
 1

Lightweight Module Isolation for Sensor Nodes

Nirmal Weerasinghe, Geoff Coulson

Computing Department, Lancaster University, UK

[n.weerasinghe, g.coulson@lancaster.ac.uk]

Abstract There is an increasing tendency in sensor

networks (and related networked embedded systems) to

push more complexity and ‘intelligence’ into end-nodes.

This in turn leads to a growing need to support isolation

between the software modules in a node. In conventional

systems, isolation is achieved using standard memory

management hardware; but this is not a cost-effective or

energy-efficient solution for small, cheap embedded nodes.

We therefore propose a software-based solution that

promises isolation in a significantly lighter-weight manner

than existing software-based mechanisms. This is achieved

by frontloading effort into offline compilation phases and

leaving only a small amount of work to be done at load

time and run time.

1. Introduction

As sensor networks (and related networked embedded

systems) evolve and grow in prominence there is an

increasing tendency to push more complexity and

‘intelligence’ into end-nodes. There are three main reasons

for this. First, it enables more interesting applications that

are not possible with simple data aggregation [15].

Second, sensor network architects are increasingly

designing around the trade-off between processing and

communication overheads (i.e. moving computation closer

to data on the grounds that the energy cost of sending a

byte over the radio is equivalent to thousands of processor

cycles). Third, many sensor networks have inherently long

deployment lifetimes, and this implies a need to

restructure/update node software on an ongoing basis, and

also to accommodate mutually-distrustful modules from

multiple sources.

As a consequence of the above trends, it is increasingly

necessary to be able to preserve inter-module isolation on

nodes in the face of faulty and untrustworthy code.

Otherwise, for example, a faulty module could easily

corrupt another module, or execute some functionality to

which it had no right (e.g. reconfigure an I/O device). In

traditional architectures such errors are prevented through

hardware support for virtual memory and supervisor/ user

modes: each module owns a private address space, and the

hardware ensures that modules interact with the rest of the

system in a controlled manner (e.g. through a system call

interface). However, such hardware support is non-existent

on many popular MCUs [7,16] in use in sensor networks.

Furthermore, this situation seems unlikely to change in the

foreseeable future due to the complexity and cost (in terms

of both energy use and chip size) that these hardware

mechanisms would introduce.

In the past, researchers have developed a number of

software-only solutions for inter-module isolation (e.g.

[1,2,3]). These designs are superficially suitable for our

purpose, but the fact that they have been designed with a

completely different motivation in mind (i.e. to minimise

the overhead of inter-module calls in traditional

architectures) means that they have significant drawbacks

when applied to our problem space. As discussed in detail

in Section 4, these drawbacks include large binaries and

high processing overheads that are not feasible on tiny

embedded nodes. More recent examples of isolation-

related work specifically targeted at the sensor node

domain are t-kernel [5], which takes its cue from [2]; and

Maté [4], which is an application specific virtual machine.

But again, as discussed in Section 4, these systems have

significant drawbacks—e.g. t-kernel suffers from large

code size, Maté suffers from programming language

specificity, and both suffer from high run-time overhead.

We therefore propose in this paper a software-only

solution to the module isolation problem that attempts to

overcome the problems of earlier work. In particular, our

solution attempts to minimise memory and execution

overheads at the sensor node by exploiting cheap CPU

cycles at the pre-deployment stage while retaining a

lightweight enforcement capability at the end-nodes. Our

approach is also is programming language- and largely

architecture-independent.

The remainder of this paper is structured as follows.

Section 2 describes our design, and Section 3 considers the

costs and other implications of our design. Finally, Section

4 compares our approach with related work and Section 5

offers our conclusions.

2. Design

2.1 Assumptions and Constraints

We assume that our target processors are RISC based

MCUs with memory capacities in the order of kilobytes.

We assume a generic RISC instruction set with a load-

store architecture and support for standard addressing

modes (i.e. immediate, direct, indirect and indexed). In

terms of constraints our design forbids self-extending or

self-modifying code and imposes a fixed-size block-based

memory management scheme. These constraints, which

are motivated by the need for efficient isolation, should

have little or no effect on most applications.

2.2 Overall Architecture

Our design employs the following four phase architecture:

1. Compilation. Modules written in a high-level

language are compiled to a virtual instruction set,

which is close to a generic RISC instruction set

architecture (ISA) but augmented with special

‘emulated’ instructions for memory management and

calling across protection domains.

2. Transformation. VIS code is transformed offline to

the target CPU’s native instruction set, except for the

 2

‘emulated’ instructions. This process also produces a

per-module ‘register partitioning policy’ (see below)

which is shipped to the end-nodes along with the

native code.

3. Verification. A lightweight online verifier on the end-

node ensures that the code is ‘safe’ before allowing

execution.

4. Execution. Execution is dispatched to a small runtime

environment when one of the emulated instructions is

encountered.

The key advantage of our design is that the verification

and execution processes are simple enough to be practical

for tiny embedded nodes; the more complicated processes

are carried out at the pre-deployment stage. Furthermore,

the Trusted Computing Base (TCB) is small and

manageable as it comprises only the online verifier and the

small runtime environment.

The main concepts employed in our design are as follows.

The scope of protection is called a domain, and each

domain can hold a number of program modules and their

associated data (including stacks). Both modules and their

data are held in fixed-size blocks of memory. The virtual

instruction set (VIS) provides instructions to create and

destroy blocks and also to perform cross module and cross

domain calls. When a block is created, the calling program

receives a handle to the block. Memory within a block is

then accessed either by specifying an indexed offset to the

handle (i.e. indexed addressing) or through a non-

forgeable pointer that is derived from the handle (i.e.

indirect addressing). The transformation phase derives a

register partitioning policy which maps handles and

pointers to designated registers on which only subset of

addressing modes are allowed.

Given the above concepts, the module isolation problem

can be expressed as follows:

1. Within a domain, we constrain loads/stores to be

from/to blocks owned by that domain.

2. Within a domain constrain, we control transfers to be

to routines within that domain.

3. Where cross-domain calls are involved, we constrain

control transfer so that calls may enter routines only at

their ‘official’ entry point
1
. This also applies to calls

to the runtime environment.

Next, we elaborate on VIS and each of the four phases.

2.3 The Virtual Instruction Set

The VIS is intended as a generic low-level intermediate

language to which a range of high-level languages can be

mapped. The bulk of the instruction set is close to a

‘generic’ RISC ISA with the exception that an ‘infinite’

register set is available (this is motivated by our register

partitioning approach described in Section 2.5) and that

only the following addressing modes are used: immediate,

direct (used mainly with control transfer instructions and

1
 Which functions a domain has access to is a matter of link-time access control

and not is considered further in this paper.

occasionally for memory mapped I/O), indirect (used with

our special pointers) and indexed (used with handles).

VIS’s ‘emulated’ instructions are as follows
2
:

crtb reg create a new data block and return

a handle to it in reg

crtp reg, offset given a handle in reg and a numeric

offset, create a new data pointer

dsrt reg destroy the data block whose handle

is in reg

ptoh src_r, dst_r cast a pointer in src_r to its parent

handle and place the latter in dst_r

salloc reg s

allocate a stack frame of size s and

place a pointer to it in reg

call target

do an intra- or inter-domain call to

the given target address

ret return from function

The crtb instruction creates a new block and returns a

handle to it. As mentioned, handles are used for indexed

addressing. Thus, given a handle H, the expression X(H)

would form an address within the block referred to by H.

Index X could range from 0 to the maximum block size.

Given a handle, crtp can then be used to create a pointer to

the block. This is simply a matter of performing a logical

AND between the handle and the offset. This results in a

pointer in which the high n bits refer to a block and the

low m bits refer to an offset within the block. Pointers are

used for indirect addressing and are safe in the sense that

they cannot be made to point outside of their block. This is

prevented by limiting the manipulation of pointers to the

block offset bits. For example, in a deployment with 256

byte blocks, only the last m=8 bits of the pointer can be

manipulated. Within these limits, which are enforced by

mechanisms to be described in Section 2.5, arbitrary

arithmetic/logic operations can be applied to pointers.

Each of the above instructions has the effect of placing the

result (i.e. a handle or a pointer) in the specified virtual

register. A pointer can be cast back to a handle using ptoh,

and a block can be destroyed using dsrt. As well as

handles and pointers to data, handles and pointers to code

are also supported, as are handles to stack frames as

discussed next. Stack frames are allocated using salloc

which has the effect of placing a frame handle in the

specified virtual register (which will later be mapped to

the physical stack pointer register). Frame handles are

similar to any other handle except that the indices have to

be within the allocated frame (multiple stack frames within

a block are supported).

Finally, the call and ret instructions support both intra and

inter domain calls. Other control transfers can be handled

using native instructions. For example, direct jumps

(where the target address is given in the instruction) or

branches are allowed where they are within a module.

2.4 Phase 1: Compilation

Apart from its block based memory management, VIS in

many respects similar to a modern compiler intermediate

2 There are also instructions to create and destroy domains and to initialise

domains with code blocks. However, these instructions are used only by the

system loader/linker and are not considered further in this paper.

 3

language [8] (i.e. with an infinite register file and generic

RISC instruction set).

Although blocks are explicit at the VIS level, they are not

necessarily visible to the programmer. For example,

different compilers could choose to make the blocks

explicit to the programmer [9,10] or to automatically infer

allocation [11]). Furthermore, since stack management is

handled by the runtime most block allocation is

transparent to the compiler. However language libraries

for dynamic memory management can easily be adopted

on top of the block based scheme.

2.5 Phase 2: Transformation

The transformation phase is responsible for translating

VIS to a specific target RISC ISA. Its other main job is to

map handles and pointers to dedicated physical registers

according to the afore-mentioned register partitioning

policy. This is defined as a partition of the available

physical registers into 4 categories
3
: i) data handles, ii)

code handles, iii) pointers, and iv) general purpose.

A specific partitioning policy is selected for each module,

the goal being to minimise register ‘spills’ in the context

of the behaviour of the associated module
4
. For example, if

a given module does not perform any dynamic memory

allocation there is no need to dedicate any data handle

registers.

The determination of partitioning policies is done through

offline code analysis (inter/intra procedural). There are

various tradeoffs to consider. For example, we want to

minimise handle/pointer spills because they are costly in

terms of processing cycles (as the runtime is involved in

loading these). This suggests a partitioning policy that

allocates many registers to handles/pointers. But if this is

done, the number of general purpose registers is reduced,

and spills from these are costly in terms of both memory

usage (i.e. additional stack space) and code size (i.e.

additional loads and stores).

Once a suitable partitioning policy is determined, register

allocation and code generation can be performed.

Depending on the target ISA, most VIS instructions

translate one-to-one to the target ISA, except for the

special ‘emulated’ instructions discussed in Section 2.3

which are handled by the runtime environment. Calls to

the runtime environment are realised as direct mode native

calls to predefined entry points (see Section 2.7). Pointer

manipulation instructions are mapped to native

instructions that manipulate only the low m bytes of the

pointer (see Section 2.2). In cases where m=8 (and

therefore the block size in 256), this is easily achieved by

using the target ISA’s byte instructions
5
. VIS’s call/ret

instructions involve calling the runtime environment

because a switch between code with different register

partitioning policies requires initialisation (see Section 3).

3 Because of this, the register partitioning policy can be represented very

economically: e.g. for 16 registers, 1 byte is sufficient.
4 It is also possible to consider finer-grained register allocation policies such as

per-function.
5 In other cases, instructions that employ pointers would need to employ additional

emulated instructions. We have so far only considered the case of m=8 and byte

instructions.

Finally, the code is statically partitioned into blocks

(normally the same size as data blocks). To deal with

possibly non-contiguous code blocks, direct branches

within a module are converted to index mode branches

through code handles.

Thus, following the transformation phase, each module

consists of number of code blocks and their associated

register partitioning policy or policies.

2.6 Phase 3: Verification

When new code modules arrive at a node, static

verification is performed on them before they are loaded

for execution.

Direct jumps/loads/stores are easy to check as the

addresses are literals embedded in the instruction. So it is

only necessary to check that the target address is within

the relevant block (or, e.g., within a permitted memory

mapped I/O vector).

Indexed and indirect mode loads/stores/branches are

verified using the attached register partitioning policy.

There are two aspects to this. First, the verifier ensures that

the dedicated registers are used correctly; for example, that

arbitrary data is not loaded into handle or pointer registers,

or that there are no memory accesses or branches through

general purpose registers. Second, the verifier examines all

instances of indirect and indexed addressing modes.

Indirect mode instances are verified by first making sure

that only the low m bits of pointers (i.e. those bits referring

to offsets within a block) are ever modified by application

code (e.g. by byte instructions in the case of 256 byte

blocks; see Section 2.5). Since initialising a pointer is

handled by the runtime (i.e. the high bits point at the block

from whose handle the pointer was derived), the pointer

will always point within the designated block. Code and

data pointers are treated differently: no branches are

allowed using data pointers, and no stores are allowed

using function pointers (to disallow self

modifying/extending code).

Indexed mode loads and stores are verified by checking

that indexing is carried out through a dedicated handle

register, and that all the indices (which are by definition

embedded in instructions) are within the fixed block size.

As the runtime environment guarantees that a loaded

handle is necessarily correct, all indexing operations will

therefore necessarily be within the block. Similarly,

indexed operations through a frame handle are verified to

be within the allocated frame (cf. the s argument to salloc).

Branches/calls within a module are not problematic as the

register allocation policy is the same throughout a module.

However, when control is transferred between two

modules with different partitioning policies, then the

dedicated registers need to be reset to ensure correct

isolation. There are two cases. If the two modules are

within the same domain, only registers whose usage

changes from general purpose to dedicated need to be

reset. Otherwise, for cross-domain calls all dedicated

registers need to be reset (this is done by the runtime

environment within the emulated call instruction).

 4

Note finally that the integrity of the system does not rely

on the correctness of the partitioning policy: if accidental

or malicious manipulation of a policy makes it inconsistent

with the associated code, the latter will simply be rejected

(or if the manipulated policy is still consistent with the

code then execution will anyway be confined to the

respective domain). Therefore, we do not rely on

cryptographic primitives to ensure code integrity.

2.7 Phase 4: Execution

The task of the runtime environment is to execute the

emulated instructions specified in Section 2.3. It also

implements the following additional routines to deal with

handle and pointer register spills (calls to these are

inserted by the transformation phase using native call

instructions):

loadh reg_id, handle_id load a handle

loadp reg_id, pointer_id load a pointer

storep reg_id, pointer_id store a pointer

The loading of a handle/pointer involves searching for the

id in a list maintained by the runtime environment, and

then loading the handle/pointer into the specified register.

The runtime also handles stack management through

salloc. Stacks reside in—possibly non-contagious—

block(s), and if a stack frame cannot fit within an existing

block allocated for the stack, it will be allocated in a new

block. The emulated ret instruction resets the frame

handle.

There is a key issue around the calling of these runtime

environment routines. In particular, it is necessary to

ensure that the verifier can validate critical arguments

passed to these routines (in particular, it is crucial to

validate the reg_id argument to the above functions and

the target argument to call). However, if we were to

simply pass the arguments on the stack, there would be

nothing to prevent code elsewhere from pushing some

malicious arguments onto the stack and then jumping to a

runtime environment entry point. The verifier could not

detect such a loophole. To prevent this we must explicitly

associate each call with its associated argument in such a

way that the binding between the two can be verified

statically. To achieve this, the transformation phase

embeds the arguments in the word(s) immediately

following the call instruction (this is feasible because the

critical arguments are known at compile time. Since the

native ‘call’ instruction is assumed to automatically push

the PC on the stack, the runtime routine can then reliably

access the arguments to which the PC is pointing (and then

increment the PC to the next instruction within the

routine). This, together with the fact that code is not re-

writable, forms a reliable basis on which the verifier can

treat the call and its arguments as one indivisible unit.

The above-described mechanisms, together with the action

of the verifier, are sufficient to secure the required

isolation semantics as set out at the end of Section 2.2.

3. Design implications and costs

Our design is currently under implementation and is not

yet sufficiently mature for a comprehensive performance

evaluation. In the meantime, we briefly analyse the

overhead implications of the design. We focus on runtime

overheads and ignore the offline costs of compilation and

transformation: these latter rely on well understood

compilation principles and are anyway not time critical.

Runtime overheads comprise verifier and execution

environment overheads. Verifier overheads are limited to

making a single pass over the code, carrying out pattern

matching to detect relevant instructions (i.e. those

involving direct, indirect and indexed addressing) and

checking them against the register allocation policy as

described in Section 2.6. This involves a small and fixed

per-instruction overhead which is well within the

capabilities of an embedded node.

In terms of execution overheads, the main factors are the

cost of VIS instruction emulation and the effects of the

register partitioning policy (in terms of spillage). The

emulated instructions with the highest overheads are load,

crtp and call. The former two instructions save two

registers, locate handle_id in a list, and determine reg_id

from the code block. Crtp additionally involves a logical

AND of index and handle_id. The cost of these steps on an

MSP430 MCU is corresponds to ~20 instructions

assuming a list of 5 handles. The overhead for call

involves inspecting the stack pointer to ensure that there is

enough room for another call before current call returns. In

addition, all cross-module calls need to zero the handle

and pointer registers to ensure isolation. Again, these

operations involve only modest overhead.

The effects of the register partitioning policy are less easy

to quantify as they are heavily dependent on peculiarities

of a particular piece of code. The selection and evaluation

of an optimal register algorithm remains an area for future

work.

There are a number of other smaller sources of overhead:

in particular, there is a degree of memory wastage due to

internal fragmentation caused by the use of fixed-sized

blocks and there will be a small increase in executable size

due to dealing with dedicated register spillage. Note,

however, that this memory overhead is likely to be tiny in

comparison to other systems (see Section 4).

Finally, as most VIS instructions map directly to native

equivalents, most code executes natively without any

execution overhead whatsoever. Memory access incurs no

additional cost as all the verification has been carried out

prior to execution, and native instructions/ addressing

modes are used.

4. Related work

As mentioned in the introduction, enforcing module

boundaries in a single address space has been extensively

studied in traditional architectures. For example, Software

Fault Isolation [2] achieves isolation by binary code

rewriting: first the code is statically checked to ensure that

all direct jumps are within the monolithic code segment

assigned to the module; then dynamic checks are inserted

into the code at each indirect jump and store to ensure that

these are also ‘safe’. Unfortunately, in sensor nodes with

little memory, allocating continuous regions for each

 5

module is not practical. Also, fully-general reliable binary

rewriting is a complex task that is not practical on tiny

embedded nodes. Furthermore, facilitating offline-

rewriting would require an underlying cryptographic

infrastructure (i.e. to enable the embedded node to verify

the integrity of the rewritten code). This would carry

undesirable overhead for embedded systems environments.

Actually, our design can be considered as a generalised

form of SFI. However there are 4 major differences: i) no

binary rewriting at the target node is necessary

(conceptually, this is moved to the transformation phase);

ii) our scheme allows multiple blocks of code and data in

each domain (allocating single monolithic areas is

infeasible on small embedded nodes); iii) because of the

use of fixed sized blocks we eliminate most of the

dynamic checks required in a SFI system; and iv) our use

of dedicated registers is different: while the classic SFI

scheme requires 3 dedicated registers (segment start,

length (shift), formed address) for forming an address

within a block, we need only a single register, the one that

actually contains the formed address. This reduced register

overhead is particularly important for MCUs with small

register files.

T-kernel [5] is a good example of other work on adapting

the SFI approach to the sensor network domain. However,

t-kernel introduces large code size overheads (on average a

factor of 8) due to the extensive rewriting employed. Also,

t-kernel incurs high runtime overhead—for example, heap

access can take 180,857 cycles. Execution cost in our

scheme is minimal because memory accesses are mapped

to native instructions, and handle loads/pointer-

initialisations cost only around 20 instructions.

Proof Carrying Code [3] achieves isolation by requiring

the construction of a ‘proof’ which verifies the software’s

compliance with the target host’s ‘safety policy’. This

approach is superficially attractive for the sensor node

context as the complex task of proof-generation is done

offline, and the node performs only a ‘simple’ validation.

Unfortunately, proofs tend to be much larger than the code

itself (up to 8 times the code size [3]), and validating the

proof, written using the Edinburgh Logic Framework (LF),

is again a task that is beyond tiny embedded nodes.

SPIN [1] approaches the issue of isolation by leveraging

high-level language semantics. However, there is an

explosion of different languages and programming

paradigms in use in the network embedded systems field

(e.g. declarative, agent-based [13], global-programming

[12]) and mandating a single type-safe language such as

Modula, or even small set of such languages is therefore

infeasible or at least undesirable. Also, code for embedded

devices is often written in type-unsafe languages such as

C, and hand-tuned assembler code is still common in the

field. Furthermore, the same requirement for a

cryptographic infrastructure that we noted above for SFI

would equally apply to language based approaches.

Another approach to implementing modularity and

protection is through high-level application specific virtual

machines, such as Maté [4]. But the cost of full

interpretation as used in such designs is costly and soon

becomes a limiting factor for computationally intensive

applications (e.g., Maté’s emulated add instruction costs a

few hundred cycles).

5. Conclusions

Module isolation in embedded nodes is an increasingly

important issue. We have described a language, and

largely architecture-independent, solution that attempts to

move most of the overhead of enforcing isolation to a pre-

deployment stage, while retaining a minimal but sufficient

enforcement mechanism at the end-nodes.

Essentially, our approach employs the notion of dedicated

registers coupled with per-module register allocation

policies to restrict addressing modes in such a way that all

instructions can be verified prior to runtime to access only

fixed ranges of addresses (i.e. within blocks). Apart from

this sandboxing, normal addressing semantics are

maintained and, furthermore, considerable flexibility is

maintained at runtime—i.e. dynamic code loading,

memory allocation and block relocation are all supported.

Currently, we are completing our implementation and are

also writing a formal model of the design. Beyond that, the

issue of determining optimal register allocation policies

based on code analysis is a key area for further

investigation. This will build on existing compiler

technology (which of course already needs to

appropriately allocate registers to minimise spillage) but

will need to be refined to work at the finer granularity of

our 4 register categories.

6. References

[1] B.N. Bershad, et al., Extensibility, safety and performance in the

SPIN operating system, Proc. 15th ACM SOSP, December 1995.

[2] R. Wahbe et al., Efficient software-based fault isolation, Proc. 14th

ACM SOSP, December 1993.

[3] G. Necula et al., Safe kernel extensions without run-time checking,

Proc. OSDI, Seattle, USA, October 1996.

[4] P. Levis and D. Culler., Maté: A tiny virtual machine for sensor

networks, Proc. ASPLOS-X, October 2002.

[5] L. Gu et al., t-kernel: Providing Reliable OS Support to Wireless

Sensor Networks, Proc. 4th ACM SenSys, 2006.

[6] Ram Kumar, et al., Software-based memory protection in sensor

nodes, Proc. 3rd EmNets, 2006.

[7] MSP 430 specification, http://focus.ti.com/mcu/docs/.

[8] Vikram Adve, et al., LLVA: A Low-level Virtual Instruction Set

Architecture, Proc. ACM/IEEE MICRO, 2003.

[9] David Gay et al., Memory management with explicit regions, Proc.

PLDI, 1998.

[10] Grossman, et al., Region-based memory management in cyclone,

Proc. PLDI, 2002.

[11] M. Tofte, et al., Region-based memory management. Information

and Computation,132(2):109–176, 1997.

[12] R. Newton, et al., The Regiment Macroprogramming System, Proc.

IPSN'07, 2007.

[13] Chien-Liang Fok, et al., Rapid Development and Flexible

Deployment of Adaptive Wireless Sensor Network Applications, Proc

ICDCS, 2005.

[14] J. Hill, et al. System architecture directions for networked sensors,

Proc. ASPLOS-IX, 2000.

[15] Steffan, A. et al. Towards Multi-Purpose Wireless Sensor Networks,

Proc. Systems Communications, 14(17):336–341, August 2005.

[16] ARM7 specification, http://www.arm.com/products/ CPUs/

ARM7TDMI.html.

