / m .

It is supposed that there is no system noise in the models, i.e. Q Qi
a

i≡ ≡ 0 . The Monte Carlo

simulation results are shown in Figs. 2-12.
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Fig. 1 The true ship trajectory                       Fig. 2 ME of both estimated coordinates, [m]
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Generally, the VS AIMM algorithm possesses the best accuracy, the lowest peak dynamic errors

and the shortest response time. These inferences are confirmed by the mean error (ME) and the root-

mean-square errors (RMSE) plots presented in Figs.2-4 and Figs.5-7. The average mode probabiliti es

are given in Figs.8-10. The ship moves at the beginning and at the end of the observed period

uniformly, in the middle it makes a right turn that is reflected in the mode probabiliti es. The VS

AIMM algorithm also provides the best and fastest model recognition. It is obvious from Figs. 11 and

12 that the above excellent VS AIMM algorithm performance is due to the self-adjustment

mechanism for appropriate and timely control parameter tuning.

The proposed here technique for multiple-model ship tracking with a variable set of models can

also be used in other applications.
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 6. Conclusions

New models adequately describing the non-linear dynamics of manoeuvring ship motion are derived

in the paper for the purposes of the manoeuvring ship tracking.  A new variable-structure augmented

IMM technique is also proposed. The designed ship models are implemented in a standard IMM and

in the proposed here two augmented IMM algorithm versions with fixed and variable model structure.

The proposed new AIMM algorithms use augmented state vectors and models to compensate the

difference between the control parameters fixed in the IMM models and their current true values.

Very good self-adjusting abiliti es are provided to the designed augmented  IMM algorithms due to the

estimated rate of turn. The accomplished extensive Monte Carlo simulation, shows that the VS AIMM

algorithm outperforms the FS AIMM and FS IMM algorithms with respect to estimation accuracy and

adaptabilit y.
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