
Poster Abstract: DHB-KEY - A Diffie-Hellman Key
Distribution Protocol for Wireless Sensor Networks

Tony Chung and Utz Roedig
Email: {{a.chung|u.roedig}@lancaster.ac.uk}

Infolab21, Lancaster University, UK

Abstract—Many sensor network applications require secure
communication between sensor nodes and the sink. This paper
presents a key distribution scheme based on the well known
Elliptic Curve Diffie-Hellman key exchange mechanism. The
DHB-KEY scheme is performed in two stages. The first stage
is carried out in a secure environment before network de-
ployment. The second stage is carried out periodically using a
single broadcast message. Each node arrives at a unique key
it shares with the sink. This paper presents a first evaluation
and a prototype implementation of the protocol. We have found
that the presented key distribution approach uses energy and
communication resources efficiently and has a low deployment
complexity.

I. INTRODUCTION AND MOTIVATION

Some sensor network applications require secure communi-
cation. In most cases it is sufficient to secure the end-to-end
data transport between the sensor nodes and the sink used for
data analysis. In particular, the sink must be able to verify
that the received data was generated by a specific node and
not modified in transit; in rare cases, data confidentiality is
required as well. To implement the necessary cryptographic
methods, keys have to be negotiated between the sink and
each node in the network.

A unique key should be used for each node to facilitate
a simple key revocation mechanism in case that a node is
deemed to have become untrustworthy. The use of symmet-
ric keys is desirable as symmetric cryptographic algorithms
require little computational effort on the resource constrained
sensor nodes. To avoid cryptanalysis, it is desirable to refresh
keys regularly. The key distribution should require as few
messages as possible as i) network capacity should be available
for the actual application task, and ii) communication is
expensive in terms of energy.

Existing key distribution mechanisms proposed for wireless
sensor networks do not match the outlined requirements.
Often keys are negotiated such that all nodes can securely
communicate with all other nodes in the network (e.g. [7]).
We believe that for many scenarios this is not required and
introduces unnecessary complexity. Other solutions require the
exchange of many messages between the sink and each node to
negotiate keys [6]. Thus, a large portion of available resources
in the network have to be spent on key distribution rather than
application related tasks.

To overcome this, we have implemented DHB-KEY (first
presented in [1]), a key distribution mechanism for wireless
sensor networks based on Elliptic Curve Diffie-Hellman. The

first part of DHB-KEY is conducted before network deploy-
ment. The second part is initiated periodically by the sink
using a broadcast message. As the first part is executed in a
secure environment, the man in the middle problem common
to Diffie-Hellman scenarios is avoided. The use of a broadcast
message to complete the second part allows us to minimize the
communication overhead required to perform a key exchange.

II. KEY EXCHANGE MECHANISM

Diffie-Hellman [2] is a well established method to agree a
secret k between two parties, A and B, without transmitting
the secret k over the insecure communication channel itself.
The Elliptic Curve (EC) variation of DH provides similar
security with significantly shorter keys. Thus, the key material
that has to be exchanged is reduced, which is of importance
in resource constrained wireless sensor networks.

Within ECDH [3], a key between A and B is established
as follows. A and B agree a curve base G. A generates secret
number a and the corresponding public point P = Ga. B
generates secret number b and the public point Q = Gb. P
and Q are exchanged over the insecure channel. A and B can
now calculate the shared secret as k = aQ = bP = aGb. A
possible attacker only has access to P and Q (and possibly
G) which is not sufficient information to feasibly calculate k.
However, an attacker might be able to intercept and modify
all messages and negotiate a secret ka with A and kb with B.
The standard DH is prone to such man-in-the middle attacks.

The basic idea of the DHB-KEY protocol is to use the
previously described ECDH in the following way:
Phase 1 (Before Deployment)

1) All nodes are configured with the same EC parameters
(including G).

2) an and Pn = Gan are calculated for all n nodes.
3) an is stored on each corresponding node and all Pn are

stored on the sink.
Phase 2 (After Deployment)

1) Regularly, the sink creates a new secret number b and
public point Q = Gb.

2) The public point Q is then broadcast to all nodes.
3) Each node and the sink generate new keys kn = anQ =

bPn.

III. PROTOTYPE IMPLEMENTATION

We implemented the previously outlined protocol as a
TinyOS 2.x component which forms a layer between the ap-



plication and network layer. Outgoing messages are protected
with a message authentication code (MAC), which is added
to the message within an additional header. The component
accepts incoming key update messages and generates a new
key as described in Section II. Our component provides
AMSend and Packet interfaces and thus can be integrated
easily in an existing application infrastructure.

Messages and Message Formats: The ECDH component
adds security related header fields to a message. A one byte
type field is used to distinguish control and data messages.
When sending data, an n byte long MAC is computed and
appended to a message (this is currently set to 4). When
receiving, the sink’s ECDH component verifies the MAC
before passing the data to the application. Thus, the additional
security features reduce the available payload by n+1 bytes.

The TinyOS default packet size forced us to use two
broadcast messages to transmit the necessary 42 byte key
material to nodes. A change of the default packet size would
allow us to use a single broadcast message for key distribution.
However, to avoid changes to the default TinyOS settings this
possibility was not explored.

Cryptographic Functions: To implement ECDH on nodes,
we have used parts of an existing elliptic curve application
EccM [3], using its functionality to compute the shared secret.
The sink is implemented in Java using the provided TinyOS
Java interfaces and we use the BouncyCastle API [4] to
implement elliptic curve cryptography functions on the sink.

Example Application Scenario: We evaluate the DHB-KEY
protocol within a physical intrusion detection system. Nodes
are equipped with sensors such as movement detectors and
door/window contacts. Nodes forward messages through a tree
structured network towards a sink. A very low network traffic
will be observed most of the time. The sink has to be able
to verify the authenticity and integrity of the message. An
attacker is able to inject false messages into the network, but
the sink can detect these and raise an intrusion alarm.

In this setting we use a sink initiated broadcast message
once a day to refresh keys used on the nodes. Given the low
traffic volume, the key refresh rate is deemed to be sufficient
to prevent cryptanalysis.

IV. ANALYSIS AND EVALUATION

Comparative evaluation: The proposed DHB-KEY method
can be compared to a simple and straight forward mechanism
(DIRECT method) in which individual key material is sent
directly from the sink to each node.

Assume a tree network structure with N nodes. A node n1

directly beneath the sink has to forward messages for N − 1
nodes in a worst-case scenario. We now compare the situation
of node n1with each method, based on our motes: the MoteIV
Tmote Sky with MSP430 MCU (1.9mA measured when busy)
and CC2420 radio (~19 mA measured when active).

If a radio duty cycle method is used to preserve power,
receiving messages requires no additional power, but trans-
mission has to be extended to avoid the need to synchronise
clocks. With a duty cycle of 1%, an epoch length of 100ms

and a message size of 41 bytes, the radio needs to send for
an average of a full epoch (100ms) to forward each message.

Using the DIRECT method, the node n1 has to forward
N − 1 key update messages from the sink. Thus, it will be
active for (N −1) ·100ms to forward the key update material.

Using the DHB-KEY method, the node n1 needs to forward
only one broadcast message (respectively two messages in
our prototype implementation). However, after the broadcast
message arrives, n1 must perform the DH calculation to obtain
the secret. This calculation takes about 60s in our prototype.

Communication effort can be traded for calculation effort.
The fixed cost of the calculation means that there is an N
where the calculation cost is less than the cost of forwarding
N − 1 messages. The exact point where DHB-KEY becomes
beneficial depends on network implementation specifics such
as the medium access control protocol and the duty cycle.

Each message costs 1.9 mAs (milliamp/second) to send.
A single key calculation costs 114 mAs. The calculation is
thus equivallent to 60 messages. In this example, the DHB-
KEY method is beneficial in networks with N > 60. Such
a network will achieve a longer lifetime as n1 will ensure
network connectivity for a longer time period.

DHB-KEY has additional benefits. The distribution of the
broadcasts can be faster than distributing key material to all
nodes individually. Thus, a key change can avoid clogging the
network, keeping it available for application-related network
traffic. A sensor network is also often optimized to transport
bulk data from the nodes towards the sink, not to transport
large amounts of data from the sink to the nodes. DHB-
KEY thus fits the communication patterns of a sink-tree sensor
network better.

V. CONCLUSION AND FUTURE WORK

The proposed DHB-KEY scheme has the benefit that unique
keys can be set for all nodes in the network by sending just a
broadcast message. The scheme can offer a number of other
benefits such as bandwidth availability, management and en-
ergy consumption. Our future work involves completion of the
implementation to record more performance data, enhancing
the performance of the key calculation, recovery mechanisms
for broadcast failures and further security analysis.

REFERENCES

[1] Poster: Efficient Key Establishment for Wireless Sensor Networks Using
Elliptic Curve Diffie-Hellman. Tony Chung and Utz Roedig. 2007.

[2] New Directions in Cryptography. Whitfield Diffie, Martin E. Hellman.
1976.

[3] A Public Key Infrastructure for Key Distribution in TinyOS Based on
Elliptic Curve Cryptography. Malan, Welsh, Smith.

[4] BouncyCastle API. http://www.bouncycastle.org/
[5] TinySec: A Link Layer Security Architecture for Wireless Sensor Net-

works. Karlof, Sastry, Wagner. 2004.
[6] A New Approach for Establishing Pairwise Keys for Securing Wireless

Sensor Networks. Wacker, Knoll, Heiber and Rothermel. 2005.
[7] Design, Analysis and Performance Evaluation of Group Key Estab-

lishment in Wireless Sensor Networks. Chatzigiannakis, Konstantinou,
Liagkou, Spirakis. 2007.


