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Abstract There is an increasing tendency in sensor 

networks (and related networked embedded systems) to 

push more complexity and ‘intelligence’ into end-nodes. 

This in turn leads to a growing need to support isolation 

between the software modules in a node. In conventional 

systems, isolation is achieved using standard memory 

management hardware; but this is not a cost-effective or 

energy-efficient solution for small, cheap embedded nodes. 

We therefore propose a software-based solution that 

promises isolation in a significantly lighter-weight manner 

than existing software-based mechanisms. This is achieved 

by frontloading effort into offline compilation phases and 

leaving only a small amount of work to be done at load 

time and run time.  

1. Introduction 

As sensor networks (and related networked embedded 

systems) evolve and grow in prominence there is an 

increasing tendency to push more complexity and 

‘intelligence’ into end-nodes. There are three main reasons 

for this. First, it enables more interesting applications that 

are not possible with simple data aggregation [15]. 

Second, sensor network architects are increasingly 

designing around the trade-off between processing and 

communication overheads (i.e. moving computation closer 

to data on the grounds that the energy cost of sending a 

byte over the radio is equivalent to thousands of processor 

cycles). Third, many sensor networks have inherently long 

deployment lifetimes, and this implies a need to 

restructure/update node software on an ongoing basis, and 

also to accommodate mutually-distrustful modules from 

multiple sources.  

As a consequence of the above trends, it is increasingly 

necessary to be able to preserve inter-module isolation on 

nodes in the face of faulty and untrustworthy code. 

Otherwise, for example, a faulty module could easily 

corrupt another module, or execute some functionality to 

which it had no right (e.g. reconfigure an I/O device). In 

traditional architectures such errors are prevented through 

hardware support for virtual memory and supervisor/ user 

modes: each module owns a private address space, and the 

hardware ensures that modules interact with the rest of the 

system in a controlled manner (e.g. through a system call 

interface). However, such hardware support is non-existent 

on many popular MCUs [7,16] in use in sensor networks. 

Furthermore, this situation seems unlikely to change in the 

foreseeable future due to the complexity and cost (in terms 

of both energy use and chip size) that these hardware 

mechanisms would introduce.  

In the past, researchers have developed a number of 

software-only solutions for inter-module isolation (e.g. 

[1,2,3]). These designs are superficially suitable for our 

purpose, but the fact that they have been designed with a 

completely different motivation in mind (i.e. to minimise 

the overhead of inter-module calls in traditional 

architectures) means that they have significant drawbacks 

when applied to our problem space. As discussed in detail 

in Section 4, these drawbacks include large binaries and 

high processing overheads that are not feasible on tiny 

embedded nodes. More recent examples of isolation-

related work specifically targeted at the sensor node 

domain are t-kernel [5], which takes its cue from [2]; and 

Maté [4], which is an application specific virtual machine. 

But again, as discussed in Section 4, these systems have 

significant drawbacks—e.g. t-kernel suffers from large 

code size, Maté suffers from programming language 

specificity, and both suffer from high run-time overhead. 

We therefore propose in this paper a software-only 

solution to the module isolation problem that attempts to 

overcome the problems of earlier work. In particular, our 

solution attempts to minimise memory and execution 

overheads at the sensor node by exploiting cheap CPU 

cycles at the pre-deployment stage while retaining a 

lightweight enforcement capability at the end-nodes. Our 

approach is also is programming language- and largely 

architecture-independent.  

The remainder of this paper is structured as follows. 

Section 2 describes our design, and Section 3 considers the 

costs and other implications of our design. Finally, Section 

4 compares our approach with related work and Section 5 

offers our conclusions. 

2. Design  

2.1 Assumptions and Constraints  

We assume that our target processors are RISC based 

MCUs with memory capacities in the order of kilobytes. 

We assume a generic RISC instruction set with a load-

store architecture and support for standard addressing 

modes (i.e. immediate, direct, indirect and indexed). In 

terms of constraints our design forbids self-extending or 

self-modifying code and imposes a fixed-size block-based 

memory management scheme. These constraints, which 

are motivated by the need for efficient isolation, should 

have little or no effect on most applications. 

2.2 Overall Architecture 

Our design employs the following four phase architecture:  

1. Compilation. Modules written in a high-level 

language are compiled to a virtual instruction set, 

which is close to a generic RISC instruction set 

architecture (ISA) but augmented with special  

‘emulated’ instructions for memory management and 

calling across protection domains.  

2. Transformation. VIS code is transformed offline to 

the target CPU’s native instruction set, except for the 



 2 

‘emulated’ instructions. This process also produces a 

per-module ‘register partitioning policy’ (see below) 

which is shipped to the end-nodes along with the 

native code.  

3. Verification. A lightweight online verifier on the end-

node ensures that the code is ‘safe’ before allowing 

execution.  

4. Execution. Execution is dispatched to a small runtime 

environment when one of the emulated instructions is 

encountered. 

The key advantage of our design is that the verification 

and execution processes are simple enough to be practical 

for tiny embedded nodes; the more complicated processes 

are carried out at the pre-deployment stage. Furthermore, 

the Trusted Computing Base (TCB) is small and 

manageable as it comprises only the online verifier and the 

small runtime environment.  

The main concepts employed in our design are as follows. 

The scope of protection is called a domain, and each 

domain can hold a number of program modules and their 

associated data (including stacks). Both modules and their 

data are held in fixed-size blocks of memory. The virtual 

instruction set (VIS) provides instructions to create and 

destroy blocks and also to perform cross module and cross 

domain calls. When a block is created, the calling program 

receives a handle to the block. Memory within a block is 

then accessed either by specifying an indexed offset to the 

handle (i.e. indexed addressing) or through a non-

forgeable pointer that is derived from the handle (i.e. 

indirect addressing). The transformation phase derives a 

register partitioning policy which maps handles and 

pointers to designated registers on which only subset of 

addressing modes are allowed.  

Given the above concepts, the module isolation problem 

can be expressed as follows: 

1. Within a domain, we constrain loads/stores to be 

from/to blocks owned by that domain. 

2. Within a domain constrain, we control transfers to be 

to routines within that domain.  

3. Where cross-domain calls are involved, we constrain 

control transfer so that calls may enter routines only at 

their ‘official’ entry point
1
. This also applies to calls 

to the runtime environment. 

Next, we elaborate on VIS and each of the four phases. 

2.3 The Virtual Instruction Set  

The VIS is intended as a generic low-level intermediate 

language to which a range of high-level languages can be 

mapped. The bulk of the instruction set is close to a 

‘generic’ RISC ISA with the exception that an ‘infinite’ 

register set is available (this is motivated by our register 

partitioning approach described in Section 2.5) and that 

only the following addressing modes are used: immediate, 

direct (used mainly with control transfer instructions and 

                                                 
1
 Which functions a domain has access to is a matter of link-time access control 

and not is considered further in this paper.  

occasionally for memory mapped I/O), indirect (used with 

our special pointers) and indexed (used with handles).  

VIS’s ‘emulated’ instructions are as follows
2
: 

crtb reg  create a new data block and return 

a handle to it in reg 

crtp reg, offset  given a handle in reg and a numeric 

offset, create a new data pointer  

dsrt reg  destroy the data block whose handle 

is in reg  

ptoh src_r, dst_r    cast a pointer in src_r to its parent 

handle and place the latter in dst_r  

salloc reg s 

   

allocate a stack frame of size s and 

place a pointer to it in reg 

call target  

 

do an intra- or inter-domain call to 

the given target address         

ret return from function   

The crtb instruction creates a new block and returns a 

handle to it. As mentioned, handles are used for indexed 

addressing. Thus, given a handle H, the expression X(H) 

would form an address within the block referred to by H. 

Index X could range from 0 to the maximum block size. 

Given a handle, crtp can then be used to create a pointer to 

the block. This is simply a matter of performing a logical 

AND between the handle and the offset. This results in a 

pointer in which the high n bits refer to a block and the 

low m bits refer to an offset within the block. Pointers are 

used for indirect addressing and are safe in the sense that 

they cannot be made to point outside of their block. This is 

prevented by limiting the manipulation of pointers to the 

block offset bits. For example, in a deployment with 256 

byte blocks, only the last m=8 bits of the pointer can be 

manipulated. Within these limits, which are enforced by 

mechanisms to be described in Section 2.5, arbitrary 

arithmetic/logic operations can be applied to pointers. 

Each of the above instructions has the effect of placing the 

result (i.e. a handle or a pointer) in the specified virtual 

register. A pointer can be cast back to a handle using ptoh, 

and a block can be destroyed using dsrt. As well as 

handles and pointers to data, handles and pointers to code 

are also supported, as are handles to stack frames as 

discussed next. Stack frames are allocated using salloc 

which has the effect of placing a frame handle in the 

specified virtual register (which will later be mapped to 

the physical stack pointer register). Frame handles are 

similar to any other handle except that the indices have to 

be within the allocated frame (multiple stack frames within 

a block are supported). 

Finally, the call and ret instructions support both intra and 

inter domain calls. Other control transfers can be handled 

using native instructions. For example, direct jumps 

(where the target address is given in the instruction) or 

branches are allowed where they are within a module.  

2.4 Phase 1: Compilation  

Apart from its block based memory management, VIS in 

many respects similar to a modern compiler intermediate 

                                                 
2 There are also instructions to create and destroy domains and to initialise 

domains with code blocks. However, these instructions are used only by the 

system loader/linker and are not considered further in this paper. 
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language [8] (i.e. with an infinite register file and generic 

RISC instruction set).  

Although blocks are explicit at the VIS level, they are not 

necessarily visible to the programmer. For example, 

different compilers could choose to make the blocks 

explicit to the programmer [9,10] or to automatically infer 

allocation [11]). Furthermore, since stack management is 

handled by the runtime most block allocation is 

transparent to the compiler. However language libraries 

for dynamic memory management can easily be adopted 

on top of the block based scheme. 

2.5 Phase 2: Transformation  

The transformation phase is responsible for translating 

VIS to a specific target RISC ISA. Its other main job is to 

map handles and pointers to dedicated physical registers 

according to the afore-mentioned register partitioning 

policy. This is defined as a partition of the available 

physical registers into 4 categories
3
: i) data handles, ii) 

code handles, iii) pointers, and iv) general purpose.  

A specific partitioning policy is selected for each module, 

the goal being to minimise register ‘spills’ in the context 

of the behaviour of the associated module
4
. For example, if 

a given module does not perform any dynamic memory 

allocation there is no need to dedicate any data handle 

registers. 

The determination of partitioning policies is done through 

offline code analysis (inter/intra procedural). There are 

various tradeoffs to consider. For example, we want to 

minimise handle/pointer spills because they are costly in 

terms of processing cycles (as the runtime is involved in 

loading these). This suggests a partitioning policy that 

allocates many registers to handles/pointers. But if this is 

done, the number of general purpose registers is reduced, 

and spills from these are costly in terms of both memory 

usage (i.e. additional stack space) and code size (i.e. 

additional loads and stores).  

Once a suitable partitioning policy is determined, register 

allocation and code generation can be performed. 

Depending on the target ISA, most VIS instructions 

translate one-to-one to the target ISA, except for the 

special ‘emulated’ instructions discussed in Section 2.3 

which are handled by the runtime environment. Calls to 

the runtime environment are realised as direct mode native 

calls to predefined entry points (see Section 2.7). Pointer 

manipulation instructions are mapped to native 

instructions that manipulate only the low m bytes of the 

pointer (see Section 2.2). In cases where m=8 (and 

therefore the block size in 256), this is easily achieved by 

using the target ISA’s byte instructions
5
. VIS’s call/ret 

instructions involve calling the runtime environment 

because a switch between code with different register 

partitioning policies requires initialisation (see Section 3). 

                                                 
3 Because of this, the register partitioning policy can be represented very 

economically: e.g. for 16 registers, 1 byte is sufficient. 
4 It is also possible to consider finer-grained register allocation policies such as 

per-function. 
5 In other cases, instructions that employ pointers would need to employ additional 

emulated instructions. We have so far only considered the case of m=8 and byte 

instructions. 

Finally, the code is statically partitioned into blocks 

(normally the same size as data blocks). To deal with 

possibly non-contiguous code blocks, direct branches 

within a module are converted to index mode branches 

through code handles. 

Thus, following the transformation phase, each module 

consists of number of code blocks and their associated 

register partitioning policy or policies.  

2.6 Phase 3: Verification  

When new code modules arrive at a node, static 

verification is performed on them before they are loaded 

for execution.  

Direct jumps/loads/stores are easy to check as the 

addresses are literals embedded in the instruction. So it is 

only necessary to check that the target address is within 

the relevant block (or, e.g., within a permitted memory 

mapped I/O vector).  

Indexed and indirect mode loads/stores/branches are 

verified using the attached register partitioning policy. 

There are two aspects to this. First, the verifier ensures that 

the dedicated registers are used correctly; for example, that 

arbitrary data is not loaded into handle or pointer registers, 

or that there are no memory accesses or branches through 

general purpose registers. Second, the verifier examines all 

instances of indirect and indexed addressing modes. 

Indirect mode instances are verified by first making sure 

that only the low m bits of pointers (i.e. those bits referring 

to offsets within a block) are ever modified by application 

code (e.g. by byte instructions in the case of 256 byte 

blocks; see Section 2.5). Since initialising a pointer is 

handled by the runtime (i.e. the high bits point at the block 

from whose handle the pointer was derived), the pointer 

will always point within the designated block. Code and 

data pointers are treated differently: no branches are 

allowed using data pointers, and no stores are allowed 

using function pointers (to disallow self 

modifying/extending code).  

Indexed mode loads and stores are verified by checking 

that indexing is carried out through a dedicated handle 

register, and that all the indices (which are by definition 

embedded in instructions) are within the fixed block size. 

As the runtime environment guarantees that a loaded 

handle is necessarily correct, all indexing operations will 

therefore necessarily be within the block. Similarly, 

indexed operations through a frame handle are verified to 

be within the allocated frame (cf. the s argument to salloc).  

Branches/calls within a module are not problematic as the 

register allocation policy is the same throughout a module. 

However, when control is transferred between two 

modules with different partitioning policies, then the 

dedicated registers need to be reset to ensure correct 

isolation. There are two cases. If the two modules are 

within the same domain, only registers whose usage 

changes from general purpose to dedicated need to be 

reset. Otherwise, for cross-domain calls all dedicated 

registers need to be reset (this is done by the runtime 

environment within the emulated call instruction).  
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Note finally that the integrity of the system does not rely 

on the correctness of the partitioning policy: if accidental 

or malicious manipulation of a policy makes it inconsistent 

with the associated code, the latter will simply be rejected 

(or if the manipulated policy is still consistent with the 

code then execution will anyway be confined to the 

respective domain). Therefore, we do not rely on 

cryptographic primitives to ensure code integrity.  

2.7 Phase 4: Execution  

The task of the runtime environment is to execute the 

emulated instructions specified in Section 2.3. It also 

implements the following additional routines to deal with 

handle and pointer register spills (calls to these are 

inserted by the transformation phase using native call 

instructions): 

loadh reg_id, handle_id  load a handle 

loadp reg_id, pointer_id   load a pointer  

storep reg_id, pointer_id  store a pointer  

The loading of a handle/pointer involves searching for the 

id in a list maintained by the runtime environment, and 

then loading the handle/pointer into the specified register.  

The runtime also handles stack management through 

salloc. Stacks reside in—possibly non-contagious—

block(s), and if a stack frame cannot fit within an existing 

block allocated for the stack, it will be allocated in a new 

block. The emulated ret instruction resets the frame 

handle.  

There is a key issue around the calling of these runtime 

environment routines. In particular, it is necessary to 

ensure that the verifier can validate critical arguments 

passed to these routines (in particular, it is crucial to 

validate the reg_id argument to the above functions and 

the target argument to call). However, if we were to 

simply pass the arguments on the stack, there would be 

nothing to prevent code elsewhere from pushing some 

malicious arguments onto the stack and then jumping to a 

runtime environment entry point. The verifier could not 

detect such a loophole. To prevent this we must explicitly 

associate each call with its associated argument in such a 

way that the binding between the two can be verified 

statically. To achieve this, the transformation phase 

embeds the arguments in the word(s) immediately 

following the call instruction (this is feasible because the 

critical arguments are known at compile time. Since the 

native ‘call’ instruction is assumed to automatically push 

the PC on the stack, the runtime routine can then reliably 

access the arguments to which the PC is pointing (and then 

increment the PC to the next instruction within the 

routine). This, together with the fact that code is not re-

writable, forms a reliable basis on which the verifier can 

treat the call and its arguments as one indivisible unit. 

The above-described mechanisms, together with the action 

of the verifier, are sufficient to secure the required 

isolation semantics as set out at the end of Section 2.2. 

3. Design implications and costs 

Our design is currently under implementation and is not 

yet sufficiently mature for a comprehensive performance 

evaluation. In the meantime, we briefly analyse the 

overhead implications of the design. We focus on runtime 

overheads and ignore the offline costs of compilation and 

transformation: these latter rely on well understood 

compilation principles and are anyway not time critical. 

Runtime overheads comprise verifier and execution 

environment overheads. Verifier overheads are limited to 

making a single pass over the code, carrying out pattern 

matching to detect relevant instructions (i.e. those 

involving direct, indirect and indexed addressing) and 

checking them against the register allocation policy as 

described in Section 2.6. This involves a small and fixed 

per-instruction overhead which is well within the 

capabilities of an embedded node. 

In terms of execution overheads, the main factors are the 

cost of VIS instruction emulation and the effects of the 

register partitioning policy (in terms of spillage). The 

emulated instructions with the highest overheads are load, 

crtp and call. The former two instructions save two 

registers, locate handle_id in a list, and determine reg_id 

from the code block. Crtp additionally involves a logical 

AND of index and handle_id. The cost of these steps on an 

MSP430 MCU is corresponds to ~20 instructions 

assuming a list of 5 handles. The overhead for call 

involves inspecting the stack pointer to ensure that there is 

enough room for another call before current call returns. In 

addition, all cross-module calls need to zero the handle 

and pointer registers to ensure isolation. Again, these 

operations involve only modest overhead. 

The effects of the register partitioning policy are less easy 

to quantify as they are heavily dependent on peculiarities 

of a particular piece of code. The selection and evaluation 

of an optimal register algorithm remains an area for future 

work. 

There are a number of other smaller sources of overhead: 

in particular, there is a degree of memory wastage due to 

internal fragmentation caused by the use of fixed-sized 

blocks and there will be a small increase in executable size 

due to dealing with dedicated register spillage. Note, 

however, that this memory overhead is likely to be tiny in 

comparison to other systems (see Section 4). 

Finally, as most VIS instructions map directly to native 

equivalents, most code executes natively without any 

execution overhead whatsoever. Memory access incurs no 

additional cost as all the verification has been carried out 

prior to execution, and native instructions/ addressing 

modes are used.  

4. Related work 

As mentioned in the introduction, enforcing module 

boundaries in a single address space has been extensively 

studied in traditional architectures. For example, Software 

Fault Isolation [2] achieves isolation by binary code 

rewriting: first the code is statically checked to ensure that 

all direct jumps are within the monolithic code segment 

assigned to the module; then dynamic checks are inserted 

into the code at each indirect jump and store to ensure that 

these are also ‘safe’. Unfortunately, in sensor nodes with 

little memory, allocating continuous regions for each 
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module is not practical. Also, fully-general reliable binary 

rewriting is a complex task that is not practical on tiny 

embedded nodes. Furthermore, facilitating offline-

rewriting would require an underlying cryptographic 

infrastructure (i.e. to enable the embedded node to verify 

the integrity of the rewritten code). This would carry 

undesirable overhead for embedded systems environments. 

Actually, our design can be considered as a generalised 

form of SFI. However there are 4 major differences: i) no 

binary rewriting at the target node is necessary 

(conceptually, this is moved to the transformation phase); 

ii) our scheme allows multiple blocks of code and data in 

each domain (allocating single monolithic areas is 

infeasible on small embedded nodes); iii) because of the 

use of fixed sized blocks we eliminate most of the 

dynamic checks required in a SFI system; and iv) our use 

of dedicated registers is different: while the classic SFI 

scheme requires 3 dedicated registers (segment start, 

length (shift), formed address) for forming an address 

within a block, we need only a single register, the one that 

actually contains the formed address. This reduced register 

overhead is particularly important for MCUs with small 

register files.  

T-kernel [5] is a good example of other work on adapting 

the SFI approach to the sensor network domain. However, 

t-kernel introduces large code size overheads (on average a 

factor of 8) due to the extensive rewriting employed. Also, 

t-kernel incurs high runtime overhead—for example, heap 

access can take 180,857 cycles. Execution cost in our 

scheme is minimal because memory accesses are mapped 

to native instructions, and handle loads/pointer-

initialisations cost only around 20 instructions. 

Proof Carrying Code [3] achieves isolation by requiring 

the construction of a ‘proof’ which verifies the software’s 

compliance with the target host’s ‘safety policy’. This 

approach is superficially attractive for the sensor node 

context as the complex task of proof-generation is done 

offline, and the node performs only a ‘simple’ validation. 

Unfortunately, proofs tend to be much larger than the code 

itself (up to 8 times the code size [3]), and validating the 

proof, written using the Edinburgh Logic Framework (LF), 

is again a task that is beyond tiny embedded nodes.  

SPIN [1] approaches the issue of isolation by leveraging 

high-level language semantics. However, there is an 

explosion of different languages and programming 

paradigms in use in the network embedded systems field 

(e.g. declarative, agent-based [13], global-programming 

[12]) and mandating a single type-safe language such as 

Modula, or even small set of such languages is therefore 

infeasible or at least undesirable. Also, code for embedded 

devices is often written in type-unsafe languages such as 

C, and hand-tuned assembler code is still common in the 

field. Furthermore, the same requirement for a 

cryptographic infrastructure that we noted above for SFI 

would equally apply to language based approaches. 

Another approach to implementing modularity and 

protection is through high-level application specific virtual 

machines, such as Maté [4]. But the cost of full 

interpretation as used in such designs is costly and soon 

becomes a limiting factor for computationally intensive 

applications (e.g., Maté’s emulated add instruction costs a 

few hundred cycles).  

5. Conclusions  

Module isolation in embedded nodes is an increasingly 

important issue. We have described a language, and 

largely architecture-independent, solution that attempts to 

move most of the overhead of enforcing isolation to a pre-

deployment stage, while retaining a minimal but sufficient 

enforcement mechanism at the end-nodes.  

Essentially, our approach employs the notion of dedicated 

registers coupled with per-module register allocation 

policies to restrict addressing modes in such a way that all 

instructions can be verified prior to runtime to access only 

fixed ranges of addresses (i.e. within blocks). Apart from 

this sandboxing, normal addressing semantics are 

maintained and, furthermore, considerable flexibility is 

maintained at runtime—i.e. dynamic code loading, 

memory allocation and block relocation are all supported. 

Currently, we are completing our implementation and are 

also writing a formal model of the design. Beyond that, the 

issue of determining optimal register allocation policies 

based on code analysis is a key area for further 

investigation. This will build on existing compiler 

technology (which of course already needs to 

appropriately allocate registers to minimise spillage) but 

will need to be refined to work at the finer granularity of 

our 4 register categories. 
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