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Abstract. In this paper we provide a detailed discussion and evaluation
of the theoretical and practical differences between static and dynamic
component models as the foundations of programming wireless sensor
nodes. As the static benchmark we examine the nesC component model
underpinning TinyOS; and as the dynamic benchmark we examine the
OpenCom component model underpinning the Lorien operating system.
Both models are well established in their respective domains and have at
least 2nd generation implementations available. We identify 4 key mech-
anisms required by the dynamic approach beyond those needed by the
static approach, and using the TelosB implementations of both models
we demonstrate the performance differences involved in the support of
each of these mechanisms. We conclude that while the static approach
has inevitably better performance, the overhead of the dynamic approach
is sufficiently low that it is a promising foundation in support of future
WSN research in dynamic and adaptive systems.

1 Introduction

Component-based programming provides a powerful programming abstraction
by enforcing interface-based interaction between system modules and thus avoid-
ing any hidden interaction via direct variable access or inheritance models. This
in turn offers the potential for truly black-box integration of system modules to
ease the composition and configurability of complex systems.

Both static and dynamic component models provide the developer with an
identical programming model. The static variant synthesises systems at compile-
time and ‘flattens’ the component model into a monolithic, static image for
deployment which no longer bears any component-model features. This carries
the benefit of whole-system compiler optimisation. The dynamic variant instead
maintains component separation and boundaries to carry the component model
over to runtime for synthesis. This carries the overhead of representing the com-
ponent model at runtime, and only permits per-component compiler optimisa-
tion, to the benefit of allowing later modifications to the system architecture in
a very lightweight, online manner.
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In light of rising recent research interest in dynamic and adaptive systems for
wireless sensor networks beyond the more classical static systems, we use this
opportunity to examine the theoretical and practical differences involved in the
two approaches. Notable indicators of this trend towards dynamic and adaptive
systems can presently be seen in two main domains of WSN research.

The first is protocol adaptivity research, in which a single protocol is de-
signed to be adaptive to its environment or other context. Examples are traffic-
or energy-tunable / self-tuning MAC protocols [1, 2], adaptive sampling rate
protocols to reduce unnecessary data [3], or even a general framework for man-
aging the parametric adaptation of multiple such protocols and services [4]. Some
adaptive protocols in this class additionally employ selective sub-component ac-
tivation and deactivation over time to model different protocol modalities, such
as a moving rendezvous point [5].

The second adaptivity research domain takes the next level up and explores
compositional adaptivity where the system selects at runtime from a pool of
available components depending on observed system state or context. This lat-
ter domain of adaptivity tends to emerge when stability in the collection of use-
ful service/protocol variants is reached, and is also evidenced in systems which
can execute a number of optional protocols or services depending on their cur-
rent requirements. Examples of research leveraging both kinds of compositional
adaptation are adaptive home monitoring applications with diverse services acti-
vated and modified according to context [6], periodic or context-based activation
of system maintenance protocols in large-scale outdoor deployments [7], and se-
lecting between different routing systems and radio interfaces based on perceived
environmental risk conditions [8].

While a static model sufficiently supports simple parameter-based protocol
adaptation or tuning, a dynamic model represents a good fit both for adaptive
protocols using different modalities by dynamically selecting sub-components,
and for both kinds of compositional adaptation. We believe that both research
topics are likely to continue to increase as the field matures and more gener-
alised infrastructural sensor networks pervade the environment, particularly in
large networks of heterogeneous cooperating objects which adapt and organise
towards their current task as the network’s roles and environmental conditions
evolve over time. In this paper we use the static and dynamic component model
variants to explore the implications of this in terms of general static vs dynamic
programming approaches.

As our static benchmark we use the nesC component model [9] which sup-
ports the TinyOS [10] WSN operating system, and as our dynamic counterpoint
we use the OpenCom component model [11] which supports the Lorien [12]
WSN OS. Both are mature models with at least 2nd generation implementa-
tions. Both models offer a near-identical programming model to the developer,
save that nesC is entirely static such that systems are composed from compo-
nents at compile-time after which system composition cannot change, whereas
OpenCom is entirely dynamic such that systems are composed from compo-
nents at run-time and can evolve the system composition arbitrarily thereafter.



Note that we do not here consider system update by means of downloading
alternative code; while both models have approaches to this, and it is an im-
portant aspect to expore in future, we focus here solely on the theoretical and
performance differences of the programming models in themselves to establish a
baseline comparison of the quiescent states of the static and dynamic models.

In the remainder of this paper we first in Section 2 present a theoretical
comparison of the two models, and in Section 3 we provide an evaluation of the
two models in practice based on the nesC and OpenCom implementations. In
Section 4 we discuss related work, and we conclude in Section 5.

2 Theoretical comparison

A component model [13] is defined in general terms as a programming paradigm
supporting distinct modules which have provided and required interfaces and
must interact solely through these. For a component to function correctly its
required interfaces must be connected to the type-compatible provided interfaces
of other components.

As both static and dynamic component models provide this same funda-
mental programming model to the developer, the differences between the two
are observable entirely in the mechanisms that the dynamic model adds to the
static model in support of runtime compositional dynamics. In other words, the
static component model is a strict subset of the dynamic component model in
terms of required support mechanisms.

We define in a generalised way the mechanisms needed by a dynamic com-
ponent model beyond those needed by a static model as follows, based on the
most common features of dynamic component models (e.g. [14, 15, 11]):

– M1: A runtime with meta-data describing the current system composition
– M2: A boot-time configuration mechanism
– M3: Per-component instantiation support
– M4: A mechanism supporting interchangeable component connections

We now discuss each of these in general terms, including different possible
implementations, and note the specific OpenCom implementation for WSNs as
used for evaluation purposes in the following section.

2.1 Runtime and meta-data

To support the representation of the system’s current architecture, and later
changes to that architecture, a meta-representation is required with a runtime
to maintain that representation and permit (safe) changes to it. This represen-
tation holds the component instances, the currently advertised provided and
required interfaces of those individual instances, and the current interconnec-
tions of those interfaces between component instances. In a static component
model this data is encoded statically in configuration scripts and is discarded



after compilation as it will never change. In a dynamic model this data is re-
tained at runtime to enable later modifications. The data can be encoded in
varying levels of detail depending on the provided meta-data API and system
configuration approach. The number of operations provided by the runtime is
implementation-specific, as is the amount of runtime validation and verification
provided to prevent dangerous operations.

OpenCom In terms of meta-data the implementation models the system archi-
tecture as the available component types in the system image; the instances of
those types; the provided/required interfaces of those instances; and the inter-
connections of those interfaces. All of this data is stored in RAM for fast access
and modification. The runtime implementation provides complete validation of
the correctness of operations to maintain system integrity, such as disallowing the
destruction of a component which still has incoming connections to its provided
interfaces.

2.2 Boot-time configuration

The system architecture of a dynamic component model is typically initialised
to an empty set, and the programmer must employ an approach to configure the
desired components and connections when the system boots. This may range
from fully automated system configuration approaches based on XML file parsing
to manual hard-coded configuration based on simple rules.

OpenCom This aspect of the implementation is by nature pluggable; for eval-
uation purposes here we employ a hard-coded configuration / reconfiguration
system based on simple rules.

2.3 Instantiation support

A useful feature of component models is the ability to employ multiple instances
of certain components connected in to different parts of the overall component
system to re-use common functionality. A simple example would be to connect
one instance of a data processing component to each sensory input component
to perform duplicate suppression. In a static component model instantiation
can be provided at compile-time but the cardinality post-compilation is fixed. A
dynamic component model permits components to be instantiated and destroyed
at runtime as desired, requiring each component to have a form of constructor
and destructor to initialise its instance-specific state.

OpenCom The implementation here employs a standard construct and destruct
method in which components register / destroy their initial provided/required
interfaces and any additional state required.



2.4 Interchangeable connection support

Finally, a dynamic component model naturally requires the ability to alter the
connections between components at runtime, for example when swapping one
component for another. In a static model inter-component connections are fixed
at compile-time and can therefore simply be direct-addressed.

OpenCom The implementation uses function pointers whose addresses are known
to the meta-data API; when a connection or disconnection is made these ad-
dresses are modified. When a component invokes an operation on one of its
required interfaces, this operation takes place via the function pointer to be
invoked on the currently-connected provided interface.

These four mechanisms represent everything that is required to implement dy-
namic system support beyond what is required in a static component model,
able to instantiate and destroy components at runtime and change the way that
they are interconnected.

3 Performance in practice

In this section we evaluate the real-world implementation of a static component
model and a dynamic one, presenting the results in terms of the four mechanisms
discussed in Section 2. Our evaluation is based on a system which performs
typical WSN functionality, involving independent tasks which: i) periodically
read a sensor value, ii) perform some processing on the data from this sensor,
and iii) send the results via the radio towards a remote sink. The evaluation is
performed on the TelosB [16] platform, a sensor platform comprising an 8MHz
MSP430 CPU, 48KB program memory (ROM) and 10KB RAM.

We implement the example system both under the static component model
of nesC in TinyOS (v2.1), which we refer to as S, and under the dynamic compo-
nent model of OpenCom in Lorien (v1.6), which we refer to as D. S is subject to
full-system optimisation as a monolithic program during synthesis/compilation,
and contains none of the dynamic model mechanisms of Section 2; D on the
other hand is subject only to per-component optimisation as components main-
tain their strong separation post-synthesis, and of course contains all of the
mechanisms of Section 2. The component graph for D is shown in Figure 1.

We note at this point that Lorien was not developed as a direct dynamic
translation of TinyOS, but rather was developed independently with its own
specific aims [12]. Nevertheless the two operating systems are similar enough that
evaluating them in the way we do here focuses to as large an extent as possible
only on their respective static and dynamic component model foundations and
the resulting differences in resource usage. Both are open-source projects and
our experimental setup is easy to replicate.



Fig. 1. Component graph (with connections simplified) of our evaluation system D

3.1 Program memory (ROM)

The complete system image for S takes 17616 bytes of program memory; while
the image for D takes 27434 bytes, an increase of 55%. Other than slight antici-
pated variances in component implementations, the additional program memory
in D is caused by mechanisms M1, M2 and M3 of the underlying dynamic com-
ponent model, shown in Table 1. Here we see 5.5KB of fixed-cost for mechanisms
M1 and M2; this cost is the same in the majority of Lorien systems and represents
31% of the ROM overhead over S. The other 24% comes from the system-specific
cost for D of 3KB of instantiation support (mechanism M3) in D’s components,
with an average cost of 350 bytes per component in D.

Element ROM overhead in D

M1 4KB
M2 1.5KB
M3 3KB

Table 1. Breakdown of ROM overheads of D

3.2 RAM

The total RAM usage in S is 912 bytes representing the component-specific state
(such as radio buffers etc) of all used components; by comparison D uses 2749
bytes in total for both component-specific state and dynamic component model
meta-data (M1), an increase of 200% in RAM. The breakdown of meta-data
costs is shown in Table 2, listing per-instance costs of each kind of meta-data –
from which general RAM overheads can be estimated for different systems – and



the totals specifically for D. 1842 bytes in total are used by D for component
meta-data in the dynamic component model, representing the dynamic model’s
overhead, with the remaining 907 bytes used for component-specific state. The
latter statistic’s slight difference to S is simply due to a different default memory
allocation strategy of Lorien’s components to those of TinyOS. We also note that
all of the RAM footprint of S is static memory, whereas that of D is generally
dynamic, shrinking and growing as needed. Note that a ‘receptacle’ in Table 2
is a required interface, and an ‘interface’ a provided interface.

Element Per-item generic cost Total generic cost in D (+ specialisations)

Component instance 44 bytes 396 bytes (+ 88 bytes)
Interface 20 bytes 460 bytes (+ 160 bytes)
Receptacle 24 bytes 432 bytes (N/A)
Connection 18 bytes 306 bytes (N/A)

Table 2. Dynamic model RAM overheads (M1)

3.3 CPU usage

In terms of processing cycles, the overhead of D is manifested in its boot-time
configuration program (M2), and in its use of indirection to support component
interconnection (M4).

In terms of system startup time, in comparison with S, D takes an additional
23ms to boot. This is a one-off cost and not very significant.

OpenCom’s indirect interconnection implementation uses simple function
pointers for inter-component calls. The overhead of such calls over a plain func-
tion call, as used in S, is 170ns (taken as an average over many calls in order to
be measurable). Given that most WSN operations (e.g. sensing, processing and
sending data) take on the order of milliseconds, we do not believe that this is a
significant overhead either.

3.4 Energy

The energy consumption of a sensor node is related to the time its compo-
nents are active; idle components can be put into a power efficient sleep state
to conserve energy. As already discussed, D uses function pointers to perform
inter-component calls which add an overhead of 170ns to each call compared to
a fixed monolithic system. Depending on how often inter-component calls are
performed within an application, a different total processing overhead will be
accumulated (where the total processing overhead is defined as the sum of all
inter-component call overheads over a given execution period).

To estimate typical overheads in terms of energy consumption in our evalu-
ation system, we stimulate both S and D with external events according to a



realistic usage scenario. We assume a sensor network that forms a binary tree
topology, and that sensor nodes perform a sensing event every 4sec. We further
assume that the sensing component requires 1ms to acquire data, the application
component requires 5ms to process data, and the network components require
1ms to forward the data towards the remote sink. These values represent typi-
cal processing durations as observed in real deployments [17]. Depending on the
number of hops h a node is away from the sink, and the depth (H) of the binary
tree, a node must perform not only its sensing operation but also forwarding
of data from its child nodes. For evaluation we measure the total processing
overhead in dependence of n = H − h.

A sample of the results are shown in Table 3, demonstrating an energy pro-
file difference of 0.49% on average between D and S over a 180sec sampling
period. S generally outperforms D, though not always; our results rather show
that function pointer overhead of D is not the dominant source of performance
difference between the two approaches, and that the actual implementations of
elements like the network stack have a far higher impact on performance.

Node position n Idle Time (D) Idle Time (S) Difference of D

2 98.75 99.37 (+)0.62%
3 98.50 99.03 (+)0.53%
4 98.30 98.76 (+)0.46%
5 97.37 97.11 (−)0.26%
6 95.19 94.59 (−)0.59%
Table 3. Total processing overheads (M2 + M4)

3.5 Summary

In this section we have examined the quantitative performance differences be-
tween two mature static and dynamic component models. While we have exam-
ined only one specific system we have also where possible provided generalised
figures from which much of the overall performance picture can be estimated for
other systems which have different numbers of components and interconnections
in the dynamic model.

From our specific example, the resource overhead of the dynamic model is
1837 bytes extra RAM of the 10KB available on the TelosB platform used for
evaluation, an increase of 200% over S; 10KB extra ROM of the 48KB available,
an increase of 55% over S (of which 31% is a one-time fixed cost); and an
average difference of 0.49% in energy usage, where the top performer between
D and S actually varies demonstrating that in this case implementation is more
important than the system-building technology. We believe that overall these
statistics represent a good case for the gain in system flexibility towards adaptive
and dynamic systems offered by a dynamic component model.



4 Related work

While we are not aware of any other work on direct static-dynamic component
model comparisons as the foundations of WSN systems, there are number of
operating system and middleware endeavours based on dynamic system support
both in and beyond the WSN field.

SOS [18] and LiteOS [19] propose a static kernel atop which dynamically
loaded modules can be downloaded. While neither support a component model
as defined here, and do not therefore provide the same kind of comparison, the
results reported in terms of energy overhead caused by indirect addressing of
inter-module access are similar to ours.

Dynamic or semi-dynamic component models have also been proposed to
operate on top of otherwise static operating systems as a middleware layer [20,
21]; again they lack the baseline comparison with a static model we provide here,
and additionally do not provide the full-system comparison we have explored
where the respective component models permeate the entire system rather than
just a part of it. Again however results relating to additional energy consumption
caused by the use of a dynamic model are comparable to our findings.

Finally, notable efforts outside the WSN field include THINK [22] and Peb-
ble [23]; both employ dynamic component models in support of workstation-
class operating systems. While positive results are again reported, the focus
on higher-resourced platforms makes them difficult to compare specifically on
WSN-class systems, and specific static-dynamic component model comparisons
are not made.

5 Conclusion

In this paper we have presented a detailed discussion and evaluation of the theo-
retical and practical differences between static and dynamic component models
as the foundations of programming wireless sensor nodes.

We have defined a set of 4 necessary supporting mechanisms to enable dy-
namic component models over and above what is needed to support static
component models, and we have evaluated a nesC-based static system and an
OpenCom-based dynamic system on common WSN hardware, finding that the
resource overheads of this support are modest.

With increasing interest in dynamic and adaptive systems research in the
WSN community, and particularly compositional dynamics and adaptation, we
believe that our findings point to a useful and practical enabling technology in
support of this research into the future – notably in more generalised, infrastruc-
tural networks of cooperating objects which adapt to new roles and conditions
over time, but also broadly in any networks of cooperating devices which need
to adapt as the fabric of the network or its functionality spectrum evolves.

The support of such systems with software that is fundamentally dynamic
throughout, with the strong component separation and architectural safety guar-
antees of a dynamic component model, is entirely feasible on current-generation
hardware across all domains of resource consumption.
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